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Abstract
We construct estimators for the parameters of a parabolic SPDE with one spatial
dimension based on discrete observations of a solution in time and space on a bounded
domain. We establish central limit theorems for a high-frequency asymptotic regime.
The asymptotic variances are shown to be substantially smaller compared to existing
estimation methods. Moreover, asymptotic confidence intervals are directly feasible.
Our approach builds upon realized volatilities and their asymptotic illustration as a
response of a log-linear model with spatial explanatory variable. This yields efficient
estimators based on realized volatilitieswith optimal rates of convergence andminimal
variances. We demonstrate efficiency gains compared to previous estimation methods
numerically and in Monte Carlo simulations.

Keywords Central limit theorem under dependence · High-frequency data · Least
squares estimation · SPDE

Mathematics Subject Classification 62M10 · 60H15 · 62F12

1 Introduction

Dynamic models based on stochastic partial differential equations (SPDEs) are
recently of great interest, in particular their calibration based on statistics, see, for
instance, Hambly and Søjmark (2019), Fuglstad and Castruccio (2020), Altmeyer
and Reiß (2021) and Altmeyer et al. (2022). Bibinger and Trabs (2020), Cialenco
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and Huang (2020) and Chong (2020) have independently of one another studied the
parameter estimation for parabolic SPDEs based on power variation statistics of time
increments when a solution of the SPDE is observed discretely in time and space.
Bibinger and Trabs (2020) pointed out the relation of their estimators to realized
volatilities which are well-known as key statistics for financial high-frequency data
in econometrics. We develop estimators based on these realized volatilities which
significantly improve upon the M-estimation from Bibinger and Trabs (2020). Our
new estimators attain smaller asymptotic variances, they are explicit functions of real-
ized volatilities and we can readily provide asymptotic confidence intervals. Since
generalized estimation approaches for small noise asymptotics in Kaino and Uchida
(2021a), rate-optimal estimation for more general observation schemes in Hildebrandt
and Trabs (2021), long-span asymptotics in Kaino and Uchida (2021b), and with two
spatial dimensions in Tonaki et al. (2022) have been built upon the M-estimator from
Bibinger and Trabs (2020), we expect that our new method is of interest to further
improve parameter estimation for SPDEs. Our theoretical framework is the same as
in Bibinger and Trabs (2020). We consider for (t, y) ∈ R+ × [0, 1] a linear parabolic
SPDE

dXt (y) =
(

θ2
∂2Xt (y)

∂ y2
+ θ1

∂Xt (y)

∂ y
+ θ0Xt (y)

)
dt + σ dBt (y), (1)

with one space dimension. The bounded spatial domain is the unit interval [0, 1], which
can be easily generalized to some arbitrary bounded interval. Although estimation
methods in the case of an unbounded spatial domain are expected to be similar, the
theory is significantly different, see Bibinger and Trabs (2019). (Bt (y)) is a cylindrical
Brownian motion in a Sobolev space on [0, 1]. The initial value X0(y) = ξ(y) is
assumed to be independent of (Bt (y)). We work with Dirichlet boundary conditions:
Xt (0) = Xt (1) = 0, for all t ∈ R+. A specific example is the SPDE

dXt (y) =
(

∂Xt (y)

∂ y
+ κ

2

∂2Xt (y)

∂ y2

)
dt + σ dBt (y), (2)

used for the term structure model of Cont (2005).
Existence and uniqueness of a mild solution of the SPDE (1) written dXt (y) =

Aθ Xt (y) dt + σ dBt (y), with differential operator Aθ , which is given by

Xt = exp(t Aθ ) ξ + σ

∫ t

0
exp ((t − s) Aθ ) dBs, (3)

with aBochner integral andwhere exp(t Aθ ) is the strongly continuous heat semigroup,
is a classical result, see Chapter 6.5 in Da Prato and Zabczyk (1992). We focus on
parameter estimation based on discrete observations of this solution (Xt (y)) on the
unit square (t, y) ∈ [0, 1] × [0, 1]. The spatial observation points y j , j = 1, . . . ,m,
have at least distance δ > 0 from the boundaries at which the solution is zero by the
Dirichlet conditions.
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Assumption 1 We assume equidistant high-frequency observations in time ti = i�n ,
i = 0, . . . , n,where�n = 1/n → 0, asymptotically.Weconsider the sameasymptotic
regime as in Bibinger and Trabs (2020), wherem = mn → ∞, such thatmn = O(nρ),
for some ρ ∈ (0, 1/2), and m · min j=2,...,m

∣∣y j − y j−1
∣∣ is uniformly in n bounded

from below and from above.

This asymptotic regimewithmore observations in time than in space is natural formost
applications. Hildebrandt and Trabs (2021) andBibinger and Trabs (2020) showed that
in this regime the realized volatilities

RVn(y j ) =
n∑

i=1

(Xi�n (y j ) − X(i−1)�n (y j ))
2, j = 1, . . . ,m,

are sufficient to estimate the parameters with the optimal rate (mnn)−1/2, while
Hildebrandt and Trabs (2021) establish different optimal convergence rates when the
condition mn/

√
n → 0 is violated and propose rate-optimal estimators for this setup

based on double increments in space and time. Our proofs and results could be gen-
eralized to non-equidistant observations in time, when their distances decay at the
same order, but the observation schemes would affect asymptotic variances and thus
complicate the results. Instead, there is no difference between equidistant and non-
equidistant observations in space, since the spatial covariances will not be used for
estimation and are asymptotically negligible for our results under Assumption 1.

The natural parameters, depending on θ1 ∈ R, and θ2 > 0, σ > 0 from (1), which
are identifiable under high-frequency asymptotics are

σ 2
0 := σ 2/

√
θ2 and κ := θ1/θ2, (4)

the normalized volatility parameter σ 2
0 , and the curvature parameter κ . The parameter

θ0 ∈ R could be estimated consistently only from observations on [0, T ], as T → ∞.
This is addressed in Kaino and Uchida (2021b).

While Bibinger and Trabs (2020) focused first on estimating the volatility when the
parameters θ1 and θ2 are known, we consider the estimation of the curvature parameter
κ in Sect. 2. We present an estimator for known σ 2

0 and a robustification for the case
of unknown σ 2

0 . In Sect. 3 we develop a novel estimator for both parameters, (σ 2
0 , κ),

which improves the M-estimator from Section 4 of Bibinger and Trabs (2020) signifi-
cantly. It is based on a log-linear model for RVn(y)with explanatory spatial variable y.
Section4 is on the implementation andnumerical results.Wedrawanumerical compar-
ison of asymptotic variances and show the new estimators’ improvement over existing
methods. We demonstrate significant efficiency gains for finite-sample applications in
a Monte Carlo simulation study. All proofs are given in Sect. 5.

2 Curvature estimation

Section 3 of Bibinger and Trabs (2020) addressed the estimation of σ 2 in (1) when
θ1 and θ2 are known. Here, we focus on the estimation of κ from (4), first when σ 2

0
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is known and then for unknown volatility. The volatility estimator by Bibinger and
Trabs (2020), based on observations in one spatial point y j , used the realized volatility
RVn(y j ). The central limit theorem with

√
n rate for this estimator from Theorem 3.3

in Bibinger and Trabs (2020) yields equivalently that

√
n

(
RVn(y j )√

n
− exp(−κ y j )σ 2

0√
π

)
d−→ N (

0, �σ 4
0 exp(−2κ y j )

)
, (5)

with� ≈ 0.75 a numerical constant analytically determined by a series of covariances.
Since the marginal processes of Xt (y) in time have regularity 1/4, the scaling factor
1/

√
n for RVn(y j ) is natural. To estimate κ consistently we need observations in at

least two distinct spatial points. A key observation in Bibinger and Trabs (2020) was
that under Assumption 1, realized volatilities in different spatial observation points
de-correlate asymptotically. From (5) we can hence write

RVn(y j )√
n

= exp(−κ y j )
σ 2
0√
π

+ exp(−κ y j ) σ 2
0

√
�

n
Z j + Rn, j (6)

with Z j i.i.d. standard normal and remainders Rn, j , which turn out to be asymptotically
negligible for the asymptotic distribution of the estimators. The equation

log

(
RVn(y j )√

n

)
= −κ y j + log

( σ 2
0√
π

)
+ log

(
1 + √

�π�n Z j
)

+ log

(
1 + Rn, j exp(κ y j )

√
πσ−2

0

1 + √
�π�n Z j

)
, (7)

and an expansion of the logarithm yield an approximation

κ ≈ − log
(
�

1/2
n RVn(y j )

) + log(σ 2
0 ) − log(

√
π)

y j
+

√
�π�n

y j
Z j . (8)

In the upcoming example, we briefly discuss optimal estimation in a related simple
statistical model.

Example 1 Assume independent observations Yi ∼ N (μ, ς2
i ), i = 1, . . . ,m, where

μ is unknown and ς2
i > 0 are known. The maximum likelihood estimator (mle) is

given by

μ̂ =
∑m

i=1 Yiς
−2
i∑m

i=1 ς−2
i

. (9)

The expected value and variance of this mle are

E[μ̂] = μ and Var(μ̂) =
(

m∑
i=1

ς−2
i

)−1

.
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Note that ς−2
i can be viewed as Fisher information of observing Yi . The efficiency of

the mle in this model is implied by standard asymptotic statistics.

If we have independent observations with the same expectation and variances as in
Example 1, but not necessarily normally distributed, the estimator μ̂ from (9) can be
shown to be the linear unbiased estimator with minimal variance.

If σ 2
0 is known, this and (8) motivate the following curvature estimator:

κ̂n,m =
−∑m

j=1 log
(
RVn(y j )√

n

)
y j + ∑m

j=1 log
(

σ 2
0√
π

)
y j∑m

j=1 y
2
j

. (10)

Theorem 1 Grant Assumptions 1 and 2 with y1 = δ, ym = 1 − δ, and δ ∈ (0, 1/2).
Then, the estimator (10) satisfies, as n → ∞, the central limit theorem (clt)

√
nmn

(
κ̂n,m − κ

) d−→ N
(
0,

3�π

1 − δ + δ2

)
. (11)

Typically δ will be small and the asymptotic variance close to 3�π . Assumption
2 poses a mild restriction on the initial condition ξ and is stated at the beginning of
Sect. 5. The logarithm yields a variance stabilizing transformation for (5) and the delta-
method readily a clt for log realized volatilities with constant asymptotic variances.
This implies a clt for the estimator as �n → 0, and when 1 < m < ∞ is fix. The
proof of (11) is, however, not obvious and based on an application of a clt for weakly
dependent triangular arrays by Peligrad and Utev (1997).

If σ 2
0 is unknown the estimator (10) is infeasible. Considering differences for differ-

ent spatial points in (7) yields a natural generalization of Example 1 and the estimator
(10) for this case:

κ̂n,m =
∑

j �=l log
(
RVn(y j )
RVn(yl )

)
(yl − y j )∑

j �=l(y j − yl)2
. (12)

This estimator achieves as well the parametric rate of convergence
√
nmn , it is asymp-

totically unbiased and satisfies a clt. Its asymptotic variance is, however, much larger
than the one in (11).

Theorem 2 Grant Assumptions 1 and 2 with y1 = δ, ym = 1 − δ, and δ ∈ (0, 1/2).
Then, the estimator (12) satisfies, as n → ∞, the clt

√
nmn

(
κ̂n,m − κ

) d−→ N
(
0,

12�π

(1 − 2δ)2

)
. (13)

In particular, consistency of the estimator holds as n → ∞, also ifm ≥ 2 remains fix.
The clts (11) and (13) are feasible, i.e. the asymptotic variances are known constants
and do not hinge on any unknown parameters. Hence, asymptotic confidence intervals
can be constructed based on the theorems.
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3 Asymptotic log-linear model for realized volatilities and least
squares estimation

Applying the logarithm to (6) and a first-order Taylor expansion

log(a + x) = log(a) + x

a
+ O

( x2
a2

)
, x → 0,

yield an asymptotic log-linear model

log

(
RVn(y j )√

n

)
= −κ y j + log

(
σ 2
0√
π

)
+

√
�π

n
Z j + R̃n, j (LLM)

for the rescaled realized volatilities, with Z j i.i.d. standard normal and remainders
R̃n, j , which turn out to be asymptotically negligible for the asymptotic distribution
of the estimators. When we ignore the remainders R̃n, j , the estimation of −κ is then
directly equivalent to estimating the slope parameter in a simple ordinary linear regres-
sionmodelwith normal errors. The intercept parameter in themodel (LLM) is a strictly
monotone transformation

α(σ 2
0 ) = log

( σ 2
0√
π

)
(14)

of σ 2
0 . To exploit the analogy of (LLM) to a log-linear model, it is useful to recall some

standard results on least squares estimation for linear regression.

Example 2 In a simple linear ordinary regression model

Yi = α + βxi + εi , i = 1, . . . ,m,

with white noise εi , homoscedastic with variance Var(εi ) = σ 2, the least squares
estimation yields

β̂ =
∑m

j=1(x j − x̄)(Y j − Ȳ )∑m
j=1(x j − x̄)2

, (15a)

α̂ = Ȳ − β̂ x̄, (15b)

with the sample averages Ȳ = m−1 ∑m
j=1 Y j , and x̄ = m−1 ∑m

j=1 x j . The estimators
(15a) and (15b) are known to be BLUE (best linear unbiased estimators) by the famous
Gauß-Markov theorem, i.e. they haveminimal variances among all linear and unbiased

estimators. In the normal linear model, if εi
i .i .d.∼ N (0, σ 2), the least squares estimator

coincides with the mle and standard results imply asymptotic efficiency. The variance-
covariance matrix of (α̂, β̂) is well-known and
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Var(β̂) = σ 2∑m
j=1(x j − x̄)2

, (15c)

Var(α̂) = σ 2 ∑m
j=1 x

2
j

m
∑m

j=1(x j − x̄)2
, (15d)

Cov(α̂, β̂) = − σ 2 x̄∑m
j=1(x j − x̄)2

. (15e)

For the derivation of (15a)–(15e) in this example see, for instance, Example 7.2-1 of
Zimmerman (2020).

We give this elementary example, since our estimator and the asymptotic variance-
covariance matrix of our estimator will be in line with the translation of the example
to our model (LLM).

The M-estimation of Bibinger and Trabs (2020) was based on the parametric
regression model

RVn(y j )√
n

= σ 2
0√
π
exp(−κ y j ) + δn, j , (16)

with non-standard observation errors (δn, j ). The proposed estimator

argmin
s,k

m∑
j=1

(
RVn(y j )√

n
− s2√

π
exp(−ky j )

)2

(17)

was shown to be rate-optimal and asymptotically normally distributed in Theorem 4.2
of Bibinger and Trabs (2020). In view of the analogy of (LLM) to an ordinary linear
regression model, however, it appears clear that the estimation method by Bibinger
and Trabs (2020) is inefficient, since ordinary least squares is applied to a model
with heteroscedastic errors. In fact, generalized least squares could render a more
efficient estimator related to our new methods. In model (16), the variances of δn, j

depend on j via the factor exp(−2κ y j ). This induces, moreover, that the asymptotic
variance-covariance matrix of the estimator (17) depends on the parameter (σ 2

0 , κ). In
line with the least squares estimator from Example 2, the asymptotic distribution of
our estimator will not depend on the parameter.

Writing y = m−1
n

∑mn
j=1 y j , our estimator for κ reads

κ̂LS
n,m =

∑mn
j=1 log

(
RVn(y j )√

n

)
y j − y

∑mn
j=1 log

(
RVn(y j )√

n

)
mn(y)2 − ∑mn

j=1 y
2
j

= −
∑mn

j=1

(
log

(RVn(y j )√
n

) −
(
m−1

n
∑mn

u=1 log
(RVn(yu)√

n

))) (
y j − y

)
∑mn

j=1

(
y j − y

)2 . (18a)
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The estimator for the intercept is

α̂LS(σ 2
0 ) = yκ̂LS

n,m + m−1
n

mn∑
j=1

log
(RVn(y j )√

n

)

=
y
(∑mn

j=1 log
(RVn(y j )√

n

)
y j

)
− m−1

n

(∑mn
j=1 log

(
RVn(y j )√

n

)) (∑mn
j=1 y

2
j

)
mn(y)2 − ∑mn

j=1 y
2
j

.

(18b)

We shall prove that the OLS-estimator (18a) for κ in our log-linear model is, in fact,
identical to the estimator κ̂n,m from (12).

Theorem 3 Grant Assumptions 1 and 2 with y1 = δ, ym = 1 − δ, and δ ∈ (0, 1/2).
The estimators (18a) and (18b) satisfy, as n → ∞, the bivariate clt

√
nmn

((
κ̂LS
n,m

α̂LS(σ 2
0 )

)
−

(
κ

α(σ 2
0 )

))
d−→ N (0, �) ,

with the asymptotic variance-covariance matrix

� =
( 12�π

(1−2δ)2
6�π

(1−2δ)2
6�π

(1−2δ)2
4�π 1−δ+δ2

(1−2δ)2

)
.

In particular, consistency of the estimators holds as n → ∞, also ifm ≥ 2 remains fix.
Different to the typical situation with an unknown noise variance in Example 2, the
noise variance in (LLM) is a known constant. Therefore, different to Theorem 4.2 of
Bibinger and Trabs (2020), our central limit theorem is readily feasible and provides
asymptotic confidence intervals.

An application of the multivariate delta method yields the bivariate clt for the
estimation errors of the two-point estimators.

Corollary 4 Under the assumptions of Theorem 3, it holds that

√
nmn

((
κ̂LS
n,m

(σ̂ 2
0 )LS

)
−

(
κ

σ 2
0

))
d−→ N

(
0, �̃

)
,

where (σ̂ 2
0 )LS is obtained from α̂LS(σ 2

0 ) with the inverse of (14), with

�̃ =
⎛
⎝ 12�π

(1−2δ)2
6σ 2

0 �π

(1−2δ)2
6σ 2

0 �π

(1−2δ)2
4σ 4

0 �π(1−δ+δ2)

(1−2δ)2

⎞
⎠ .

Here, naturally the parameter σ 2
0 occurs in the asymptotic variance of the estimated

volatility and in the asymptotic covariance. The transformation or plug-in, however,
still readily yield asymptotic confidence intervals.
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Fig. 1 Top panel: Comparison of asymptotic variances of κ̂n,m from (10) (for known σ 2
0 ), κ̂

LS
n,m from (18a)

and the estimator from Bibinger and Trabs (2020), for δ = 0.05, and for different values of κ . Lower panel:
Ratio of asymptotic variances of new method using (18a) and (18b) versus Bibinger and Trabs (2020), left
for estimating κ , right for σ 2

0

4 Numerical illustration and simulations

4.1 Numerical comparison of asymptotic variances

The top panel of Fig. 1gives a comparison of the asymptotic variances for curvature
estimation, κ , of our new estimators to the minimum contrast estimator of Bibinger
and Trabs (2020). We fix δ = 0.05. While the asymptotic variance-covariance matrix
of our new estimator is rather simple and explicit, the one in Bibinger and Trabs (2020)
is more complicated but can be explicitly computed from their Eqs. (21)–(23).

The uniformly smallest variance is the one of κ̂n,m from (10). It is visualized with
the yellow curve which is constant in κ , i.e. the asymptotic variance does not hinge on
the parameter. This estimator, however, requires that the volatility σ 2

0 is known. It is
thus fair to compare the asymptotic variance of the minimum contrast estimator from
Bibinger and Trabs (2020) only to the least squares estimator based on the log-linear
model, since both work for unknown σ 2

0 . While the asymptotic variance of the new
estimator, visualized with the black curve, does not hinge on the parameter value, the
variance of the estimator by Bibinger and Trabs (2020) (brown curve) is, in particular,
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large when κ has a larger distance to zero. All curves in the top panel of Fig. 1 do
not depend on the value of σ 2

0 . Our least squares estimator in the log-linear model
uniformly dominates the estimator from Bibinger and Trabs (2020). For δ → 0, the
asymptotic variances of the two least squares estimators would coincide in κ = 0.
However, due to the different dependence on δ, the asymptotic variance of the estimator
from Bibinger and Trabs (2020) is larger than the one of our new estimator also in
κ = 0. The lower panel of Fig. 1 shows the ratios of the asymptotic variances of
the two least squares estimators for both unknown parameters. Left we see the ratio
for curvature estimation determined by the ratio of the black and brown curves from
the graphic in the top panel. Right we see the ratio of the asymptotic variances for
estimating σ 2

0 , as a function depending on different values of κ . This ratio does not
hinge on the value of σ 2

0 .

4.2 Monte Carlo simulation study

The simulation of the SPDE is based on its spectral decomposition (21) and an
exact simulation of the Ornstein-Uhlenbeck coordinate processes. In Bibinger and
Trabs (2020) a truncation method was suggested to approximate the infinite series∑∞

k=1 xk(t)ek(y) in (21) by a finite sum
∑K

k=1 xk(t)ek(y), up to some spectral cut-off
frequency K which needs to be set sufficiently large. In Kaino and Uchida (2021b)
this procedure was adopted, but they observed that choosing K too small results in a
strong systematic bias of simulated estimates. A sufficiently large K depends on the
number of observations, but even for moderate sample sizes K = 105 was recom-
mended by Kaino and Uchida (2021b). This leads to tedious, long computation times
as reported in Kaino and Uchida (2021b). A nice improvement for observations on
an equidistant grid in time and space has been presented by Hildebrandt (2020) using
a replacement method instead of the truncation method. The replacement method
approximates addends with large frequencies in the Fourier series using a suitable set
of independent random vectors instead of simply cutting off these terms. The spectral
frequency to start with replacement can be set much smaller than the cut-off K for
truncation. We thus use Algorithm 3.2 from Hildebrandt (2020) here, which allows
to simulate a solution of the SPDE with the same precision as the truncation method
while reducing the computation time considerably. For instance, for n = 10,000 and
m = 100, the computation time with a standard computer of the truncation method is
almost 6h while the replacement method requires less than oneminute. In Hildebrandt
(2020) we also find bounds for the total variation distance between approximated and
true distribution allowing to select an appropriate trade-off between precision and
computation time. We implement the method with 20 · mn as the spectral frequency
to start with replacement. We simulate observations on equidistant grid points in time
and space. We illustrate results for a spatial resolution with m = 11, and a temporal
resolution with n = 1000. This is in line with Assumption 1. We simulated results
for m = 100 and n = 10,000, as well. Although the ratio of spatial and temporal
observations is more critical then, the normalized estimation results were similar. If
the condition mn n−1/2 → 0 is violated, however, we see that the variances of the
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Fig. 2 Comparison of empirical distributions of normalized estimation errors for κ from simulation with
n = 1000, m = 11, σ 2

0 = 1, κ = 1 in the left two columns and κ = 6 in the right two columns. Grey is for

κ̂LS
n,m , brown for the estimator by Bibinger and Trabs (2020) and yellow for κ̂n,m (color figure online)

estimators decrease at a slower rate than (n ·mn)
−1/2. While the numerical computa-

tion of estimators as in Bibinger and Trabs (2020) relies on optimization algorithms,
the implementation of our estimators is simple, since they rely on explicit transfor-
mations of the data. We use the programming language R and provide a package for
these simulations on github.1

Figure 2 compares empirical distributions of normalized estimation errors

1. of κ̂LS
n,m (grey) versus Bibinger and Trabs (2020) (brown) and

2. of κ̂n,m with known σ 2
0 (yellow) compared to κ̂LS

n,m (grey),

for small curvature κ = 1 in the left two columns, and larger curvature κ = 6 in
the right two columns. The plots are based on a Monte Carlo simulation with 1000
iterations, and for n = 1000, m = 11, and σ 2

0 = 1. We use the standard R-density
plots with Gaussian kernels and bandwidths selected by Silverman’s rule of thumb.
The dotted lines give the corresponding densities of the asymptotic limit distributions.
We can report that analogous plots for different parameter values of σ 2

0 look (almost)
identical. With increasing values of n and m, the fit of the asymptotic distributions
becomes more accurate, otherwise the plots look as well similar as long as m ≤ √

n.
As expected, the efficiency gains of the new method are much more relevant for

larger curvature. In particular, in the third plot from the left for κ = 6, the new
estimator outperforms the one from Bibinger and Trabs (2020) significantly. In the
first plot from the left for κ = 1, instead, the two estimators have similar empirical
distributions. The fit of the asymptotic normal distributions is reasonably well for all
estimators. This is more clearly illustrated in the QQ-normal plots in Fig. 4. Using the
true value of σ 2

0 , as expected, the estimator κ̂n,m outperforms the other methods. We
compare it to our new least squares estimator in the second and fourth plots from the
left.

Figure3draws a similar comparison of estimated volatilities σ 2
0 , for unknown κ ,

using the estimator (18b) from the log-linear model and the estimator from Bibinger
and Trabs (2020). While for κ = 1 in the left panel the performance of both methods
is similar, for κ = 6 in the right panel our new estimator outperforms the previous one.
Figure5gives the QQ-normal plots for the estimation of σ 2

0 . All plots are based on
1000 Monte Carlo iterations. The QQ-normal plots compare standardized estimation

1 https://github.com/pabolang/ParabolicSPDEs.
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Fig. 3 Comparison of empirical distributions of normalized estimation errors for σ 2
0 from simulation with

n = 1000, m = 11, σ 2
0 = 1, κ = 1 in the left panel and κ = 6 in the right panel. Grey is for (σ̂ 2

0 )LS , and
brown for the estimator by Bibinger and Trabs (2020) (color figure online)

Fig. 4 QQ-normal plots for normalized estimation errors for κ from simulation with n = 1000, m = 11,
σ 2
0 = 1, κ = 1 in the left panel and κ = 6 in the right panel. Brown (top) is the estimator from Bibinger

and Trabs (2020), dark grey is for (18a) and yellow (bottom) for (10) (color figure online)

Fig. 5 QQ-normal plots for normalized estimation errors for σ 2
0 from simulation with n = 1000, m = 11,

σ 2
0 = 1, κ = 1 in the left panel and κ = 6 in the right panel. Brown (top) is the estimator from Bibinger

and Trabs (2020) and dark grey is for the estimator using (18b) (color figure online)

errors to the standard normal. For the estimator from Bibinger and Trabs (2020) we
use an estimated asymptotic variance based on plug-in, while for our new estimators
the asymptotic variances are known constants.

5 Proofs of the theorems

5.1 Preliminaries

The asymptotic analysis is based on the eigendecomposition of the SPDE. The
eigenfunctions (ek) and eigenvalues (−λk) of the self-adjoint differential operator
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Aθ = θ0 + θ1
∂

∂ y
+ θ2

∂2

∂ y2

are given by

ek(y) = √
2 sin

(
πky

)
exp

(
− θ1

2θ2
y
)
, y ∈ [0, 1], (19)

λk = −θ0 + θ21

4θ2
+ π2k2θ2, k ∈ N, (20)

where all eigenvalues are negative and (ek)k≥1 form an orthonormal basis of theHilbert
space Hθ := { f : [0, 1] → R : ‖ f ‖θ < ∞} with

〈 f , g〉θ :=
∫ 1

0
eyθ1/θ2 f (y)g(y) dy and ‖ f ‖2θ := 〈 f , f 〉θ .

Let ξ ∈ Hθ be the initial condition. We impose the same mild regularity condition on
X0 = ξ as in Assumption 2.2 of Bibinger and Trabs (2020).

Assumption 2 In (1) we assume that

(i) either E[〈ξ, ek〉θ ] = 0 for all k ≥ 1 and supk λkE[〈ξ, ek〉2θ ] < ∞ holds true or
E[〈Aθ ξ, ξ 〉θ ] < ∞;

(ii) (〈ξ, ek〉θ )k≥1 are independent.

This assumption is more general than the one in Hildebrandt and Trabs (2021) that
(Xt (y)) is started in equilibrium and satisfied for all sufficiently regular functions ξ .
We refer to Section 2 of Bibinger and Trabs (2020) for more details on the probabilistic
structure.

For the solution Xt (y) from (3), we have the spectral decomposition

Xt (y) =
∑
k≥1

xk(t)ek(y), with xk(t) = 〈Xt , ek〉θ , (21)

in that the coordinate processes xk satisfy the Ornstein-Uhlenbeck dynamics:

dxk(t) = −λk xk(t)dt + σt dW
k
t , xk(0) = 〈ξ, ek〉θ , (22)

with independent one-dimensional Wiener processes {(Wk
t ), k ∈ N}.

We denote for some integrable random variable Z , its compensated version by

Z := Z − E[Z ]. (23)

We use upper-case characters for (compensated) random variables, while the notation
for sample averages, as y, is, except inExample 2 in Sect. 3,with lower-case characters.
The notation (23) is mainly used for RVn(y) in the sequel.
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5.2 Proof of Theorem 1

A first-order Taylor expansion of the logarithm and Proposition 3.1 of Bibinger and
Trabs (2020) yield that

log

(
RVn(y)√

n

)
= log

(
E

[
RVn(y)√

n

]
+

(
RVn(y)√

n
− E

[
RVn(y)√

n

]))

= log

(
e−κ y σ 2

0√
π

+ O(�n)

)
+ RVn(y)

√
n
(
e−κ y σ 2

0√
π

+ O(�n)
) + OP

((
RVn(y)√

n

)2)

= −κ y + log

(
σ 2
0√
π

)
+ O(�n) + RVn(y)

√
πeκ y

√
nσ 2

0

(
1 + O(�n)

) + OP(�n)

= −κ y + log

(
σ 2
0√
π

)
+ RVn(y)√

n

√
πeκ y

σ 2
0

+ OP

(
�n

)
, (24)

for some spatial point y. The remainders called Rn, j in (6), and R̃n, j in (LLM), are
contained in the last two addends. This yields for the estimator (10) that

κ̂n,m = κ −
mn∑
j=1

RVn(y j )√
n

y j eκ y j
√

π

σ 2
0

∑mn
j=1 y

2
j

+ OP(�n), (25)

where we conclude the order of the remainder, since under Assumption 1 it holds that

∑mn
j=1 y j∑mn
j=1 y

2
j

�n = O(�n).

Since under Assumption 1,
√
nmn�n → 0, it suffices to prove a clt for the leading

term from above:

n∑
i=1

ζn,i := √
mn

mn∑
j=1

RVn(y j )

√
π y j eκ y j

σ 2
0

∑mn
j=1 y

2
j

d−→ N
(
0,

3�π

1 − δ + δ2

)
,

where ζn,i includes the i th squared increment of the realized volatility RVn(y j ). Note
that summation over time (increments) is always indexed in i , and summation over
spatial points in j . Although this leading term is linear in the realized volatilities,
we cannot directly adopt a clt from Bibinger and Trabs (2020) due to the different
structures of the weights. Thus, we require an original proof of the clt for which we
can reuse some ingredients from Bibinger and Trabs (2020).

We begin with the asymptotic variance. We can adopt Lemma 6.4 from Bibinger
and Trabs (2020) and Proposition 6.5 and obtain for any η ∈ (0, 1) that

Var

(
1√
n
RVn(y) e

κ y
)

= �σ 4
0

n

(
1 + O(�η

n + �
1/2
n δ−1)

)
, (26)
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Cov

(
1√
n
RVn(y) e

κ y,
1√
n
RVn(u) eκu

)
= O

(
�

3/2
n

(
|y − u|−1 + δ−1

))
, (27)

for any spatial points y and u. We obtain that

lim
n→∞ Var

(
n∑

i=1

ζn,i

)
= lim

n→∞
mnπ

σ 4
0

(∑mn
j=1 y

2
j

)2 Var

⎛
⎝ mn∑

j=1

RVn(y j ) e
κ y j y j

⎞
⎠

= lim
n→∞

nmnπ

σ 4
0

(∑mn
j=1 y

2
j

)2 Var

⎛
⎝ 1√

n

mn∑
j=1

RVn(y j )e
κ y j y j

⎞
⎠

= lim
n→∞

nmnπ

σ 4
0

(∑mn
j=1 y

2
j

)2
⎛
⎝ mn∑

j=1

y2j Var

(
1√
n
RVn(y j ) e

κ y j

)

+
∑
j �=l

y j ylCov

(
1√
n
RVn(y j ) e

κ y j ,
1√
n
RVn(yl) e

κ yl

)⎞
⎠

= lim
n→∞

nmnπ

σ 4
0

(∑mn
j=1 y

2
j

)2
(

�σ 4
0

∑mn
j=1 y

2
j

n

(
1 + O(�η

n)
)

+O
⎛
⎝�

3/2
n

⎛
⎝∑

j �=l

y j yl∣∣y j − yl
∣∣ + m2

nδ
−1

⎞
⎠

⎞
⎠

⎞
⎠

= lim
n→∞

(1 − 2δ)�π

(1−2δ)
mn

∑mn
j=1 y

2
j

(
1 + O(�η

n)
) + O

(
�

1/2
n

(∑
j �=l

y j yl
mn

∣∣y j − yl
∣∣ + mn

δ

))

= lim
n→∞

(1 − 2δ)�π

(1−2δ)
mn

∑mn
j=1 y

2
j

(
1 + O(�η

n)
) + O

(
�

1/2
n

(
mn log(mn) + mn

δ

))

= �π(1 − 2δ)∫ 1−δ

δ
y2dy

= 3�π(1 − 2δ)

(1 − δ)3 − δ3
= 3�π

1 − δ + δ2
.

The assumption that y1 = δ, ym = 1 − δ, is used only for the convergence of the
Riemann sum in the last step. For the covariances, we used Assumption 1 and an
elementary estimate

∑
j �=l

y j yl∣∣y j − yl
∣∣ = O

( mn∑
r=1

mn∑
l=1

(l + r) l

mn r

)
= O(

m2
n + m2

n log(mn)
)
. (28)

Since �
1/2
n mn log(mn) → 0 under Assumption 1, the remainders are negligible.
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Next, we establish a covariance inequality for the empirical characteristic function.
There exists a constant C , such that for all t ∈ R:

∣∣∣Cov
(
exp

(
it Qb

a

)
, exp

(
it Qv

b+u

))∣∣∣ ≤ C t2

u3/4

√
Var(Qb

a)Var(Q
v
b+u), (29)

where Qb
a := ∑b

i=a ζn,i , for natural numbers 1 ≤ a ≤ b < b + u ≤ v ≤ n.
Let u ≥ 2, the case u = 1 can be derived separately and is in fact easier. By the

spectral decomposition (21)

Xi�n (y j ) − X(i−1)�n (y j ) =
∑
k≥1

(
xk(i�n) − xk((i − 1)�n)

)
ek(y j ).

The increments of the Ornstein-Uhlenbeck processes (xk(t)) from (22) contain terms

∫ (i−1)�n

0
e−λk ((i−1)�n−s)(e−λk�n − 1) σdWk

s ,

which depend on the path of (Wk
t , 0 ≤ t ≤ (i − 1)�n). Defining

A2(y j ) =
v∑

i=b+u

(∑
k≥1

(
xk(i�n) − xk((i − 1)�n)

−
∫ b�n

0
e−λk ((i−1)�n−s)(e−λk�n − 1) σdWk

s

)
ek(y j )

)2

,

(30)

we can write with the notation (23) for squared increments

Qv
b+u =

√
mn

√
π

σ 2
0

∑mn
j=1 y

2
j

mn∑
j=1

v∑
i=b+u

(
Xi�n − X(i−1)�n

)2
(y j )y j e

κ y j

=
√
mn

√
π

σ 2
0

∑mn
j=1 y

2
j

mn∑
j=1

(
A1(y j ) + A2(y j )

)
y j e

κ y j

= B1 + B2,

where A1 is defined by A2 and Qv
b+u , and Br , r = 1, 2, to include the sums over Ar .

Analogous terms Ar have been considered in Proposition 6.6 of Bibinger and Trabs
(2020). This decomposition is useful, since B2 is independent of Qb

a . Analogously to
the proof of Proposition 6.6 in Bibinger and Trabs (2020), we have for all j that

Var
(
A1(y j )

) ≤ C̃σ 4(v − b − u + 1)�n

(u − 1)3/2
,
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with some constant C̃ , and from Eq. (59) of Bibinger and Trabs (2020) that

Cov
(
A1(y j ), A1(yl)

) = O
(

�
3/2
n (v − b − u + 1)

(u − 1)3/2
1∣∣y j − yl

∣∣
)

.

Thereby, we obtain that

Var(B1) = πmn

σ 4
0

(∑mn
j=1 y

2
j

)2
( mn∑

j=1

e2κ y j y2j Var
(
A1(y j )

)

+
∑
j �=l

eκ(y j+yl )y j yl Cov
(
A1(y j ), A1(yl)

))

≤ πmn

σ 4
0

(∑mn
j=1 y

2
j

)2 C̃σ 4(v − b − u + 1)�n

(u − 1)3/2
e2κ

mn∑
j=1

y2j

+ O
(

1

mn

�
3/2
n (v − b − u + 1)

(u − 1)3/2
m2

n log(mn)

)

≤ C ′(v − b − u + 1)�n

(u − 1)3/2
+ O

(
�

3/2
n (v − b − u + 1)

(u − 1)3/2
mn log(mn)

)
,

with a constant C ′, where we use that mn
(∑

j y
2
j

)−1 is bounded and (28). Since

�
1/2
n mn log(mn) → 0, we find a constant C ′′, such that

Var(B1) ≤ C ′′(v − b − u + 1)�n

(u − 1)3/2
. (31)

With the variance-covariance structure of (ζn,i ), we obtain with some constants Cr ,
r = 1, 2, 3, that

Var(Qv
b+u) ≥ C1

mnπ

σ 4
0

(∑mn
j=1 y

2
j

)2
mn∑
j=1

y2j

v∑
i=b+u

Var(ζn,i )e
2κ y j

= C2
�nmn(v − b − u + 1)∑mn

j=1 y
2
j

≥ C3(v − b − u + 1)�n . (32)

Since Eq. (54) from Bibinger and Trabs (2020) applied to our decomposition with B1
and B2, yields that

∣∣∣Cov
(
exp

(
it Qb

a

)
, exp

(
it Qv

b+u

))∣∣∣ ≤ 2t2
√

Var(Qb
a) Var(B1),

(31) and (32) imply (29).
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A Lindeberg condition for the triangular array (ζn,i ) is obtained by the stronger
Lyapunov condition. It is satisfied, since

n∑
i=1

E
[ ∣∣ζn,i

∣∣4 ] ≤ m2
nπ

2

σ 8
0

(∑mn
j=1 y

2
j

)4
n∑

i=1

E

[( mn∑
j=1

(
Xi�n − X(i−1)�n

)2
(y j )y j e

κ y j
)4]

≤ m−2
n π2

σ 8
0

(
m−1

n
∑mn

j=1 y
2
j

)4 e4κ
n∑

i=1

mn∑
j,k,u,v=1

E
[(
Xi�n − X(i−1)�n

)2
(y j )

(
Xi�n − X(i−1)�n

)2
(yk)

(
Xi�n − X(i−1)�n

)2
(yu)

(
Xi�n − X(i−1)�n

)2
(yv)

]

≤ m−2
n π2

σ 8
0

(
m−1

n
∑mn

j=1 y
2
j

)4 e4κ
n∑

i=1

mn∑
j,k,u,v=1

(
E
[(
Xi�n − X(i−1)�n

)8
(y j )

]

× E
[(
Xi�n − X(i−1)�n

)8
(yk)

]
E
[(
Xi�n − X(i−1)�n

)8
(yu)

]

× E
[(
Xi�n − X(i−1)�n

)8
(yv)

])1/4

= O(
m2

nn�2
n

) = O(
m2

n�n
)
.

In the last step the inner sum is estimatedwith a factorm4
n , andwe just use the regularity

of (Xt (y))t≥0. As m2
n�n → 0, we conclude the Lyapunov condition which together

with (29) and the asymptotic analysis of the variance yields the clt for the centered
triangular array (ζn,i ) by an application of Theorem B from Peligrad and Utev (1997).

5.3 Proof of Theorem 3

We establish first the asymptotic variances and covariance of the estimators before
proving a bivariate clt. With (24), we obtain that

κ̂LS
n,m − κ =

∑mn
j=1

RVn(y j )√
n

√
πeκ y j

σ 2
0

(
y j − y

)
mn(y)2 − ∑mn

u=1 y
2
u

+ OP(�n),

since for the remainders it holds true that

max

( ∑mn
j=1 y j OP(�n)

mn(y)2 − ∑mn
u=1 y

2
u
,

yOP(mn�n)

mn(y)2 − ∑mn
u=1 y

2
u

)
= OP(�n).

We can use (26) and (27) to compute the asymptotic variance:

lim
n→∞ Var

(√
nmn(κ̂

LS
n,m − κ)

)

= lim
n→∞

nmnπ

σ 4
0

(
mn(y)2 − ∑mn

u=1 y
2
u

)2 Var

( mn∑
j=1

RVn(y j )√
n

eκ y j
(
y j − y

))
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= lim
n→∞

nmnπ

σ 4
0

(
mn(y)2 − ∑mn

u=1 y
2
u

)2
( mn∑

j=1

(
y j − y

)2
Var

( 1√
n
RVn(y j ) e

κ y j
)

+
∑
j �=l

(
y j − y

)(
yl − y

)
Cov

( 1√
n
RVn(y j ) e

κ y j ,
1√
n
RVn(yl) e

κ yl
))

= lim
n→∞

(
nmnπ

σ 4
0

(∑mn
u=1 y

2
u − mn(y)2

) �σ 4
0

n

(
1 + O(�η

n)
)

+ O
(

mn�
1/2
n

σ 4
0

(∑mn
u=1 y

2
u − mn(y)2

)2
∑
j �=l

(
y j − y

)(
yl − y

)( 1∣∣y j − yl
∣∣ + 1

δ

)))

= lim
n→∞

�π

m−1
n

∑mn
u=1 y

2
u − (y)2

= �π

(1 − 2δ)−1
∫ 1−δ

δ
y2dy −

(
(1 − 2δ)−1

∫ 1−δ

δ
y dy

)2 = 12�π

(1 − 2δ)2
.

We used that the sum of covariances is of order

O
(
m−1

n �
1/2
n

∑
j �=l

(
y j − y

)(
yl − y

)
∣∣y j − yl

∣∣
)

= O
(
�

1/2
n mn log(mn)

)
= O(1). (33)

For the estimator (18b), we obtain that

α̂LS(σ 2
0 ) = y(κ̂LS

n,m − κ) + α(σ 2
0 ) + 1

mn

mn∑
j=1

RVn(y j )√
n

√
πeκ y j

σ 2
0

+ OP(�n),

such that

α̂LS(σ 2
0 ) − α(σ 2

0 ) =
∑mn

j=1
RVn(y j )√

n

√
πeκ y j

σ 2
0

(
y j y − m−1

n
∑mn

j=1 y
2
j

)

mn(y)2 − ∑mn
u=1 y

2
u

+ OP(�n).

With (26) and (27) and analogous steps as above, the asymptotic variance yields

lim
n→∞ Var

(√
nmn

(
α̂LS(σ 2

0 ) − α(σ 2
0 )

))

= lim
n→∞

nmnπ

σ 4
0

(
mn(y)2 − ∑mn

u=1 y
2
u

)2
mn∑
j=1

(
y j y − m−1

n

mn∑
u=1

y2u
)2

Var
(RVn(y j )√

n
eκ y j

)

= lim
n→∞

mn�π(∑mn
u=1 y

2
u − mn(y)2

)2
mn∑
u=1

y2u
(
m−1

n

mn∑
u=1

y2u − (y)2
)

= lim
n→∞ �π

∑mn
u=1 y

2
u∑mn

u=1 y
2
u − mn(y)2
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= �π
(1 − 2δ)−1

∫ 1−δ

δ
y2dy

(1 − 2δ)−1
∫ 1−δ

δ
y2dy −

(
(1 − 2δ)−1

∫ 1−δ

δ
y dy

)2 .

The covariance terms for spatial points y j �= yu are asymptotically negligible by a
similar estimate as in (33). The asymptotic covariance between both estimators yields

lim
n→∞ nmnCov

(
α̂LS(σ 2

0 ), κ̂LS
n,m

)

= lim
n→∞

nmnπ

σ 4
0

(
mn(y)2 − ∑mn

u=1 y
2
u
)2

mn∑
j=1

(
y j y −

∑mn
u=1 y

2
u

mn

)(
y j − y

)
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(RVn(y j )√
n

eκ y j
)

= lim
n→∞mn�π

y
(∑mn

u=1 y
2
u − mn(y)2

)
(∑mn

u=1 y
2
u − mn(y)2

)2

= lim
n→∞ �π

y

m−1
n

∑mn
u=1 y

2
u − (y)2

= �π
(1 − 2δ)−1 ∫ 1−δ

δ y dy

(1 − 2δ)−1
∫ 1−δ
δ y2dy −

(
(1 − 2δ)−1

∫ 1−δ
δ y dy

)2 .

The covariance terms for spatial points y j �= yu are asymptotically negligible by a sim-
ilar estimate as in (33). Computing the elementary integrals and simple transformations
yield the asymptotic variance-covariance matrix � in Theorem 3.

To establish the bivariate clt, it suffices to prove the clt for theR2-valued triangular
array

�n,i =
√
mnπ

σ 2
0

(
mn(y)2 − ∑mn

u=1 y
2
u

)
mn∑
j=1

(
Xi�n−X(i−1)�n

)2
(y j )e

κ y j

(
y j − y

y j y −
∑mn

u=1 y
2
u

mn

)
.

Here, we use the notation (23) for the squared time increments. The first entry
of this vector is the leading term of

√
nmn(κ̂

LS
n,m − κ), and the second entry of√

nmn
(̂
αLS(σ 2

0 ) − α(σ 2
0 )

)
. We apply the Cramér-Wold device and Theorem B from

Peligrad and Utev (1997). Taking the scalar product with some arbitrary γ ∈ R2, we
obtain by linearity that

〈γ,�n,i 〉 = Smn

mn∑
j=1

(
Xi�n − X(i−1)�n

)2
(y j )e

κ y j Gγ

j ,

with Smn =
√
mnπ

σ 2
0

(
mn(y)2 − ∑mn

u=1 y
2
u

) , and Gγ

j =
〈
γ,

(
y j − y

y j y − 1
mn

∑mn
u=1 y

2
u

) 〉
.

Note that for any γ ∈ R2, Smn G
γ

j is uniformly in j bounded by a constant, such
that the structure for proving a covariance inequality for the empirical characteristic
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function and a Lyapunov condition is analogous to the one-dimensional case. With
ξ

γ

n,i := 〈γ,�n,i 〉,

n∑
i=1

ξ
γ

n,i =
〈
γ,

n∑
i=1

�n,i

〉
=

n∑
i=1

〈γ,�n,i 〉,

we obtain for Q̃b
a := ∑b

i=a ξ
γ

n,i , that

Q̃v
b+u = Smn

mn∑
j=1

(
A1(y j ) + A2(y j )

)
y j e

κ y j Gγ

j ,

with the same terms A1(y j ) and A2(y j ) as in the proof of (29). Therefore, using the
same bounds as in the proof of (29), we obtain that

∣∣∣Cov
(
exp

(
it Q̃b

a

)
, exp

(
it Q̃v

b+u

))∣∣∣ ≤ C t2

u3/4

√
Var

(
Q̃b

a

)
Var

(
Q̃v

b+u

)
, (34)

for all t ∈ R, for natural numbers 1 ≤ a ≤ b < b+u ≤ v ≤ n, and for some constant
C .

The Lyapunov condition for the triangular array (ξ
γ

n,i ) holds, since

n∑
i=1

E
[ ∣∣∣ξγ

n,i

∣∣∣4 ] =
n∑

i=1

S4mnE

[( mn∑
j=1

(
Xi�n − X(i−1)�n

)2
(y j )e

κ y j Gγ

j

)4]

≤ C e4κ
n∑

i=1

mn∑
j,k,u,v=1

E
[(
Xi�n − X(i−1)�n

)2
(y j )

(
Xi�n − X(i−1)�n

)2
(yk)

(
Xi�n − X(i−1)�n

)2
(yu)

(
Xi�n − X(i−1)�n

)2
(yv)

]

≤ C e4κ
n∑

i=1

mn∑
j,k,u,v=1

(
E
[(
Xi�n − X(i−1)�n

)8
(y j )

]

× E
[(
Xi�n − X(i−1)�n

)8
(yk)

]
E
[(
Xi�n − X(i−1)�n

)8
(yu)

]

× E
[(
Xi�n − X(i−1)�n

)8
(yv)

])1/4

= O(
m2

nn�2
n

) = O(
m2

n�n
)
.

for some constant C . As m2
n�n → 0, we conclude the Lyapunov condition which

together with (34) and the asymptotic variance-covariance structure yields the clt for
the triangular array (ξ

γ

n,i ), for any γ ∈ R2, by an application of Theorem B from
Peligrad and Utev (1997). We conclude with the Cramér-Wold device.
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5.4 Proof of Theorem 2

Theorem 2 is established as a simple corollary of Theorem 3 showing that the two
estimators (12) and (18a) coincide. This is based on the formula that for vectors
y, z ∈ Rm , we have that

∑
j �=l

(z j − zl)(y j − yl) = 2m
m∑
j=1

(
z j − z

)(
y j − y

) = 2m
m∑
j=1

z j
(
y j − y

)
, (35)

using our standard notation for means y and z applied to the vectors. (35) is true, since

∑
j �=l

(z j − zl)(y j − yl) =
m∑

j,l=1

(z j − zl)(y j − yl)

= m
m∑
j=1

z j y j − 2
m∑

j,l=1

y j zl + m
m∑
l=1

zl yl

= 2m
m∑
j=1

z j y j − 2m2 y z,

and by the transformation

m∑
j=1

(
z j − z

)(
y j − y

) =
m∑
j=1

z j y j − m y z.

Applying (35) twice, to the numerator and to the denominator of (12) yields the
estimator (18a). We hence conclude the clt in Theorem 2 as the marginal clt from the
bivariate clt given in Theorem 3.
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