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Abstract
Speeded decision tasks are usually modeled within the evidence accumulation framework, enabling inferences on latent
cognitive parameters, and capturing dependencies between the observed response times and accuracy. An example is the
speed-accuracy trade-off, where people sacrifice speed for accuracy (or vice versa). Different views on this phenomenon lead
to the idea that participants may not be able to control this trade-off on a continuum, but rather switch between distinct states
(Dutilh et al., Cognitive Science 35(2):211–250, 2010). Hidden Markov models are used to account for switching between
distinct states. However, combining evidence accumulation models with a hidden Markov structure is a challenging problem,
as evidence accumulation models typically come with identification and computational issues that make them challenging
on their own. Thus, an integration of hidden Markov models with evidence accumulation models has still remained elusive,
even though such models would allow researchers to capture potential dependencies between response times and accuracy
within the states, while concomitantly capturing different behavioral modes during cognitive processing. This article presents
a model that uses an evidence accumulation model as part of a hidden Markov structure. This model is considered as a
proof of principle that evidence accumulation models can be combined with Markov switching models. As such, the article
considers a very simple case of a simplified Linear Ballistic Accumulation. An extensive simulation study was conducted to
validate the model’s implementation according to principles of robust Bayesian workflow. Example reanalysis of data from
Dutilh et al. (Cognitive Science 35(2):211–250, 2010) demonstrates the application of the new model. The article concludes
with limitations and future extensions or alternatives to the model and its application.

Keywords Evidence accumulation · Speeded decision · Speed-accuracy trade-off · Response times · Hidden Markov
models · Phase transition

Introduction

Evidence accumulation models (EAMs) have become
widely popular for explaining the generative process
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of response times and response accuracy in elementary
cognitive tasks (Evans & Wagenmakers, 2019). The strength
of EAMs is their ability to accurately describe the speed-
accuracy trade-off in speeded decision paradigms. The
speed-accuracy trade-off is the conundrum that typically
occurs when participants are instructed to make faster
decisions, thereby increasing their proportion of errors
(Bogacz et al., 2010; Wickelgren, 1977; Luce, 1991). The
trade-off implies that in some situations, people can be slow
and accurate, whereas fast and inaccurate in other situations.
The dependency between response times and responses
generally frustrates interpretation of response time and
accuracy at face value. EAMs aim to capture and explain
this dependency between response times and accuracy, and
enable inference on the latent cognitive constructs and a
mechanistic explanation of the observed response time and
accuracy. Thus, such analyses often enable us to tell, for
example, whether slowing down is caused by increased
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response caution, increased difficulty or decreased ability
of the respondent (van der Maas et al., 2011; Evans &
Wagenmakers, 2019).

The traditional view of the speed-accuracy trade-off is
that of a continuous function. That is, people are able to
control their responses on the entire continuum from “slow
and accurate” to “fast and inaccurate”. This is an intrinsic
assumption of EAMs which makes it possible to manipulate
parameters associated with “response caution” to make
more or less accurate (on average) decisions by slower or
faster (on average) responding. Under such a view, it is in
principle possible to hold average accuracy to any value
between a chance performance and a maximum possible
accuracy (often near 100%), by adjusting how fast one needs
to be.

An opposing view is that of a “discontinuity” hypothesis
(Dutilh et al., 2010), which states that people are not
able to trade accuracy for response time on a continuous
function, but rather switch between different stable states.
The discontinuity hypothesis in speeded decision-making
is strongly associated with thinking about two particular
response modes: a stimulus controlled mode and a guessing
mode (Ollman, 1966). Under the stimulus controlled mode,
one is maximizing response accuracy while sacrificing
speed; whereas under the guessing mode, choices are
made at random for the sake of responding relatively fast.
Hence, there are two modes of behavior under discontinuity
hypothesis. Such dual behavioral modes are present in many
models of cognitive processing (e.g., dual processing theory
Evans 2008).

The discontinuity hypothesis has an increasing relevance
in the speeded decision paradigm because it is able to
explain specific observed relationships between decision
outcomes and reaction times that standard EAMs cannot
account for (Dutilh et al., 2010; van Maanen et al., 2016;
Molenaar et al., 2016). One of the most elaborate theoretical
and empirical investigations of the “discontinuity” hypoth-
esis is the phase transition model for the speed-accuracy
trade-off (Dutilh et al., 2010), which added several more
predictions regarding the dynamics of switching between
the controlled and guessing state. These phenomena can
be modeled using hidden Markov models (HMM, Visser
et al., 2009; Visser, 2011). Dutilh et al. (2010) used HMMs
to model their data such that response time and accuracy
are independent conditional on the state. Specifically, the
model assumed that the responses are generated from a
categorical distribution and response times from the log-
normal distribution, independently of each other. Thus, the
speed-accuracy trade-off is described only by assuming one
slow and accurate state, and one fast and inaccurate state.
However, at least under the controlled state, evidence accu-
mulation presumably takes place to generate the responses,

and so can lead to continuous speed-accuracy trade-off typi-
cal for EAMs, although within a smaller range than assumed
under the continuous hypothesis. Thus, inference on the
latent cognitive constructs given by the EAM might be the
preferred option, but is neglected under the current HMM
implementations of the phase transition model. Combin-
ing EAM with HMM would thus result in a model that
is discontinuous on the larger scale (between state speed-
accuracy trade-off), and continuous on the smaller scale
(within state speed-accuracy trade-off), representing a third
theoretical possibility beyond purely continuous and purely
discontinuous models (Dutilh et al., 2010).

Fitting an HMM combined with an EAM would enable
researchers to test specific predictions coming from the
phase transition model as well as utilizing the strength
of the EAM framework to account for the continuous
speed-accuracy trade-off within the states. The ability of
EAMs to infer the latent cognitive constructs liberates
researchers from defining the states solely in terms
of their behavioral outcomes. For instance, instead of
describing the controlled state on the observed behavioral
outcomes only (i.e., “slow and accurate”), EAMs allows
researchers to form a mechanistic explanation of the
observed behavioral outcomes using the latent cognitive
constructs (i.e., “high response caution and high drift
rate”). Further, capturing residual dependency between the
observable variables conditionally on the latent states could
improve performance of an HMM in terms of classification
accuracy.

However, fitting EAMs can be a challenging endeavor,
especially for more complicated models that allow for
various sources of within and between trial variability,
which often exhibit strong mimicry between different
parameters, and as such belong to the category of “sloppy
models” (Apgar et al., 2010; Gutenkunst et al., 2007).
More complicated models, such as leaky competitor
models, are not analytically tractable, and subject to highly
specific simulation-based fitting methods (Evans, 2019).
Thus, combining EAMs with HMMs, which themselves
come with several computational (e.g., evaluation of the
likelihood of the whole data sequence, Visser, 2011) and
practical (e.g., label switching, Spezia, 2009) challenges,
is highly demanding. The only successful applications of
HMMs in these tasks is in combination with models that
cannot capture possible residual dependencies, usually log-
normal models or shifted Wald models for response times
(Dutilh et al., 2010; Molenaar et al., 2016; Timmers,
2019). Yet, even the supposedly simplest complete model
of response times and accuracy — the Linear Ballistic
Accumulation model (LBA; Brown & Heathcote, 2008)
— has proven to be difficult to combine with an
HMM structure or even as a simple independent mixture
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(Veldkamp, 2020); this may not come as a surprise
considering the general identifiability issues of the standard
LBA model (Evans, 2020).

Given the potential of complex cognitive models to
suffer from computational issues, it is important to present
evidence that the model implementation is correct and that
the procedure used to fit the model on realistic data (in
terms of plausible values but also size) indeed succeeds
in recovering the information that is used for inferences.
The importance of validating models in terms of practical
applicability is ever more increasing with the growing
heterogeneity of approaches for fitting complex models, as
well as modern approaches to build custom models tailored
to specific purposes.

This need is taken seriously in this article which
implements and validates a simple (constrained) version of
the LBA model as part of an HMM. This model makes it
possible to capture the discontinuity of the speed-accuracy
trade-off by the HMM part, while concomitantly striving
to capture the residual dependency between speed and
accuracy within the states. Further, the model retains the
fundamental inferential advantages of an EAM framework,
but is analytically tractable and stable enough to be used
with standard, state-of-the-art, modeling tools. To our
knowledge, this is the first working combination of an
HMM and an EAM, and serves as a proof of concept.

The structure of this article is as follows. First, the
model is described in conceptual terms to explain the core
assumptions and mechanics. Second, a simulation study
summarizes all steps that were followed when building
and validating the model in accordance with a robust
Bayesian workflow (Schad et al., 2019; Talts et al., 2018;
Lee et al. 2019). The model validation is followed with an
empirical example to demonstrate the full inferential power
of the model on experimental data. The article concludes
with discussion and future potential directions towards
improving the model.

Model

The general architecture of the model for response times
and choices that we adopt here is the same as for the Linear
Ballistic Accumulator (LBA; Brown & Heathcote, 2008).
In the standard LBA, each response option is associated
with its own evidence accumulator. Each accumulator
rises linearly towards a threshold from a randomly drawn
starting point, with its own specific drift rate, drawn from
some distribution (commonly a normal distribution that
is truncated at zero). The first accumulator that reaches
its decision threshold triggers the corresponding response.
Figure 1 explains the basic mechanics of typical LBA
model.

Although the LBA became a popular choice for
analyzing response times and accuracy, more recently
evidence has surfaced suggesting practical identifiability
issues of the standard LBA model — especially when
trying to quantify differences in parameters such as decision
boundary or drift rates between experimental conditions
(Evans, 2020). Given that HMMs can be viewed as way
to quantify differences between “conditions” (states) which
themselves need to be inferred from the data, (lack of)
identifiability of the standard LBA in combination with
HMMs is a concern (especially in the upper bound of the
starting point Veldkamp, 2020; Timmers, 2019).

However, there exists a number of potential remedies to
solve the identifiability issue of the standard LBA. These
remedies involve constraining the LBA model in some way
while retaining as much flexibility of the model as possible
to account for different patterns in the data, and to still allow
inferences on the most fundamental parts of the evidence
accumulation decision process (e.g., speed of accumulation,
response caution). For example, a relatively well established
set of constraints is to ensure that the average drift rates
across accumulators are equal to some constant value (e.g., a
scaling value of 1; Evans, 2020; Donkin et al., 2011; Visser
& Poessé, 2017). Such constraints may be accompanied by
implementing equality constraints on parameters such as the
upper bound of the starting point or the standard deviation

Fig. 1 Linear Ballistic Accumulator (Brown & Heathcote, 2008). Each
response outcome has an independent accumulator. For simplicity,
the plot shows only one accumulator. (a) Starting point for each
accumulator is generated from Uniform distribution between zero and
the upper bound of the starting point. (b) Accumulator is launched
from the starting point and with a drift rate that is generated from
normal distribution with a mean drift and standard deviation of drift
rate. (c) Decision is made based on which accumulator hits the decision
boundary first. Final response time is the sum of the decision time
(the time it took the first accumulator reach the boundary) and a
non-decision time (a fixed time for encoding the stimuli and motoric
response)
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of the drift rates. In the context of different conditions,
even more stringent (equality) constraints are possible, such
as equating parameters (such as drift rate for the “error”
response) across conditions (Evans, 2020).

This article aims to provide a proof of concept that
EAMs and HMMs can be combined into a single model.
The present application simplifies the LBA model to a bare
minimum and acts as a sanity check — in case even very
minimalist EAM models cannot be employed as part of
a HMM model, there is little reason to expect that more
complex, complete and computationally demanding models
of decision-making will be more successful.

The bare minimum, simple instance of LBA is achieved
in this article by setting several constraints on the
parameters. For practical reasons, we will refer to this
model as sLBA, a short for “simplified Linear Ballistic
Accumulator”. Most significantly, the model implemented
in this article fixes all starting points at zero, effectively
removing the variability of the starting point. As commonly
done in the LBA, we constrain the drift rates to sum to
unity. In addition to that, the drift rates are assumed to have
equal standard deviations across accumulators. Full details
on the model, its likelihood and identifiability are described
in Appendix A, additional helpful derivations can be found
in Nakahara et al. (2006). Figure 2 explains the model in
additional detail.

The simplification achieved by removing the variability
of the starting point makes the model coarsely similar to the
LATER model (Linear Approach to Threshold with Ergodic
Rate, Carpenter, 1981; Noorani and Carpenter, 2016), with
the difference that the current model explicitly evaluates the
likelihood of observing the first accumulator that reached
the threshold according to the general race equations
(see Heathcote & Love, 2012), and contains additional
parameters (such as non-decision time). Therefore, it
enables researchers to model accuracy in addition to
response times as opposed to the LATER model (see
Ratcliff, 2001 for critique of LATER for inability to do so).

The constraints employed in this application greatly
reduce the complexity compared to the standard LBA
model. Specifically, our model for responses and response
times on a two-choice task contains the following parame-
ters: the average drift rate for the correct (ν1) and incorrect
(ν2) responses, the standard deviation of the drift rates (σ ),
the decision threshold (α), and the non-decision time (τ ).
The latter three parameters are equal for both accumulators.

The purpose of simplifying the LBA model is to employ
it as a distribution of response times and responses in an
HMM. Specifically, the current model assumes two latent
states: A “controlled” state (s = 1) and a “guessing”
state (s = 2). These states evolve according to a Markov
chain, which is characterized by the initial (π1 and π2)
and transition state probabilities ρij , where the first index i

Fig. 2 HMM combined with sLBA. Bottom panel: Latent controlled
and guessing states evolve as a Markov chain, with initial state
probabilities π1 and π2, and transition probabilities ρ12 and ρ21.
Middle panel: Non-decision time τ shifts the response times. Correct
and incorrect responses launch an accumulator (starting at 0), with a
drift rate drawn from a truncated normal distribution with mean drift
rate ν and a standard deviation σ . The plot shows the average drift rates
as thick arrows, and realizations of the random process as thin lines to
represent the randomness of the process. Accumulator that reaches the
decision boundary α first launches corresponding response. Average
drift rates and decision boundary can differ between the states. Top
panel: Under the controlled state (left), the expected response times are
larger than under the guessing state (right), but the accuracy is higher
(i.e., the decision boundary is reached by the correct accumulator more
often)

corresponds to the outgoing state and j corresponds to the
incoming state: For example, ρ12 is the probability that the
participants switch from the controlled state to the guessing
state.

Traditionally, these states would be equipped by their
own distribution of response times and responses, possess-
ing their own parameters. That is, we could use the LBA
model for each latent state of the HMM, and estimate the
drift rate for the correct responses for the first state ν

(1)
1 ,

second state ν
(2)
1 , and similarly for all of the parameters.

However, we further reduce the complexity of the model
by equating some parameters between states. Specifically,
we assume that the difference between the guessing state
and the controlled state is evoked by differences between
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average drift rates and decision thresholds. The rest of the
parameters are held equal across the states. Thus, equality
constraints σ (1) = σ (2) and τ (1) = τ (2) are used to further
simplify the model.

Additionally, there are some notable considerations
regarding the controlled and guessing states, which will
later help setting priors and preventing label switching.
Specifically, the controlled state has higher average drift
rate for the correct response than the guessing state (ν(1)

1 >

ν
(2)
1 , and consequently ν

(1)
2 < ν

(2)
2 due to the sum-to-one

constraint of the drift rates, see Appendix A) at the expense
of having higher decision threshold (α(1) > α(2). Further, if
the second state truly is guessing, the drift rates under this
state should be roughly the same: ν

(2)
1 ≈ ν

(2)
2 ≈ 0.5.

Implementation

We implemented the HMM and LBA model in a proba-
bilistic modeling language Stan (Carpenter et al. 2017);
specifically, v2.24.0 release candidate of CmdStan (https://
github.com/stan-dev/cmdstan/releases/tag/v2.24.0-rc1,
Stan Development Team, 2020). In this version of Stan,
several new functions were introduced that implement
the forward algorithm for calculating the log-likelihood
of the data sequence, while marginalizing out the latent
state parameters (for easy introduction, see Visser, 2011),
which makes estimating HMM models in Stan much easier,
computationally cheaper, and less error-prone than before
(which required manual coding of the forward algorithm).
The sLBA distribution of response times and responses
was custom coded in the Stan language. We executed
CmdStan from the statistical computing language R (R
Core Team, 2020) using the R package cmdstanr (Gabry
& Češnovar, 2020). The code is available at https://github.
com/Kucharssim/hmm slba.

Label Switching

Finite mixture models and Hidden Markov models share the
characteristic that the likelihood of the models is typically
invariant to the permutation of the latent state labels (Jasra
et al., 2005; Spezia, 2009). This means that fitting the model
can result in different estimates, depending on towards
which state configurations the fitting procedure leads to. In
the current context of guessing and controlled state, it is not
possible on the basis of the model likelihood alone to state
whether component 1 should be controlled or guessing state
and vice versa — both options lead to the same likelihood
value. There are several perspectives on dealing with
potential label switching, perspectives that differ in terms
of what types of applications and inferential paradigms one
follows. For example, in maximum likelihood paradigm,
label switching is not a severe problem as the analyst can

simply relabel the states after the model has been fitted,
based on how the parameter estimates can be interpreted. In
Bayesian framework (especially with MCMC), the problem
is more complicated as the label switching can manifest in
different ways, and can also depend on the sampler (and
its settings) one uses to obtain the estimates of the entire
posterior distribution. Common remedies of label switching
are, for example, (1) change the model so that emission
distributions under each state are uniquely identified, (2)
establish parameter inequalities which leads to identifying
the labels, (3) use of informative priors that lead to better
identification of the a priori constraints, (4) some form
of state relabeling of the posterior samples, among others.
Usually, various remedies are combined together as the
solutions do not work in generality for all possible mixture
problems and applications.

In the current application, we heavily rely on approach
3), whereby specifying informative priors leads to soft
identification of the state labels, i.e., associating slow and
accurate responding with a (controlled) state 1 and fast and
inaccurate responding with a (guessing) state 2. However,
it is important that even which informative priors, one
is only increasing the a priori probability of some state
configuration, but does not render other configurations
impossible. In fact, the other state configurations are
still valid modes of the joint posterior space, albeit less
plausible according to the prior specification. In some
applications (estimating marginal likelihood in order to
conduct model comparison; Frühwirth-Schnatter, 2004),
it is actually desirable to make sure that the sampler is
switching between state labeling freely, to ensure that the
MCMC sampling efficiently explores the joint posterior in
its entirety. In purely estimation settings (which is the case
of this article which is not concerned by model comparison),
one does not need to ensure that all valid modes of the
posteriors are explored efficiently, as long as the main mode
is explored well, which, among others, entails checking
whether the labels did not switch, either within- or between-
the MCMC chains.

Simulation Study

In order to investigate the quality of inferences we
draw from the model, a simulation study was conducted.
Specifically, we conducted the simulation in accordance
with a principled Bayesian workflow (Schad et al., 2019).
The simulation study consists of (1) prior predictive
checks to identify priors that reflect our domain specific
knowledge, (2) a computational faithfulness check to
test correct posterior distribution approximation, and (3)
model sensitivity analysis to investigate how well the
estimated posterior mean of parameter matches the true
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data generating value, and the amount of updating (i.e.,
how much are the parameters informed by the data).
Additionally, as is the case in classical model validation
simulation, we report standard parameter recovery results,
including coverage probabilities of credible intervals.

Prior Predictives

Choosing prior distributions is an integral part of the
Bayesian model-building process because the prior should
reflect theoretical assumptions and cumulative knowledge
about the parameter space as well as aid model convergence
(Vanpaemel, 2011; Gershman, 2016). Ideally, the priors
should be informed and constrained by a large collection
of previous studies (Tran et al., 2020; van Zwet &
Gelman, 2021) to yield more efficient sampling and
plausible estimates. In the current study, we selected prior
distributions to constrain parameter values to reasonable
regions of the parameter space (e.g., non-decision time
must be positive, therefore we used an exponential
distribution) and to nudge the model towards convergence.
Concomitantly, our prior distributions were informed by
the large collection of literature on evidence accumulation
models applied to lexical and perceptual decision tasks
(Tran et al., 2020). Interested readers who want to apply
our models to different experimental tasks or non-standard
populations might want to consult the corpus of literature
specific to the application to adjust the prior distributions.

To place priors that reflect our expectations about data
from the tasks to which the model will be applied, we
conducted prior predictive simulations. In particular, we
first set out to generate 1,000 data sets each of 200 trials,
which is generally a lower bar for running speeded decision
tasks. Then, the following expectations of the generated
data are defined, specified in terms of summary statistics
across the 200 observations per data set. Throughout,
response times are measured and reported in seconds. In
case response times are measured in different units, the
priors should be re-scaled appropriately.

Latent State Distribution

First, we expect that the number of trials participants
spend in one or another state will be relatively even, and
that it is very rare that participants would complete all
200 trials in a single state. The evenness is achieved by
composing a symmetric initial state probabilities vector π

and a symmetric transition matrix P =
[

ρ1
ρ2

]
. Further,

we assume that the states are relatively sticky, therefore
there will be a tendency to stay in the current state rather
than switching to another state. Specifically, the average run
length is expected to be approximately between 5 and 10,

and that in at least 50% of the simulations the proportion of
the trials under the controlled state ranges between 30 and
70%.

We chose the following priors

π ∼ Dirichlet(5, 5)

ρ1 ∼ Dirichet(8, 2)

ρ2 ∼ Dirichet(2, 8).

The initial state probabilities are assigned a symmetric
Dirichlet prior. The hyperparameters slightly favor proba-
bilities closer to 0.5. Usually, the initial state probabilities
are not the focus of inference as they depend mostly on just
the first trial. Thus, slightly informative priors were chosen
to help the model to converge. For the transition probabili-
ties, Dirichlet priors that favor “sticky” states were chosen.
Specifically, the mean probability of staying under the cur-
rent state is 0.8. There is still considerable uncertainty about
how sticky the two states are: 90% of the prior mass for
the probability of persisting in the current state lies between
0.63 and 0.94.

The results of the prior predictive simulation showed
that the median of the average run length is 6.25 (IQR
[4.35, 9.524]). The distribution of the average run length is
positively skewed. Although it could be expected in many
experiments that run lengths could be higher, the priors
would have to be much more informative (pushing the
probability of staying in a current state closer to one) than
the current settings. However, that would give only a very
narrow range of the values used for validating the models.
Therefore, the current setting of the prior is a compromise
between prior expectations about the data and the need to
validate the model on a wider range of parameter values.
Regarding the percentage of trials in the controlled state, the
distribution over the 1,000 simulations had a median of 0.51
(IQR [0.35, 0.67]).

Response and Response Time Distributions

We expect that the distributions of the responses will be
the following. Under the controlled state, the proportion
of correct responses is well above chance; we assume that
under the controlled state, there is almost zero probability
that a person would have accuracy smaller than 50%, and
that it is possible to achieve relatively high accuracy on
average (≈75%). Under the guessing state, we assume that
the average accuracy is exactly 50%.

For the distributions of the response times, we have the
following expectations. First, the response times under the
controlled state are on average slower than responses under
the guessing state. Second, the responses under the guessing
state are relatively rapid: responses in simple perceptual
decision tasks can be faster than 1 s on average. Third, the
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Fig. 3 Prior predictive
distribution of the response
accuracy (proportion of correct
answers)

majority of response times does not exceed 5 s (Tran et al.,
2020).

Based on these considerations and prior predictive
simulations, the following prior specification for the LBA
parameters were identified as suitable:

ν(1) ∼ Dirichlet(14, 6)

ν(2) ∼ Dirichlet(10, 10)

α(1) ∼ Gaussian(0.5, 0.1)(0,∞)

α(2) ∼ Gaussian(0.25, 0.05)(0,∞)

σ ∼ Gaussian(0.4, 0.1)(0,∞)

τ ∼ Exponential(5)

Figure 3 and Table 1 summarize the prior predictive
distribution of the accuracy (proportion of correct answers)
under the two states separately. As desired, the accuracy
under the controlled state is well above chance, whereas
under the guessing state it clusters around 50%. There
is considerable variability under both states, leaving the
possibility for the model to learn from the data.

Figure 4 and Table 2 summarize the prior predictive
distributions of the average response times for correct and
incorrect responses under the two states separately. As
desired, the average response times are slower under the
controlled state than under the guessing state. The majority
of the average response times under the guessing state are
below 1 s, whereas under the controlled state cluster around
1 s. There are no large differences between response times
for correct and incorrect responses under the two states
separately, although the average response times for incorrect
responses under the controlled state show higher variance

Table 1 Descriptives of the prior predictive distribution of the
response accuracy (proportion of correct answers)

Quantile

State Mean SD 2.5% 25% 50% 75% 97.5%

Controlled 0.73 0.12 0.48 0.65 0.73 0.81 0.96

Guessing 0.50 0.16 0.21 0.39 0.50 0.60 0.81

than for the correct responses. However, this phenomenon
might be caused by the fact that there are more correct
responses than incorrect responses under the guessing state,
resulting in higher standard errors for the averages of the
incorrect responses.

The prior distributions specified above may seem
extremely informative, introducing “subjective” bias to the
analysis. However, we believe the prior distributions are
justified by our prior predictive simulations and based
on cumulative characterizations of psychological processes
underlying a lexical decision and a perceptual decision task
of EAMs (Tran et al., 2020). Further, prior distributions
may be also regarded as constraining the parameter space
to plausible values (Tran et al., 2020; Vanpaemel, 2011;
Kennedy et al., 2019), similarly as a traditional statistician
would decide on ranges of parameters for a simulation
study. In the current study, the prior distributions actually
cover slightly more volume of the parameter space than is
typical in simulation studies of similar type (e.g., Donkin
et al., 2011; Visser & Poessé, 2017). Lastly, priors on
the parameters in both states (e.g., α(1) and α(2)) are
used to primarily separate the latent states from each
other, and associate the first state with the controlled state
(and conversely the second state with the guessing state).
Using informed priors in such occasions prevents label
switching problems, and gently nudges the model towards
convergence.1 However, the prior specification does not
ensure that the labels do not switch at all. When fitting the
models, we performed additional checks using the posterior
samples to check whether the labels indeed converged to the
modes of the posteriors we intended.

1There are other techniques to identify states and prevent label
switching (Jasra et al., 2005). For example, a common approach is to
put an order constraint on the model parameters, for example, α(1) <

α(2), by using a transformation α2 := α1 + exp(θ). Such a “hard”
order restriction is effective in dealing with label switching, but makes
it harder to reason about the prior specification. Further, “hard” order
restrictions can hinder computing normalizing constants, in case one
is eager to quantify the marginal likelihood (evidence) of the model
(Frühwirth-Schnatter, 2004; 2019).
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Fig. 4 Prior predictive
distribution of the average
response times

Computational Faithfulness

There are many ways in which model implementation
can fail, especially in case of Bayesian models requiring
MCMC. Possible problems might arise due to error in
specification of the likelihood (or just insufficiently robust
implementation), the use of difficult parameterizations, or a
simple coding error. Another problem may arise when the
model combined with the priors and the data result in a
very complex parameter space for the MCMC algorithm to
navigate, which may lead to inefficient exploration of the
target posterior distribution. Such issues can lead to biased
estimates, underestimating the uncertainty of parameters, or
simply wrong inferences.

For the endless possibilities in which model implemen-
tation can fail, there was a lot of recent advancement in
techniques that aim to check for computational faithfulness
of a model — in the context of the Bayesian framework,
this means testing whether the proposed MCMC proce-
dure yields valid approximations of the posterior distribu-
tions (Schad et al., 2019). One established technique is

Table 2 Descriptives of the prior predictive distribution of the average
response times

Quantile

State Response Mean SD 2.5% 25% 50% 75% 97.5%

Controlled Correct 0.92 0.28 0.49 0.73 0.87 1.03 1.57

Controlled Error 1.09 0.34 0.59 0.87 1.03 1.26 1.82

Guessing Correct 0.60 0.24 0.28 0.44 0.55 0.70 1.19

Guessing Error 0.60 0.23 0.27 0.44 0.55 0.70 1.18

Simulation-based calibration (SBC, Talts et al., 2018). As
the model that we propose in this article is definitely sus-
pect for computational problems, we use SBC to check our
model implementation (although it could be argued that
such checks should be done by default for non-standard
models at least). Since these checks are not yet the stan-
dard in cognitive modeling literature (Schad et al., 2019), we
briefly summarize the rationale behind SBC here, although
the interested reader should refer to excellent articles by
Talts et al. (2018) and Schad et al. (2019).

To check whether the method used for approximating the
posterior distribution π(θ |ỹ) is correct, the following steps
can be done: (1) draw from the prior distribution θ̃ ∼ π(θ̃),
(2) draw a data set from the model using the generated
values of the parameters, ỹ ∼ π(ỹ|θ̃ ), and (3) fit the model
on the generated data to obtain the posterior distribution
π(θ |ỹ). The draws from such an obtained distribution,
across many repeated replications of this procedure, should
give back the prior distribution of the parameters π(θ). In
short, SBC builds on the fact that (Talts et al., 2018)

π(θ) =
∫ ∫

π(θ |ỹ)π(ỹ|θ̃ )π(θ̃)dỹdθ̃ , (1)

which means that we can recover analytically the prior
distribution on model parameters π(θ) by averaging
the posterior distribution π(θ |ỹ) weighted by the prior
predictive distribution

∫
π(ỹ|θ̃ )π(θ̃)dθ̃ . In order to check

whether the prior distribution is indeed recovered, for
each repetition, we compare the draw from the prior (that
generated the data) to the samples from the posterior, and
count the posterior samples that are smaller than the draw
from the prior. If these two distributions are the same, every
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rank (i.e., the count of posterior samples that are smaller
than the generating parameter value) would be equally likely
— yielding an approximately uniformly distributed rank
statistic (Talts et al., 2018).

Using the already created ensemble of 1,000 prior
predictive data sets in “Prior Predictives”, each of the data
sets was fitted using Hamiltonian Monte Carlo supplied
by Stan (Carpenter et al. 2017). Due to computational
constraints (typical run of a model averages roughly about
500 sampling iterations per minute on Apple’s MacBook
Air edition 2017), each model ran only with one chain
for 500 warmup and 1,000 sampling iterations. Starting
points were generated by drawing independent samples
from the priors. In case the model label switched, the model
was reran (at maximum five times). Model switching was
detected by comparing the true (generative) states to the
estimated states (identified using modal assignment based
on mean state probabilities using the forward-backward
algorithm). This resulted in non-label switching MCMC
samples for 945 data sets out of the total 1,000. Since

only 783 repetitions achieved acceptable values of the
(split-half) Gelman-Rubin R̂ statistic (Gelman & Rubin,
1992) between 0.99 and 1.01 for all of the parameters, we
selected several data sets at random from non-converged
cases and refitted them with 4 chains, 1,000 warmup and
1,000 sampling iterations. The new model fits had good
R̂ for all parameters, suggesting that the unsatisfactory
convergence diagnostics were a consequence of the small
number of MCMC iterations during the simulation. We
excluded from the results only the repetitions that label
switched, but kept those that did not yield satisfactory
convergence diagnostics. Because the SBC rank statistic
is sensitive to potential autocorrelation of the chain, the
posterior samples were thinned by a factor of 50 — leading
to the rank statistic ranging between 0 and 20.

Figure 5 shows the histogram of the SBC rank statistic
for each of the parameter separately. Figure 6 shows
the difference between the cumulative distribution and
the theoretical cumulative distribution of a uniformly
distributed variable (Talts et al., 2018).

Fig. 5 Simulation-based
calibration: Histogram of the
rank statistic. The dashed lines
correspond to the lower and
upper limits of the 95% interval
under the null hypothesis that
the rank statistic is uniformly
distributed
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Fig. 6 Simulation-based
calibration: ECDF of the rank
statistic minus the ECDF of a
uniformly distributed variable.
The shaded area corresponds to
the 95% interval under the null
hypothesis that the rank statistic
is uniformly distributed

The results show that none of the parameters exhibits
typical patterns present in case that the posterior approx-
imation is under-dispersed or over-dispersed compared to
the true posterior (which would manifest as a ∪ or ∩ shape
of the rank distribution; Talts et al., 2018). Further, the dis-
tribution of rank statistics for most of the parameters seem
consistent with a uniform distribution, suggesting that the
posterior approximation is very close to the true posterior.
However, three parameters seem potentially problematic:
the rank statistic for α(1), α(2), and ν

(2)
1 show an excess of

frequencies at 20 and 0, respectively, suggesting that α(1)

approximation could be underestimating the true posterior,
whereas α(2) and ν

(2)
1 approximations could be overestimat-

ing the true posterior. However, this observation could also
arise if the thinning was not efficient to reduce the auto-
correlation of the chain (autocorrelation can result in excess
of ranks at the edge of the distribution; Talts et al., 2018).
Additionally Fig. 6 reveals that the rank distribution for
ρ22 also potentially deviates from the uniform distribution.
However, this deviance is not associated with any typical
problem in posterior approximations, lacking a meaningful
interpretation.

SBC gave us assurance that our model is capable
of approximating the posterior distribution for most of
the parameters. Three potentially problematic parameters
remain, although the deviance from the expected results it

small. Potential explanations for these deviances could be
the constraints to resolve label switching (which could cause
the truncation of the parameters for one state near values for
the same parameter from the other state), or unsuccessful
reduction of the auto correlations of the MCMC chains
(which could be solved by running the procedure for more
iterations and use higher thinning.)

Model Sensitivity

Next, the goal was to investigate for each parameter, (1) how
well the posterior mean matches the true data generating
value of the parameter, and (2) how much uncertainty is
removed when updating the prior to the posterior. This is
useful to investigate the bias-variance trade-off for each
parameter, and to adjust our expectations regarding how
much we can learn about parameters, given a data set of a
specified size (in this simulation, number of trials = 200).

To answer (1), posterior z-scores for each parameter are
defined as:

z = μposterior − θ̃

σposterior
, (2)

that is, the difference between the posterior mean and the
true parameter value is divided by the posterior standard
deviation. The posterior z-scores tell us how far the posterior
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expectation is from the true value, relative to the posterior
uncertainty. The distribution of the posterior z-scores should
have a mean close to 0 (if not, the posterior expectation is a
biased estimator).

To answer (2), posterior contraction for each parameter
is defined as:

contraction = 1 − σ 2
posterior

σ 2
prior

. (3)

If the posterior contraction approaches one, the variance
of the posterior in negligible compared to the variance of
the prior, indicating that the model learned a lot about
the parameter of interest. Conversely, if the posterior
contraction is close to zero, there is not much information
in the data about the parameter, resulting in the inability to
reduce the prior uncertainty.

These two variables are plotted against each other in
a scatter plot, which provides useful diagnostic insights
(Schad et al., 2019). Specifically, for each parameter, and
each simulation which did not label switch, the posterior z-
scores and posterior contraction are plotted on the y-axis
and x-axis, respectively. Figure 7 shows the diagnostic plot
for the nine parameters with equal axes between them to
enable comparison between parameters.

All of the parameters cluster around z-scores of 0
(dashed horizontal line), suggesting that neither of the

parameters exhibits systematic bias. However, there are
large differences between parameters in terms of posterior
contraction. The most contraction is present for the non-
decision time τ , followed by the rest of the LBA parameters.
We could expect that the contraction would increase with
the number of trials. The worst results concern the initial
state probability π1: The posterior contraction basically
stays at zero. However, this is expected as the initial state
probability is affected mostly by just the first trial, and as
such, there is not much information in the data about it.
Increasing the number of trials would not help to identify
this parameter, only repeated experiments would.

In general, the sensitivity analyses suggest that the
amount of learning about the parameters of interest could
be satisfactory given the typical experimental designs (our
simulation was based on 200 trials per experiment, whereas
typical decision tasks experiments could count multiples of
that number), especially for the LBA parameters.

Parameter Recovery and Coverage Probability

Traditional simulation studies aim to validate statistical
models and assess the quality of a point estimator of a
given parameter of interest. Additionally, such simulations
are accompanied by assessment procedures. This section
adheres to this tradition: for each of the parameters (that are

Fig. 7 Model sensitivity plot for
all nine parameters. Blue
diamond shapes depict the
means of the distributions
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not a linear combination of others) we report the standard
“parameter recovery” results.

The simulation was done using two estimation tech-
niques: the maximum a posteriori (MAP) estimation, and
the posterior expectation (i.e., the mean of the posterior
distribution). MAP is useful in situations where researcher
needs to obtain estimates quickly, and does not need to
express the uncertainty in the estimates. As the rest of the
article focuses on full Bayesian inference, MAP results
are presented only in the Supplementary Information. Pear-
son’s correlation coefficient between the estimated param-
eter value and its true values serves as a rough indicator
of parameter recovery. High correlations indicate that the
model is able to pick up variation in the parameter. Addi-
tionally, scatter plots visualizing the relationship between
the true and estimated parameter values show the precise
relationship between the true and estimated values of the
parameters.

We also investigate the coverage performance of the
central credible intervals. For each parameter, the frequency
with which 50% and 80% central credible intervals contain
the true data generating value was recorded. The confidence
levels are relatively low compared to traditionally reported
values, because we have only 1,000 MCMC samples per
parameter due to computational constraints, which results in

low precision in the tails of the posterior distributions (i.e.,
the tail effective sample size was generally too low).

Posterior Expectation

Figure 8 shows the scatter plot between the true (x-axis)
and estimated (y-axis) values (i.e., means of the posteriors)
for the nine free parameters in the model: the drift for the
correct choice under the controlled state (ν(1)

1 ), the drift

for the correct choice under the guessing state (ν(2)
1 ), the

standard deviation of drifts (σ ), the decision boundary under
the controlled (α(1)) and guessing (α(2)) state, the non-
decision time (τ ), the initial probability of the controlled
state (π1), the probability of dwelling in the controlled
(ρ11) and the guessing (ρ22) state. The correlations for the
LBA parameters range from high (r = 0.77 for ν

(1)
1 ) to

nearly perfect (r = 0.99 for τ ) and the points lie close
to the identity line, suggesting good recovery of the LBA
parameters. An exception is the parameter σ , which shows
a pattern of underestimating the true values, if the true value
is relatively high.

As for the parameters characterizing the evolution of the
latent states, the recovery of the initial state probability
is sub optimal (r = 0.22). This is expected, as there is
not much information in the data about this parameter (it

Fig. 8 Parameter recovery using
posterior expectation.
Correlation plots between the
true values (x-axis) and the
estimated values (y-axis). The
slope line shows the identity
function
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Table 3 The relative frequency with which 50% and 80% credible
interval contained the true parameter value. The numbers in the
brackets correspond to the 95% Jeffreys credible interval for binomial
proportion (Brown et al., 2001)

50% CI coverage 80% CI coverage

ν
(1)
1 0.52 [0.49, 0.55] 0.79 [0.76, 0.82]

ν
(2)
1 0.48 [0.45, 0.51] 0.79 [0.76, 0.82]

σ 0.51 [0.48, 0.54] 0.82 [0.80, 0.85]

α(1) 0.49 [0.45, 0.52] 0.78 [0.76, 0.81]

α(2) 0.51 [0.48, 0.54] 0.81 [0.79, 0.84]

τ 0.50 [0.47, 0.53] 0.81 [0.79, 0.84]

π1 0.49 [0.45, 0.52] 0.80 [0.78, 0.83]

ρ11 0.52 [0.49, 0.56] 0.83 [0.81, 0.86]

ρ22 0.51 [0.48, 0.54] 0.80 [0.77, 0.82]

mostly depends on the state of the first trial), and so it
is highly dependent on the prior. This parameter is not
to be interpreted, however, unless the model is fitted on
repeated trial sequences (so that there are more “first”
trial observations). The recovery of the two “dwelling”
probabilities are satisfactory.

Coverage of the Credible Intervals

Using the MCMC samples, we computed the 50% and 80%
central credible intervals for each parameter under each
fitted model (that did not label switch), and checked whether
the true value of the parameter lies within that interval.
Table 3 shows that the relative frequencies with which the
CIs cover the true value is very close to the nominal value
of the confidence level. Thus, we did not observe that the
credible intervals would be poorly calibrated with respect
to their frequentist properties. It is important to keep in
mind, though, that this is not a proof of well calibrated CIs
in general (e.g., for all possible parameter values and all
confidence levels).

Conclusion

We followed general recommendations for a principled
Bayesian workflow for building and validating bespoke
cognitive models (Schad et al., 2019; Tran et al., 2020;
Kennedy et al., 2019). Knowledge about data typical in two-
choice speeded decision tasks was used to define the prior
distributions on the model parameters. The MCMC proce-
dure yielded accurate approximations of the posterior dis-
tributions using simulation-based calibration. SBC further
yielded good results except for three parameters for which
slight bias could have potentially occurred. Model sensitiv-
ity analysis revealed that the model is able to learn about

the parameters of interest while not introducing substan-
tial systematic bias to the estimates. The standard parameter
recovery resulted in acceptable results. Further, the 50%
and 80% credible intervals had coverage probabilities at
their nominal levels. Results of the simulation study hence
suggest that further work on improving the model is not
absolutely necessary before applying it to real data.

Example: Dutilh et al. (2010) Study

This section demonstrates the use of our model on a real
data set from an experiment reported by Dutilh et al.
(2010). In this experiment, 11 participants took part in a
lexical decision task (participants A–C in Experiment 1a
and participants D–G in Experiment 1bL) and perceptual
decision task (participants H–K in Experiment 1bV).
Despite the fact that the experiments are based on a different
modality, the analysis stayed the same as the data have
the same structure regarding the application of the HMM.
Specifically, participants were asked to give answers on
a two-choice task with varying degrees of pay-off for
response time and response accuracy: the sum of the pay-
off was a given constant, but the difference between them
varied, thus leading to trials preferring accuracy (high
reward for getting the answer correctly) to trials preferring
speed (high reward for responding fast). Dutilh et al. (2010)
originally fitted a two state HMMs where the emission
distribution for the response times was assumed log-normal,
and the distribution for the responses a categorical (i.e.,
assuming independence of response times and accuracy
after conditioning on the state). Here, the EAM HMM
model is applied to each of the participants separately, and
the model fit is assessed using posterior predictives.

Method

We fitted each participants’ data using the model described
in “Model” and priors developed in “Prior Predictives”.
Specifically, for each participant, we ran eight MCMC
chains with a 1,000 warmup and 1,000 sampling iterations
using Stan (Carpenter et al. 2017), with the tuning
parameter δadapt increased to 0.9. Starting points were
randomly generated from the prior. Some initial values
yielded likelihoods that were too low, leading to failure
of the chain initialization. If seven out of the eight chains
failed to initialize, the model was reran. If at least two
chains managed to run, we inspected the Gelman-Rubin
potential scale reduction factor R̂ (Gelman & Rubin, 1992),
traceplots of the MCMC chains, and parameter estimates,
to detect possible label switching. Label switching was
identified if ᾱ(1) < ᾱ(2) or ν̄

(1)
1 < ν̄

(2)
2 (the two conditions

coincided in 100% of the cases). If label switching occurred,
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we reran the eight chains. Once we were able to run at least
two chains without label switching, we proceeded to fit data
from another participant.

Results

Model fit for two participants needed to be run three times
and for one participant five times due to seven chains failing
to initialize. Further, models needed to be rerun twice for
one participant and three times for four participants due
to between chain label switching. The final fits for two
participants ended with two valid chains, for six participants
with three valid chains, and for three participants with four
valid chains. Therefore, the number of posterior samples
used for inference ranged between 2,000 and 4,000. None
of the models yielded divergent transitions. All R̂ statistics
range between 0.99 and 1.01, and traceplots of the MCMC
chains show typical caterpillar shape without a visible drift.
Thus, the final model fits do not exhibit convergence issues.

For each participant, we performed several fit diagnos-
tics, to assess whether (and how) the model misfits the
data. In the interest of brevity, results for only the first par-
ticipant from each of the sub-experiments are shown (i.e.,

participant A, participant D, and participant H). The rest
of the results can be found online at https://github.com/
Kucharssim/hmm slba/tree/master/figures.

First, we simulated the posterior predictives for response
times and accuracy and plotted them against the observed
data. Figure 9 shows the posterior predictive distribution for
the response times summarized as 80% and 50% quantiles
of the posterior predictive distribution for each trial (light
red and dark red, respectively), and the median of the
posterior predictive distribution (red line). The black line
shows the observed response times at a particular trial.
Figure 10 shows the posterior predictive distribution for
the responses. Specifically, the red line shows the predicted
probability of a correct response for a particular trial,
whereas the black dots points the observed responses. For
ease of the visual comparison, the observed responses
were smoothed by calculating their moving average with a
window of 10 trials, which is shown as a black line.

In general, the posterior predictives capture the observed
data well. Specifically, the model is able to replicate the
bi-modality of the response times and captures the runs
of trials with predominantly correct responses relatively
well. The model also seems to capture correctly that the

Fig. 9 Posterior predictives for
the response times for three
participants. Only the first 300
trials are shown
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Fig. 10 Posterior predictives for
the responses for three
participants. Only the first 300
trials are shown

response times under the guessing (fast) state have smaller
variance than under the controlled state. However, for some
participants, there seem to be many outliers (i.e., slow
responses) that are not predicted by the model, suggesting
that the model of the response times has perhaps tails that
are too thin.

We also assessed how well the model predicts the
response time distributions for correct and incorrect
responses. Figure 11 shows the observed response times of
the correct and incorrect responses as histograms, overlaid
with the predicted density of the response times — shown as
a black line and 90% CI band. Further, the blue and red lines
show the densities under the guessing and controlled state,
respectively. Figure 12 shows the observed and predicted
cumulative distribution functions conditioned on the state
and response.

The distribution plots show good model fits, as the bi-
modality of the response times is captured correctly, as
well as the proportions of correct and incorrect answers
under the states. However, for some participants, there are
clear signs of a slight misfit. For example, the predicted
distribution of the response times of incorrect answers under
the controlled state is shifted slightly to the right compared

to the empirical distribution (this shift is the most visible
for participant H). Further, there is a general tendency of
the model to overestimate the variance of the response times
under the guessing state, which might be a consequence of
equating the standard deviation of the drift rate (σ ) across
all accumulators and states. Another possibility would be
to enable bias, by setting different decision boundaries for
each of the accumulators. These alterations to the model
would increase its flexibility and should be validated using
simulations - therefore, such additions should be the focus
of future projects. In general, the tendency of the model
to imply slightly slower incorrect responses than the data
suggests, could be also caused by the fact that the number
of incorrect responses under the controlled state is low,
generally about 10% of the trials (see Fig. 12). It is possible
that the likelihood is then dominated by the distribution of
the correct responses and the distributions of the responses
under the guessing state, thus favoring a better fit towards
them.

Parameter estimates for each participant are attached in
Appendix B. Posterior contraction for all participants was
close to one for most of the parameters, indicating that
there occurred substantial updating of the priors through
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Fig. 11 Observed and predicted
response times distribution of
correct and incorrect responses

the observed data, in line with the simulation results which
showed strong updating of priors despite relatively modest
number of trials (n = 200) in the simulations. An exception
was the parameter π1 which does not update much, a result
that was expected following the simulation results as well.
Although there seems to be variability between participants’
parameter estimates, there are common patterns that to some
degree apply to all participants. Generally, the states of the
HMMs are sticky, with a probability of remaining in the
current state at about 90% of the trials for both of the states.
This percentage is (likely) dependent on the experimental
design of Dutilh et al. (2010) who varied the pay-off balance
in a structured way depending on the participant’s actions,
and should not be interpreted as a general tendency of
people to stick in the current state to exactly this extent.

As for the parameters that were held fixed across states
and accumulators, the non-decision time τ is negligible
for the majority of participants; the longest non-decision
time occurred for participant B with about 0.11 s (110 ms),
with some participants as short as about 0.01 s (10 ms).

Non-decision time is largely informed by the fastest
responses in the data (i.e., the shortest response time gives
the upper bound of the parameter). It is possible that
loosening up equality constraint between the states would
reveal that non-decision time is larger under the controlled
state than under the guessing state, representing additional
encoding time and executing a motoric response after a
decision is made; which could also slightly improve the
model fit especially regarding the relatively more variable
response times under the controlled state. Relatively
surprising were the values of the standard deviation of the
drift rates σ , with posterior means ranging between 0.13
and 0.27 — quite smaller than specified by the priors (σ ∼
Gaussian(0.4, 0.1)(0,∞)) — suggesting that the variability
of the response times is smaller than implied by the prior.
Future studies should pay specific attention to variability of
the response times in prior predictive simulations.

Shorter response times in the actual data compared
to the prior predictive expectations resulted also in a
relative mismatch between the prior settings for the decision

431Comput Brain Behav  (2021) 4:416–441



Fig. 12 Observed and predicted
cumulative distribution
conditioned on the state
(blue = guessing,
red = controlled) and response
(dark = correct, light = incorrect)

boundaries under the two states. Specifically, the posterior
means of the decision boundary under the controlled
state ranged between 0.24 and 0.37 (whereas the prior
was set α(1) ∼ Gaussian(0.5, 0.1)(0,∞)). The posterior
means of the decision boundary under the guessing state
was as low as between 0.08 and 0.18 (prior α(2) ∼
Gaussian(0.25, 0.05)(0,∞)).

As expected, the average drift rate of the correct response
under the guessing state is usually very close to 0.5,
implying 50% accuracy. Under the controlled state, the
posterior mean of the average drift rate of the correct
response ranged between 0.58 and 0.65. This is slightly
smaller than the prior expectation (which on average expects
about 0.7), although it still leads to relatively high accuracy
(at minimum 75%, and leading to accuracy as high as 90%)
due to the small standard deviations of the drift rates.

Thanks to the fact that our model is an EAM model, it is
possible to inspect the pattern of the discontinuous speed-
accuracy trade-off within and between participants in terms
of the latent cognitive parameters that control speed of the
evidence accumulation (ν) and the response caution (α).
Figure 13 shows this between state trade-off and reveals
striking similarity between participants.

Fig. 13 Speed-accuracy trade-off for all participants in the Dutilh
et al. (2010) data set. Black dots show the posterior mean of each
participants’ decision boundary (α(1)) and drift rate for the correct
response (ν(1)

1 ) under the controlled state, triangles the same but under
the guessing state. Lines connect the posterior means for separate
participants. Colored points show the samples from the joint posterior
distributions
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General Conclusion and Discussion

This article presented a robust implementation of a model
that combines an EAM with an HMM structure. To our
knowledge, this is the first successful implementation
combining both structures in one model. The model was
built to capture the two state hypothesis following from
the phase transition model of the speed-accuracy trade-
off (Dutilh et al., 2010) — that there is a guessing and
a controlled state between which participants switch. This
hypothesis can be represented by an HMM structure.
Compared to previous HMM applications on speeded
decision tasks, our model uses an EAM framework for the
joint distributions of the responses and response times, and
thus enables inference on latent cognitive parameters, such
as response caution or drift rate (Evans & Wagenmakers,
2019).

The model was validated using extensive simulations
and by applying it to real data. The simulations suggested
that the model implementation was robust and did not
show pathological behavior. Further, the model achieved
good parameter recovery and coverage probabilities of the
credible intervals. In the empirical example, the model
was fitted to eleven participants who partook in the Dutilh
et al. (2010) study. The results demonstrate that the model
shows a good fit to the data and is able to capture most
of the patterns in the data. However, the model also
showed a slight systematic misfit because the predicted
error responses under the controlled state were slower
than that of the data (a typical example of a phenomenon
known as fast errors; Tillman and Evans, 2020). The results
suggested quite strong consistency between participants
in terms of the speed-accuracy trade-off — suggesting
that the inaccessibility region (i.e., a region of speed
of accumulation and response caution which “cannot be
accessed”, resulting in switching between two discrete
states) predicted by the phase transition model could be
qualitatively similar across participants (see Fig. 13).

We used a full Bayesian framework in this article, and
with it comes the perks of defining the prior distributions
on the parameters. Setting well behaved priors is important
in any Bayesian application as they define the subset of
the parameter space that generates data that are expected in
a particular application of the model. Because the EAMs
can cover a lot of heterogeneous experimental paradigms
(with heterogeneous scales of the data), it is important
to decide on priors in respect to the specific application
of the model, preferably after consulting related research
literature, careful reasoning about the experimental design
and the particular parameterization of the model. The
empirical analysis pointed to some discrepancies between
empirical parameter estimates and their priors that highlight
misalignment between the priors and the data. Ideally, such

discrepancies would be minimized to avoid a prior-data
conflict (possibly leading to problems with estimation, Box
1980; Evans & Moshonov 2006). In our application, the
discrepancy between the priors and the data arose mainly
because we a priori expected longer and more variable
response times than was the case in the Dutilh et al. (2010)
study. For the purpose of model validation through extensive
simulation, such discrepancy is not a critical problem as the
simulation covered cases with potentially more variability
and outliers (which usually cause problems in fitting), thus
exposing the model to a robustness test.

It is important to reiterate that the priors in this model
also serve another purpose: to solve the label switching
problem. As is commonly the case in HMMs, the current
model is identified only up to the permutation of the state
labels. The priors in this article were used to nudge the
model towards one specific permutation — to associate the
first state with the controlled response, and the second state
with the guessing response. Such use of the priors was
possible because we specifically assumed the controlled
and guessing state, and followed the implications from
the theory about them (Dutilh et al., 2010). In case the
expectation regarding the state identity is more vague
(e.g., when expecting only that the distributions might
be multimodal), such use of priors becomes much more
problematic on both the conceptual and practical level.
On the other hand, some prior specifications could have
been even more informative in the current application. For
instance, under the controlled state, the drift rate for the
correct response should be higher than the drift rate for the
incorrect response as the other alternative would imply that
the respondent’s performance is below chance level.

Despite our efforts to solve label switching using
informative priors, the issue of switching labels still persists,
albeit to a lesser degree than without informative priors.
Specifically, the use of soft order constraints (by specifying
prior distributions that heighten prior probability of a
specific state configuration) does not ensure that the labels
do not switch at all. To this end, we were forced to perform
additional checks of label switching to ensure that the model
converged to the solution we preferred, and refitting the
model if it did not. Virtually the same estimation results
would have been obtained if traditional order constraints
were used, by effectively truncating the parameter space
to the region which corresponds to the appropriate state
interpretation, although in case one would want to perform
model comparison using marginal likelihoods, the decision
of whether or not to use order restriction would make
a difference. Implementing order restrictions would also
make it harder to reason about theoretically justified prior
specification. For the sake of simplicity, this article did
not focus on developing such approach, as its focus was
to demonstrate the possibility of combining EAMs with
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HMMs at least in estimation context. Developing proper
ways how to identify the model using order constraints,
set reasonable priors, and compute marginal likelihoods
would be additional ways how to take the current modeling
framework towards more general applications.

One of the future applications would be to actually put
the continuous and discontinuous debate under a test. In
this article, we presented a model that assumes both dis-
continous, between state trade-off, and continuous, within
state trade-off inherent to the EAM. Utilizing Bayesian
framework makes it naturally attractive to use marginal like-
lihoods to compare simple EAMs, HMM combined with
an EAM, and a HMM that assume local independence
of response times and accuracy, to assess which of the
hypotheses are supported by the data. Although methods
for estimating marginal likelihoods for EAMs are available
(Evans & Brown, 2018; Gronau et al., 2019), the HMM
extensions will lead to further problems, as estimating
marginal likelihoods for finite mixture models and HMMs is
a notoriously difficult problem (Frühwirth-Schnatter, 2004).
Nevertheless, combining clever constraints (so as to pre-
vent label switching) and development of principled priors
would enable the use of efficient techniques for estimating
marginal likelihoods such as bridge sampling and its exten-
sions (Meng & Wong, 1996; Gronau et al. 2017; Gronau
et al., 2019; Gronau et al., 2017), which are now becoming
more available than ever. Of course, multi-model infer-
ence would also benefit from simulation-based calibration
approaches build on similar principles as that of single
model inference shown in this article (Schad et al., 2021).

An alternative to identifying the HMMs using the priors
is to assume functionally different emission distributions
under the states. For example, as Dutilh et al. (2010)
point out, it is questionable to assume that guessing
requires evidence to make a response. Therefore, using
an EAM to represent the guessing state probably leads
to model misspecification, as under guessing there is no
evidence accumulation (about the correct response). Such
misspecification could be fixed, for example, by assuming
that the response time of guessing is just a simple response
time (Luce, 1991), and model it appropriately by a single
accumulator independent of the response (which would be a
categorical variable with proportion of correct answer fixed
at 0.5). In the context of the phase transition model, such an
assumption could further improve the model.

Additional advantages of utilizing Bayesian inference
and implementation in Stan is the relative ease with which
the model could be extended from single-participant model
to multiple-participants model and let the individual param-
eters be estimated in a hierarchical structure. Hierarchical
models have the advantage that they can improve individual
estimates by pooling information across the sample. Such
approach would also improve the amount of information

used for estimating the prior probability of the starting state,
which is poorly identified in the single-participant model.

In this article, we used a minimal linear ballistic model
to ensure computational stability of the model. However,
such a model can hardly be considered adequate for
characterizing all phenomena of the speeded decision
paradigm, and the current results already revealed some
ways in which the current model misfits the data. Thus, it is
desirable to find ways how to extend or improve the current
model, while ensuring that the quality of inferences and
implementation does not decline. One alternative to improve
the current model is to use the full LBA model where the
variability of the starting point is not fixed at zero (Brown &
Heathcote, 2008). Another would be to build on a different
evidence accumulation mechanism (such as replacing the
ballistic accumulation with sequential sampling models) —
for example, the Diffusion Decision model (DDM, Ratcliff
& McKoon, 2008) or the Racing diffusion model (Tillman
et al., 2020). Regardless of which framework will be in
the end more successful in combination with a HMM, we
believe it is important to start with a minimal existing
model that captures the most crude phenomena from the
speeded decision framework, and expand from there. In the
case of a DDM, that would be to start with the simplest
four parameter model because is can be implemented in
a fast and robust way (Wabersich & Vandekerckhove,
2014; Navarro & Fuss, 2009) and generally focus on
the most important sources of variability at first (Tillman
et al., 2020). Then — provided that model validations are
satisfactory — it is possible to add more parameters. In
each stage of the model building, it is important to stick
to the model validation procedures, some of which were
demonstrated in the current article.

Further development and additions to the model should
probably also be combined with simplifications. Such
simplifications, as for example, simplifying the distribution
under the guessing state (as discussed above) can provide
more computational stability and provide degrees of
freedom to extend the model under the controlled state.

The current model provides a proof of principle of a
combination of an EAM with an HMM, and as such can
lead to further interesting applications and extensions, as
it opens new possibilities regarding modeling continuous
and discontinuous patterns of response times and accuracy
in a single modeling framework. Although the current
article focused solely on speeded decision tasks, questions
about the continuous and discontinuous relations between
response times and accuracy is ubiquitous in higher
cognitive applications as well, including study of more
complex cognitive tasks and development of strategies
used to solve these tasks (van der Maas & Jansen, 2003;
Raijmakers et al., 2014; Hofman et al., 2018). An interesting
feature of higher level cognitive tasks that might be relevant
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to explore using the current framework is the emergence
of more efficient strategies, that lead to qualitatively better
response accuracy as well as shorter response times. Such
strategies have been described in many applications, such
as multiplication tasks (Hofman et al., 2018), Mastermind
game (Gierasimczuk et al., 2013; Kucharský et al., 2020),
or Progressive matrices tasks (Vigneau et al., 2006;
Laurence et al., 2018). Combination of HMM with EAM
in this context would enable uncovering different relations
between response times and accuracy depending on whether
we look within or between strategies — it is possible
to imagine that an efficient strategy would be faster and
more accurate than less efficient strategy, but within those
strategies separately, we will see the traditional speed-
accuracy trade-off whereby increasing response caution
increases accuracy at the cost of speed, which would be
captured by the EAM part of the model.

Appendix A. Derivation of the simplified LBA
model

Here, we provide the derivation of the likelihood function
for the simplified LBA model. We assume that each choice
option is associated with an accumulator of evidence. These
accumulators are independent of each other and the first
accumulator that reaches its decision threshold launches
the decision associated with it. This leads to general race
equations (Heathcote & Love, 2012), the probability density
of observing response a with the reaction time rt comprises
of the probability density that an accumulator associated
with response a hits the threshold at time rt times the
probability that none of the other accumulators has hit the
threshold at an earlier time point:

sLBA(rt, a|ν, σ, α, τ ) = f (rt|νa, σa, αa, τa) ×
∏
k �=a

[1 − F(rt|νk, σk, αk, τk)] , (A.1)

with νa the mean drift rate, σa the standard deviation of drift
rate, αa the decision boundary, and τa the non-decision time
for the accumulator a.

The density of the passage time for each accumulator
f (rt) is specified as follows:

rt = τ + t

t = α

δ

δ ∼ Gaussian(ν, σ )(0,∞).

(A.2)

We assume that the passage time is a sum of the non-
decision time and the decision time t , where the decision
time is a result of a linear rise of evidence towards a
decision threshold α, at a drift rate δ drawn randomly from
a Gaussian distribution with mean ν and standard deviation

σ , truncated at 0 on the lower bound. The truncation is
assumed because we do not allow for the possibility of
a non-response (i.e., that all drifts in a particular trial are
negative, thus never cross the decision threshold). We do not
assume any randomness in the parameters τ , α, ν and σ ,
hence, the only missing piece in deriving f (rt) is the change
of variables rt = τ + α/δ.

First, we derive the density of the latent drift (δ), which
is defined as a truncated normal distribution for δ ≥ 0 and
zero otherwise:

g(δ|ν, σ ) = 1

σ
× φ

(
δ−ν
σ

)
1 − �

(−ν
σ

) , (A.3)

where φ(.) is the pdf and �(.) the cdf of the standard normal
distribution, respectively.

Next, we determine the density of the variable t , which
arises as a scaled reciprocal truncated normal variable for
t ≥ 0 and zero otherwise (see also Nakahara et al. 2006):

h(t |ν, σ, α) = α

t2
× g

(α

t
|ν, σ

)
(A.4)

Finally, to obtain the density of the passage time rt, we
shift the distribution of the decision time t by τ , which
results in the following pdf:

f (rt|ν, σ, α, τ ) = h(rt−τ |ν, σ, α) = α

(rt − τ)2
×g

(
α

rt − τ
|ν, σ

)
,

(A.5)

for rt > τ and zero otherwise.
The cumulative probability function of the passage times,

F(rt|ν, σ, α, τ ), is relatively easier to compute, by realizing
that the only source of randomness in this model is the
distribution of the latent drift δ. Thus,

P(rt ≤ X) = P(δ ≤ Y )

Y = α

X − τ
,

(A.6)

which leads to

F(rt|ν, σ, α, τ ) = G

(
α

rt − τ
|ν, σ

)
, (A.7)

where G(.|ν, σ ) is the cdf of a normal distribution truncated
at zero.

Identifiability and aMinimal Model

If we had only response time data without choices (e.g.,
from a single choice response time task), the entire
likelihood would be given by the distribution of the
passage times for a single accumulator f (rt|ν, σ, α, τ ).
Such distribution is a ballistic analogue to the shifted
Wald distribution (otherwise known as inverse Gaussian
distribution) of response times (Chhikara & Folks, 1988;
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Anders et al., 2016), and would similarly require fixing one
of the parameters ν, σ , or α to achieve identifiability.

Once we have multiple choice tasks, it is possible to
estimate more parameters per accumulator, as is the case
for the LBA (Brown & Heathcote, 2008). However, some
identifiability constraints still need to be put in place. In this
paper, we use the following set of identifiability constraints:∑

i

νi = 1,

1 ≥ νi ≥ 0.

That is, we use the sum-to-one constraint common for
the LBA model (Brown & Heathcote, 2008; Visser &
Poessé, 2017), and make it even slightly more severe by
assuming that no average drift rate can be negative. The
second, additional constraint is convenient for Bayesian
implementation as it allows using Dirichlet priors on the
drifts.

The simplified LBA model can be achieved by addition-
ally assuming that the non-decision time is equal between
the accumulators — usually EAM models assume that non-
decision time is by definition the time spend on processes
that are not related to the decision — such as encoding
and executing motoric responses (Evans & Wagenmak-
ers, 2019). Further, we may equate σ and α between the
accumulators. The minimal model for a two-choice task
would then contain five parameters: θ = (ν1, ν2, σ, α, τ ),
of which four of them are “free” (ν1 and ν2 are collinear
due to the sum-to-one constraint). In general, the simpli-
fied LBA model would have K + 3 parameters (of which
K + 2 are free), where K is the number of response options
(accumulators).

Appendix B. Parameter estimates of the
Dutilh et al. (2010) data

Table 4 Descriptives of the posterior draws for Participant A from Dutilh et al. (2010)

Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail Contraction

ν
(1)
1 0.63 0.63 0.02 0.61 0.66 1.001 3319 2939 0.975

ν
(2)
1 0.51 0.51 0.01 0.49 0.53 1.000 4090 2860 0.992

α(1) 0.37 0.37 0.01 0.36 0.39 1.003 2540 2191 0.991

α(2) 0.14 0.14 0.00 0.13 0.15 1.002 2069 2483 0.992

σ 0.16 0.16 0.01 0.15 0.18 1.000 2250 2672 0.991

τ 0.01 0.01 0.01 0.00 0.02 1.003 1602 1690 0.999

π1 0.46 0.46 0.15 0.22 0.70 1.001 4497 2559 0.051

ρ11 0.92 0.92 0.02 0.88 0.95 1.001 4483 2909 0.973

ρ22 0.89 0.90 0.02 0.85 0.93 1.002 3901 2381 0.960

Table 5 Descriptives of the posterior draws for Participant B from Dutilh et al. (2010)

Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail Contraction

ν
(1)
1 0.65 0.65 0.02 0.62 0.68 1.004 1837 1704 0.960

ν
(2)
1 0.49 0.49 0.01 0.47 0.51 1.000 3065 2167 0.990

α(1) 0.27 0.27 0.01 0.26 0.29 1.000 1979 1934 0.994

α(2) 0.08 0.08 0.01 0.07 0.09 1.005 1168 1061 0.978

σ 0.18 0.18 0.02 0.16 0.21 1.003 1271 1370 0.975

τ 0.11 0.11 0.01 0.08 0.13 1.005 1127 1063 0.996

π1 0.45 0.45 0.14 0.22 0.70 1.001 3029 1997 0.070

ρ11 0.90 0.90 0.02 0.87 0.93 1.001 3038 1897 0.978

ρ22 0.84 0.84 0.03 0.80 0.89 1.001 3049 2364 0.946
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Table 6 Descriptives of the posterior draws for Participant C from Dutilh et al. (2010)

Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail Contraction

ν
(1)
1 0.64 0.64 0.02 0.61 0.68 1.001 2190 1837 0.953

ν
(2)
1 0.51 0.51 0.01 0.49 0.53 1.000 2883 2091 0.987

α(1) 0.35 0.35 0.01 0.34 0.37 1.002 1985 1831 0.986

α(2) 0.15 0.15 0.01 0.14 0.16 1.001 1693 1564 0.984

σ 0.17 0.17 0.01 0.15 0.19 1.001 2022 1734 0.984

τ 0.01 0.01 0.01 0.00 0.03 1.002 1358 1622 0.998

π1 0.46 0.46 0.14 0.23 0.69 1.001 3171 2226 0.120

ρ11 0.91 0.92 0.02 0.88 0.94 1.000 3279 1883 0.968

ρ22 0.87 0.88 0.03 0.82 0.92 1.002 2925 2082 0.937

Table 7 Descriptives of the posterior draws for Participant D from Dutilh et al. (2010)

Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail Contraction

ν
(1)
1 0.61 0.61 0.01 0.60 0.62 1.000 2911 2213 0.994

ν
(2)
1 0.50 0.50 0.00 0.50 0.51 1.004 3268 1746 0.998

α(1) 0.30 0.30 0.00 0.30 0.31 1.000 2889 1793 0.998

α(2) 0.11 0.11 0.00 0.10 0.11 1.001 1391 1591 0.999

σ 0.13 0.13 0.00 0.12 0.14 1.000 2095 2116 0.998

τ 0.00 0.00 0.00 0.00 0.01 1.001 1131 1488 1.000

π1 0.54 0.54 0.15 0.29 0.78 1.000 3930 2281 0.027

ρ11 0.90 0.90 0.01 0.88 0.92 1.000 3998 2251 0.987

ρ22 0.90 0.90 0.01 0.88 0.92 1.000 3513 1906 0.987

Table 8 Descriptives of the posterior draws for Participant E from Dutilh et al. (2010)

Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail Contraction

ν
(1)
1 0.62 0.62 0.01 0.60 0.65 1.001 2303 2036 0.978

ν
(2)
1 0.50 0.50 0.01 0.49 0.51 1.000 2858 2045 0.996

α(1) 0.30 0.30 0.01 0.29 0.32 1.000 1530 1782 0.994

α(2) 0.14 0.14 0.01 0.12 0.15 1.001 957 1785 0.983

σ 0.15 0.14 0.01 0.13 0.16 1.001 1458 1674 0.990

τ 0.02 0.01 0.01 0.00 0.04 1.001 899 987 0.997

π1 0.46 0.45 0.14 0.23 0.70 1.000 2769 1768 0.079

ρ11 0.85 0.85 0.02 0.80 0.88 1.002 2862 1848 0.959

ρ22 0.85 0.85 0.02 0.81 0.89 1.000 2668 1749 0.957
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Table 9 Descriptives of the posterior draws for Participant F from Dutilh et al. (2010)

Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail Contraction

ν
(1)
1 0.62 0.62 0.01 0.60 0.64 1.002 1999 2295 0.984

ν
(2)
1 0.51 0.51 0.01 0.50 0.51 1.001 3617 2235 0.998

α(1) 0.28 0.28 0.01 0.27 0.29 1.003 1206 1413 0.994

α(2) 0.12 0.12 0.01 0.11 0.13 1.004 893 803 0.975

σ 0.16 0.16 0.01 0.14 0.18 1.003 1023 974 0.987

τ 0.05 0.05 0.01 0.02 0.07 1.004 874 815 0.995

π1 0.45 0.45 0.14 0.23 0.70 1.004 2860 1943 0.102

ρ11 0.91 0.91 0.01 0.88 0.93 1.002 2486 1753 0.986

ρ22 0.91 0.91 0.01 0.89 0.93 1.001 2647 1798 0.988

Table 10 Descriptives of the posterior draws for Participant G from Dutilh et al. (2010)

Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail Contraction

ν
(1)
1 0.58 0.58 0.01 0.56 0.61 1.001 3076 2370 0.977

ν
(2)
1 0.50 0.50 0.01 0.48 0.51 1.000 2903 2069 0.993

α(1) 0.29 0.29 0.01 0.28 0.31 1.001 1334 1996 0.990

α(2) 0.15 0.16 0.01 0.14 0.17 1.001 1109 1461 0.978

σ 0.17 0.17 0.01 0.15 0.19 1.000 2029 1885 0.986

τ 0.02 0.01 0.01 0.00 0.04 1.001 1049 1069 0.997

π1 0.46 0.46 0.14 0.23 0.69 1.001 2437 1881 0.114

ρ11 0.89 0.89 0.03 0.84 0.93 1.000 2661 2149 0.953

ρ22 0.88 0.89 0.03 0.84 0.93 1.001 2175 2087 0.946

Table 11 Descriptives of the posterior draws for Participant H from Dutilh et al. (2010)

Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail Contraction

ν
(1)
1 0.64 0.63 0.02 0.61 0.67 1.000 2787 2656 0.959

ν
(2)
1 0.51 0.51 0.02 0.48 0.54 1.001 3673 2653 0.978

α(1) 0.30 0.30 0.01 0.29 0.32 1.000 2982 2630 0.991

α(2) 0.08 0.08 0.01 0.07 0.09 1.002 1922 1484 0.977

σ 0.27 0.27 0.02 0.23 0.31 1.001 2001 1784 0.938

τ 0.09 0.09 0.01 0.06 0.10 1.002 1825 1520 0.997

π1 0.55 0.55 0.14 0.30 0.77 1.002 4024 2054 0.067

ρ11 0.94 0.94 0.01 0.92 0.96 1.002 3678 2633 0.989

ρ22 0.88 0.88 0.02 0.84 0.92 1.003 3683 2612 0.958

438 Comput Brain Behav  (2021) 4:416–441



Table 12 Descriptives of the posterior draws for Participant I from Dutilh et al. (2010)

Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail Contraction

ν
(1)
1 0.62 0.62 0.02 0.60 0.65 1.001 1423 1521 0.968

ν
(2)
1 0.51 0.51 0.01 0.50 0.53 1.000 2217 1289 0.991

α(1) 0.30 0.30 0.01 0.29 0.32 1.000 1851 1275 0.993

α(2) 0.10 0.10 0.01 0.09 0.12 1.001 899 934 0.978

σ 0.26 0.25 0.02 0.22 0.30 1.001 1074 1177 0.944

τ 0.06 0.06 0.01 0.04 0.08 1.001 854 789 0.996

π1 0.55 0.55 0.15 0.30 0.80 1.000 2496 1225 -0.001

ρ11 0.91 0.91 0.01 0.89 0.93 1.001 2211 1267 0.986

ρ22 0.90 0.90 0.02 0.88 0.93 1.000 2047 1255 0.982

Table 13 Descriptives of the posterior draws for Participant J from Dutilh et al. (2010)

Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail Contraction

ν
(1)
1 0.58 0.58 0.01 0.56 0.59 1.000 4004 3489 0.992

ν
(2)
1 0.51 0.51 0.01 0.50 0.52 1.002 4176 2785 0.995

α(1) 0.24 0.24 0.01 0.23 0.25 1.001 2186 2528 0.996

α(2) 0.09 0.09 0.01 0.08 0.10 1.001 1731 1602 0.984

σ 0.18 0.18 0.01 0.16 0.20 1.002 2166 2552 0.988

τ 0.05 0.06 0.01 0.04 0.07 1.002 1674 1606 0.997

π1 0.45 0.45 0.14 0.22 0.69 1.001 4561 2501 0.103

ρ11 0.94 0.94 0.01 0.92 0.96 1.000 3888 2076 0.991

ρ22 0.89 0.89 0.02 0.86 0.92 1.002 4567 2907 0.977

Table 14 Descriptives of the posterior draws for Participant K from Dutilh et al. (2010)

Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail Contraction

ν
(1)
1 0.66 0.66 0.02 0.63 0.69 1.001 1492 1412 0.953

ν
(2)
1 0.51 0.51 0.01 0.49 0.53 1.000 1757 1341 0.990

α(1) 0.30 0.30 0.01 0.28 0.31 1.000 1590 1497 0.992

α(2) 0.10 0.10 0.01 0.09 0.11 1.002 769 778 0.985

σ 0.21 0.21 0.02 0.19 0.24 1.000 944 1039 0.973

τ 0.04 0.05 0.01 0.03 0.06 1.002 708 725 0.997

π1 0.46 0.46 0.15 0.22 0.70 1.000 2083 1334 0.040

ρ11 0.91 0.92 0.02 0.88 0.94 1.002 1898 1417 0.977

ρ22 0.92 0.92 0.02 0.89 0.94 1.000 2218 1371 0.978
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developed the model presented in this article and drafted the initial
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