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Abstract
We study maximum-likelihood-type estimation for diffusion processes when the
coefficients are nonrandom and observations occur in nonsynchronous manner. The
problem of nonsynchronous observations is important when we consider the analysis
of high-frequency data in a financial market. Constructing a quasi-likelihood function
to define the estimator, we adaptively estimate the parameter for the diffusion part
and the drift part. We consider the asymptotic theory when the terminal time point
Tn and the observation frequency goes to infinity, and show the consistency and the
asymptotic normality of the estimator. Moreover, we show local asymptotic normality
for the statistical model, and asymptotic efficiency of the estimator as a consequence.
To show the asymptotic properties of the maximum-likelihood-type estimator, we
need to control the asymptotic behaviors of some functionals of the sampling scheme.
Though it is difficult to directly control those in general, we study tractable sufficient
conditions when the sampling scheme is generated by mixing processes.

Keywords Asymptotic efficiency · Diffusion processes · Local asymptotic
normality · Maximum-likelihood-type estimation · Nonsynchronous observations

1 Introduction

Given a probability space (�,F , P)with a right-continuous filtrationF = {Ft }t≥0, let
X (α) = {X (α)

t }t≥0 = {(X (α),1
t , X (α),2

t )}t≥0 be a two-dimensional F-adapted process
satisfying the following stochastic differential equation:
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dX (α)
t = μt (θ)dt + bt (σ )dWt , X0 = x0, (1.1)

where x0 ∈ R
2, {Wt }0≤t≤T is a two-dimensional standard F-Wiener process,

{μt (θ)}t≥0 and {bt (σ )}t≥0 are deterministic functions with values in R
2 and R

2×2,
respectively, α = (σ, θ), σ ∈ �1, θ ∈ �2, and �1 and �2 are bounded open subsets
of Rd1 and R

d2 , respectively. Let α0 = (σ0, θ0) ∈ �1 × �2 be the true value, and
let Xt = (X1

t , X2
t ) = X (α0)

t . We consider estimation of α0 when X is observed with
nonsynchronous manner, that is, observation times of X1 and X2 are different to each
other.

The problem of nonsynchronous observations appears in the analysis of high-
frequency financial data. If we analyze the intra-day stock price data, we observe
stock prices when a new transaction or a new order arrives. Then, the observation
times are different for different stocks, and hence, we cannot avoid the problem
of nonsynchronous observations. Statistical analysis with such data is much more
complicated compared to the analysis with synchronous data. Parametric estimation
for diffusion processes with synchronous and equidistant observations has been ana-
lyzed through quasi-maximum-likelihoodmethods in Florens-Zmirou (1989),Yoshida
(1992, 2011), Kessler (1997), and Uchida and Yoshida (2012). Related to the esti-
mation problem for nonsynchronously observed diffusion processes, estimators for
the quadratic covariation have been actively studied. Hayashi and Yoshida (2005,
2008, 2011) andMalliavin andMancino (2002, 2009) have independently constructed
consistent estimators under nonsynchronous observations. There are also studies of
covariation estimation under the simultaneous presence of microstructure noise and
nonsynchronous observations (Barndorff-Nielsen et al., 2011; Bibinger et al., 2014;
Christensen et al., 2010, and so on). For parametric estimation with nonsynchronous
observations,Ogihara andYoshida (2014) have constructedmaximum-likelihood-type
and Bayes-type estimators and have shown the consistency and the asymptotic mixed
normality of the estimators when the terminal time point Tn is fixed and the observa-
tion frequency goes to infinity. Ogihara (2015) have shown local asymptotic mixed
normality for the model in Ogihara and Yoshida (2014), and the maximum-likelihood-
type and Bayes-type estimators have been shown to be asymptotically efficient. On
the other hand, we need to consider asymptotic theory that the terminal time point Tn

goes to infinity to consistently estimate the parameter θ in the drift term. To the best
of the author’s knowledge, there are no studies of the asymptotic theory of parametric
estimation for nonsynchronously observed diffusion processes when Tn → ∞.

In this work, we consider the asymptotic theory for nonsynchronously observed
diffusion processes when Tn → ∞, and construct maximum-likelihood-type estima-
tors for the parameter σ in the diffusion part and the parameter θ in the drift part. We
show the consistency and the asymptotic normality of the estimators. Moreover, we
show local asymptotic normality of the statistical model, and we obtain asymptotic
efficiency of our estimator as a consequence. Our estimator is constructed based on the
quasi-likelihood function that is similarly defined to the one in Ogihara and Yoshida
(2014), though we need some modification to deal with the drift part. To investigate
asymptotic theory for the maximum-likelihood-type estimator, we need to specify the
limit of the quasi-likelihood function. Then, we need to assume some conditions for
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the asymptotic behavior of the sampling scheme. In Ogihara and Yoshida (2014), for
a matrix

G =
{

(Sn,1
i ∧ Sn,2

j − Sn,2
j−1 ∨ Sn,1

i−1) ∨ 0

|Sn,1
i − Sn,1

i−1|1/2|Sn,2
j − Sn,2

j−1|1/2
}

i, j

generated by the sampling scheme, the existence of the probability limit of
n−1tr((GG	)p) (p ∈ Z+) is required, where (Sn,l

i )i are observation times of Xl and	
denotes transpose of a vector or a matrix. Since we consider the different asymptotics,
the asymptotic behavior of the quasi-likelihood function is different from that in Ogi-
hara andYoshida (2014).We also need to consider estimation for the drift parameter θ .
Then, we need other assumptions for the asymptotic behavior of the sampling scheme
[Assumption (A5)]. Though these conditions for the sampling scheme are difficult to
check directly, we study tractable sufficient conditions in Sect. 2.4.

The rest of this paper is organized as follows. In Sect. 2, we introduce our model
settings and the assumptions for main results. Our estimator is constructed in Sect. 2.1,
and the asymptotic normality of the estimator is given in Sect. 2.2. Section2.3 deals
with local asymptotic normality of our model and asymptotic efficiency of the esti-
mator. Tractable sufficient conditions for the assumptions of the sampling scheme are
given in Sect. 2.4. Section3 contains the proofs of main results. Preliminary results are
collected in Sect. 3.1. Section3.2 is for the consistency of the estimator for σ , Sect. 3.3
is for the asymptotic normality of the estimator for σ , Sect. 3.4 is for the consistency
of the estimator for θ , and Sect. 3.5 is for the asymptotic normality of the estimator
for θ . Other proofs are collected in Sect. 3.6.

2 Main results

2.1 Setting and parameter estimation

Let N be the set of all positive integers. For l ∈ {1, 2}, let the observation times
{Sn,l

i }Ml
i=0 be strictly increasing random times with respect to i , and satisfy Sn,l

0 = 0

and Sn,l
Ml

= nhn , where Ml is a random positive integer depending on n and (hn)∞n=1
is a sequence of positive numbers satisfying

hn → 0, n1−ε0hn → ∞, nh2
n → 0 (2.1)

as n → ∞ for some ε0 > 0. Intuitively, n is of the order of the number of observations
and hn is of the order of the length of the observation intervals. More precise assump-
tions of observation times are given in (A2), (A4), and (A5) later. We assume that
{Sn,l

i }0≤i≤Ml ,l=1,2 is independent ofFT , and its distribution does not depend on α. We

consider nonsynchronous observations of X , that is, we observe {Sn,l
i }0≤i≤Ml ,l=1,2 and

{Xl
Sn,l

i

}0≤i≤Ml ,l=1,2. In particular, we consider the nonendogenous observation times.
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Wedenote by ‖·‖ the operator normwith respect to the Euclidean norm for amatrix.
We often regard a p-dimensional vector v as a p×1matrix. For j ∈ N, we denote ∂z =
∂
∂z for a variable z ∈ R

j , and denote ∂ l
z = (∂zi1

· · · ∂zil
)

j
i1,...,il=1 for l ∈ N. For functions

f and g, we often use shorthand notation ∂z f ∂zg = (∂z f (∂zg)	 + ∂zg(∂z f )	)/2.
For a set A in a topological space, let clos(A) denote the closure of A. For a matrix
A, [A]i j denotes its (i, j) element. For a vector v = (v j )

K
j=1, we denote [v] j = v j ,

and diag(v) denotes a K × K diagonal matrix with elements [diag(v)] j j = v j .
Let M = M1 + M2. For 1 ≤ i ≤ M , let

ϕ(i) =
{

i, if i ≤ M1,

i − M1, if i > M1,
ψ(i) =

{
1, if i ≤ M1,

2, if i > M1.

For a two-dimensional stochastic process (Ut )t≥0 = ((U 1
t , U 2

t ))t≥0, let �l
iU =

Ul
Sn,l

i

− Ul
Sn,l

i−1

, and let �lU = (�l
iU )1≤i≤Ml and �iU = �

ψ(i)
ϕ(i) U for 1 ≤ i ≤ M .

Let �U = ((�1U )	, (�2U )	)	. Let |K | = b − a for an interval K = (a, b]. Let
I l
i = (Sn,l

i−1, Sn,l
i ] for 1 ≤ i ≤ Ml , and let Ii = I ψ(i)

ϕ(i) for 1 ≤ i ≤ M . We denote a unit
matrix of size k by Ek .

Let �̃l
i (σ ) = ∫

I l
i
[bt b	

t (σ )]lldt and �̃
1,2
i, j (σ ) = ∫

I 1i ∩I 2j
[bt b	

t (σ )]12dt , and let �̃i =
�̃

ψ(i)
ϕ(i) for 1 ≤ i ≤ M . By setting D̃ = diag((�̃i )1≤i≤M )

G̃(σ ) =
{

�̃
1,2
i, j√

�̃1
i

√
�̃2

j

(σ )

}
1≤i≤M1,1≤ j≤M2

,

we can calculate the covariance matrix of �X as

Sn(σ ) = D̃1/2
( EM1 G̃(σ )

G̃	(σ ) EM2

)
D̃1/2. (2.2)

As we will see later, we can ignore the term related to μt (θ) (drift term) when we
consider estimation of σ , because this term converges to zero very fast. Therefore, we
first construct an estimator for σ , and then construct an estimator for θ . Such adaptive
estimation can speed up the calculation.

We define the quasi-likelihood function H1
n (σ ) for σ as follows:

H1
n (σ ) = −1

2
�X	S−1

n (σ )�X − 1

2
log det Sn(σ ).

Then, the maximum-likelihood-type estimator for σ is defined by

σ̂n ∈ argmax
σ∈clos(�1)

H1
n (σ ).

We consider estimation for θ next. Let V (θ) = (Vt (θ))t≥0 be a two-dimensional
stochastic process defined by Vt (θ) = (

∫ t
0 μ1

s (θ)	ds,
∫ t
0 μ2

s (θ)	ds)	. Let X̄(θ) =
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�X − �V (θ). We define the quasi-likelihood function H2
n (θ) for θ as follows:

H2
n (θ) = −1

2
X̄(θ)	S−1

n (σ̂n)X̄(θ).

Then, the maximum-likelihood-type estimator for θ is defined by

θ̂n ∈ argmax
θ∈clos(�2)

H2
n (θ).

The quasi-(log-)likelihood function H1
n is defined in the sameway as that inOgihara

and Yoshida (2014). Since �X follows normal distribution, we can construct such
a Gaussian quasi-likelihood function even for the nonsynchronous data. When the
coefficients are random, though the distribution of�X is not Gaussian, suchGaussian-
type quasi-likelihood function is still valid due to the local Gaussian property of
diffusion processes. The Gaussian mean that comes from the drift part is ignored
when we construct the quasi-likelihood H1

n . When we estimate the parameter θ for
the drift part, we subtract the mean in X̄(θ) to construct the quasi-likelihood function
H2

n . Since the effect of the drift term on the estimation of σ is small, it works well to
estimate σ in this way and then plug in σ̂n to Sn to construct the estimator for θ . Thus,
we can speed up the calculation by separating the estimation for σ and θ .

Remark 2.1 H1
n (σ ) and H2

n (θ) arewell defined only if det Sn(σ ) > 0 and det Sn(σ̂n) >

0, respectively. For the covariance matrix Sn of nonsynchronous observations �X , it
is not trivial to check these conditions. Proposition 1 in Section 2 of Ogihara and
Yoshida (2014) shows that these conditions are satisfied if bt (σ ) is continuous on
[0,∞) × clos(�1) and inf t,σ det(bt b	

t (σ )) > 0. We assume such conditions in our
setting (Assumption (A1) in Sect. 2.2).

Remark 2.2 As seen in Ogihara and Yoshida (2014), the quasi-likelihood analysis
for nonsynchronously observed diffusion processes becomes much more complicated
compared to synchronous observations. In this work, estimation for the drift parameter
θ is added, and hence, we consider nonrandom drift and diffusion coefficients to avoid
overcomplication. For general diffusion processes with the random drift and diffu-
sion coefficients, we need to set predictable coefficients to use the martingale theory.
However, the quasi-likelihood function loses aMarkov property with nonsynchronous
observations and the coefficients in the quasi-likelihood function contain randomness
of future time. Then, we need to approximate the coefficients by predictable func-
tions. This operation is particularly complicated. Moreover, approximating the true
likelihood function by the quasi-likelihood function is much more difficult problem
when we show local asymptotic normality and asymptotic efficiency of the estima-
tors. Therefore, we left asymptotic theory under general random drift and diffusion
coefficients as a future work.
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2.2 Asymptotic normality of the estimator

In this section, we state the assumptions of our main results, and state the asymptotic
normality of the estimator.

For m ∈ N, an open subset U ⊂ R
m is said to admit Sobolev’s inequality if,

for any p > m, there exists a positive constant C depending on U and p, such that
supx∈U |u(x)| ≤ C

∑
k=0,1(

∫ |∂k
x u(x)|pdx)1/p for any u ∈ C1(U ). This is the case

when U has a Lipschitz boundary. We assume that �, �1, and �2 admit Sobolev’s
inequality.

Let �t (σ ) = bt b	
t (σ ), and let

ρt (σ ) = [�t ]12
[�t ]1/211 [�t ]1/222

(σ ), Bl,t (σ ) = [�t (σ0)]ll
[�t (σ )]ll .

Let ρt,0 = ρt (σ0).
Assumption (A1). There exists a positive constant c1, such that c1E2 ≤ �t (σ ) for any
t ∈ [0,∞) and σ ∈ �1. For k ∈ {0, 1, 2, 3, 4}, ∂k

θ μt (θ) and ∂k
σ bt (σ ) exist and are

continuous with respect to (t, σ, θ) on [0,∞) × clos(�1) × clos(�2). For any ε > 0,
there exist δ > 0 and K > 0, such that

|∂k
θ μt (θ)| + |∂k

σ bt (σ )| ≤ K ,

|∂k
θ μt (θ) − ∂k

θ μs(θ)| + |∂k
σ bt (σ ) − ∂k

σ bs(σ )| ≤ ε

for any k ∈ {0, 1, 2, 3, 4}, σ ∈ �1, θ ∈ �2, and t, s ≥ 0 satisfying |t − s| < δ. Let
rn = maxi,l |I l

i |.
Assumption (A2). rn

P→ 0 as n → ∞.
Assumption (A3). For any l ∈ {1, 2}, i1 ∈ Z+, i2 ∈ {0, 1}, i3 ∈ {0, 1, 2, 3, 4},
k1, k2 ∈ {0, 1, 2} satisfying k1 + k2 = 2, and any polynomial function F(x1, . . . , x14)
of degree equal to or less than 6, there exist continuous functions �

1,F
i1,i2

(σ ), �2
l,i3

(σ )

and �
3,k1,k2
i1,i3

(θ) on clos(�1) and clos(�2), such that

1

T

∫ T

0
F((∂k

σ Bl,t (σ ))0≤k≤4,l=1,2,

(∂k′
σ ρt (σ ))4k′=1)ρt (σ )i1ρ

i2
t,0dt → �

1,F
i1,i2

(σ ),

1

T

∫ T

0
∂ i3
σ log Bl,t (σ )dt → �2

l,i3(σ ),

1

T

∫ T

0
∂

i3
θ (φ

k1
1,tφ

k2
2,t )(θ)ρ

i1
t,0dt → �

3,k1,k2
i1,i3

(θ)

as T → ∞ for σ ∈ clos(�1), θ ∈ clos(�2), where φl,t (θ) = [�t (σ0)]−1/2
ll (μl

t (θ) −
μl

t (θ0)).
Assumption (A1) and the Ascoli–Arzelà theorem yield that the convergences in

(A3) can be replaced by uniform convergence with respect to σ and θ (the left-hand
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sides of the above equations become relatively compact, and then, any uniformly
convergent subsequence converges to the right-hand sides due to the pointwise conver-
gence assumptions). Assumption (A3) is satisfied if μt (θ) and bt (σ ) are independent
of t , or are periodic functions with respect to t having a common period (when the
period does not depend on σ nor θ ). Let S be the set of all partitions (sk)

∞
k=0 of

[0,∞) satisfying supk≥1 |sk −sk−1| ≤ 1 and infk≥1 |sk −sk−1| > 0. For (sk)
∞
k=0 ∈ S,

let Ml,k = #{i; sup I l
i ∈ (sk−1, sk]} and qn = max{k; sk ≤ nhn}, and let E l

(k) be an

Ml × Ml matrix satisfying [E l
(k)]i j = 1 if i = j and sup I l

i ∈ (sk−1, sk], and otherwise,
[E l

(k)]i j = 0. Let

G =
{ |I 1i ∩ I 2j |

|I 1i |1/2|I 2j |1/2
}
1≤i≤M1,1≤ j≤M2

.

Assumption (A4). There exist positive constants a1
0 and a2

0 , such that {hn Ml,qn+1}∞n=1
is P-tight and

max
1≤k≤qn

|hn Ml,k − al
0(sk − sk−1)| P→ 0

for l ∈ {1, 2} and any partition (sk)
∞
k=0 ∈ S. Moreover, for any p ∈ N, there exists a

nonnegative constant a1
p, such that

max
1≤k≤qn

|hn tr(E1
(k)(GG	)p) − a1

p(sk − sk−1)| P→ 0

as n → ∞ for any partition (sk)
∞
k=0 ∈ S. Let Il = (|I l

i |1/2)Ml
i=1.

Assumption (A5). For p ∈ Z+, there exist nonnegative constants f 1,1p , f 1,2p , and
f 2,2p , such that {|E l

(qn+1)Il |}∞n=1 is P-tight for l ∈ {1, 2}, and

max
1≤k≤qn

|I1E1
(k)(GG	)pI1 − f 1,1p (sk − sk−1)| P→ 0,

max
1≤k≤qn

|I1E1
(k)(GG	)pGI2 − f 1,2p (sk − sk−1)| P→ 0,

max
1≤k≤qn

|I2E2
(k)(G

	G)pI2 − f 2,2p (sk − sk−1)| P→ 0

as n → ∞ for any partition (sk)
∞
k=0 ∈ S.

Assumption (A4) corresponds to [A3′] in Ogihara and Yoshida (2014). The func-
tionals in (A4) and (A5) appear in H1

n and H2
n , and hence, we cannot specify the limits

of H1
n and H2

n unless we assume existence of the limits of these functionals. It is diffi-
cult to directly check (A4) and (A5) for concrete statistical experiments with general
sampling schemes. We study sufficient conditions for these conditions in Sect. 2.4.
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Assumption (A6). The constanta1
1 in (A4) is positive, and there exist positive constants

c2 and c3, such that

lim sup
T →∞

(
1

T

∫ T

0
‖�t (σ ) − �t (σ0)‖2dt

)
≥ c2|σ − σ0|2,

lim sup
T →∞

(
1

T

∫ T

0
|μt (θ) − μt (θ0)|2dt

)
≥ c3|θ − θ0|2

for any σ ∈ clos(�1) and θ ∈ clos(�2).
Assumption (A6) is necessary to identify the parameter σ and θ from the data. For

p < q

tr(E1
(k)(GG	)q) ≤ tr(E1

(k)(GG	)p)‖(GG	)q−p‖ ≤ tr(E1
(k)(GG	)p) (2.3)

by Lemma 3.3 later and Lemma A.1 in Ogihara (2018). Then, a1
p is monotone non-

increasing with respect to p. This implies that a1
p = 0 for any p ∈ N if a1

1 = 0. In
this case, the non-diagonal components of the covariance matrix Sn are negligible in
the limit. Then, we cannot consistently estimate the parameter in ρt (σ ). This is why,
we need the assumption a1

1 > 0 (see Proposition 3.9 and the following discussion to
obtain the consistency).

Let A(ρ) = ∑∞
p=1 a1

pρ
2p for ρ ∈ (−1, 1). Then, (2.3) implies that A(ρ) is finite.

Moreover, (A5) yields

f 1,1p = (nhn)
−1

qn∑
k=1

I	
1 E1

(k)(GG	)pI1 + op(1)

= (nhn)
−1I	

1 (GG	)pI1 + op(1)

≤ ‖(GG	)p‖(nhn)−1|I1|2 + op(1)

≤ 1 + op(1),

which implies f 1,1p ≤ 1. Similarly, we have f 1,2p ≤ 1 and f 2,2p ≤ 1. Let ∂k
σ Bl,t,0 =

∂k
σ Bl,t (σ0), and let

γ1,t = A(ρt,0)

(
∂σ ρt,0

ρt,0
− ∂σ B1,t,0 − ∂σ B2,t,0

)2

− ∂ρA(ρt,0)
(∂σ ρt,0)

2

ρt,0
− 2

2∑
l=1

(al
0

+A(ρt,0))(∂σ Bl,t,0)
2,

and let �1 = limT →∞ T −1
∫ T
0 γ1,tdt , which exists under (A1), (A3), and (A4). Let

�2 = lim
T →∞

1

T

∫ T

0

∞∑
p=0

ρ
2p
t,0

{ 2∑
l=1

f ll
p (∂θφl,t )

2(θ0)
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−2ρt,0 f 12p ∂θφ1,t∂θφ2,t (θ0)

}
dt,

which exists under (A1), (A3), and (A5). Let Tn = nhn and

� =
(

�1 0
0 �2

)
.

Theorem 2.3 Assume (A1)–(A6). Then, � is positive definite, and

(
√

n(σ̂n − σ0),
√

Tn(θ̂n − θ0))
d→ N (0, �−1)

as n → ∞.

2.3 Local asymptotic normality

Let α0 ∈ �, � ⊂ R
d , and {Pα,n}α∈� be a family of probability measures defined

on a measurable space (Xn,An) for n ∈ N, where � is an open subset of Rd . As
usual, we shall refer to dPα2,n/dPα1,n the derivative of the absolutely continuous
component of the measure Pα2,n with respect to measure Pα1,n at the observation
x as the likelihood ratio. The following definition of local asymptotic normality is
Definition 2.1 in Chapter II of Ibragimov and Has’minskiı̆ (1981).

Definition 2.4 A family Pα,n is called locally asymptotically normal (LAN) at point
α0 ∈ � as n → ∞ if for some nondegenerate d × d matrix εn and any u ∈ R

d , the
representation

log
dPα0+εnu,n

dPα0,n
− (u	�n − |u|2/2) → 0

in Pα0,n-probability as n → ∞, where

L(�n|Pα0,n) → N (0, Ed)

as n → ∞, and L(·|Pα,n) denotes the distribution with respect to Pα,n .

Let � = �1 × �2. For α ∈ �, let Pα,n be the probability measure generated by
the observations {Sn,l

i }i,l and {X (α),l

Sn,l
i

}i,l .

Theorem 2.5 Assume (A1)–(A6).Then, {Pα,n}α,n satisfies the LAN property at α = α0
with

εn =
(

n−1/2�
−1/2
1 0

0 T −1/2
n �

−1/2
2

)
.
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The proof is left to Sect. 3.6. Theorem 11.2 in Chapter II of Ibragimov and
Has’minskiı̆ (1981) gives lower bounds of estimation errors for any regular estima-
tor of parameters under the LAN property. Then, the optimal asymptotic variance
of ε−1

n (Un − α0) for regular estimator Un is Ed . We will show that (σ̂n, θ̂n) is reg-
ular in Remark 3.18. Therefore, Theorem 2.5 ensures that our estimator (σ̂n, θ̂n) is
asymptotically efficient in this sense under the assumptions of the theorem.

2.4 Sufficient conditions for the assumptions

It is not easy to directly checkAssumptions (A4) and (A5) for general randomsampling
schemes (even for a sampling scheme generated by simple Poisson processes given
in Example 2.6). In this section, we study tractable sufficient conditions for these
assumptions. The proofs of the results in this section are left to Sect. 3.6.

Let q > 0 and N n,l
t = ∑Ml

i=1 1{Sn,l
i ≤t}. We consider the following conditions for

the point process N n,l
t .

Assumption (B1-q).

sup
n≥1

max
l∈{1,2} sup

0≤t≤(n−1)hn

E[(N n,l
t+hn

− N n,l
t )q ] < ∞.

Assumption (B2-q).

lim sup
u→∞

sup
n≥1

max
l∈{1,2} sup

0≤t≤nhn−uhn

uq P(N n,l
t+uhn

− N n,l
t = 0) < ∞.

Example 2.6 Let (N̄ 1
t , N̄ 2

t ) be two independent homogeneous Poisson processes with
positive intensities λ1 and λ2, respectively, andN n,l

t = N̄ l
h−1

n t
, that is, Sn,l

i = inf{t ≥
0; N̄ l

h−1
n t

≥ i}. Even in this simple case, it is not trivial to directly check (A4) and

(A5). On the other hand, (B1-q) obviously holds for any q > 0. Moreover, (B2-q)
holds for any q > 0, since

lim sup
u→∞

sup
n≥1

max
l∈{1,2} sup

0≤t≤nhn−uhn

uq P(N n,l
t+uhn

− N n,l
t = 0) = lim

u→∞ uqe−(λ1∧λ2)u = 0.

Then, by Corollary 2.12, we can check Assumptions (A2), (A4), and (A5) for this
sampling scheme.

To give sufficient conditions for (A4) and (A5), we consider mixing properties of
N n,l . That is, we assume conditions for the following mixing coefficient αn

k . Let

Gn
i, j = σ(N n,l

t − N n,l
s ; ihn ≤ s < t ≤ jhn, l = 1, 2) (0 ≤ i, j ≤ n),

and let

αn
k = 0 ∨ sup

1≤i, j≤n−1, j−i≥k
sup

A∈Gn
0,i

sup
B∈Gn

j,n

|P(A ∩ B) − P(A)P(B)|.
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Proposition 2.7 Assume that (B1-q) and (B2-q) hold and that

sup
n∈N

∞∑
k=0

(k + 1)qαn
k < ∞ (2.4)

for any q > 0. Moreover, assume that there exist positive constants a1
0 and a2

0, and a
nonnegative constant a1

p for p ∈ N, such that {E[hn Ml,qn+1]}∞n=1 is bounded and

max
1≤k≤qn

|hn E[Ml,k] − al
0(sk − sk−1)| → 0,

max
1≤k≤qn

|hn E[tr(E1
(k)(GG	)p)] − a1

p(sk − sk−1)| → 0 (2.5)

as n → ∞ for p ∈ Z+, l ∈ {1, 2} and any partition (sk)
∞
k=0 ∈ S. Then, (A4) holds.

Proposition 2.8 Assume that (B1-q) and (B2-q) hold and that (2.4) is satisfied for any
q > 0. Moreover, assume that there exist nonnegative constants f 1,1p , f 1,2p , and f 2,2p

for p ∈ Z+, such that {E[|E l
(qn+1)Il |]}∞n=1 is bounded and

max
1≤k≤qn

|E[I1E1
(k)(GG	)pI1] − f 1,1p (sk − sk−1)| → 0,

max
1≤k≤qn

|E[I1E1
(k)(GG	)pGI2] − f 1,2p (sk − sk−1)| → 0,

max
1≤k≤qn

|E[I2E2
(k)(G

	G)pI2] − f 2,2p (sk − sk−1)| → 0 (2.6)

as n → ∞ for l ∈ {1, 2}, p ∈ Z+ and any partition (sk)
∞
k=0 ∈ S. Then, (A5) holds.

Proposition 2.9 Assume that there exists q > 0, such that (A4) and (B2-q) hold,

{N n,l
t+hn

− N n,l
t }0≤t≤Tn−hn ,l∈{1,2},n∈N is P-tight, and

∑∞
k=1 kαn

k < ∞. Then, a1
1 > 0.

In the following, let (N̄ l
t )t≥0 be an exponentialα-mixingpoint process for l ∈ {1, 2}.

Assume that the distribution of (N̄ l
t+tk −N̄ l

t+tk−1
)1≤k≤K ,l=1,2 does not depend on t ≥ 0

for any K ∈ N and 0 ≤ t0 < t1 < · · · < tK .

Lemma 2.10 LetN n,l
t = N̄ l

h−1
n t

for 0 ≤ t ≤ nhn and l ∈ {1, 2}. Then, (2.4) is satisfied

for any q > 2, and there exist constants a1
0, a2

0 , and a1
p = a2

p for p ∈ N, such that
(2.5) holds and {E[hn Ml,qn+1]}∞n=1 is bounded for any (sk)

∞
k=0 ∈ S. Moreover, there

exist nonnegative constants f 1,1p , f 1,2p , and f 2,2p for p ∈ Z+, such that (2.6) holds
and {E[|E l

(qn+1)Il |}∞n=1 is bounded for l ∈ {1, 2} and any (sk)
∞
k=0 ∈ S.

Proposition 2.11 (Proposition 8 in Ogihara & Yoshida, 2014) Let q ∈ N. Assume
(B2-(q + 1)). Then, supn E[h−q+1

n rq
n ] < ∞. In particular, (A2) holds under (B2-2).

By the above results, we obtain simple tractable sufficient conditions for the
assumptions of the sampling scheme when the observation times are generated by
the exponential α-mixing point process N̄ l

t defined above.
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Corollary 2.12 Let N n,l
t = N̄ l

h−1
n t

for 0 ≤ t ≤ Tn and l ∈ {1, 2}. Assume that (B1-q)

and (B2-q) hold for any q > 0. Then, (A2), (A4), and (A5) hold, and a1
1 > 0.

3 Proofs

3.1 Preliminary results

For a real number a, [a] denotes the maximum integer which is not greater than
a. Let � = �n = {Sn,l

i }1≤i≤Ml ,l∈{1,2}. We denote |x |2 = ∑
i1,...,ik

|xi1,...,ik |2 for
x = {xi1,...,ik }i1,...,ik with k ∈ N and xi1,...,ik ∈ R. For a matrix A = (Ai j )i j , Abs(A)

denotes the matrix (|Ai j |)i j . C denotes generic positive constant whose value may
vary depending on context. We often omit the parameters σ and θ in general functions
f (σ ) and g(θ).
For a sequence pn of positive numbers, let us denote by {R̄n(pn)}n∈N a sequence

of random variables (which may also depend on 1 ≤ i ≤ M and α ∈ �)
satisfying that {supα,i E�[|p−1

n R̄n(pn)|q ]}n∈N is P-tight for any q ≥ 1, where
E�[X] = E[X|σ(�n)] for a random variable X.

For a matrix A and vectors v,w with suitable sizes, we repeatedly use the following
inequality:

|w	 Av| ≤ |w||Av| ≤ ‖A‖|v||w|.

Lemma 3.1 (A special case of Lemma 3.1 in Ogihara and Uehara, 2022) Let (Zn)n∈N
be nonnegative-valued random variables. Then

1. E�[Zn] P→ 0 as n → ∞ implies that Zn
P→ 0 as n → ∞.

2. P-tightness of (E�[Zn])n∈N implies P-tightness of (Zn)n∈N.

Let V̄ = V (θ0), and let

ρi j (σ ) =
⎧⎨
⎩

�̃
1,2
i, j√

�̃1
i

√
�̃2

j [G]i j

, if |I 1i ∩ I 2j | �= ∅,

0, otherwise.

Let ρ̄n = supσ (maxi, j |ρi, j (σ )| ∨ supt |ρt (σ )|), and let

Ṡn =
( EM1 −ρ̄nG

−ρ̄nG	 EM2

)
. (3.1)

Let �l
i,tU = Ul

t∧Sn,l
i

− Ul
t∧Sn,l

i−1

, and let �i,tU = �
ψ(i)
ϕ(i),tU for t ≥ 0 and a two-

dimensional stochastic process (Ut )t≥0 = ((U 1
t , U 2

t ))t≥0.
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Under (A4), we have

hn Ml = hn

qn+1∑
k=1

Ml,k = al
0nhn + op(nhn).

Then, we obtain
Ml = al

0n + op(n). (3.2)

Lemma 3.2 Assume (A1). Then, for any p ≥ 1, there exist positive constants C p

(depending on p) and C, such that

sup
θ

|�l
i V (θ)| ≤ C |I l

i |, E�[|�l
i X |p]1/p ≤ C p(|I l

i | +
√

|I l
i |)

for l ∈ {1, 2} and 1 ≤ i ≤ Ml.

Proof Since μl
t (θ) and [bt bt (σ0)]ll are bounded by (A1), the Burkholder–Davis–

Gundy inequality yields

sup
θ

|�l
i V (θ)| = sup

θ

∣∣∣∣
∫

I l
i

μl
t (θ)dt

∣∣∣∣ ≤ C |I l
i |,

E�[|�l
i X |p]1/p = E�

[∣∣∣∣
∫

I l
i

μl
t (θ0)dt +

∫
I l
i

[bt (σ0)dWt ]l
∣∣∣∣

p]1/p

≤ C p|I l
i | + C p E�

[∣∣∣∣
∫

I l
i

[bt bt (σ0)]lldt

∣∣∣∣
p/2]1/p

≤ C p(|I l
i | +

√
|I l

i |).

��
Lemma 3.3 (Lemma 2 in Ogihara & Yoshida, 2014) ‖G‖ ∨ ‖G	‖ ≤ 1.

Lemma 3.4 ‖G̃‖ ∨ ‖G̃	‖ ≤ ρ̄n.

Proof Since all the elements of G are nonnegative, we have

‖G̃‖2 = sup
|x |=1

|G̃x |2 = sup
|x |=1

∑
i

(∑
j

ρi j Gi j x j

)2

≤ ρ̄2
n sup

|x |=1

∑
i

(∑
j

Gi j |x j |
)2

≤ ρ̄2
n‖G‖2 ≤ ρ̄2

n .

Since ‖G̃	‖ = ‖G̃‖, we obtain the conclusion. ��
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Let D = diag({|Ii |}M
i=1). It is difficult to deduce the orders of upper bounds of

the operator norms ‖Sn(σ )‖ and ‖S−1
n ‖, because they depend on the maximum and

minimum lengths of observation intervals. However, we can deduce the orders of
upper bounds for D̃−1/2Sn(σ )D̃−1/2 and its inverse. Indeed, we obtain the following
estimates, which are repeatedly used in the following sections (we use D instead of
D̃ to avoid parameter dependence).

Lemma 3.5 Assume (A1). Then, there exists a positive constant C, such that
‖D1/2∂k

σ S−1
n (σ )D1/2‖ ≤ C(1 − ρ̄n)−k−1 and |[S−1

n (σ )]i j | ≤ C[D−1/2 Ṡ−1
n D−1/2]i j

if ρ̄n < 1, and ‖D−1/2∂k
σ Sn(σ )D−1/2‖ ≤ C for any σ ∈ �1, 1 ≤ i, j ≤ M, and

k ∈ {0, 1, 2, 3, 4}.
Proof By (A1) and Lemma 3.3, we have

‖D−1/2∂k
σ Sn(σ )D−1/2‖ ≤ C

k∑
j=0

∥∥∥∥∂ j
σ

{
EM +

(
0 G̃

G̃	 0

)}∥∥∥∥ ≤ C .

Moreover, by (A1) and Lemma 3.4, we have

‖D1/2S−1
n D1/2‖ ≤ C

∥∥∥∥
(
EM +

(
0 G̃

G̃	 0

))−1∥∥∥∥ ≤ C(1 − ρ̄n)−1

if ρ̄n < 1.
Using the equation ∂σ S−1

n = −S−1
n ∂σ Sn S−1

n , we obtain

‖D1/2∂σ S−1
n D1/2‖ = ‖D1/2S−1

n ∂σ Sn S−1
n D1/2‖

≤ ‖D1/2S−1
n D1/2‖2‖D−1/2∂σ SnD−1/2‖ ≤ C(1 − ρ̄n)−2

if ρ̄n < 1. Similarly, we obtain

‖D1/2∂k
σ S−1

n D1/2‖ ≤ C(1 − ρ̄n)−k−1

if ρ̄n < 1 for k ∈ {0, 1, 2, 3, 4}.
If ρ̄n < 1, since Lemma 3.4 yields

S−1
n = D̃−1/2

(( EM1 0
0 EM2

)
+

(
0 G̃

G̃	 0

))−1

D̃−1/2 = D̃−1/2
∞∑

p=0

(−1)p
(

0 G̃
G̃	 0

)p

D̃−1/2,

we obtain

|[S−1
n ]i j | ≤ C

[
D−1/2

∞∑
p=0

ρ̄
p
n

(
0 G

G	 0

)p

D−1/2
]

i j
= [D−1/2 Ṡ−1

n D−1/2]i j .

��
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Under (A1), we have �t (σ ) ≥ c1E2, which implies that supt,σ |ρt (σ )| < 1. Then,
by (A2) and uniform continuity of bt , for some fixed δ > 0 and any ε > 0, there exists
N ∈ N, such that P(1 − ρ̄n < δ) < ε for n ≥ N . Therefore, we have

P(ρ̄n < 1 − δ) → 1 (3.3)

as n → ∞, and we have

P((1 − ρ̄n)−q > δ−q) < ε

for any q > 0 and n ≥ N , which implies that

(1 − ρ̄n)−q = Op(1). (3.4)

Moreover, Lemma 3.4 yields

S−1
n (σ ) = D̃−1/2

∞∑
p=0

(−1)p
(

0 G̃
G̃	 0

)p

D̃−1/2

= D̃−1/2
∞∑

p=0

(
(G̃G̃	)p −(G̃G̃	)pG̃

−(G̃	G̃)pG̃	 (G̃	G̃)p

)
D̃−1/2 (3.5)

if ρ̄n < 1.

3.2 Consistency of �̂n

In this section, we show consistency: σ̂n
P→ σ0 as n → ∞. For this purpose, we

specify the limit of H1
n (σ ) − H1

n (σ0).

Lemma 3.6 Assume (A1) and (A2). Then

1

n
sup

σ∈�1

∣∣∣∣∂k
σ (H1

n (σ ) − H1
n (σ0)) + 1

2
∂k
σ tr(S−1

n (σ )(Sn(σ0) − Sn(σ ))) + 1

2
∂k
σ log

det Sn(σ )

det Sn(σ0)

∣∣∣∣ P→ 0 (3.6)

as n → ∞ for k ∈ {0, 1, 2, 3}.

Proof Let Xc
t = ∫ t

0 bs(σ0)dWs . By the definition of H1
n , we have

H1
n (σ ) − H1

n (σ0) = −1

2
�X	(S−1

n (σ ) − S−1
n (σ0))�X − 1

2
log

det Sn(σ )

det Sn(σ0)
.

We first show that
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H1
n (σ ) − H1

n (σ0) = −1

2
(�Xc)	(S−1

n (σ ) − S−1
n (σ0))�Xc − 1

2
log

det Sn(σ )

det Sn(σ0)
+ √

nėn(σ ),

(3.7)

where (ėn(σ ))∞n=1 denotes a general sequence of random variables, such that

supσ |ėn(σ )| P→ 0 as n → ∞.
Since

�X	S−1
n (σ )�X − (�Xc)	S−1

n (σ )�Xc = 2(�V̄ )	S−1
n (σ )�Xc

+(�V̄ )	S−1
n (σ )�V̄ =: �1 + �2, (3.8)

it suffices to show that �i = √
nėn for i ∈ {1, 2}.

Lemma 3.5 and (3.4) yield

|�2| ≤ ‖D1/2S−1
n (σ )D1/2‖|D−1/2�V̄ |2 = Op(1) × |D−1/2�V̄ |2. (3.9)

Moreover, Lemma 3.2 yields

|D−1/2�V (θ)|2 =
∑
i,l

|I l
i |−1|�l

i V (θ)|2 ≤ C
∑
i,l

|I l
i |−1|I l

i |2 = C
∑
i,l

|I l
i | ≤ Cnhn .

(3.10)
Furthermore, Lemma 3.5, (3.4), (3.10), and the equation E�[�Xc(�Xc)	] = Sn(σ0)

yield

E�[|�1|2] = 4(�V̄ )	S−1
n (σ )E�[�Xc(�Xc)	]S−1

n (σ )�V̄ = Op(nhn) = op(n).

(3.11)
Then, we obtain (3.7) by (3.8)–(3.11) and Lemma 3.1.

Next, we show that

(�Xc)	S−1
n (σ )�Xc − tr(S−1

n (σ )Sn(σ0)) = R̄n(
√

n). (3.12)

Itô’s formula yields

(�Xc)	S−1
n (σ )�Xc − tr(S−1

n (σ )Sn(σ0))

=
∑
i, j

[S−1
n (σ )]i j (�i Xc� j Xc − [Sn(σ0)]i j )

=
∑
i, j

[S−1
n (σ )]i j

{∫
Ii

� j,t XcdXc,ψ(i)
t +

∫
I j

�i,t XcdXc,ψ( j)
t

}

= 2
∑
i, j

[S−1
n (σ )]i j

∫
Ii

� j,t XcdXc,ψ(i)
t , (3.13)

where Xc,l
t is the l-th component of Xc

t .
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Since 〈�i Xc,� j Xc〉t = ∫
[0,t)∩Ii ∩I j

[�t ]ψ(i),ψ( j)dt , together with the Burkholder–
Davis–Gundy inequality, we have

E�

[(∑
i, j

[S−1
n (σ )]i j

∫
Ii

� j,t XcdXc,ψ(i)
t

)q]

≤ Cq

2∑
l=1

E�

[( ∑
i, j1, j2
ψ(i)=l

[S−1
n (σ )]i, j1 [S−1

n (σ )]i, j2

∫
Ii

� j1,t Xc� j2,t Xc[�t ]ψ(i),ψ(i)dt

)q/2]

+Cq E�

[( ∑
i1,i2, j1, j2

ψ(i1)=1,ψ(i2)=2

[S−1
n (σ )]i1, j1 [S−1

n (σ )]i2, j2

×
∫

Ii1∩Ii2

� j1,t Xc� j2,t Xc[�t ]ψ(i1),ψ(i2)dt

)q/2]

≤ Cq E�

[( ∑
i1,i2, j1, j2

|[S−1
n (σ )]i1, j1 [S−1

n (σ )]i2, j2 | sup
t

|[�t ]ψ(i1),ψ(i2)||Ii1 ∩ Ii2 | sup
t

|� j1,t Xc|

sup
t

|� j2,t Xc|
)q/2]

≤ Cq E�

[(
‖D1/2Abs(S−1

n ){|Ii ∩ I j |}i jAbs(S−1
n )D1/2‖

∑
i

supt |�i,t Xc|2
|Ii |

)q/2]
.

Together with Lemmas 3.3 and 3.5, the triangle inequality for Lq/2 that

|Ii ∩ I j | =
[
D1/2

(EM1 G
G	 EM2

)
D1/2

]
i j

,

and that

‖Abs(S−1
n )‖2 = sup

|x |=1
|Abs(S−1

n )x |2

= sup
|x |=1

∑
i

(∑
j

|[S−1
n ]i j |x j

)2

≤ C sup
|x |=1

∑
i

(∑
j

[D−1/2 Ṡ−1
n D−1/2]i j |x j |

)2

≤ C‖D−1/2 Ṡ−1
n D−1/2‖2

by Lemma 3.5, we have

E�

[(∑
i, j

[S−1
n (σ )]i j

∫
Ii

� j,t XcdXc,ψ(i)
t

)q]
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≤ Cq(1 − ρ̄n)−q E�

[(∑
i

supt |�i,t Xc|2
|Ii |

)q/2]

≤ Cq(1 − ρ̄n)−q
(∑

i

E�[supt |�i,t Xc|q ]2/q

|Ii |
)q/2

≤ Cq Mq/2(1 − ρ̄n)−q

on {ρ̄n < 1} for q ≥ 1. Then, thanks to (3.2), (3.4), (3.13) and Lemma 3.1, we obtain
(3.12).

(3.12), (3.7), Sobolev’s inequality, and similar estimates for ∂k
σ (H1

n (σ ) − H1
n (σ0))

yield

∂k
σ (H1

n (σ ) − H1
n (σ0))

= −1

2
∂k
σ tr(Sn(σ0)(S−1

n (σ ) − S−1
n (σ0))) − 1

2
∂k
σ log

det Sn(σ )

det Sn(σ0)
+ √

nėn(σ )

= −1

2
∂k
σ tr(S−1

n (σ )(Sn(σ0) − Sn(σ ))) − 1

2
∂k
σ log

det Sn(σ )

det Sn(σ0)
+ √

nėn(σ )

for k ∈ {0, 1, 2, 3}. ��
For (sk)

∞
k=0 ∈ S, let Ȧ1

k,p = E1
(k)(GG	)p and Ȧ2

k,p = E2
(k)(G

	G)p for p ∈
Z+ and 1 ≤ k ≤ qn . The following lemma is used when we specify the limit of
n−1(H1

n (σ ) − H1
n (σ0)) in the next proposition.

Lemma 3.7 Assume (A2) and (A4). Then, for any p ≥ 1

n−1 max
1≤k≤qn

|tr(Ȧ1
k,p) − tr(Ȧ2

k,p)| P→ 0

as n → ∞.

Proof By the definition of Ȧl
k,p, we obtain

|tr(Ȧ1
k,p) − tr(Ȧ2

k,p)|
=

∣∣∣∣ ∑
i; sup I 1i ∈(sk−1,sk ]

[(GG	)p]i i −
∑

j; sup I 2j ∈(sk−1,sk ]
[(G	G)p] j j

∣∣∣∣
=

∣∣∣∣ ∑
i; sup I 1i ∈(sk−1,sk ]

∑
i ′, j

[(GG	)p−1]i i ′ [G]i ′ j [G	] j i

−
∑

j; sup I 2j ∈(sk−1,sk ]

∑
i,i ′

[G	] j i [(GG	)p−1]i i ′ [G]i ′ j

∣∣∣∣.

Two summands in the right-hand side coincide when both sup I 1i and sup I 2j are

included or not included in (sk−1, sk]. In other cases, we have minu=0,1 | sup I 1i −
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sk−u | ≤ rn if [G	] j i > 0. Therefore, we obtain

|tr(Ȧ1
k,p) − tr(Ȧ2

k,p)| ≤
( ∑

i, j; sup I 1i /∈(sk−1,sk ]
sup I 2j ∈(sk−1,sk ]

+
∑

i, j; sup I 1i ∈(sk−1,sk ]
sup I 2j /∈(sk−1,sk ]

)

×
∑

i ′
[(GG	)p−1]i i ′ [G]i ′ j [G	] j i

≤
∑

i; minu=0,1 | sup I 1i −sk−u |≤rn

[(GG	)p]i i .

Thanks to (A2) and (A4), the right-hand side of the above inequality is equal to
Op(h−1

n ) = op(n). ��

Let Y1(σ ) = limT →∞(T −1
∫ T
0 y1,t (σ )dt), where

y1,t (σ ) = −1

2
A(ρt )

2∑
l=1

B2
l,t + A(ρt )

B1,t B2,tρt,0

ρt
+

2∑
l=1

al
0

(
1

2
− 1

2
B2

l,t + log Bl,t

)

+
∫ ρt

ρt,0

A(ρ)

ρ
dρ.

The limit Y1(σ ) exists under (A1), (A3), and (A4).

Proposition 3.8 Assume (A1)–(A4). Then

sup
σ∈�1

|n−1∂k
σ (H1

n (σ ) − H1
n (σ0)) − ∂k

σY1(σ )| P→ 0 (3.14)

as n → ∞ for k ∈ {0, 1, 2, 3}.
Proof Let A1

p = (G̃G̃	)p, A2
p = (G̃	G̃)p, �̃l

i,0 = �̃l
i (σ0), and �̃

1,2
i, j,0 = �̃

1,2
i, j (σ0).

Thanks to (A1), for any ε > 0, there exists δ > 0, such that |t − s| < δ implies

|ρt − ρs | ∨ |�t − �s | ∨ |μt − μs | < ε (3.15)

for any σ and θ . We fix such δ > 0, and fix a partition sk = kδ/2. Then, (3.5) and
(A4) yield

n−1tr(S−1
n (σ )(Sn(σ0) − Sn(σ )))

= 1

n
tr

(
S−1

n (σ )

(
diag((�̃1

i,0 − �̃1
i )i ) {�̃1,2

i, j,0 − �̃
1,2
i, j }i j

{�̃1,2
i, j,0 − �̃

1,2
i, j } j i diag((�̃2

j,0 − �̃2
j ) j )

))

= 1

n

∞∑
p=0

{ 2∑
l=1

tr

(
diag

((
�̃l

i,0

�̃l
i

− 1

)
i

)
Al

p

)
− 2tr

(
A1

pG̃

{
�̃

1,2
i, j,0 − �̃

1,2
i, j

(�̃1
i )1/2(�̃2

j )
1/2

}
i j

)}
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= 1

n

∞∑
p=0

qn+1∑
k=1

{ 2∑
l=1

tr

(
diag

((
�̃l

i,0

�̃l
i

− 1

)
i

)
E l

(k)Al
p

)

−2tr

(
E1

(k)A1
pG̃

{
�̃

1,2
i, j,0 − �̃

1,2
i, j

(�̃1
i )1/2(�̃2

j )
1/2

}
i j

)}
(3.16)

if ρ̄n < 1.
Let ρ̇k = ρsk−1 and Ḃk,l = ([�sk−1(σ0)]ll/[�sk−1(σ )]ll)1/2. Then, (3.15) yields that

for any p ∈ Z+, we have

|[E l
(k)Al

p]i j − ρ̇
2p
k [Ȧl

k,p]i j | ≤ Cpρ̄
2p−1
n ε (3.17)

on {2prn < δ/2}. Here, the factor p in the right-hand side appears, becausewe consider
the difference between 2p products of ρi ′ j ′ and ρ̇

2p
k . Moreover, Lemma 3.4 and (3.4)

yield

lim sup
n→∞

max
1≤k≤qn+1

∞∑
p=0

‖E l
(k)Al

p‖ ≤ C lim sup
n→∞

∞∑
p=0

ρ̄
2p
n < ∞ (3.18)

almost surely.
Then, together with (A2) and Lemma 3.7, we obtain

n−1tr(S−1
n (σ )(Sn(σ0) − Sn(σ )))

= 1

n

∞∑
p=0

qn∑
k=1

{
ρ̇
2p
k

2∑
l=1

(Ḃ2
k,l − 1)tr(Ȧl

k,p) − 2ρ̇2p+1
k (Ḃk,1 Ḃk,2ρ̇k,0 − ρ̇k)tr(Ȧ1

k,p+1)

}
+ en,

(3.19)

where ρ̇k,0 = ρsk−1(σ0), and (en)∞n=1 denotes a general sequence of random variables
such that lim supn→∞ |en| → 0 as δ → 0.

Moreover, by (3.3) and Lemma 3.4, we can apply Lemma A.3 in Ogihara (2018)
to Sn . Then, we have

log det Sn(σ ) = log det D̃ + log det

(
EM +

(
0 G̃

G̃	 0

))

=
2∑

l=1

Ml∑
i=1

log �̃l
i +

∞∑
p=1

(−1)p−1

p
tr

((
0 G̃

G̃	 0

)p )

=
2∑

l=1

Ml∑
i=1

log �̃l
i −

∞∑
p=1

1

p
tr((G̃G̃	)p)
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if ρ̄n < 1. Therefore, thanks to (3.2) and (3.17), we obtain

n−1 log
det Sn(σ )

det Sn(σ0)
= n−1

2∑
l=1

Ml∑
i=1

log
�̃l

i

�̃l
i,0

− n−1
∞∑

p=1

1

p
tr((G̃G̃	)p − (G̃G̃	)p(σ0))

= −n−1
qn∑

k=1

{ 2∑
l=1

Ml,k log Ḃ2
k,l +

∞∑
p=1

ρ̇
2p
k − ρ̇

2p
k,0

p
tr(Ȧ1

k,p)

}
+ en .

(3.20)

Lemma 3.7, (3.6), (3.19), and (3.20) yield

H1
n (σ ) − H1

n (σ0) = −1

2

∞∑
p=0

qn∑
k=1

{
ρ̇
2p
k

2∑
l=1

(Ḃ2
k,l − 1)tr(Ȧl

k,p)

−2ρ̇2p+1
k (Ḃk,1 Ḃk,2ρ̇k,0 − ρ̇k)tr(Ȧ1

k,p+1)

}

+1

2

qn∑
k=1

{ 2∑
l=1

Ml,k log Ḃ2
k,l +

∞∑
p=1

ρ̇
2p
k − ρ̇

2p
k,0

p
tr(Ȧ1

k,p)

}
+ nen

=
qn∑

k=1

{
− 1

2

∞∑
p=0

ρ̇
2p
k

2∑
l=1

Ḃ2
k,l tr(Ȧl

k,p) +
∞∑

p=1

ρ̇
2p−1
k ρ̇k,0 Ḃk,1 Ḃk,2tr(Ȧ1

k,p)

+1

2

2∑
l=1

tr( Ȧl
k,0)

+1

2

2∑
l=1

Ml,k log Ḃ2
k,l +

∞∑
p=1

ρ̇
2p
k − ρ̇

2p
k,0

2p
tr(Ȧ1

k,p)

}
+ nen

=
qn∑

k=1

[ ∞∑
p=1

ρ̇
2p
k

{
−1

2

2∑
l=1

Ḃ2
k,l tr(Ȧl

k,p) + ρ̇k,0

ρ̇k
Ḃk,1 Ḃk,2tr(Ȧ1

k,p)

}

+1

2

2∑
l=1

Ml,k
{ − Ḃ2

k,l + 1 + log Ḃ2
k,l

}

+
∞∑

p=1

ρ̇
2p
k − ρ̇

2p
k,0

2p
tr(Ȧ1

k,p)

]
+ nen . (3.21)

Here, we used that tr(Ȧl
k,0) = tr(E l

(k)) = Ml,k .
Moreover, (A4) and (3.15) yield

∣∣∣∣
qn∑

k=1

f (sk−1)tr(Ȧl
k,p) − h−1

n

∫ nhn

0
a1

p f (t)dt

∣∣∣∣
≤

∣∣∣∣
qn∑

k=1

f (sk−1)(tr(Ȧl
k,p) − h−1

n a1
p(sk − sk−1))

∣∣∣∣
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+
∣∣∣∣h−1

n a1
p

qn∑
k=1

∫ sk

sk−1

( f (t) − f (sk−1))dt

∣∣∣∣+Op(h
−1
n )

≤ op(h
−1
n ) · qn + C pεn + Op(h

−1
n ) = op(n) + nen (3.22)

for p ≥ 1 and any choice of f (t) = ρ
2p
t B2

l,t ,ρ
2p−1
t ρt,0B1,t B2,t and (ρ

2p
t −ρ

2p
t,0)/(2p).

Here, we used that qn = O(nhn) by the definition of (sk)
∞
k=0 ∈ S. Similarly, we

obtain

qn∑
k=1

Ml,k(1 − Ḃ2
k,l + log Ḃ2

k,l) = h−1
n

∫ nhn

0
al
0(1 − B2

l,t + log B2
l,t )dt + nen .

Together with (3.21), (A3) and the equation

∞∑
p=1

a1
p

ρ
2p
t − ρ

2p
t,0

2p
=

∞∑
p=1

a1
p

∫ ρt

ρt,0

ρ2p−1dρ =
∫ ρt

ρt,0

A(ρ)

ρ
dρ,

we obtain

H1
n (σ ) − H1

n (σ0) = nY1(σ ) + nen .

The above arguments show that the supremum with respect to σ of the residual term
in the above equation is also equal to nen , and consequently, we obtain (3.14) with
k = 0. Similarly, we obtain (3.14) with k ∈ {1, 2, 3}. ��
Proposition 3.9 Assume (A1)–(A4). Then, there exists a positive constant χ, such
that

Y1 ≤ lim inf
T →∞

∫ T

0

{
− 1

2
(a1

0 ∧ a2
0)(B1,t − B2,t )

2 − χ
{
a1
1(ρt − ρt,0)

2

+ a1
0 ∧ a2

0(B1,t B2,t − 1)2
}}

dt .

Proof The proof is based on the ideas of proof of Lemma 5 in Ogihara and Yoshida
(2014). Let

Gk = {[G]i j1{sup I 1i ,sup I 2j ∈(sk−1,sk ]}}i j ,

and let Ã1
k,p = (Gk G	

k )p and Ã2
k,p = (G	

k Gk)
p. Let Ãk = ∑∞

p=1 ρ̇
2p
k tr(Ã1

k,p) and

B̃k = ∑∞
p=1(2p)−1(ρ̇

2p
k − ρ̇

2p
k,0)tr(Ã1

k,p). Similarly to the proof of Lemma 3.7, the

difference between tr(Ȧl
k,p) and tr(Ãl

k,p) comes from terms with sup I 1i close to sk−1
or sk , and hence, we obtain

max
1≤k≤qn

|tr(Ȧl
k,p) − tr(Ãl

k,p)| = op(n).
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Therefore, (3.21) yields

Y1 = 1

n

qn∑
k=1

{
− 1

2
(Ḃ2

k,1 + Ḃ2
k,2)Ãk + ρ̇k,0

ρ̇k
Ḃk,1 Ḃk,2Ãk

+1

2

2∑
l=1

Ml,k(1 − Ḃ2
k,l + log Ḃ2

k,l) + B̃k

}
+ en

= 1

n

qn∑
k=1

{
− 1

2
(Ḃk,1 − Ḃk,2)

2Ãk + Ḃk,1 Ḃk,2

(
Ãk

ρ̇k,0

ρ̇k
− Ãk

)

+1

2

2∑
l=1

Ml,k(1 − Ḃ2
k,l + log Ḃ2

k,l) + B̃k

}
+ en .

Then, since

1

2

2∑
l=1

Ml,k(1 − Ḃ2
k,l + log Ḃ2

k,l)

= M1,k

(
1 − Ḃ2

k,1

2
− Ḃ2

k,2

2
+ log(Ḃk,1 Ḃk,2)

)
+ M2,k − M1,k

2
(1 − Ḃ2

k,2 + log(Ḃ2
k,2))

= −1

2
M1,k(Ḃk,1 − Ḃk,2)

2 − M1,k Ḃk,1 Ḃk,2 + M1,k

(
1 + log(Ḃk,1 Ḃk,2)

)

+ M2,k − M1,k

2
(1 − Ḃ2

k,2 + log(Ḃ2
k,2)),

and a similar estimate holds by switching the roles of M1,k and M2,k , we have

Y1 = n−1
qn∑

k=1

{
− 1

2
(M1,k + Ãk)(Ḃk,1 − Ḃk,2)

2 + M1,k(1 + log(Ḃk,1 Ḃk,2))

+B̃k + M2,k − M1,k

2
(1 − Ḃ2

k,2 + log(Ḃ2
k,2)) + Ḃk,1 Ḃk,2

(
Ãk

ρ̇k,0

ρ̇k
− Ãk − M1,k

)}
+ en

= n−1
qn∑

k=1

{
− 1

2
(M2,k + Ãk)(Ḃk,1 − Ḃk,2)

2 + M2,k(1 + log(Ḃk,1 Ḃk,2))

+B̃k + M1,k − M2,k

2
(1 − Ḃ2

k,1 + log(Ḃ2
k,1)) + Ḃk,1 Ḃk,2

(
Ãk

ρ̇k,0

ρ̇k
− Ãk − M2,k

)}
+ en .

For l ∈ {1, 2}, let

Fl,k = Ml,k(1 + log(Ḃk,1 Ḃk,2)) + B̃k + Ḃk,1 Ḃk,2

(
Ãk

ρ̇k,0

ρ̇k
− Ãk − Ml,k

)
,
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then since 1 − x + log x ≤ 0 for x > 0, we obtain

Y1 ≤ n−1
qn∑

k=1

[{
− 1

2
(M1,k + Ãk)(Ḃk,1 − Ḃk,2)

2 + F1,k

}
1{M2,k≥M1,k }

+
{

− 1

2
(M2,k + Ãk)(Ḃk,1 − Ḃk,2)

2 + F2,k

}
1{M2,k<M1,k }

]
+ en,

and therefore, we have

Y1 ≤ n−1
qn∑

k=1

{
− 1

2
(M1,k ∧ M2,k + Ãk)(Ḃk,1 − Ḃk,2)

2 + F1,k ∨ F2,k

}
+ en . (3.23)

Let (λk
i )

M1,k
i=1 be all the eigenvalues of Gk G	

k . Similarly to Lemma 3.3, we have
0 ≤ λk

i ≤ 1. Then, we have

F1,k =
M1,k∑
i=1

{
1 + log(Ḃk,1 Ḃk,2) + Ḃk,1 Ḃk,2

∞∑
p=0

{
(λk

i )
p+1ρ̇

2p+1
k ρ̇k,0 − (λk

i )
pρ̇

2p
k

}

+
∞∑

p=1

(λk
i )

p

2p
(ρ̇

2p
k − ρ̇

2p
k,0)

}
.

Moreover, by setting gk
i =

√
1 − λk

i ρ̇
2
k , gk

i,0 =
√
1 − λk

i ρ̇
2
k,0, and F(x) = 1− x +

log x , we have

F1,k =
M1,k∑
i=1

{
1 + Ḃk,1 Ḃk,2(g

k
i )−2(λk

i ρ̇k ρ̇k,0 − 1) + log(Ḃk,1 Ḃk,2gk
i,0(g

k
i )−1)

}

=
M1,k∑
i=1

{
Ḃk,1 Ḃk,2(g

k
i )−2(λk

i ρ̇k ρ̇k,0 − 1) + Ḃk,1 Ḃk,2gk
i,0(g

k
i )−1 + F(Ḃk,1 Ḃk,2gk

i,0(g
k
i )−1)

}
.

Here, we also used the expansion formulas (1−x)−1 = ∑∞
p=0 x p and− log(1−x) =∑∞

p=1 x p/p for |x | < 1.
Let

R = sup
t,σ,0≤l≤4

(|∂ l
σ �t |1/2 ∨ |∂ l

σ �−1
t |1/2).

Since gk
i ≤ 1, 0 ≤ λk

i ≤ 1, and |ρ̇k | < 1, we have

(gk
i )−2(λk

i ρ̇k ρ̇k,0 − 1)+gk
i,0(g

k
i )−1 = (λk

i ρ̇k ρ̇k,0 − 1 + gk
i,0gk

i )(1 − λk
i ρ̇k ρ̇k,0 + gk

i,0gk
i )

(gk
i )2(1 − λk

i ρ̇k ρ̇k,0 + gk
i,0gk

i )
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= − (λk
i ρ̇k ρ̇k,0 − 1)2 − (gk

i,0)
2(gk

i )2

(gk
i )2(1 − λk

i ρ̇k ρ̇k,0 + gk
i,0gk

i )

= − λk
i (ρ̇k − ρ̇k,0)

2

(gk
i )2(1 − λk

i ρ̇k ρ̇k,0 + gk
i,0gk

i )

≤ −λk
i

3
(ρ̇k − ρ̇k,0)

2.

Together with Lemma 11 in Ogihara and Yoshida (2014) and

Ḃk,1 Ḃk,2gk
i,0(g

k
i )−1 − 1 =

Ḃk,1 Ḃk,2

√
1 − λk

i ρ̇
2
k,0 −

√
1 − λk

i ρ̇
2
k√

1 − λk
i ρ̇

2
k

≤ Ḃk,1 Ḃk,2√
1 − ρ̄2

n

≤ R4√
1 − ρ̄2

n

,

we have

F1,k ≤
M1,k∑
i=1

{
− Ḃk,1 Ḃk,2

3
λk

i (ρ̇k − ρ̇k,0)
2 − 1 − ρ̄2

n

4R8 (Ḃk,1 Ḃk,2gk
i,0(g

k
i )−1 − 1)2

}
.

Moreover, the inequality a2 ≥ (a + b)2/2 − b2 with a = Ḃk,1 Ḃk,2gk
i,0 − gk

i and

b = gk
i − gk

i,0 yields

(Ḃk,1 Ḃk,2gk
i,0(g

k
i )−1 − 1)2 ≥ (Ḃk,1 Ḃk,2gk

i,0 − gk
i )2

≥ (gk
i,0)

2

2
(Ḃk,1 Ḃk,2 − 1)2 − (gk

i − gk
i,0)

2

= 1 − λk
i ρ̇

2
k,0

2
(Ḃk,1 Ḃk,2 − 1)2 − (λk

i )
2(ρ̇k − ρ̇k,0)

2

(gk
i + gk

i,0)
2

≥ 1 − ρ̄2
n

2
(Ḃk,1 Ḃk,2 − 1)2 − λk

i

4(1 − ρ̄2
n )

(ρ̇k − ρ̇k,0)
2,

and hence, we have

F1,k ≤
M1,k∑
i=1

{
− Ḃk,1 Ḃk,2

3
λk

i (ρ̇k − ρ̇k,0)
2 − (1 − ρ̄2

n )2

8R8 (Ḃk,1 Ḃk,2 − 1)2 + λk
i

16R8 (ρ̇k − ρ̇k,0)
2
}

= −
(

Ḃk,1 Ḃk,2

3
− 1

16R8

)
tr(Ã1

k,1)(ρ̇k − ρ̇k,0)
2 − (1 − ρ̄2

n )2

8R8 M1,k(Ḃk,1 Ḃk,2 − 1)2.

By a similar argument for F2,k , there exists a positive constant χ̃ which does not
depend on k nor n, such that

F1,k ∨ F2,k ≤ −χ̃ (1 − ρ̄2
n )2

{
tr(Ã1

k,1)(ρ̇k − ρ̇k,0)
2 + M1,k ∧ M2,k(Ḃk,1 Ḃk,2 − 1)2

}
.
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Together with (3.23), we have

Y1 ≤ n−1
qn∑

k=1

{
− 1

2
(M1,k ∧ M2,k)(Ḃk,1 − Ḃk,2)

2

−χ̃ (1 − ρ̄2
n )2

{
tr(Ã1

k,1)(ρ̇k − ρ̇k,0)
2 + M1,k ∧ M2,k(Ḃk,1 Ḃk,2 − 1)2

}} + en .

By letting n → ∞, (A4) and (3.3) yield the conclusion. ��
(A6) and Remark 4 in Ogihara and Yoshida (2014) yield that

lim sup
T →∞

1

T

∫ T

0

{|B1,t − B2,t |2 + |B1,t B2,t − 1|2 + |ρt − ρt,0|2
}
dt > 0,

when σ �= σ0.
Then, by Proposition 3.9, we have Y1(σ ) < 0 (note that a1

0 ∧ a2
0 ≥ a1

1 by (2.3) and
a similar argument). Therefore, for any δ > 0, there exists η > 0, such that

inf|σ−σ0|≥δ
(−Y1(σ )) ≥ η.

Then, since H1
n (σ̂n) − H1

n (σ0) ≥ 0 by the definition, for any ε > 0, we have

P(|σ̂n − σ0| ≥ δ) ≤ P

(
sup

|σ−σ0|≥δ

(H1
n (σ ) − H1

n (σ0)) ≥ 0

)

≤ P

(
sup

|σ−σ0|≥δ

(
n−1(H1

n (σ ) − H1
n (σ0)) − Y1(σ )

)
≥ η

)

≤ P

(
sup
σ

|n−1(H1
n (σ ) − H1

n (σ0)) − Y1(σ )| ≥ η

)
< ε (3.24)

for sufficiently large n by Proposition 3.8, which implies σ̂n
P→ σ0 as n → ∞.

3.3 Asymptotic normality of �̂n

Let Sn,0 = Sn(σ0) and �t,0 = �t (σ0). (3.7) and the equation ∂σ S−1
n,0 =

−S−1
n,0∂σ Sn,0S−1

n,0 imply

∂σ H1
n (σ0) = −1

2
(�Xc)	∂σ S−1

n,0�Xc − 1

2
tr(∂σ Sn,0S−1

n,0) + op(
√

n)

= −1

2
tr(∂σ S−1

n,0(�Xc(�Xc)	 − Sn,0)) + op(
√

n). (3.25)

Let (Ln)n∈N be a sequence of positive integers such that Ln → ∞ and
Lnnη(nhn)−1 → 0 as n → ∞ for some η > 0. Let šk = kTn/Ln for 0 ≤ k ≤ Ln , let
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J k = (šk−1, šk], and let S(k)
n,0 be an M × M matrix satisfying

[S(k)
n,0]i j =

∫
Ii ∩I j ∩J k

[�t,0]ψ(i),ψ( j)dt .

For a two-dimensional stochastic process (Ut )t≥0 = ((U 1
t , U 2

t ))t≥0, let �
l,(k)
i,t U =

Ul
(Sn,l

i ∨šk−1)∧šk∧t
− Ul

(Sn,l
i−1∨šk−1)∧šk∧t

, and let �(k)
i,t U = �

ψ(i),(k)

ϕ(i),t U for 1 ≤ i ≤ M . Let

�
(k)
i U = �

(k)
i,Tn

U , and let �(k)U = (�
(k)
i U )1≤i≤M .

Let

Xk = − 1

2
√

n

{
(�(k) Xc)	∂σ S−1

n,0�
(k) Xc − tr(∂σ S−1

n,0S(k)
n,0)

} − 1√
n

∑
k′<k

(�(k) Xc)	∂σ S−1
n,0�

(k′) Xc.

Then, since �Xc = ∑Ln
k=1 �(k) Xc and Sn,0 = ∑Ln

k=1 S(k)
n,0, (3.25) yields

n−1/2∂σ H1
n (σ0) =

Ln∑
k=1

Xk + op(1). (3.26)

Moreover, Itô’s formula yields

√
nXk = −1

2

∑
i, j

[∂σ S−1
n,0]i j

{
2
∫

Ii ∩J k
�

(k)
j,t XcdXc,ψ(i)

t + 2
∑
k′<k

∫
Ii ∩J k

�
(k′)
j XcdXc,ψ(i)

t

}

= −
∑
i, j

[∂σ S−1
n,0]i j

∫
Ii ∩J k

� j,t XcdXc,ψ(i)
t . (3.27)

Let Gt = Ft
∨

σ({�n}n) for t ≥ 0. We will show

n−1/2∂σ H1
n (σ0)

d→ N (0, �1), (3.28)

using Corollary 3.1 and the remark after that in Hall and Heyde (1980). For this
purpose, it is sufficient to show

Ln∑
k=1

Ek[X 2
k ] P→ �1, (3.29)

and
Ln∑

k=1

Ek[X 4
k ] P→ 0, (3.30)

by (3.26), where Ek denotes the conditional expectation with respect to Gšk−1 .

We first show four auxiliary lemmas. Let M̃k = #{i; 1 ≤ i ≤ M, sup Ii ∈ J k}.
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Lemma 3.10 Assume (A1). Then, there exists a positive constant C, such that
‖D−1/2S(k)

n,0D−1/2‖ ≤ C and tr(D−1/2S(k)
n,0D−1/2) ≤ C(M̃k +1) for any 1 ≤ k ≤ Ln.

Proof Since

|[S(k)
n,0]i j | ≤ C

[
D1/2

(EM1 G
G	 EM2

)
D1/2

]
i j

,

Lemma 3.3 yields

‖D−1/2S(k)
n,0D−1/2‖ ≤ C

∥∥∥∥
(EM1 G

G	 EM2

)∥∥∥∥ ≤ C .

Moreover, we have

tr(D−1/2S(k)
n,0D−1/2) =

M∑
i=1

∫
Ii ∩J k [�t,0]ψ(i),ψ(i)dt

|Ii | ≤ C
M∑

i=1

1{i;Ii ∩J k �=∅} ≤ C(M̃k + 1).

��
Lemma 3.11 Assume (A4) and that nhn L−1

n → ∞ as n → ∞. Then, {Lnn−1

max1≤k≤Ln M̃k}∞n=1 is P-tight.

Proof Let Mn = [nhn L−1
n ]. We define a partition of [0,∞) by

s j = nhn j

2LnMn
( j ≥ 0).

Then, (s j )
∞
j=0 ∈ S when nhn L−1

n ≥ 1, and (s j )
2LnMn
j=0 is a subpartition of (šk)

Ln
k=0.

For Ml, j which corresponds to this partition (M̃k remains to be defined using šk),
we have

M̃k =
2∑

l=1

2Mnk∑
j=2Mn(k−1)+1

Ml, j ,

since šk = nhnkL−1
n = s2Mnk . Therefore, (A4) yields

max
1≤k≤Ln

M̃k ≤ 4Mn max
l, j

Ml, j ≤ CMn{h−1
n (a1

0 ∨ a2
0) + op(h

−1
n )} = Op(nL−1

n ).

��Lemma 3.12 Assume (A1). Then

‖D̃−1/2S(k)
n,0∂σ S−1

n,0S(k′)
n,0 D̃−1/2‖ ≤ C

(Qn + 1)ρ̄Qn
n

(1 − ρ̄n)2

on {ρ̄n < 1} for |k − k′| > 1, where Qn = [r−1
n (Tn/Ln − 2rn)].
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Proof Using the expansion formula (3.5), we have

S(k)
n,0∂σ S−1

n,0S(k′)
n,0 = −S(k)

n,0S−1
n,0∂σ Sn,0S−1

n,0S(k′)
n,0

= −S(k)
n,0D̃−1/2

∞∑
p=0

(−1)p
(

0 G̃
G̃	 0

)p

D̃−1/2∂σ Sn,0D̃−1/2

×
∞∑

q=0

(−1)q
(

0 G̃
G̃	 0

)q

D̃−1/2S(k′)
n,0

=
∞∑

p,q=0

(−1)p+q+1S(k)
n,0C

n
p,q S(k′)

n,0 (3.31)

if ρ̄n < 1, where

Cn
p,q = D̃−1/2

(
0 G̃

G̃	 0

)p

D̃−1/2∂σ Sn,0D̃−1/2
(

0 G̃
G̃	 0

)q

D̃−1/2.

We consider a necessary condition for

[S(k)
n,0C

n
p,q S(k′)

n,0 ]i ′, j ′ =
∑

i j

[S(k)
n,0]i ′i [Cn

p,q ]i j [S(k′)
n,0 ] j, j ′ (3.32)

to be zero for any i ′ and j ′. We first observe that the element [Cn
p,q ]i j is equal to zero

if [S̄ p+q+1]i j = 0, where

S̄ =
(EM1 G

G	 EM2

)
.

Moreover, [S(k)
n,0]i ′i �= 0 only if Ii ∩ J k �= ∅, and [S(k′)

n,0 ] j j ′ �= 0 only if I j ∩ J k′ �= ∅.
Since infx∈Ii ,y∈I j |x − y| > Tn/Ln − 2rn if Ii ∩ J k �= ∅ and I j ∩ J k′ �= ∅, we
have [S̄r ]i j = 0 for r ≤ Qn when [S(k)

n,0]i ′i �= 0 and [S(k′)
n,0 ] j j ′ �= 0. Therefore,

[S(k)
n,0C

n
p,q S(k′)

n,0 ]i ′, j ′ = 0 for any i ′ and j ′ if p + q + 1 ≤ Qn .
Then, (3.31) and Lemmas 3.4, 3.5 and 3.10 yield

‖D̃−1/2S(k)
n,0∂σ S−1

n,0S(k′)
n,0 D̃−1/2‖

≤
∞∑

p=0

∞∑
q=(Qn−p)∨0

∥∥∥∥D̃−1/2S(k)
n,0D̃−1/2

(
0 G̃

G̃	 0

)p

D̃−1/2∂σ Sn,0D̃−1/2

×
(

0 G̃
G̃	 0

)q

D̃−1/2S(k′)
n,0 D̃−1/2

∥∥∥∥
≤ C

∞∑
p=0

∞∑
q=(Qn−p)∨0

ρ̄
p+q
n = C

Qn ρ̄
Qn
n + ρ̄

Qn
n (1 − ρ̄n)−1

1 − ρ̄n
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≤ C
(Qn + 1)ρ̄Qn

n

(1 − ρ̄n)2

on {ρ̄n < 1}. ��
Lemma 3.13 Let m ∈ N. Let V be an m × m symmetric, positive definite matrix and
A be a m × m matrix. Let X be a random variable following N (0, V ). Then

E[(X	 AX)2] = tr(AV )2 + 2tr((AV )2),

E[(X	 AX)3] = tr(AV )3 + 6tr(AV )tr((AV )2) + 8tr((AV )3),

E[(X	 AX)4] = tr(AV )4 + 12tr(AV )2tr((AV )2) + 12tr((AV )2)2

+32tr(AV )tr((AV )3) + 48tr((AV )4).

Proof We only show the result for E[(X	 AX)4]. Let U be an orthogonal matrix and
� be a diagonal matrix satisfying U V U	 = �. Then, we have U X ∼ N (0,�), and

E

[ 8∏
i=1

[U X ] ji

]
=

∑
(l2q−1,l2q )4q=1

4∏
q=1

[�]l2q−1,l2q ,

where the summation of (l2q−1, l2q)4q=1 is taken over all disjoint pairs of { j1, . . . j8}.
Then, by setting B = U AU	, we have

E[(X	 AX)4] =
∑

j1,..., j8

∑
(l2q−1,l2q )4q=1

4∏
p=1

[B] j2p−1, j2p

4∏
q=1

[�]l2q−1,l2q .

Let nCk = n!
k!(n−k)! . Out of j1, . . . , j8, we connect j2p−1 to j2p and l2q−1 to l2q

(1 ≤ p, q ≤ 4). Then, the pattern of the connected components gives five different
cases.

1. Four connected components (four components of size 2): only one case of the pairs
(l2q−1, l2q)4q=1 appears, which corresponds to tr((B�)4).

2. Three connected components (a component of size 4 and two components of size 2):
The choice of elements for a components of size 4 gives 4C2 ways, and the choice
of the pair (l2q−1, l2q) for this component gives twoways, and hence, 4C2×2 = 12
ways in total. This case corresponds to tr(B�)2tr((B�)2).

3. Two connected components (two components of size 4): The choice of elements
for each component gives 4C2

2 ways, excluding duplicates, and the choice of the

pair (l2q−1, l2q) for each component gives two ways, and hence, 4C2
2 × 2× 2 = 12

ways in total. This case corresponds to tr((B�)2)2.
4. Two connected components (a component of size 6 and a component of size 2): The

choice of elements for a components of size 6 gives 4C1 ways, and the choice of the
pair (l2q−1, l2q) for this component gives 4×2 = 8 ways, and hence 4C1 ×8 = 32
ways in total. This case corresponds to tr(B�)tr((B�)3).
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5. One connected component (a component of size 8): The choice of the pair
(l2q−1, l2q) gives 6 × 4 × 2 = 48 ways. This case corresponds to tr((B�)4).

Then, we obtain the conclusion. ��

Proposition 3.14 Assume (A1)–(A4) and (A6). Then

n−1/2∂σ H1
n (σ0)

d→ N (0, �1)

as n → ∞.

Proof It is sufficient to show (3.29) and (3.30). Let Ak = (�(k) Xc)	∂σ S−1
n,0�

(k) Xc

and Bk = ∂σ S−1
n,0S(k)

n,0. By the definition of Xk , we have

Ln∑
k=1

Ek[X 4
k ]

≤ C

n2

Ln∑
k=1

{
Ek

[{
(�(k) Xc)	∂σ S−1

n,0�
(k) Xc − tr(∂σ S−1

n,0S(k)
n,0)

}4]

+Ek

[( ∑
k′<k

(�(k) Xc)	∂σ S−1
n,0�

(k′) Xc
)4]}

= C

n2

Ln∑
k=1

{
Ek[A4

k] − 4Ek[A3
k]tr(Bk) + 6Ek[A2

k]tr(Bk)
2 − 4tr(Bk)

4 + tr(Bk)
4
}

+ C

n2

Ln∑
k=1

{( ∑
k′<k

�(k′) Xc
)	

∂σ S−1
n,0S(k)

n,0∂σ S−1
n,0

( ∑
k′<k

�(k′) Xc
)}2

. (3.33)

Thanks to Lemmas 3.13, 3.10, 3.11 and 3.5, (3.4), and Lemma A.1 in Ogihara
(2018), the first term in the right-hand side is calculated as

C

n2

Ln∑
k=1

{
tr(Bk)

4 + 12tr(Bk)
2tr(B2

k) + 12tr(B2
k)

2 + 32tr(Bk)tr(B
3
k) + 48tr(B4

k)

−4tr(Bk)
{
tr(Bk)

3 + 6tr(Bk)tr(B
2
k) + 8tr(B3

k)
} + 6tr(Bk)

2{tr(Bk)
2

+2tr(B2
k)

} − 3tr(Bk)
4
}

= C

n2

Ln∑
k=1

{
48tr(B4

k) + 12tr(B2
k)

2}

≤ C

n2 (max
k

M̃k + 1)2Ln(1 − ρ̄n)−81{ρ̄n<1} + op(1)
P→ 0. (3.34)
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Moreover, Lemma 3.13 yields

E�

[
C

n2

Ln∑
k=1

{( ∑
k′<k

�(k′) Xc
)	

∂σ S−1
n,0S(k)

n,0∂σ S−1
n,0

( ∑
k′<k

�(k′) Xc
)}2]

≤ C

n2

Ln∑
k=1

∑
k′
1,k

′
2<k

{|tr(∂σ S−1
n,0S(k)

n,0∂σ S−1
n,0S

(k′
1)

n,0 )tr(∂σ S−1
n,0S(k)

n,0∂σ S−1
n,0S

(k′
2)

n,0 )|

+|tr(∂σ S−1
n,0S(k)

n,0∂σ S−1
n,0S

(k′
1)

n,0 ∂σ S−1
n,0S(k)

n,0∂σ S−1
n,0S

(k′
2)

n,0 )|}. (3.35)

If k′
1 < k − 1, Lemmas 3.5 and 3.12, Lemma A.1 in Ogihara (2018) and the equation

∂σ S−1
n,0 = −S−1

n,0∂σ Sn,0S−1
n,0 yield

|tr(∂σ S−1
n,0S(k)

n,0∂σ S−1
n,0S

(k′
1)

n,0 )|
= |tr(D̃1/2S−1

n,0D̃1/2D̃−1/2∂σ Sn,0D̃−1/2D̃1/2S−1
n,0D̃1/2D̃−1/2S(k)

n,0∂σ S−1
n,0S

(k′
1)

n,0 D̃−1/2)|
≤ tr(D̃1/2S−1

n,0D̃1/2)‖D̃−1/2∂σ Sn,0D̃−1/2‖‖D̃1/2S−1
n,0D̃1/2‖‖D̃−1/2S(k)

n,0∂σ S−1
n,0S

(k′
1)

n,0 D̃−1/2)‖
≤ C MQn ρ̄Qn

n (1 − ρ̄n)−4

on {ρ̄n < 1}. Here, we used that tr(D̃1/2S−1
n,0D̃1/2) ≤ M ·‖D̃1/2S−1

n,0D̃1/2‖ ≤ C M(1−
ρ̄n)−1. Similarly, we obtain

|tr(∂σ S−1
n,0S(k)

n,0∂σ S−1
n,0S

(k′
1)

n,0 ∂σ S−1
n,0S(k)

n,0∂σ S−1
n,0S

(k′
2)

n,0 )| ≤ C MQn ρ̄Qn
n (1 − ρ̄n)−8.

Since ρ̄
Qn
n converges to zero very fast if ρ̄n < 1 and rn ≤ 1, together with (A2) and

(3.3), the summation for of the terms with k′
1 < k − 1 or k′

2 < k − 1 in the right-hand
side of (3.35) is equal to op(1).

Then, togetherwith Lemmas 3.5, 3.10, and 3.11, andLemmaA.1 inOgihara (2018),
we obtain

E�

[
C

n2

Ln∑
k=1

{( ∑
k′<k

�(k′) Xc
)	

∂σ S−1
n,0S(k)

n,0∂σ S−1
n,0

( ∑
k′<k

�(k′) Xc
)}2]

≤ C

n2

Ln∑
k=1

{|tr(∂σ S−1
n,0S(k)

n,0∂σ S−1
n,0S(k−1)

n,0 )2| + |tr((∂σ S−1
n,0S(k)

n,0∂σ S−1
n,0S(k−1)

n,0 )2)|} + op(1)

= Op

(
Ln

n2

{
max

k
M̃k + 1

}2) + op(1)
P→ 0 (3.36)

as n → ∞. Then, (3.33), (3.34), and (3.36) yield (3.30).
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Next, we show (3.29). Let Ik
i, j = Ii ∩ I j ∩ J k . Then, (3.27) yields

Ln∑
k=1

Ek[X 2
k ] = 1

n

Ln∑
k=1

∑
i1, j1

∑
i2, j2

[∂σ S−1
n,0]i1, j1 [∂σ S−1

n,0]i2, j2

×
∫
Ik

i1,i2

[�t,0]ψ(i1),ψ(i2)Ek[� j1,t Xc� j2,t Xc]dt

= 1

n

Ln∑
k=1

∑
i1, j1

∑
i2, j2

[∂σ S−1
n,0]i1, j1 [∂σ S−1

n,0]i2, j2

×
∫
Ik

i1,i2

[�t,0]ψ(i1),ψ(i2)

∫
I j1∩I j2∩[0,t)

[�s,0]ψ( j1),ψ( j2)dsdt . (3.37)

We can decompose

∫
Ik

i1,i2

[�t,0]ψ(i1),ψ(i2)

∫
I j1∩I j2∩[0,t)

[�s,0]ψ( j1),ψ( j2)dsdt

=
∫ Tn

0
Fk

i1,i2(t)
∫ t

0
Fk

j1, j2(s)dsdt +
∑
k′<k

Fk
i1,i2Fk′

j1, j2 ,

where Fk
i j (t) = [�t,0]ψ(i),ψ( j)1Ik

i, j
(t), andFk

i, j = ∫ Tn
0 Fk

i, j (t)dt .Moreover, switching

the roles of i1, i2 and j1, j2, we obtain

∑
i1, j1

∑
i2, j2

[∂σ S−1
n,0]i1, j1 [∂σ S−1

n,0]i2, j2

∫ Tn

0
Fk

i1,i2(t)
∫ t

0
Fk

j1, j2(s)dsdt

=
∑
i1, j1

∑
i2, j2

[∂σ S−1
n,0]i1, j1 [∂σ S−1

n,0]i2, j2 × 1

2

{∫ Tn

0
Fk

i1,i2(t)
∫ t

0
Fk

j1, j2(s)dsdt

+
∫ Tn

0
Fk

j1, j2(t)
∫ t

0
Fk

i1,i2(s)dsdt

}

= 1

2

∑
i1, j1

∑
i2, j2

[∂σ S−1
n,0]i1, j1 [∂σ S−1

n,0]i2, j2

{∫ Tn

0
Fk

i1,i2(t)
∫ t

0
Fk

j1, j2(s)dsdt

+
∫ Tn

0
Fk

i1,i2(s)
∫ Tn

s
Fk

j1, j2(t)dtds

}

= 1

2

∑
i1, j1

∑
i2, j2

[∂σ S−1
n,0]i1, j1 [∂σ S−1

n,0]i2, j2Fk
i1,i2Fk

j1, j2 .
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Therefore, we have

Ln∑
k=1

Ek [X 2
k ] = 1

2n

Ln∑
k=1

∑
i1, j1

∑
i2, j2

[∂σ S−1
n,0]i1, j1 [∂σ S−1

n,0]i2, j2

{
Fk

i1,i2Fk
j1, j2 + 2

∑
k′<k

Fk
i1,i2Fk′

j1, j2

}

= 1

2n

Ln∑
k,k′=1

∑
i1, j1

∑
i2, j2

[∂σ S−1
n,0]i1, j1 [∂σ S−1

n,0]i2, j2Fk
i1,i2Fk′

j1, j2

= 1

2n

∑
i1, j1

∑
i2, j2

[∂σ S−1
n,0]i1, j1 [∂σ S−1

n,0]i2, j2

∫
Ii1∩Ii2

[�t,0]ψ(i1),ψ(i2)dt

×
∫

I j1∩I j2

[�s,0]ψ( j1),ψ( j2)ds

= 1

2n
tr((∂σ S−1

n,0Sn,0)
2). (3.38)

∂σ S−1
n,0Sn,0 corresponds to D̂(t) in the proof (p. 2993) of Proposition 10 of Ogihara

and Yoshida (2014). Then, by a similar step to the proof of Proposition 10 in Ogihara
and Yoshida (2014), we have (3.29). ��

Proposition 3.15 Assume (A1)–(A4) and (A6). Then, �1 is positive definite and

√
n(σ̂n − σ0)

d→ N (0, �−1
1 )

as n → ∞.

Proof Proposition 3.9, (A6), and Remark 4 in Ogihara and Yoshida (2014) yield

Y1(σ ) ≤ −c|σ − σ0|2 (3.39)

for some positive constant c. Moreover, Y1(σ0) = 0 by Bl,t,0 = 1, and ∂σY1(σ0) = 0
by

∂σ y1,t (σ0) = −∂ρA(ρt,0)∂σ ρt,0 − 1

2
A(ρt,0)

2∑
l=1

2∂σ Bl,t,0

+∂ρA(ρt,0)∂σ ρt,0 − A(ρt,0)
∂σ ρt,0

ρt,0

+(∂σ B1,t,0 + ∂σ B2,t,0)A(ρt,0) +
2∑

l=1

al
0(−∂σ Bl,t,0 + ∂σ Bl,t,0)

+A(ρt,0)

ρt,0
∂σ ρt,0

= 0.
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Then, Taylor’s formula yields

Y1(σ ) = (σ − σ0)
	∂2σY1(σ0)(σ − σ0) + o(|σ − σ0|2).

Therefore, considering σ sufficiently close to σ0, �1 = −∂2σY1(σ0) should be positive
definite by (3.39).

By Taylor’s formula and the equation ∂σ H1
n (σ̂n) = 0, we have

−∂σ H1
n (σ0) = ∂σ H1

n (σ̂n) − ∂σ H1
n (σ0)

=
∫ 1

0
∂2σ H1

n (σt )dt(σ̂n − σ0)

= ∂2σ H1
n (σ0)(σ̂n − σ0) + (σ̂n − σ0)

	
∫ 1

0
(1 − t)∂3σ H1

n (σt )dt(σ̂n − σ0),

where σt = t σ̂n + (1 − t)σ0.
Therefore, we obtain

√
n(σ̂n−σ0) =

{
−1

n
∂2σ H1

n (σ0)−1

n

∫ 1

0
(1−t)∂3σ H1

n (σt )dt(σ̂n−σ0)

}−1

· 1√
n
∂σ H1

n (σ0).

(3.40)
Since Proposition 3.8 yields

−1

n
∂2σ H1

n (σ0)
P→ −∂2σY1(σ0) = �1,

and {
sup
σ

∣∣∣∣1n ∂3σ H1
n (σ )

∣∣∣∣
}

n∈N

is P-tight, together with Proposition 3.14, we conclude

√
n(σ̂n − σ0)

d→ N (0, �−1
1 ). (3.41)

��

3.4 Consistency of �̂n

Let

Y2(θ) = lim
T →∞

1

T

∫ T

0

∞∑
p=0

{
− 1

2

2∑
l=1

f ll
p ρ

2p
t,0φ

2
l,t + f 12p ρ

2p+1
t,0 φ1,tφ2,t

}
dt,

which exists under (A1), (A3), and (A5).
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Proposition 3.16 Assume (A1)–(A6). Then

sup
θ∈�2

∣∣(nhn)−1∂k
θ (H2

n (θ) − H2
n (θ0)) − ∂k

θY2(θ)
∣∣ P→ 0 (3.42)

as n → ∞ for k ∈ {0, 1, 2, 3}.

Proof We first show that

X̄(θ)	S−1
n (σ̂n)X̄(θ)

= �X	S−1
n (σ̂n)�X − 2�V (θ)	S−1

n,0�Xc − �V (θ)	S−1
n,0(2�V (θ0)

−�V (θ)) + √
nhnėn(θ), (3.43)

where (ėn(θ))∞n=1 denotes a general sequence of random variables, such that

supθ |ėn(θ)| P→ 0 as n → ∞.
Lemma 3.5 and (3.10) yield

E�

[
(�V (θ)	∂k

σ S−1
n,0�Xc)2

]
=

∑
i1, j1

∑
i2, j2

[∂k
σ S−1

n,0]i1, j1 [∂k
σ S−1

n,0]i2, j2�i1V (θ)�i2V (θ)E�[� j1 Xc� j2 Xc]

=
∑
i1, j1

∑
i2, j2

[∂k
σ S−1

n,0]i1, j1 [∂k
σ S−1

n,0]i2, j2�i1V (θ)�i2V (θ)[Sn,0] j1, j2

≤ C |D−1/2�V (θ)|2‖D1/2∂k
σ S−1

n,0D1/2‖2‖D−1/2Sn,0D−1/2‖
≤ Cnhn(1 − ρ̄n)−2k−2 (3.44)

on {ρ̄n < 1}.
Since (3.2), Lemma 3.2 and Taylor’s formula yield

E�[|D−1/2�X |2] =
M∑

i=1

E�[|�i X |2]
|Ii | ≤ C(M + nhn) = Op(n),

X̄(θ)	S−1
n (σ̂n)X̄(θ) − �X	S−1

n (σ̂n)�X = −�V (θ)	S−1
n (σ̂n)(2�X − �V (θ)),

(3.45)

and

S−1
n (σ̂n) = S−1

n,0+(σ̂n−σ0)∂σ S−1
n,0+(σ̂n − σ0)

	
∫ 1

0
(1−u)∂2σ S−1

n (uσ̂n+(1−u)σ0)du(σ̂n−σ0)

(3.46)
(3.4), (3.10), (3.41), (3.45), and Lemma 3.5 simply
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sup
θ

∣∣X̄(θ)	S−1
n (σ̂n)X̄(θ) − �X	S−1

n (σ̂n)�X

+�V (θ)	
{

S−1
n,0 + (σ̂n − σ0)∂σ S−1

n,0

}
(2�X − �V (θ))

∣∣
= sup

θ

∣∣∣∣�V (θ)	
∫ 1

0
(1 − u)

∑
i, j

∂σi ∂σ j S−1
n (uσ̂n

+(1 − u)σ0)[σ̂n − σ0]i [σ̂n − σ0] jdu(2�X − �V (θ))

∣∣∣∣
≤ sup

θ

|D−1/2�V (θ)| · sup
θ

|D−1/2(2�X − �V (θ))| · |σ̂n − σ0|2

×
∑

i j

∥∥∥∥
∫ 1

0
(1 − u)D1/2∂σi ∂σ j S−1

n (uσ̂n + (1 − u)σ0)D1/2du

∥∥∥∥
= Op(

√
nhn · √

n · (n−1/2)2 · 1) = op(
√

nhn). (3.47)

Thanks to (3.4), (3.10), (3.41), and Lemma 3.5, we have

sup
θ

|�V (θ)	
{
(σ̂n − σ0)∂σ S−1

n,0

}
(2�X − �V (θ))|

= sup
θ

|�V (θ)	
{
(σ̂n − σ0)∂σ S−1

n,0

}
(2�Xc + 2�V (θ0) − �V (θ))|

≤ sup
θ

|2�V (θ)	
{
(σ̂n − σ0)∂σ S−1

n,0

}
�Xc|

+C sup
θ

|D−1/2�V (θ)|2‖D1/2∂σ S−1
n,0D1/2‖|σ̂n − σ0|

≤ |σ̂n − σ0| sup
θ

|2�V (θ)	∂σ S−1
n,0�Xc| + Op(nhn) · Op(n

−1/2). (3.48)

For k ∈ {0, 1} and q ≥ 1, the Burkholder–Davis–Gundy inequality, Lemma 3.5
and a similar estimate to (3.10) yield

sup
θ

E�[|∂k
θ �V (θ)	∂σ S−1

n,0�Xc|q ]1/q

≤ Cq sup
θ

2∑
l=1

E�

[∣∣∣∣∑
i

[∂σ S−1
n,0∂

k
θ �V (θ)]i+(l−1)M1�

l
i Xc

∣∣∣∣
q]1/q

≤ Cq sup
θ

2∑
l=1

(∑
i

[∂σ S−1
n,0∂

k
θ �V (θ)]2i+(l−1)M1

|I l
i |
)1/2

= Cq sup
θ

(
∂k
θ �V (θ)	∂σ S−1

n,0D∂σ S−1
n,0∂

k
θ �V (θ)

)1/2
≤ Cq

√
nhn(1 − ρ̄n)−2. (3.49)
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Together with (3.4), (3.41), (3.48), and Sobolev’s inequality, we have

sup
θ

|�V (θ)	
{
(σ̂n − σ0)∂σ S−1

n,0

}
(2�X − �V (θ))| = op(

√
nhn). (3.50)

Then, (3.47) and (3.50) yield (3.43).
Applying (3.43) to θ and θ = θ0, we have

H2
n (θ) − H2

n (θ0)

= �(V (θ) − V (θ0))
	S−1

n,0�Xc + 1

2
�V (θ)	S−1

n,0(2�V (θ0) − �V (θ))

−1

2
�V (θ0)

	S−1
n,0�V (θ0) + √

nhnėn(θ)

= �(V (θ) − V (θ0))
	S−1

n,0�Xc − 1

2
�(V (θ) − V (θ0))

	S−1
n,0�(V (θ) − V (θ0)) + √

nhnėn(θ),

(3.51)

and hence, by similar estimates to (3.49), we have

sup
θ

∣∣∣∣H2
n (θ) − H2

n (θ0) + 1

2
�(V (θ) − V (θ0))

	S−1
n,0�(V (θ) − V (θ0))

∣∣∣∣ = Op(
√

nhn).

(3.52)
Then, (3.5), (3.17), and a similar argument to (3.16) yield

�(V (θ) − V (θ0))
	S−1

n,0�(V (θ) − V (θ0))

= �(V (θ) − V (θ0))
	D̃−1/2(σ0)

∞∑
p=0

(
(G̃G̃	)p −(G̃G̃	)pG̃

−(G̃	G̃)pG̃	 (G̃	G̃)p

)
D̃−1/2(σ0)�(V (θ) − V (θ0))

=
∞∑

p=0

qn∑
k=1

ρ̇
2p
k,0

{ 2∑
l=1

(φl,sk−1 )
2İ	

k,lȦl
k,p İk,l − 2ρ̇k,0φ1,sk−1φ2,sk−1 İ

	
k,1Ȧ1

k,pGk İk,2

}
+ nhnen,

where İk,l = E l
(k)İl . Together with (A3), (A5), (3.52), and a similar argument to

(3.22), we obtain

sup
θ

∣∣(nhn)
−1(H2

n (θ) − H2
n (θ0)) − Y2(θ)

∣∣ P→ 0 (3.53)

as n → ∞. Similar estimates for (nhn)
−1∂k

θ (H2
n (θ) − H2

n (θ0)) (k ∈ {0, 1, 2, 3, 4})
yield the conclusion. ��

Proposition 3.17 Assume (A1)–(A6). Then, θ̂n
P→ θ0 as n → ∞.

Proof By Lemma 3.5, we have

D1/2S−1
n,0D1/2 ≥ ‖D−1/2Sn,0D−1/2‖−1EM ≥ CEM . (3.54)
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Therefore, together with (3.15) and (3.16), we obtain

−1

2
�(V (θ) − V (θ0))

	S−1
n,0�(V (θ) − V (θ0))

≤ −C�(V (θ) − V (θ0))
	D−1�(V (θ) − V (θ0))

= C
∑

i

|Ii |−1
(∫

Ii

(μ
ψ(i)
t (θ) − μ

ψ(i)
t (θ0))dt

)2

= −C
qn∑

k=1

∑
i

(μψ(i)
sk−1

(θ) − μψ(i)
sk−1

(θ0))
2|I l

i ∩ J k | + nhnen

= −C
∫ Tn

0
|μt (θ) − μt (θ0)|2dt + nhnen . (3.55)

Hence, we have

Y2(θ) ≤ −C lim sup
T →∞

(
1

T

∫ T

0
|μt (θ) − μt (θ0)|2dt

)
. (3.56)

Assumption (A6) yields that for any θ ∈ �

Y2(θ) ≤ 0, and Y2(θ) = 0 if and only if θ = θ0; (3.57)

(3.42), (3.57) together with a similar estimate to (3.24), we have the conclusion. ��

3.5 Asymptotic normality of �̂n

Proof of Theorem 2.3 By the definition of H2
n (θ), we obtain

∂θ H2
n (θ0) = ∂θ�V (θ0)

	S−1
n (σ̂n)X̄(θ0) = ∂θ�V (θ0)

	S−1
n (σ̂n)�Xc.

By a similar argument to the derivation of (3.43), we can replace S−1
n (σ̂n) in the right-

hand side of the above equation by S−1
n,0 with approximation error equal to op(

√
nhn).

Then, we have

∂θ H2
n (θ0) = ∂θ�V (θ0)

	S−1
n,0�Xc + op(

√
nhn).

Let

Ẋk = 1√
nhn

∂θ�V (θ0)S−1
n,0�

(k) Xc
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for 1 ≤ k ≤ Ln . Then, we have

(nhn)
−1/2∂θ H2

n (θ0) =
Ln∑

k=1

Ẋk + op(1). (3.58)

Lemma 3.5 and a similar argument to (3.10) yield

Ln∑
k=1

Ek[Ẋ 4
k ] = 3

n2h2
n

Ln∑
k=1

{
∂θ�V (θ0)

	S−1
n,0S(k)

n,0S−1
n,0∂θ�V (θ0)

}2

≤ C

n2h2
n
|D−1/2�∂θ V (θ0)|2‖D1/2S−1

n,0D1/2‖2
Ln∑

k=1

‖D−1/2S(k)
n,0D−1/2‖

≤ C Ln

nhn
(1 − ρ̄n)2

P→ 0.

Moreover, (3.5), (A5), and a similar argument to the proof of Proposition 3.8 yield

Ln∑
k=1

Ek[Ẋ 2
k ] = 1

nhn

Ln∑
k=1

∑
i1, j1

∑
i2, j2

[S−1
n,0]i1, j1 [S−1

n,0]i2, j2�i1∂θ V (θ0)�i2∂θ V (θ0)[S(k)
n,0] j1, j2

= 1

nhn
�∂θ V (θ0)

	S−1
n,0Sn,0S−1

n,0�∂θ V (θ0)

= 1

nhn

∞∑
p=0

qn∑
k=1

ρ̇
2p
k,0

{ 2∑
l=1

∂θφ
2
l,sk−1

(θ0)I
	
l Ȧl

k,pIl

−2ρ̇k,0∂θφ1,sk−1∂θφ2,sk−1(θ0)I
	
1 Ȧ1

k,pGI2

}
+ en

P→ �2.

Therefore, (3.58) and the martingale central limit theorem (Corollary 3.1 and the
remark after that in Hall & Heyde, 1980) yield

(nhn)−1/2∂θ H2
n (θ0) =

Ln∑
k=1

Ẋk + op(1)
d→ N (0, �2). (3.59)

By (3.56) and (A6), there exists a positive constant c, such thatY2(θ) ≤ −c|θ−θ0|2.
Then, �2 = −∂2θY2(θ0) is positive definite, since Y2(θ0) = 0 and ∂θY2(θ0) = 0.

Therefore, a similar estimate toSect. 3.3, P-tightness of {(nhn)−1 supθ |∂3θ H2
n (θ)|}n ,

and the equation −(nhn)−1∂2θ H2
n (θ0)

P→ �2 yield

√
Tn(θ̂n − θ0)

d→ N (0, �−1
2 ).
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(3.40) and a similar equation for
√

nhn(θ̂n − θ0) yield

(
√

n(σ̂n − σ0),
√

Tn(θ̂n − θ0)) = (n−1/2�−1
1 ∂σ H1

n (σ0), T −1/2
n �−1

2 ∂θ H2
n (θ0)) + op(1)

=
Ln∑

k=1

(�−1
1 Xk, �

−1
2 Ẋk) + op(1). (3.60)

Then, since
∑Ln

k=1 Ek[XkẊk] = 0, we obtain

(
√

n(σ̂n − σ0),
√

nhn(θ̂n − θ0))
d→ N (0, �−1).

��3.6 Proofs of the results in Sects. 2.3 and 2.4

Proof of Theorem 2.5 Let σtu = σ0 + tεnu for u ∈ R
d and t ∈ [0, 1], and let

Hn(σ, θ) = −1

2
X̄(θ)	S−1

n (σ )X̄(θ) − 1

2
log det Sn(σ ).

Then, we have

Hn(σu, θu)

= u	εn

∫ 1

0
∂α Hn(σtu, θtu)dt

= u	εn∂α Hn(σ0, θ0) + 1

2
u	εn∂

2
α Hn(σ0, θ0)εnu

+
∑
i, j,k

∫ 1

0

(1 − s)2

2
∂αi ∂α j ∂αk Hn(σsu, θsu)ds[εnu]i [εnu] j [εnu]k .

By similar arguments to Propositions 3.8 and 3.14, and Sects. 3.4 and 3.5, we obtain

∑
i, j,k

∫ 1

0

(1 − s)2

2
∂αi ∂α j ∂αk Hn(σsu, θsu)ds[εnu]i [εnu] j [εnu]k

P→ 0,

�n := εn∂α Hn(σ0, θ0)
d→ N (0, Ed),

−εn∂2α Hn(σ0, θ0)εn
P→ Ed .

Therefore, we have the desired conclusion. ��
Remark 3.18 We can show that (σ̂n, θ̂n) is a regular estimator by the proof of Theo-
rem 2.5, (3.60), and Theorem 2 in Jeganathan (1982).

Outline of the proof of Proposition 2.7
The proof is similar to the proof of Proposition 6 in Ogihara and Yoshida (2014).
P-tightness of {hn Ml,qn+1}∞n=1 immediately follows from (B1-1). Fix 1 ≤ j ≤ qn .
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Then, using the mixing property (2.4) for N n,l
t , we obtain the following result; there

exists η > 0, such that for any q ≥ 4, there exists Cq > 0 that does not depend on j ,
such that

E
[∣∣hn tr(E1

( j)(GG	)p) − E[hn tr(E1
( j)(GG	)p)]∣∣q] ≤ Cq(p + 1)q−1hqη

n .

(The above inequality corresponds to (31) in Ogihara and Yoshida (2014). This is
obtained by defining bn = h−1

n , tk = s j−1 + k[h−1
n ]−1(s j − s j−1) for 0 ≤ k ≤

[h−1
n ], and X ′

k = tr(E1
( j,k)(GG	)p)1Ap

k,bδ′
n

− E[tr(E1
( j,k)(GG	)p)1Ap

k,bδ′
n

] in the proof

of Proposition 6 in Ogihara and Yoshida (2014), where E l
( j,k) is an Ml × Ml matrix

satisfying [E l
( j,k)]i i ′ = 1 if i = i ′ and sup I l

i ∈ (tk−1, tk], and otherwise, [E l
( j,k)]i i ′ =

0.)
Therefore, by setting sufficiently large q, so that nh1+qη

n → 0, we have

E

[
max

1≤ j≤qn

∣∣hn tr(E1
( j)(GG	)p) − E[hn tr(E1

( j)(GG	)p)]∣∣q]

≤ E

[ qn∑
j=1

∣∣hn tr(E1
( j)(GG	)p) − E[hn tr(E1

( j)(GG	)p)]∣∣q]

= O(qn · hqη
n ) → 0.

Here, we used that for any partition (sk)
∞
k=0 ∈ S, we have qn ≤ nhn/ε + 1 with ε =

infk≥1 |sk − sk−1| > 0, which implies qn = O(nhn). Together with the assumptions,
we obtain the conclusion.
Outline of the proof of Proposition 2.8
Similarly to the previous proposition, using the idea of Proposition 6 in Ogihara and
Yoshida (2014) and themixing property (2.4) forN n,l

t , we have that there exists η > 0,
such that for any q ≥ 4, there exists Cq > 0, such that

E
[∣∣I	

1 E1
( j)(GG	)pI1 − E[I	

1 E1
( j)(GG	)pI1]

∣∣q] ≤ Cq(p + 1)q−1hqη
n

for 1 ≤ j ≤ qn . (We define bn and tk the same as the previous proposition, and define

X ′
k = [hn]−1I	

1 E1
( j,k)(GG	)pI11Ap

k,bδ′
n

− E[[hn]−1I	
1 E1

( j,k)(GG	)pI11Ap

k,bδ′
n

].)

Together with the assumptions and similar estimates for I1E1
( j)(GG	)pGI2 and

I2E2
( j)(G

	G)pI2, we obtain the conclusion.
Outline of the proof of Proposition 2.9
We can show the results by a similar approach to the proof of Proposition 9 in Ogihara
and Yoshida (2014). Roughly speaking, under (B2-q), the probability P(N n,l

t+Nhn
−
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N n,l
t = 0) is small enough to estimate the denominator of

∑
i, j

|I 1i ∩ I 2j |2
|I 1i ||I 2j |

for sufficiently large N . Then,weobtain estimates for the numerator using an inequality
x21 + · · · + x2n ≥ R2/n when x1 + · · · + xn = R.

Proof of Lemma 2.10 We only show

max
1≤k≤qn

|hn E[tr(E1
(k)(GG	)p)] − a1

p(sk − sk−1)| → 0.

The other results are similarly obtained.
(2.4) is satisfied, because αn

k ≤ c1e−c2k for some positive constants c1 and c2.

Let τ̄ l
i be i-th jump time of N̄ l . Then, we have Sn,l

i = hn τ̄
l
i . Let Ḡ be a matrix with

infinity size defined by

[Ḡ]i j = |(τ̄ 1i−1, τ̄
1
i ] ∩ (τ̄ 2j−1, τ̄

2
j ]|√

τ̄ 1i − τ̄ 1i−1

√
τ̄ 2j − τ̄ 2j−1

for i, j ≥ 1.
For k ∈ N, let

G
p
k =

∑
i;τ̄ 1i−1∈[k−1,k)

[(ḠḠ	)p]i i , G
n,p
k =

∑
i;Sn,1

i−1∈[(k−1)hn ,khn)

[(GG	)p]i i .

The following idea is based on Section 7.5 of Ogihara and Yoshida (2014). Roughly
speaking, if there are sufficient observations around the interval [k−1, k), we can apply
mixing property of N̄ n,l

t toGp
k . On the following sets Ap

k,r and Ā p
k,r , we have sufficient

observations ofN n,l and N̄ l . Let �̄r
j,tU = Ut+r j −Ut+r( j−1) for a stochastic process

(Ut )t≥0, and let

Ap
k,r =

⋂
l=1,2

{ ⋂
1≤ j≤2p+1
tk+r jhn≤Tn

{�̄rhn
j,tk

N n,l > 0} ∩
⋂

−2p≤ j≤0
tk−1+r( j−1)hn≥0

{�̄rhn
j,tk−1

N n,l > 0}
}
,

Ā p
k,r =

⋂
l=1,2

{ ⋂
1≤ j≤2p+1

{�̄r
j,kN̄ l > 0} ∩

⋂
−2p≤ j≤0

k−1+r( j−1)≥0

{�̄r
j,k−1N̄ l > 0}

}
. (3.61)

Then, we obtain

E[Gp
k 1 Ā p

k,r
] = E[Gp

k′1 Ā p
k′,r

] if k ∧ k′ ≥ r p + 1,
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E[Gn,p
k 1Ap

k,r
] = E[Gn,p

k′ 1Ap
k′,r

] if r p + 1 ≤ k, k′ ≤ n − r p.

We also have P(( Ā p
k,r )

c) ≤ C(p + 1)r−q by (B2-q). For any ε > 0, there exists
r > 0, such that

P(( Ā p
k,r )

c) < ε/2. (3.62)

Therefore, {E[Gp
k ]}k is a Cauchy sequence, and hence, the limit a1

p = limk→∞ E[Gp
k ]

exists for p ∈ N. Moreover, we see existence of

al
0 = lim

k→∞ E[N̄ l
k − N̄ l

k−1] = E[N̄ l
1 − N̄ l

0]

for l ∈ {1, 2}.
Furthermore, for any ε > 0, there exists r > 0, such that

P(( Ā p
k,r )

c) < ε and |E[Gp
k ] − a1

p| < ε (3.63)

for k ≥ [r p]. We also have

E[Gp
k 1 Ā p

k,r
] = [Gn,p

k 1Ap
k,r

] (3.64)

for r p + 1 ≤ k ≤ n − r p, since

sup I l
i ∈ (s j−1, s j ] ⇐⇒ τ̄ l

i ∈ (h−1
n s j−1, h−1

n s j ].

Let r j = [h−1
n s j ]. Then, since |Gn,p

k | ≤ ∑
i;Sn,l

i−1∈((k−1)hn ,khn ] 1 ≤ E[N̄ 1
1 ], (3.63),

(3.64), and the Cauchy–Schwarz inequality yield

|hn(s j − s j−1)
−1E[tr(E( j)(GG	)p)] − a1

p|

≤
∣∣∣∣hn(s j − s j−1)

−1E

[ r j∑
k=r j−1+1

G
n,p
k

]
− a1

p

∣∣∣∣ + 2hn(s j − s j−1)
−1E[N̄ 1

1 ]

≤
∣∣∣∣ 1

r j − r j−1
E

[ r j∑
k=r j−1+1

G
n,p
k

]
− a1

p

∣∣∣∣ + Chn(s j − s j−1)
−1

≤ 1

r j − r j−1

r j∑
k=r j−1+1

∣∣E[Gn,p
k 1Ap

k,h
] + E[Gn,p

k 1(Ap
k,h)c ] − a1

p

∣∣ + Chn(s j − s j−1)
−1

≤ 1

r j − r j−1

r j∑
k=r j−1+1

(∣∣E[Gp
k ] − a1

p

∣∣ + 2E[(N̄ 1
1 )2]1/2√ε

) + Chn(s j − s j−1)
−1

≤ ε + 2E[(N̄ 1
1 )2]1/2√ε + Chn(s j − s j−1)

−1

for 1 < j < qn . To get the corresponding inequality for j = 1, qn , we replace the
summation range of k in the above inequality with the range from r j−1 + [r p] + 2
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to r j when j = 1, and with the range from r j−1 to r j − [r p] − 1 when j = qn .
Boundedness of {E[hn Ml,qn+1]}n∈N is shown using the same techniques. Then, we
have the conclusion. ��
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