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Abstract
In peridynamics, boundary effects generally appear due to nonlocality of interparticle
forces; in particular, end effects are found in 1D bars. In a previous work by Eriksson and
Stenström (J Peridyn Nonlocal Model 2(2):205–228, 2020), a simple method to remove end
effects in certain types of 1D bars, or to homogenize such bars, was presented for bars with
constant micromodulus. In this work, which is a continuation of Eriksson and Stenström
(J Peridyn Nonlocal Model 2(2):205–228, 2020), the homogenizing procedure is applied
to bars with a linear, or “triangular,” micromodulus. For the examples studied, common in
practice, the linear elastic behavior of a homogenized bar, is identical to that of a corre-
sponding classical continuum mechanics bar, independently of the interparticle force range
and total number of material points of the bar.

Keywords Peridynamics · Peristatics · Homogenization · Nonlocal methods

1 Introduction

Peridynamic theory, introduced by Silling [2], is a nonlocal extension of solid mechanics,
in which each material point is connected to its neighboring material points through pair-
wise forces acting inside a closed horizon. The formulation allows handling of long-range
forces in general and unguided modeling of fractures in particular [2, 3]. Peridynamics is
based on integral equations that only involve the displacement field, thereby avoiding spatial
derivatives that do not exist across discontinuities in classical continuum mechanics.

The pairwise forces of two material points are related to displacement through the stiff-
ness of the bond between the points. The bond stiffness is computed under the assumption
that a material point has a complete neighborhood. However, the neighborhood of a point
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Published online: 22 October 2020

Journal of Peridynamics and Nonlocal Modeling (2021) 3:85–112

http://crossmark.crossref.org/dialog/?doi=10.1007/s42102-020-00042-x&domain=pdf
http://orcid.org/0000-0002-0188-4624
mailto: kjell.eriksson@ltu.se
mailto: christer.stenstrom@ltu.se


near a boundary is incomplete, and using the complete neighborhood bond stiffness in a
boundary region, results in a softer material and larger strains in such regions.

For a 1D peri-static/dynamic bar, this effect appears near the ends of the bar, but affects
the entire bar. In general, a very large number of material points, in the order of 100–1000,
is required to simulate a homogeneous bar, i.e., to achieve a displacement field that does not
deviate notably from the analytical solution of a classical continuum mechanics bar.

In a previous work [1], we derived the parameters necessary to remove the end effects in
1D bars with a constant micromodulus c, or to homogenize such bars. The micromodulus is
the elastic stiffness of the bond between two material points. In this work, the homogenizing
procedure is applied to bars with a linear, or “triangular,” micromodulus. We use the term
homogenization in the sense of finding a peridynamic discretization that acts like a material
with constant properties in the local theory, and not in terms of heterogeneous material.

The constant and the triangular micromodulus, which are common shapes of c, was
derived by Bobaru et al. [4] for continuous bars, i.e., bars with an infinite number of points
inside the horizon. The shape of the micromodulus is known to affect wave dispersion and
convergence rates [4, 5].

The 1D bar has been studied over the years as a natural branch of the peridynamic theory.
Silling et al. [6] examined the dynamics of an infinitely long bar and identified features not
present in the classical theory, such as wavelike oscillations spreading out from the load-
ing region. The dynamics of peridynamic infinite bars of homogeneous and heterogeneous
media have also been studied by, for example, Weckner and Abeyaratne [7] and Mikata [8].

Bobaru et al. [4] numerically investigated three kinds of displacement convergence, for
a given type of bar loading, with different number of material points and horizon size. The
authors also studied adaptive grid refinement away from the bar ends, to facilitate multi-
scale peridynamic modeling. They found that the relative error in relation to the classical
continuum mechanics solution of deformation decreased as the number of material points
in the bar increased.

Madenci and Oterkus [9] studied the longitudinal movement of the midpoint of a peridy-
namic bar, constrained at one end and momentarily loaded at the other, and discretized into
1000 points. The purpose of the study was to provide a benchmark example to be used in
subsequent 2D and 3D modeling.

Seleson and Littlewood [10] utilized polynomial influence functions (similar to ker-
nels) to modulate the strength of nonlocal interactions of a peristatic bar of 100 points,
with displacement constraints at the bar ends. The numerical error of displacements was
reduced by half by employing the influence functions. Chen et al. [11] achieved also signif-
icant improvements in the convergence of finite peridynamic bars with the corresponding
classical solutions by modifying the kernel.

Aguiar et al. [12] investigated the behavior of the displacement field near the ends of
a peridynamic bar and found that depending on the micromodulus, the displacement field
could become unbounded near the bar ends.

Nishawala and Ostoja-Starzewski [13] suggested an inverse approach to the analyti-
cal linear elastic deformation of 1D bars, by first assuming a given deformation and then
determining the loading required to obtain the given deformation, resulting in polynomial
functions for element-wise applied body forces.

In view of 2D, Le and Bobaru [14] compared eight methods for surface correction sug-
gested by various authors. The maximum displacement difference between the peridynamic
solutions with surface correction and the classical solution varied from single to double dig-
its in percentage. In general, these eight methods assumed a continuum and depended on
geometrical calculations to compensate for the truncated nonlocal neighborhood.
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Prakash [15] used a least squares approach to calibrate on a bond level in 3D. The study
obtained exact continuum mechanics behavior for material points next to a surface. How-
ever, the improvements at edges and corners were smaller than for other existing methods,
as seen in Le and Bobaru [14]. Even though the method can be applied in 1D, the direct cal-
ibration of the equilibrium equations presented in Eriksson and Stenström [1], and in this
work, is simpler and more straightforward.

The paper is set up as follows. The next section briefly introduces peridynamic theory
and considers the derivation of the effective micromodulus c for a bar with a finite num-
ber of points inside the horizon. We then derive the parameters necessary to adjust bond
stiffness near the ends of the 1D bar. We show that the values and the number of stiffness
correction parameters depend on the extent of a point’s neighborhood. We also derive the
adjustments of the related stiffness matrix to facilitate easy numerical implementation in
peri-static/dynamic modeling, for both the stiffness matrix formulation and the most com-
mon implementation in practice, looping over equilibrium equations formulation. In the
final section, the results are presented and discussed.

2 Bond-Based 1D Peridynamics

The peridynamic equation of motion of a material point at position x at time t is given as
[2, 3]:

ρ(x)ü(x, t) =
∫
Hx

f
(
u

(
x′, t

) − u (x, t) , x′ − x
)

dVx′ + b(x, t) ∀x ∈ � (1)

where � is the domain of the body, u is the displacement vector field, ρ is the mass density
and b is a prescribed body force field. f is the pairwise force function (a vector) per unit
volume squared, denoting the force exerted by the material point at x′ on the material point
at x. This interaction between pairs of material points is called bond. The integral is defined
over a region Hx, of radius δ, called the horizon (Fig. 1). Hx can be seen as a sphere, disk
or interval, for 3D, 2D and 1D models, respectively. The material points inside Hx, except
x itself, are called family members of x.

After a horizon size has been chosen, the material body is discretized by choosing a
relative grid density factor m = δ/Δ, where m is the number of point spacings within the
horizon “radius,” or size, and Δ is the constant material point spacing. Convergence studies
may be performed to justify the selection of horizon and discretization. In 1D, the number
of points inside the region Hx is given by NHx = 1 + 2m. For 2D and 3D problems, the
relative grid density factor m, should have a ratio of at least 3 [3, 9] and, in many cases, 4
or higher [5, 16, 17] to provide grid independent crack growth patterns.

A material is called microelastic if the pairwise force f between material points is
derivable from a micropotential ω [2]:

f(η, ξ) = ∂ω(η, ξ)

∂η
(2)

where ξ = x′−x is the relative position of two material points in the reference configuration,
and η = u

(
x′, t

) − u (x, t) = u′ − u is the corresponding relative displacement in the
deformed configuration.

A linear microelastic material results in the micropotential

ω(η, ξ) = c(||ξ ||)s2||ξ ||
2

(3)
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Fig. 1 Deformation of a 1D bar comprising seven material points (N ), in an undeformed (bottom) and
deformed (top) state. In this case, the bar end elements have the same volume, or weight, as the other five
elements

where s is the relative elongation of a bond:

s = ||ξ + η|| − ||ξ ||
||ξ || (4)

Differentiation of (3) according to (2) yields:

f(η, ξ) = ∂ω(η, ξ)

∂η
= c(||ξ ||)s ∂||ξ + η||

∂η
= c(||ξ ||)s ξ + η

||ξ + η|| (5)

where (ξ + η)/||ξ + η|| = e is a unit vector along a line through the two end points of a
bond in the deformed configuration. As we assume that a material point x does not interact
with material points outside its horizon, f = 0 for ||ξ || > δ.

The kernel c(||ξ ||)/||ξ || in the integrand in (1), is common in peridynamic mechan-
ical problems. Other kernels are possible, and the selection influences the nonlocality,
convergence, and thus the discretization applied [11].

In 1D axially loaded straight bars, the vectors η and ξ are parallel, thus implying the
force expression

f(η, ξ) = c(||ξ ||) ηi

||ξ ||
ξ

||ξ || (5a)

where ηi denotes the component of the relative displacement in the direction of the
undeformed bond and ξ/||ξ || = e. Note that (5a) is the linearized form of (5).

The elastic stiffness of a bond is determined by the micromodulus function c(||ξ ||),
which may take various forms: constant, linear, polynomial, Gaussian, etc. [3–5]. In a
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previous work [1], we considered the constant micromodulus. In the present work, we apply
the linear, or “triangular,” micromodulus.

c(ξ) = c1(1 − ξ/δ) (6)

where c1 is a constant, ξ = ||ξ || is the distance from a subject point and δ is the horizon.
The micromodulus is conveniently obtained by equating the peridynamic strain energy

density to the classical strain energy density at a point embedded within the bulk of a
material body.

For 1D bodies, with the micromodulus assumed to be constant, c(ξ) = c1 = 2E/(Aδ2),
and with the micromodulus assumed to be triangular, c1 = 6E/(Aδ2), which have been
obtained by Bobaru et al. [4] for a continuous bar, i.e., for an infinite number of points
NHx inside the region Hx. The constant micromodulus c is independent of NHx only in
two special cases: a) for NHx infinite and b) for NHx finite, only in the case where the
horizon divides an element in two equal parts and the element weight is halved [1]. This
feature does however not hold for the triangular micromodulus, which is independent of
NHx only if NHx is infinite, but is always a function of NHx when NHx is finite. The
micromodulus for an increasing finite NHx tends toward the micromodulus for an infinite
NHx . The micromodulus’ dependence on NHx is derived below.

For the triangular micromodulus, the question is raised whether the horizon can be
drawn somewhere between two points, so that the triangular micromodulus for an infinite
NHx , c∞ = c1 = 6E/(Aδ2), also is independent of a finite NHx , i.e., so that c∞ applies
independent of the horizon size.

To this end, let 0 ≤ β ≤ 1 be a parameter to be determined. The horizon size can then
be written as

δ = (m + β)Δ (7)

For 0 ≤ β ≤ 1/2 the point at m interspaces from the subject point is within the horizon
and its relative weight is 1/2 + β, i.e., mΔ ≤ δ ≤ (m + 1/2)Δ.

For 1/2 < β ≤ 1 the point at m is wholly within the horizon and its relative weight is
unity, i.e., (m + 1/2)Δ ≤ δ ≤ (m + 1)Δ.

The relative point values of the triangular micromodulus are

m + β − i

m + β
i = 0, . . . , m (8)

i.e., the first point value, associated with the subject point, is unity and the last value,
associated with the point at or nearest to the horizon, is β/(m + β) (Fig. 2).

For 0 < β ≤ 1/2, the strain energy density is

W∞ = c∞s2A

2

∫ δ

0

(
1 − ξ

δ

)
ξ dξ

→ Wm = c1(m)s2A

2

[
m−1∑
i=1

m + β − i

m + β
i + β

m + β
m(1/2 + β)

]
Δ2 (9)

where iΔ corresponds to ξ and Δ to dξ . Expand the sum
m∑

i=1

m + β − i

m + β
i =

m∑
i=1

i −
m∑

i=1

i2

m + β
= m(m + 1)

2
− m(m + 1)(2m + 1)

6(m + β)

= m(m + 1)(m − 1 + 3β)

6(m + β)
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Fig. 2 Triangular micromodulus c(ξ) for m = 2, NHx = 5, N = 7 and fixed β-values

from which

m−1∑
i=1

m + β − i

m + β
i + β

m + β
m(1/2 + β) = m(m + 1)(m − 1 + 3β)

6(m + β)
− m

+ m2

m + β
+ β

m + β
m(1/2 + β) = m(m2 + 3βm + 6β2 − 1)

6(m + β)
(10)

is obtained.

The coefficient c1(m) in (9) is calibrated by taking Wm equal to the classical continuum
mechanics strain energy density

Wm = Wo = Eε2/2 where s = ε (11a,b)

Substitution of (10) into (9), using (11), yields

Wm = c1(m)s2A

2

m(m2 + 3βm + 6β2 − 1)

6(m + β)
Δ2 = Eε2

2
(12)

from which with (7) we obtain

c1(m)A
m(m2 + 3βm + 6β2 − 1)

6(m + β)

(
δ

m + β

)2

= E (13)

and further

c1(m) = (m + β)3

m(m2 + 3βm + 6β2 − 1)

6E

Aδ2
(14)

For c1(m) to be independent of m and equal to c∞, we must have

(m + β)3

m(m2 + 3βm + 6β2 − 1)
= 1 (15)
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which can be simplified to
β3 − 3mβ2 + m = 0 (16)

from which

m = β3

3β2 − 1
(17)

For 1/2 < β ≤ 1, the strain energy density is

W∞ = c∞s2A

2

∫ δ

0

(
1 − ξ

δ

)
ξ dξ → Wm = c1(m)s2A

2

(
m∑

i=1

m + β − i

m + β
i

)
Δ2 (18)

Expand the sum
m∑

i=1

m + β − i

m + β
i =

m∑
i=1

i −
m∑

i=1

i2

m + β
= m(m + 1)

2
− m(m + 1)(2m + 1)

6(m + β)

= m(m + 1)(m − 1 + 3β)

6(m + β)
(19)

The coefficient c1(m) in (18) is calibrated as above.
Substitution of (19) into (18), using (11), yield

Wm = c1(m)s2A

2

m(m2 + 3βm + 3β − 1)

6(m + β)
Δ2 = Eε2

2
(20)

from which with (7) we obtain

c1(m)A
m(m2 + 3βm + 3β − 1)

6(m + β)

(
δ

m + β

)2

= E (21)

and further

c1(m) = (m + β)3

m(m2 + 3βm + 3β − 1)

6E

Aδ2
(22)

For c1(m) to be independent of m and equal to c∞, we must have

(m + β)3

m(m2 + 3βm + 3β − 1)
= 1 (23)

Equation (17) can be simplified to

β3 + 3mβ2 − 3mβ + m = 0 (24)

from which

m = β3

3β − 3β2 − 1
(25)

It is readily seen that m ≤ 0 for 0 ≤ β ≤ 1/2 in (17) and for 1/2 ≤ β ≤ 1 in (25). Thus,
there is no positive m for which (17) and (25) are satisfied for 0 ≤ β ≤ 1. In other words,
for the triangular micromodulus, the coefficient c1(m) is always a function of the number
of points within the horizon.

Below are considered the two most common cases in practice: the horizon a) divides an
element into two equal parts and b) falls between two elements.

Taking β = 0 in (14), that is, a horizon divides an element into two equal parts, gives

c1(m) = 1

1 − 1/m2

6E

Aδ2
(26)
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The function on the right-hand side is set to f1(m):

f1(m) = 1

1 − 1/m2
(27)

which decreases with m toward unity (Table 1).
Thus, if c∞ is applied to a bar with a finite number of points in the region Hx, then m

must be at least 10 to reduce the error in the micromodulus to less than one percent and at
least 32 to keep it smaller than tenth of a percent.

Putting
f1(m) ≤ 1 + ε (28)

where ε is a user’s maximum acceptable error, it is readily deduced that the condition (28)
is fulfilled whenever

m ≥ 1/
√

ε (29)

Taking β = 1/2 in (14) or (22), that is, a horizon is drawn between two elements, gives

c1(m) = (1 + 1/(2m))2

1 + 1/m

6E

Aδ2
(30)

The function on the right-hand side

f1(m) = (1 + 1/(2m))2

1 + 1/m
(31)

decreases with increasing m toward unity (Table 2).
Thus, if c∞ is applied to a bar with a finite number of points in the region Hx, then m

must be at least 5 to reduce the error in the micromodulus to less than one percent and at
least 15 to keep it smaller than tenth of percent. The condition (28) is fulfilled whenever

m ≥ 1

2
√

ε
(32)

Thus, the case when the horizon is drawn between two elements is more favorable (as
opposed to dividing an element into equal parts). Note that the conditions considering the
minimum number of points/element inside the region Hx of a bar apply only to a bar with
triangular micromodulus.

3 Homogenization

The equation of equilibrium of a subject point/element in a 1D linearized peristatic bar,
obtained from the basic peridynamic equation of motion [2], is in standard notation [4]

n∑
p=1

c
(|xp − xi |

) up − ui

|xp − xi |Vip + bi = 0 (33)

where ui is the only component of the displacement vector u of the material point situated
at xi .

Table 1 f1(m) when β = 0
m 2 3 4 5 6 10 32

f1(m) 1.333 1.125 1.067 1.042 1.029 1.01 1.001
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Table 2 f1(m) when β = 1/2
m 2 3 4 5 15

f1(m) 1.042 1.021 1.0125 1.0083 1.001

Certain characteristic properties of the 1D peristatic bar are discussed in Eriksson &
Stenström [1]. Like the previous case, a 1D bar is loaded in uniaxial tension by equal
and opposite forces applied at the end points of the bar. The displacement of the bar is
accordingly symmetric and, in particular, the displacement at the mid-section of the bar
vanishes.

To illustrate our procedure, we start with the simplest case possible, namely a bar with
a minimum horizon size and a minimum number of points, so that the entire bar is just
covered by the elements inside the horizons. We then generalize the procedure to include
greater horizons, bars with an arbitrary, including infinite, number of points N . Both bars
with full weight and half weight end elements are considered.

3.1 Bond Stiffness Adjustment

For a bar with δ = 2Δ or 5
2Δ (NHx = N = 5), direct inspection of a bar end reveals that

the bond sets are different only in the first and last point interspaces of the bar (but they
are equal between themselves). Accordingly, we assume an adjusted bond stiffness between
points 1 and 2 (but not of the bond between points 1 and 3, as this choice would also affect
the stiffness in the interspace between points 2 and 3) and likewise between points 4 and 5.

For a bar with δ = 3Δ or 7
2Δ, the bond sets in the first two and the last two bar inter-

spaces are different. In particular, the bond set in the first interspace is different from that
in the second. We assume therefore an adjusted bond stiffness between points 1 and 2, and
different adjustment between points 1 and 3, but no more. The same holds for the last two
interspaces.

For a bar with δ = 4Δ or 9
2Δ, the bond sets in the three first and last bar interspaces

are different. We assume therefore an adjusted bond stiffness between points 1 and 2, and
further different adjustments between points 1 and 3 and between points 1 and 4, but no
more. The same holds for the last three interspaces.

4 Horizon δ = 2, 3, 4 Δ

4.1 Half Weight End Elements

4.1.1 Introductory Example

For a bar with horizon δ = 2Δ, a horizon covers three points i = 1, 2, 3, the subject point
and two family points. The relative point values of the micromodulus are shown in Table 3.

Table 3 Relative point values of
c(ξ) i 1 2 3

ξi/Δ 0 1 2

c(ξi )/c1 1 1/2 0
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The range of a bond force on either side of a subject point is just one point inter-
space. The bond forces are just local, i.e. they only extend to the nearest neighbor on either
side of a subject point, but, as all element weights are not equal, the bar is not inherently
homogeneous.

The first three equilibrium equations for a bar with the smallest possible number of points
for the horizons to cover the entire bar, NHx = 5, are from (33)

where A = Vip/Δ. The first factor 1/2 in the first term in (2′) is the relative weight of
the left end element of the bar. Other fractions in (1′) to (3′) are the relative values of the
micromodulus, taken from Table 3. The equilibrium equations of points 4 and 5 are “mirror
images” of (2′) and (1′) and omitted here.

To homogenize the bar, an adjusted bond stiffness is assumed between points 1 and 2 and
between points 4 and 5. Because of load and displacement symmetry, it suffices to consider
just one half of the bar. Noting in particular that bond stiffness is adjusted in just the first
two equilibrium equations, we get from (1′) and (2′)

where αij are dimensionless stiffness adjustment parameters to be determined. In bond-
based peridynamics α21 = α12 = α.

Due to symmetry, the displacement u3 = 0 at the midpoint of the bar. To homogenize
the deformation of the bar, we further require that

u1 = 2u2 and u4 = −u2 (39a,b)

i.e., the displacement of point 1 is twice that of point 2 with respect to the midpoint of
the bar. Inserting (39a) in (38) and solving for α, we get

α = 2 (40)

The equilibrium equations of a bar are conveniently written on the matrix–vector form
Su = −b. In standard arrangement, that is, with row number equal to equation number and
column number equal to subject point number, a diagonal element in S is the displacement
coefficient of the subject point in the corresponding equilibrium equation. The coefficients
of the family members are off-diagonal elements on the same row, taken in order.

With Su = −4b/(c1A) in the present case, the 3×3 submatrix Su of S, from which S for
both a non-homogenized as well as a homogenized bar can be obtained by simple extension,
is ⎡

⎣−2α 2α

α −(α + 2) 2
2 −4

⎤
⎦ (41)
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invoking (1′′), (2′′) and (3′′).
Note that for a bar with half weight end elements Su is non-symmetric. Su for a homog-

enized bar is obtained by substituting α according to (40) and for a non-homogenized bar,
or a bar “as such,” by taking the homogenizing parameter to unity, i.e., in this case α = 1 in
(41). Similar procedures apply to all Su given below. Factors b/(c1A) are derived in detail
in Appendix 1.

4.1.2 Second Example

Next, a bar with δ = 3Δ and NHx = 7 is considered. A horizon covers four points
i = 1, . . . , 4, the subject point and three family points. The relative point values of the
micromodulus are shown in Table 4.

The equilibrium equations of interest are

Here, the first factor 1/2 in the first term in (2′) and (3′) is the relative weight of the left
end element of the bar. The other ratios are relative point values of c taken from Table 4 and
displacement denominators are the distance in number of point spacings from the subject
point.

Assume a bond stiffness αc between points 1 and 2 and βc between points 1 and 3 (and
likewise at the other bar end). From (1′), (2′) and (3′), we get

The parameters α and β do not appear in any of the remaining equations of concern.
At the midpoint of the bar u4 = 0. Homogenization requires that

u1 = 3u3, u2 = 2u3, u5 = −u3 and u6 = −u2 (49a–d)

Table 4 Relative point values of
c(ξ) i 1 2 3 4

ξi/Δ 0 1 2 3

c(ξi )/c1 1 2/3 1/3 0
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Inserting (49a–c) in (47) and (48) and solving for α and β, we get

α = 3 and β = 2 (50a,b)

With Su = −12b/(c1A) in this case, the non-symmetric 4 × 4 submatrix Su becomes⎡
⎢⎢⎣

−(8α + 2β) 8α 2β

4α −(4α + 10) 8 2
β 8 −(β + 18) 8

2 8 −20

⎤
⎥⎥⎦ (51)

from which the submatrix Su for a homogenized as well as a non-homogenized bar can be
readily obtained.

4.1.3 Third Example

Finally, a bar with δ = 4Δ and NHx = 9 is considered. A horizon covers five points
i = 1, . . . , 5, the subject point and four family points. The relative point values of the
micromodulus are shown in Table 5.

The equilibrium equations of interest in this case are

Assume a bond stiffness αc between points 1 and 2, βc between points 1 and 3, and γ c

between points 1 and 4 (and likewise at the other bar end). (1′)–(4′) give

Table 5 Relative point values of
c(ξ) i 1 2 3 4 5

ξi/Δ 0 1 2 3 4

c(ξi )/c1 1 3/4 1/2 1/4 0
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As before, α, β and γ do not appear in any of the remaining equilibrium equations
involved.

At the midpoint of the bar u5 = 0. To homogenize the bar we require that

u1 = 4u4, u2 = 3u4, u3 = 2u4 (61a–c)

u6 = −u4, u7 = −u3, u8 = −u2 (61d–f)

Inserting (61a–e) in (2′′), (3′′) and (4′′) and solving for α, β and γ results in

α = 4, β = 3 and γ = 2 (62a–c)

With Su = −24b/(c1A), the non-symmetric 5 × 5 submatrix Su then becomes
⎡
⎢⎢⎢⎢⎣

−(18α + 6β + 2γ ) 18α 6β 2γ

9α −(9α + 26) 18 6 2
3β 18 −(3β + 44) 18 6
γ 6 18 −(γ + 50) 18

2 6 18 −52

⎤
⎥⎥⎥⎥⎦ (63)

4.1.4 Generalization

The homogenizing parameters for a bar with half weight end elements and varying horizon
size are collected in Table 6. From the calculated parameters for m = 2 to 4, the parameters
for m = 5 and m are inferred.

From the above examples, we conclude that for a bar with the horizon m (point spacings),
the number of solving parameters in homogenization is m−1 and that the solving parameters
for any m form the set

αi = m − i + 1, i = 1, . . . , m − 1 (64)

4.2 Full Weight End Elements

4.2.1 First Example

For a bar with horizon δ = 2Δ, a horizon covers three points i = 0, 1, 2, the subject point
and two family points. The relative point values of the micromodulus (Table 3) show that
the range of a bond on either side of a subject point equals just one point interspace. As the
bond forces only extend to the nearest neighbor, of equal weight, on either side of a subject
point, the bar is not nonlocal and therefore inherently homogeneous.

Table 6 Homogenizing
parameters for bar with half
weight end elements

m α β γ etc.

2 2 – – –

3 3 2 – –

4 4 3 2 –

5 5 4 3 2

m m m − 1 m − 2 m − 3
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4.2.2 Second Example

Next, for a bar with δ = 3Δ and NHx = 7, the relative point values of the micromodulus
are shown in Table 4. For m ≥ 3 the bond ranges are greater than one point interspace and
such bars are thus nonlocal.

Assume a bond stiffness αc between points 1 and 2 and βc between points 1 and 3 (and
likewise at the other bar end). The bond stiffness is adjusted in just the first three equilibrium
equations. From (42)–(45), in which the factor 1/2, accounting for the weight of a half
weight end element, has been replaced by a factor unity to account for the weight of a full
weight end element, we get the equations of interest (corresponding to (47) and (48))

4αu1 − (4α + 5)u2 + 4u3 + u4 = 0 (65)

βu1 + 4u2 − (β + 9)u3 + 4u4 + u5 = 0 (66)

The homogenization conditions (49a–c) result in

α = 3/2 and β = 1 (67a,b)

With Su = −6b/(c1A) in this case, the submatrix Su of S is⎡
⎢⎢⎣

−(4α + β) 4α β

−(4α + 5) 4 1
−(β + 9) 4

−10

⎤
⎥⎥⎦ (68)

Note that for full weight end elements the stiffness matrix S is symmetric.

4.2.3 Third Example

Finally, for a bar with δ = 4Δ and NHx = 9 the relative point values of the micromodulus
are shown in Table 5.

Assume a bond stiffness αc between points 1 and 2, βc between points 1 and 3 and γ c

between points 1 and 4 (and likewise at the other bar end). The bond stiffness is adjusted in
the first four equilibrium equations. From (52)–(56), adjusted for full weight end element,
we get the equations of interest (corresponding to (58)–(60))

9αu1 − (9α + 13)u2 + 9u3 + 3u4 + u5 = 0 (69)

3βu1 + 9u2 − (3β + 22)u3 + 9u4 + 3u5 + u6 = 0 (70)

γ u1 + 3u2 + 9u3 − (γ + 25)u4 + 9u5 + 3u6 + u7 = 0 (71)

The homogenization conditions (61a–e) result in

α = 2, β = 3/2 and γ = 1 (72a–c)

With Su = −12b/(c1A), the symmetric submatrix Su becomes
⎡
⎢⎢⎢⎢⎣

−(9α + 3β + γ ) 9α 3β γ

−(9α + 13) 9 3 1
−(3β + 22) 9 3

−(γ + 25) 9
−26

⎤
⎥⎥⎥⎥⎦ (73)
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4.2.4 Generalization

The homogenizing parameters for a bar with full weight end elements and varying horizon
size are collected in Table 7. From the calculated parameters for m = 3 and 4, the parameters
for m = 5 and m are inferred.

From the above examples, we conclude that for a bar with horizon m (point spacings), the
number of solving parameters in homogenization is m − 1 and that the solving parameters
for any m form the set

αi = (m − i + 1)/2, i = 1, . . . , m − 1 (74)

Thus, the homogenizing parameters for a bar with full weight end elements is half the
corresponding parameter for a bar with half weight end elements. This also holds for m = 2,
as a unit parameter means no adjustment.

4.3 Matrix Construction

Inspection of the above equilibrium equations on matrix form, reveals that in the general
case, the stiffness matrix S can be obtained from the unique (m + 1) × (m + 1) submatrix
Su of S by simple diagonal expansion. For a bar with half weight end elements Su and S are
non-symmetric, while symmetric for a bar with full weight end elements.

A general procedure to obtain the elements of the N × N stiffness matrix S for a bar of
any number of points/elements, with half weight and full weight end elements, respectively,
is described in Appendix 2.

5 Horizon δ = 5/2, 7/2, 9/2 Δ—Horizon Between Two Elements

5.1 Full Weight End Elements

5.1.1 First Example

For a bar with δ = 5
2Δ and NHx = 5, the relative point values of the micromodulus are

shown in Table 8.
The equilibrium equations are

Table 7 Harmonizing parameters
for bar with full weight end
elements

m α β γ etc.

3 3/2 1 – –

4 2 3/2 1 –

5 5/2 2 3/2 1

m m/2 (m − 1)/2 (m − 2)/2 (m − 3)/2
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Table 8 Relative point values of
c(ξ) i 1 2 3 4

ξi/Δ 0 1 2 5/2

c(ξi )/c1 1 3/5 1/5 0

Ratios are relative point values of c taken from Table 8 and displacement denominators
are distance in number of point spacings from the subject point.

Assume an adjusted bond stiffness αc between points 1 and 2 (and likewise between
points 4 and 5). From (2′) we obtain

6αu1 − (6α + 7)u2 + 6u3 + u4 = 0 (78)

The homogenization conditions (39a) yield

α = 4/3 (79)

With Su = −10b/(c1A) in the present case, from (1′) to (3′) we obtain upon insertion
of α in (1′) and (2′) the symmetric submatrix Su⎡

⎣−(6α + 1) 6α 1
−(6α + 7) 6

−14

⎤
⎦ (80)

5.1.2 Second Example

Next, for a bar with δ = 7
2Δ and NHx = 7, the relative point values of the micromodulus

are shown in Table 9.
The equilibrium equations of interest are

Assume a bond stiffness αc between points 1 and 2 and βc between points 1 and 3 (and
likewise at the other bar end). The bond stiffness is adjusted in (1′)–(3′). From (2′)–(3′), we

Table 9 Relative point values of
c(ξ) i 1 2 3 4 5

ξi/Δ 0 1 2 3 7/2

c(ξi )/c1 1 5/7 3/7 1/7 0

100 Journal of Peridynamics and Nonlocal Modeling (2021) 3:85–112



get the equations of interest

The homogenization conditions (49a–c) yield

α = 9/5 and β = 4/3 (87)

With Su = −42b/(c1A) in this case, the symmetric submatrix Su is⎡
⎢⎢⎣

−(30α + 9β + 2) 30α 9β 2
−(30α + 41) 30 9

−(9β + 71) 30
−82

⎤
⎥⎥⎦ (88)

5.1.3 Third Example

Finally, for a bar with δ = 9
2Δ and NHx = 9, the relative point values of the micromodulus

are shown in Table 10.
The equilibrium equations of interest in this case are

Assume a bond stiffness αc between points 1 and 2, βc between points 1 and 3 and γ c

between points 1 and 4 (and likewise at the other bar end).

Table 10 Relative point values
of c(ξ) i 1 2 3 4 5 6

ξi/Δ 0 1 2 3 4 9/2

c(ξi )/c1 1 7/9 5/9 3/9 1/9 0
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The bond stiffness is adjusted in the first four equilibrium equations. From (2′)–(4′) we
get the equations of interest

The homogenization conditions (61a–e) yield

α = 16/7, β = 9/5 and γ = 4/3 (97)

With Su = −108b/(c1A), the symmetric submatrix Su becomes⎡
⎢⎢⎢⎢⎣

−(84α + 30β + 12γ + 3) 84α 30β 12γ 3
−(84α + 129) 84 30 12

−(30β + 213) 84 30
−(12γ + 243) 84

−258

⎤
⎥⎥⎥⎥⎦
(98)

5.1.4 Generalization

The homogenizing parameters for a bar with full weight end elements and different horizon
size are collected in Table 11. From the calculated parameters for δ/Δ = 5/2 to 9/2, the
parameters for δ/Δ = 11/2 are inferred.

From above examples, we conclude that for a bar with horizon m (point spacings) the
number of solving parameters in homogenization is m − 1 and that the solving parameters
for any m form the set

αi−1 = i2/(2i − 1), i = 2, . . . , m (99)

5.2 Homogenization of Bar with an Arbitrary Number of Points

An important result is that the sets of homogenization parameters (α), (α, β), (α, β, γ ), etc.,
according to horizon size, hold in general for a bar with an arbitrary number of points. To
show this, consider a bar with an odd number of points and let n ≥ 0 be the number of
points inserted between the midpoint of the bar and the m outermost points at a bar end (on
either side of the midpoint), that is, N = 1 + 2(n + m). Then, for the midpoint

un+m+1 = 0 (100)

Homogenizing requires proportional displacements

ui = (n + m − i + 1)un+m, i = 1, . . . , N (101)

Table 11 Homogenizing
parameters for bar with full
weight end elements

δ/Δ m α β γ etc.

5/2 2 4/3 – – –

7/2 3 9/5 4/3 – –

9/2 4 16/7 9/5 4/3 –

11/2 5 25/9 16/7 9/5 4/3

102 Journal of Peridynamics and Nonlocal Modeling (2021) 3:85–112



satisfying all equilibrium equations.
To give an example, simple but general enough, insertion of (101) into (85) and (86) and

canceling the common factor un+3 yield

30α(n + 3) − (30α + 41)(n + 2) + 30(n + 1) + 9n + 2(n − 1) = 0 (102)

9β(n + 3) + 30(n + 2) − (9β + 71)(n + 1) + 30n + 9(n − 1) + 2(n − 2) = 0 (103)

It is seen that factors of n sum up to zero in each equation and that the remaining terms
yield the same solution as before

α = 9/5 and β = 4/3 (104)

This essential result is verified by all cases considered above and therefore assumed
general. It is left to the reader to verify that the general result holds also for a bar with an
even number of points. The homogenizing parameters are thus independent of the number
of points of a bar.

6 Results and Discussion

First, an overview of some characteristic results of this work is presented, followed by
results and discussion of two case studies considered. The overview summarizes the defor-
mation of the 1D bar types considered. The first case study concerns boundary/constraint
conditions of a bar with full weight end elements, using the matrix solution, and the sec-
ond case study considers a longitudinally vibrating bar with full weight end elements, using
a quasi-static formulation by looping over the equilibrium equations. In both cases, the
implications of different boundary conditions are considered.

The numerical implementation has been carried out in MATLAB. Static codes are in-
house and implemented as described in the previous section, and quasi-static codes are
modified forms of readily available Fortran codes by Madenci and Oterkus [9].

6.1 Overview of Non-homogenized and Homogenized 1D Peridynamic Bars

In the overview, the total strain of entire non-homogenized and homogenized 1D bars, with
half weight and full weight end elements and horizons sizes 2, 3 and 4 element interspaces,
as well as 5/2, 7/2 and 9/2 interspaces, is compared with the corresponding classical con-
tinuum mechanics strain. The bars are loaded in uniaxial tension by equal and opposite
forces, applied to the bar ends. The displacement of a bar, from which the total strain is
obtained, is calculated with the static stiffness matrix solution method.

The total strain of a peridynamic bar in uniaxial tension is in general a function of the
number of points in the bar, slowly decreasing with increasing number of points toward a
limit for an infinite number of points, corresponding to the classical continuum mechanics
strain. The strain in the bar also varies piecewise between points along the bar. These fea-
tures are due to different bond sets between some few points at the bar ends, which number
depends upon the horizon size. The end effects of a bar propagates through the entire bar
regardless of the number of points in the bar [1]. In the homogenized bar, the end effects are
removed and the deformation is equal to that of a classical continuum mechanics bar.
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Table 12 Dimensionless strain function f (N) for a bar with triangular micromodulus

δ/Δ Half weight bar end elements Full weight bar end elements

Non-homogenized Homogenized Non-homogenized Homogenized

2 f (N)= N+1
N−1

f (5)=3/2
f (∞)=1

f (N) = 1 Inherently
homogeneous,
f (N) = 1

f (N) = 1

3 f (N) ≈ 17N+24
17(N−1)

f (N) = 1 f (N) ≈ 17N−5
17(N−1)

f (N) = 1

f (7)=1.043
f (∞)=1

f (7) = 1.1178
f (∞) = 1

4 f (N) ≈ 19(N+5)+10
19(N−1)

f (9)=1.8161
f (∞)=1

f (N) = 1 f (N) ≈ 27N+20
27(N−1)

f (9)=1.2178
f (∞) = 1

f (N) = 1

5/2 n/a f (5) ≈ 1.129
f (∞) = 1

f (N) = 1

7/2 n/a f (7) ≈ 1.2304
f (∞) = 1

f (N) = 1

9/2 n/a f (9) = 1.3189
f (∞) = 1

f (N) = 1

The total strain of a bar is written ε(N) = f (N)σ/E, where N is the number of points
in the bar, f (N) is a dimensionless function, and ε = σ/E is the corresponding strain in a
classical continuum mechanics bar. f (N) = 1, thus, means that the behavior of a peristatic
bar is identical to that of a classical continuum mechanics bar. The numerical results of the
function f (N) are summarized in Table 12. The values of f (N) given as integers or frac-
tions are exact analytical values, while decimal numbers are numerical approximations. In
some cases some simple approximate formula has been found through curve fitting (against
numerically calculated values) with an error in general smaller than one percent.

Fig. 3 Bar element displacements for a a mid-element constrained, b an end element constrained and c four
end elements constrained
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Fig. 4 Displacement of the element next to constrained a mid-element, b end element and c four end
elements, i.e., plot of u102, u2 and u5

6.2 Boundary/Constraint Conditions—Case 1

Figure 3 shows the results for three non-homogenized and three homogenized bars, with
full weight end elements, δ = 4Δ, NHx = 9 and b/(cm=4A) = (5/2)(σΔ/E) for different
boundary/constraint conditions. In Fig. 3a, the number of material points Na = 2Nb − 1 =
17, in Fig. 3b Nb = NHx = 2m + 1 = 9, and in Fig. 3c Nc = NHx + m − 1 = 12. The
homogenization parameters are α = 2, β = 3/2 and γ = 1. The Young’s modulus of the
bars is unity and they are loaded in uniaxial tension to unit stress. The length of the bars in
Fig. 3b, c is half the length of the bars in Fig. 3a.

The bars in Fig. 3a are loaded at both ends by equal and opposite forces. This means that
the displacement of the midpoint of a bar vanishes, i.e., ua9 = ua(x9 = 0) = 0, and that the
deformation of the bar is symmetric with respect to the midpoint, i.e., ua(−xi) = −ua(xi).

The bars in Fig. 3b, c are loaded by a force at the right end. The bar in Fig. 3b is con-
strained at the left end by prescribing ub1 = 0 and the bar in Fig. 3c by putting uc1,2,3,4 = 0,
i.e., by prescribing zero displacement over a length corresponding to one horizon radius at
the bar end, here denoted Δ-constraint and δ-constraint, respectively.

For the non-homogenized bars, the displacements of overlapping parts are different in
all three cases, i.e., uc(xi) �= ub(xi) �= ua (xi > 0), which means in particular that the
bars in Fig. 3b and c are not symmetry halves of the bar in Fig. 3a, as in classical con-
tinuum mechanics. Thus, for a non-homogenized bar, traditional symmetry conditions do
not apply. Displacement constraints applied in a boundary region inside the material body
are suggested by Silling [2] and Macek and Silling [18] or in a fictitious boundary region
of material points outside of the material body are suggested by Madenci and Oterkus and
Bobaru et al. [9, 19], with a typical length of Δ or δ [20]. Comparison of Fig. 3b and c
shows that δ-constraint (Fig. 3c) results in displacements closer to the analytical solution
than Δ-constraint (Fig. 3b).

Table 13 Constraint setup of
Fig. 4 Constraint (a) Mid-element (b) End element (c) End elements

L (m) 2 1 1

N (no.) 201 100 103

ui = 0 i = 101 i = 1 i = 1, 2, 3 and 4

Plotted ui i = 102 i = 2 i = 5
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Fig. 5 Displacement of the free end element a u201, b u100 and c u103

For a homogenized bar on the other hand, ub(xi) = ua (xi > 0), that is, the bar in Fig. 3b
is indeed a symmetry half of the entire bar in Fig. 3a, but not the bar in Fig. 3c, for which
uc(xi) �= ua (xi > 0). Thus, Δ-constraint allows symmetry properties of a homogenized
bar to be exploited (but not δ-constraint).

6.3 Vibrating Bar—Case 2

A vibrating bar with a Young’s modulus of 200 GPa is loaded by an initial strain condition
of ∂u0/∂x = 0.001H(Δt − t), where H is the unit step function. The analytical solution of
a bar constrained in one end is given by Rao [21]:

ux (x, t) = 8εL

π2

∞∑
n=0

(−1)n

(2n + 1)2
sin

(
(2n + 1)πx

2L

)
cos

(√
E

ρ

(2n + 1)πt

2L

)
(105)

where ε and ρ are strain and density, respectively.
The peridynamic model parameters for the vibrating bar are the same as those for the

static bar, i.e., δ = 4Δ and full weight end elements. Figure 4 shows the displacement of
the element on the right-hand side of the constrained region. The constraint conditions of
Fig. 4a–c correspond to the constraints in Fig. 3a–c. The bar length, discretization, constraint
and the plotted element displacement are given in Table 13. It is seen that the stiffness of
the vibrating bar and of the static bar are similar in Figs. 3 and 4a–c.

Lastly, we study the free end of the bar by plotting u201, u100 and u103 in Fig. 5. It
is seen that the frequency of the vibration deviates for the non-homogenized solution in
Fig. 5b. This deviation increases with increasing points within the horizon. To demon-
strate this more clearly, δ is set to 6Δ in Fig. 5 instead of 4Δ. The time step size is set to
0.8

√
2ρΔ/(2δAcm=4) (see Madenci and Oterkus [9] for details).

7 Conclusions

In this paper, the displacement and total strain of non-homogenized and homogenized 1D
bars with triangular micromodulus and with half weight and full weight end elements,
loaded in uniaxial tension, were derived analytically and computed numerically.

The micromodulus is in general a function of the number of points inside the horizon
both for bars with a constant micromodulus [1] and with a triangular micromodulus. For
a given horizon, the dependence of the micromodulus on the number of points within the
horizon is stronger for a triangular micromodulus than for a constant micromodulus. In the
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latter case, but not the former, the influence is very small and negligible in most cases in
practice [1].

The total strain of a non-homogenized bar is in general a function of the number of points
in the bar and of the number of points inside the horizon. The total strain slowly decreases
toward a limit value with increasing number of points in the bar. Independent of the horizon
size, this limit value equals the strain of a classical continuum mechanics bar, both for half
weight and full weight end elements (f (∞) = 1; Table 12), contrasting the behavior of a
bar with constant micromodulus for which the classical limit is obtained only for full weight
end elements [1].

There are two steps in homogenizing a 1D bar with triangular micromodulus: (a) adjust
the stiffness of the bar end bonds and (b) adjust the micromodulus, according to the number
of points inside the horizon.

For a homogenized bar with triangular micromodulus, loaded in uniaxial tension, the
total strain is always equal to the classical continuum mechanics strain, independent of the
number of points in the bar and the number of points inside the horizon.

Classical continuum mechanics symmetry conditions do not apply to a non-homogenized
bar. For half part of a symmetric model however, a symmetry boundary region of m ele-
ments/points with prescribed zero displacement is preferred over such a region of one single
element/point (Figs. 3b, c, 4b, c and 5b, c), since the deviation from the full symmetric
model is smaller.

On the other hand, half part of a homogenized symmetric model with a symmetry bound-
ary region of one single element with prescribed zero displacement (Figs. 3b and 4b) gives
exactly the same result as that obtained for a fully symmetric model, but does not so for a
boundary region of m element/points.
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Appendix 1: Right-hand side b/(c1A) of bar end element equilibrium
equations

For a horizon dividing an element into two equal parts we have from m = δ/Δ and (26)

1

c1(m)A
= 1 − 1/m2

6

δ2

E
= 1 − 1/m2

6

(mΔ)2

E
= m2 − 1

6

Δ2

E
(A1.1)

For a bar with half weight end elements b = 2σ/Δ on an end element. σ is applied stress,
which yields

b

c1A
= m2 − 1

3

σΔ

E
(A1.2)
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Table 14 Equation coefficient C
δ/Δ End element weight

Half Full

2 1 –

3 8/3 4/3

4 5 5/2

5/2 2 1

7/2 4 2

9/2 20/3 10/3

and for a full weight end element b = σ/Δ, which yields

b

c1A
= m2 − 1

6

σΔ

E
(A1.3)

For a horizon between two elements we have from (30)

1

c1(m)A
= 1 + 1/m

[1 + 1/(2m)]2

δ2

6E
= 1 + 1/m

[1 + 1/(2m)]2

(m + 1/2)2Δ2

6E
= m(m + 1)

6

Δ2

E
(A1.4)

For a half weight end element, we obtain

b

c1A
= m(m + 1)

3

σΔ

E
(A1.5)

and for a full weight end element

b

c1A
= m(m + 1)

6

σΔ

E
(A1.6)

The right-hand side of the bar end element equilibrium equations is written on the general
form

b1

c1A
= C

σΔ

E
= − bN

c1A
(A1.7)

where C is a coefficient given in Table 14.

Appendix 2: Stiffness matrix

The equilibrium equations of the points/elements of a 1D bar with N elements are conve-
niently written on matrix–vector form Su = b, where S is a N × N stiffness matrix. This
formulation allows the solution of a problem to be written formally as u = S−1b, or in
MATLAB code u = S\b.

Due to conventional equation and point numbering, S presents a characteristic diagonal
structure.

For a bar with full weight end elements, the first m rows are unique and the last m rows
are “double reflections” of the m first rows. The rows in between are identical and show a
repetitive pattern diagonally. The set of non-zero elements of row m+ 1 is simply displaced
one column to the right for every row-wise step downwards to row N − m.

For a bar with half weight end elements, the first m−1 rows are unique and the last m−1
rows are “double reflections” of the first m − 1 rows. The rows in between are identical
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and show a repetitive pattern diagonally. The set of non-zero elements of row m is simply
displaced one column to the right for every row-wise step downwards to row N − m + 1.

Thus, the N ×N stiffness matrix S for a bar with any number of points N can be obtained
from the unique (m + 1) × (m + 1) submatrix Su by simple (diagonal) expansion of the
latter. A general procedure, not involving Su, to obtain the stiffness matrix S of an arbitrary
size is described below. The described procedure may be complemented with homogenizing
parameters by keeping track of the coefficients of the end point bonds.

A2.1 Horizon through an element

A2.1.1 Bar with full weight end elements

In the case of a bar with m = 4, N = 9 and full weight end elements, the left-hand side of
the equilibrium equation of element 5, the mid-element, or element m + 1, is

0
u1 − u5

4
+ 1

4

u2 − u5

3
+ 1

2

u3 − u5

2
+ 3

4
(u4 − u5) + 3

4
(u6 − u5) + 1

2

u7 − u5

2

+1

4

u8 − u5

3
+ 0

u9 − u5

4
(A2.1.1.1)

where the denominators 2, 3, and 4 represent the number of point spacings between point 5
and its neighbors. Zeros and ratios are relative point values of c. To obtain the elements of
S, the equation is rewritten as

0
1

4
u1 + 1

4

1

3
u2 + 1

2

1

2
u3 + 3

4
u4 − 2

(
1

4

1

3
+ 1

2

1

2
+ 3

4

)
u5 + 3

4
u6 + 1

2

1

2
u7 + 1

4

1

3
u8 + 0

1

4
u9

(A2.1.1.2)
For j = m + 1, the first repetitive row is obtained:

0
1

4
uj−4 + 1

4

1

3
uj−3 + 1

2

1

2
uj−2 + 3

4
uj−1 − 2

(
1

4

1

3
+ 1

2

1

2
+ 3

4

)
uj + 3

4
uj+1 + 1

2

1

2
uj+2

+ 1

4

1

3
uj+3 + 0

1

4
uj+4 (A2.1.1.3)

The terms inside the bracket in (A2.1.1.3) can be written as
∑m−1

i=1
i
m

1
m−i

and thus the
diagonal elements are in general

S(m + 1,m + 1) = −2
m−1∑
i=1

i

m

1

m − i
(A2.1.1.4)

Further, the non-zero elements of the row are

S(m + 1, 1 + i) = S(m + 1, 2m + 1 − i) = i

m

1

m − i
, i = 1, . . . , m − 1 (A2.1.1.5)

It is seen from the equilibrium equations that the coefficients of row m are copies of the
coefficients of row m + 1, each moved one step upwards and one step backwards (i.e., to
the left) in the matrix S.

The coefficients on row m − 1 are obtained, in a first step of two, by such upwards–
backwards diagonal copying of the coefficients on row m. There is however an outgoing
coefficient to the left of the matrix on row m− 1. In a second step, this outgoing coefficient
is added to the diagonal coefficient (on row m−1). In general, after an upwards–backwards
diagonal copying step, an outgoing coefficient is added to the diagonal coefficient of a row.
This two-step procedure is repeated up to the first row.
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Thus, for the upwards steps in creating the matrix S, starting from row m + 1, calculate
in order

S(m − n, i) = S(m − n + 1, i + 1) (A2.1.1.6)

where n = 0, 1, . . . , m − 1 and i is column number. In particular, for n ≥ 1, adjust further
the diagonal element

S(m − n, m − n) = S(m − n, m − n) + S(m − n + 1, 1) (A2.1.1.7)

Downwards, a similar repetitive pattern is mirrored in rows N −m to N . The coefficients
of row N −m+ 1 are just copies of the coefficients of row N −m moved this time one step
downwards and one step forwards (i.e., to the right) in matrix S. For rows N − m + 2 to N ,
after downwards–forwards diagonal copying, an outgoing coefficient, now at the right-hand
side of the matrix S, is added to the diagonal coefficient of the row.

A2.1.2 Bar with half weight end elements

For a bar with half weight end elements, the procedure to determine the coefficients of the
central equilibrium equations, with row number j = m + 1, . . . , N − m, is the same as
above for full weight end elements.

The coefficients of row m are, in a first step, as above, upwards–backwards diagonal
copies of the coefficients of row m+1. The coefficients in row m must however, in a second
step, be adjusted due to the different weight of the left end element of the bar. Because an
end element’s relative weight is one half, the first coefficient in row m is halved and this
value is added to the diagonal coefficient of the row.

Going upwards from row m, after upwards–backwards diagonal copying, the diagonal
coefficient on row m− 1 is adjusted due to an outgoing element (as described above for full
weight end elements). Further, due to the end element’s half weight, the first coefficient in
row m − 1 is halved and this value added to the diagonal coefficient of row m − 1. This
procedure is repeated up to the second row. Thus, from row m − 1 and upwards, except for
the first row, adjust the end coefficient

S(n, 1) = S(n, 1)/2 (A2.1.2.1)

where n = m − 1, m − 2, . . . , 2. The new coefficient, S(n, 1) to the left in the equation,
is now one half its old value, S(n, 1) to the right in the equation. The diagonal coefficient is
therefore balanced with the new S(n, 1) value:

S(n, n) = S(n, n) + S(n, 1) (A2.1.2.2)

Going downwards, a similar repetitive pattern is mirrored in rows N−m to N . Coefficient
copying goes one step downwards and one step forwards in S. The last coefficient in a row
is halved and the value is added to the diagonal coefficient of the row, except for the last
row. From row N − m + 1 and onwards to row N , there is an outgoing coefficient at the
right end of a row, and the diagonal coefficient is adjusted accordingly. The last coefficient
in a row is halved and the diagonal coefficient is again adjusted.

Note, however, that the unique part of the stiffness matrix for a bar with half weight end
points is not symmetric.

In summary, both for bars with full weight and half weight end elements, the stiffness
matrix S of a bar, of any horizon size m and number of points N , can be constructed by
expanding the following set of m+1 coefficients into a full row of coefficients, by reflecting
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all coefficients to the left of the last coefficient in (A2.1.2.3) in this (last) coefficient

0,
1

m

1

m − 1
, . . . ,

i

m

1

m − 1
, . . . ,

m − 1

m

1

1
, −2

m−1∑
i=1

i

m

1

m − i
(A2.1.2.3)

followed by application of the adjustment procedures as described above.

A2.1.3 Horizon between elements

The stiffness matrix S of a bar with horizons between elements, of any horizon size m and
number of points N , can be constructed by expanding the following set of m+1 coefficients
into a full row of coefficients, by reflecting all coefficients to the left of the last coefficient
in (A2.1.3.1). For a bar with full weight end elements

1

(2m + 1)m
, . . . ,

2i − 1

(2m + 1)(m − i + 1)
, . . . ,

2m − 1

2m + 1
, −2

m∑
i=1

2i − 1

(2m + 1)(m − i + 1)

(A2.1.3.1)

and application of the procedure described in Sect. 3.5 in Eriksson and Stenström [1].
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