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Abstract
A k-means method style clustering algorithm is proposed for trends of multivariate
time series. The usual k-means method is based on distances or dissimilarity measures
among multivariate data and centroids of clusters. Some similarity or dissimilarity
measures are also available for multivariate time series. However, suitability of dis-
similarity measures depends on the properties of time series. Moreover, it is not easy
to define the centroid for time series. The k-medoid clustering method can be applied
to time series using one of dissimilarity measures without using centroids. However,
the k-medoid method becomes restrictive if appropriate medoids do not exist. In this
paper, the centroid is defined as a common trend and a dissimilarity measure is also
introduced for trends. Based on these centroids and dissimilarity measures, a k-means
method style algorithm is proposed for a multivariate trend. The proposed method is
applied to the time series of COVID-19 cases in each prefecture of Japan.

Keywords Dissimiliarity measure · Common trend · Clustering · k-Medoid method

Mathematics Subject Classification 62H30 · 62M10 · 62P10

1 Introduction

Clustering is one of the important issues in multivariate analysis. This is also true for
multivariate time series. Clustering methods for time series depend on characteristics
of time series. In this paper, we assume that time series contain trends, and then, they
are nonstationary, and we propose a non-hierarchical clustering method, which has a
k-means method style, for a multivariate trend.
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The usual k-means method is based on distances or dissimilarity measures among
data and centers of gravity or centroids of clusters.

For time series, some similarity or dissimilarity measures are available. Pearson’s
correlation coefficient and the cosine similarity are typical similarity measures, and
the dynamic time warping method can also be applied (see Bagnal (2017), Berndt and
Clifford (1994), Egghe and Leydesdorff (2009), for example). However, suitability
of dissimilarity measures depends on the properties of time series. Watanabe (2021)
discussed dissimilarity measures for nonstationary time series and proposed other
dissimilarity measures explained in the following section. In this paper, we introduce
a new dissimilarity measure for applying to clustering. The new one has a similar form
to those by Watanabe (2021).

Unlike similarity or dissimilarity measures, it is not easy to define the centroid for
time series.Without using centroids, the k-medoid clusteringmethod can be applied to
time series using one of dissimilarity measures (cf. Kaufman and Rousseeuw (2009)).
However, the k-medoid method is restrictive if appropriate medoids, which represent
the centers of clusters, do not exist. Our aim is to analyze amultivariate trend of nonsta-
tionary time series. In this case, an idea of common trend can be adopted for definition
of the centroid for time series. In this paper, we apply the definition of common trend
given by Watanabe (2021). However, Watanabe (2021) does not consider the lags.
Therefore, we provide a new definition of common trend by considering lags, since
lags are important in time series analysis. The lag is especially crucial for multivariate
time series.

The main task of clustering is to find similar patterns in time series. We assume that
time series under analysis are ratio scale data and positively correlated each other in
some sense. We also assume that standardization is appropriate for comparison with
each other. If time series are nonstationary, standardization is also difficult. The dis-
similarity measure in this paper is based on weighting as standardization. We propose
a k-means method style algorithm for a multivariate trend using a new dissimilarity
measure and the common trend.

The proposed method is applied to the time series of COVID-19 cases in each
prefecture of Japan. We also discuss clustering of original nonstationary time series
themselves not trends briefly using COVID-19 series.

2 Dissimilarity measures

Target data in this paper are P-variate time series and we consider problems on their
trends based ondissimilarity among time series. First,we discuss dissimilarity between
two time series in this section.

Let (xn, yn) (n = 1, 2, . . . , N ) be an observed bivariate time series. We assume
that

xn = Tn + vn (1)

yn = Un + wn, (2)

where {(vn, wn)} is a bivariate zero mean stationary process, and {Tn} and {Un} are
trends ormean value functions.We assume that trends are (conditionally) deterministic
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and that they are estimated appropriately. The moving average method is a simple
way for trend estimation. Other methods are found in Kim (2009) and Watanabe and
Watanabe (2015), for example. Moreover we assume that the seasonality or periodic
movements are absent in estimated trends; so-called cyclic components canbe included
in trends. Note that the period of cyclic component is relatively large comparing to
the one of seasonality.

It is not easy to capture dissimilarity between nonstationary time series, unlike
stationary time series.Watanabe (2021) introduced the dissimilarity functions between
{Tn} and {Un} as follows:
Definition 1 (Watanabe 2021) The simple dissimilarity measure function δS(�) is
given by

δS(�) =
√
√
√
√

∑N−�
n=1 (Tn −Un+�)2

∑N−�
n=1 T 2

n + ∑N
n=�+1U

2
n

(3)

for � = 0,±1,±2, . . ..

Definition 2 (Watanabe 2021) The weighted dissimilarity measure function δW (�) is
given by

δW (�) = inf
(rT ,rU )∈R

√
√
√
√

∑N−�
n=1 (rT Tn − rUUn+�)2

r2T
∑N−�

n=1 T 2
n + r2U

∑N
n=�+1U

2
n

(4)

for � = 0,±1,±2, . . ., where R = {(rT , rU )| r2T + r2U = 1, rT ≥ 0, rU ≥ 0}.
The region of minimization can be replaced by R1 = {(rT , rU )| r2T +r2U = 1, rT ≥

0} or R2 = {(rT , rU )| r2T + r2U = 1, rU ≥ 0}. The choice depends on the property of
time series.

Definition 3 (Watanabe 2021) The normalized dissimilarity measure function δN (�)

is given by

δN (�) = inf
(rT ,rU )∈R,(cT ,cU )∈C

√

S�, (5)

where

S� =
∑N−�

n=1 (rT (Tn − cT ) − rU (Un+� − cU ))2

r2T
∑N−�

n=1 (Tn − cT )2 + r2U
∑N

n=�+1(Un − cU )2
(6)

for � = 0,±1,±2, . . . and C is a bounded subset of 2-dimensional Euclidean space.

The independent variable of these functions is the lag � similarly to the cross
correlation function for the stationary time series.
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Watanabe (2021) showed that the k-medoid clustering method (Kaufman and
Rousseeuw 2009) can be applied to time series using these dissimilarity measures
(an example in Watanabe (2021) are based on δW (0)). The k-medoid method can be
used when it is difficult to define centroids (cf. Kaufman and Rousseeuw (2009)).

The dissimilarity measures δW and δN are essentially invariant for the exchange
of time series (δ for � is equal to the original δ for −�). This symmetric property is
not required for dissimilarity measure between one trend and a centroid of trends. If
a kind of average time series in each cluster is available instead of the medoid, it is
not necessarily adequate to use the weights for both time series. The reason is that the
weights for the centroid should be invariant. In Watanabe (2021), the common trend
for multivariate time series is also defined as shown below. We can use the common
trend in each cluster instead of the medoid as the centroid. Then, the weight for the
common trend becomes unnecessary. In this paper, we propose another dissimilarity
function for clustering based on δW (�) but in a slightly different form.

Definition 4 Let {Cn} be the given common trend. The dissimilarity measure function
δC (�) between {Tn} and the common trend {Cn} is given by

δC (�) = inf
r>0

√
√
√
√

∑N−�
n=1 (Cn − rTn+�)2

r2
∑N

n=�+1 T
2
n

(7)

for � = 0,±1,±2, . . ..

The restriction r > 0 means that time series under consideration are assumed to be
positively correlated each other in some sense.

It is easily shown that

(1) 0 ≤ δC (�) ≤ 1,
(2) δC (�) = 0 ⇐⇒ aTn+� = Cn(∀n) where a is a positive constant,
(3) if |aTn+� − Cn| ≤ ε and |aTn| ≥ d > 0 (∀n) for ∃a, then δC (�) ≤ ε/d.

Moreover, we have the following theorem.

Theorem 1 Suppose that

r0 =
∑N−�

n=1 C2
n

∑N−�
n=1 CnTn+�

> 0. (8)

Then, the minimum value of the right-hand side of Eq. (7) is attained at r = r0 and
we have

δC (�) = inf
ρ>0

√
√
√
√

∑N−�
n=1 (ρ Cn − Tn+�)2

∑N
n=�+1 T

2
n

(9)

=

√
√
√
√
√1 −

(
∑N−�

n=1 CnTn+�

)2

∑N−�
n=1 C2

n
∑N

n=�+1 T
2
n

. (10)
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Theproof is easy. The cosine similarity is one of thewell-known similaritymeasures
(Egghe andLeydesdorff 2009). The cosine similarity between {Cn} and {Tn+�} is given
by

∑N−�
n=1 CnTn+�

√
∑N−�

n=1 C2
n
∑N

n=�+1 T
2
n

. (11)

We can consider that the above theorem provides some validity of the cosine similarity.
(The relation between the cosine similarity and the dissimilarity δS in Definition 1 is
stated in Watanabe (2021).)

The use of the dissimilarity δC with some appropriately defined common trend
makes a k-means style clustering possible. In the following section, we introduce the
common trend which is well suited to δC .

3 Common trend

In this paper, we do not assume any models and define the common trend as the
weighted sum of the multiple trends given by the solution of an optimization problem.
The formulation is similar to the one by Watanabe Watanabe (2021) except for the
existence of lags.

Let Tn = (

T1n, . . . , TPn
)

(n = 1, 2, . . . , N ) be the P-dimensional vector of trends
ormean value functions of P-variate time series. First, we introduce the common trend
given by Watanabe Watanabe (2021).

Definition 5 (Watanabe 2021) The common trend {C (0)
n } is the time series given by

the optimization problem

P
∑

p=1

√
√
√
√

∑N
n=1(C

(0)
n − rpTpn)2

r2p
∑N

n=1 T
2
pn

−→ minimize (12)

with respect to r1, . . . , rP , where C
(0)
n = ∑P

p=1 rpTpn , r1 ≥ 0, r2 ≥ 0,…, rP ≥ 0

and
∑P

p=1 rp = 1.

Each term in the objective function (12) has the same form as Eq. (7) with � = 0.
That is, lags are not considered in this definition. However, it is important to consider
lags for multivariate time series. It is especially important for discussing the common
trend. For example, studies on business cycle are crucial in the econometric field. The
business cycle is related to the common trend ofmany time series, and these time series
consist of leading, coincident, and lagging indicators. This means that plus or minus
lags play key roles. In this paper, we generalize the above definition for considering
lags.

Let �p denote the lag for {Tpn} and assume that −Lmax ≤ �p ≤ Lmax, where Lmax
is a given integer.
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Definition 6 The common trend {Cn} is the time series given by the optimization
problem

JC (r1, . . . , rP , �1, . . . , �P ) −→ minimize (13)

with respect to r1, . . . , rP and �1,…, �P , where rp ≥ 0,
∑P

p=1 rp = 1 and −Lmax ≤
�p ≤ Lmax. The objective function is defined by

JC (r1, . . . , rP , �1, . . . , �P ) =
P

∑

p=1

√
√
√
√

∑N−Lmax
n=Lmax+1(Cn − rpTp,n+�p )

2

r2p
∑N−Lmax

n=Lmax+1 T
2
p,n+�p

, (14)

where Cn = ∑P
p=1 rpTp,n+�p .

The optimization (13) is not easy unless both P and Lmax are small. Watanabe
Watanabe (2021) proposed the recursive algorithm for C (0)

n in Definition 5. In the
following, we propose an extended recursive algorithm for Cn in Definition 6.

Estimation algorithm for common trend (ECT)

Step 1. Initialize Cn by setting rp = 1/P , that is

Cn = 1

P

P
∑

p=1

Tpn . (15)

Step 2. For fixed {Cn}, find rp and �p that minimize

∑N−Lmax
n=Lmax−1(Cn − rpTp,n+�p )

2

r2p
∑N−Lmax

n=Lmax+1 T
2
p,n+�p

(p = 1, 2, . . . , P). (16)

Step 3. Replace rp by rp/
∑P

p=1 rp and calculate

Cn =
P

∑

p=1

rpTp,n+�. (17)

Step 4. Calculate JC in Eq. (14).
Step 5. Go to Step 2 until some termination condition is satisfied.
Step 6. Select {Cn} with {rp, �p|p = 1, . . . , P} that minimizes JC .

We call this an ECT algorithm. In Step 2, the analytical solution is available. See
Theorem 1. This algorithm is applied to practical time series in Sect. 5. A comparison
with the Definition 6 is also considered.
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4 Clustering

Now, we propose a k-means method based on the dissimilarity function δC (�) and the
common trend calculated by the recursive algorithm in Sect. 3.

Target data are the P-variate trend Tn = (

T1n, . . . , TPn
)

(n = 1, 2, . . . , N ). Let
K be a given number of clusters. We define the function ukp as follows:

ukp =
{

1 if {Tpn|n = 1, . . . ,N} belongs to k−th cluster
0 otherwise,

(18)

where
∑K

k=1 ukp = 1(∀p) and ∑P
p=1 ukp > 0(∀k).

Let LMAX be the upper bound of lags and LKMT be a number of repetitions. The
following is the recursive algorithm for clustering of trends.

K -means method for trend (KMT)

Step 1. (Initialize) Set {ukp} randomly.
Step 2. (Centroid) Estimate the common trend {Ckn|n = LMAX + 1, . . . , N −

LMAX} of k-th cluster by the ECT algorithm (k = 1, . . . , K ).
Step 3. (Dissimilarity) Calculate the dissimilarity δC (�) between the common trend

{Ckn} and each trend {Tpn|n = LMAX + 1, . . . , N − LMAX} for p =
1, . . . , P , k = 1, . . . , K and −LMAX ≤ � ≤ LMAX. Let δkp be the
minimum value with respect to �.

Step 4. (Reassignment) Redefine ukp as follows:

ukp =
{

1 if δkp = min1≤j≤K δjp
0 otherwise

(19)

(the tie is not considered here for simplicity).
Step 5. If some change in {ukp} occurs, goto Step 2. If there is no change, calculate

the value

J =
K

∑

k=1

P
∑

p=1

ukpδkp. (20)

Step 6. Go to Step 1 LKMT − 1 times.
Step 7. The classification with the minimum value of J is adopted as the result.

We call this a KMT algorithm. Similarly to the usual k-means method, sensitivity
of initial values is large. That is, it is not assured that the solution is the global mini-
mum. Usually, LKMT should be set relatively large. If a tie occurs in Step 4, k can be
determined randomly similarly to the usual k-means method. An efficient approach to
solve the tie problem is to extend the hard clustering to soft clustering. In this paper,
we consider hard clustering only.

An important feature of the ECT and KMT algorithm is that any extra numerical
optimization technique is required, though some nonlinear optimization is required
for the use of δW instead of δC .
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Anapplication to time series ofCOVID-19 cases is demonstrated in the next section.

5 Application to time series of COVID-19 cases

5.1 Data set

Time series consist of daily record numbers of COVID-19 cases in prefectures. The
number of prefectures of Japan is 47 ( = P). Data are provided by NHK (Japan
Broadcasting Corporation). The upper plot in Fig. 1 shows 47 time series from January
16, 2020 to August 1, 2021. The length is 564. The first day of each month is indicated
by the vertical dotted line.

We estimate the trends of original time series by the moving average method. We
adopt the triangular weight function whose support has the length 28 (4 weeks). The
length becomes 536 (= N ), since any processing for both ends of series is not applied
here. The lower plot in Fig. 1 shows the moving averaged series. A purpose here is to
find similarity of patterns. For this purpose, we apply the proposed KMT algorithm.
First, we examine the ECT algorithm.

Fig. 1 Original series and moving averaged series
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5.2 Estimation of common trend

We consider the estimation of the common trend among three time series of Tokyo,
Osaka, and Hokkaido without lags by two methods. The first is to apply numerical
optimization technique to minimize the objective function in Definition 5. The second
is to apply the ECT algorithm without lags (LMAX = 0). (A similar example is
illustrated in Watanabe (2021).) Original time series and moving averaged time series
are shown in Fig. 2.

Calculation in this paper is carried out using MATLAB. The MATLAB function
‘fmincon’ is used for minimization under constraints in Definition 5.

Two estimated common trends are illustrated in Fig. 3. The right is the partly
magnified plot. It is found that the difference is quite small.

Values of the objective function JC obtained by two methods are plotted in Fig. 4.
We can say that the recursive ECT algorithm works well for these data. The estimated
common trend and three weighted trends are plotted in Fig. 5, where r0 in Theorem
1 is used as each weight. Tendency of three time series is reflected roughly in the
estimated common trend plotted by bold line. However, it seems that there exist lags
in three time series, and then, the common trend fluctuates unnaturally.

Figure 6 shows the estimated common trend obtained by the ECT algorithm with
lags by setting LMAX = 30.

We can say that the ECT algorithm with lags also works well. However, there
exists some differences among patterns even if lags are considered. This suggests the

Fig. 2 Three series (Tokyo, Osaka, Hokkaido)
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Fig. 3 Comparison between two methods (1) common trends

Fig. 4 Comparison between two methods (2) values of JC

necessity of clustering. In the following, clustering based on the ECT algorithm with
lags is applied to all time series.

5.3 K-meansmethod for trends

The proposed KMT algorithm is applied to 47 time series by setting K = 1, . . . , 8,
Lmax = 30 and LKMT = 1000. The KMT algorithm with K = 1 is not clustering but
means the estimation of the common trend of all time series. The results of K -means
method for trends are summarized in Table 1 and Fig. 7 (K = 1, . . . , 6). Table 1
includes sizes of clusters, values of J , the maximum of |�p|, and the maximum of
�p − �q in each cluster. Each trend in Fig. 7 is weighted using r0 in Theorem 1.
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Fig. 5 Common trend of three series

Fig. 6 Common trend of three lagged series

The determination of K is important but difficult problem. For usual k-means
method, somemethods have been proposed; for example, the elbowmethod, silhouette
method, gap statistic, and so on (cf. Yuan and Yang (2019)). However, there is no
definitivemethod. This is true for the proposed K -meansmethod for trends. Therefore,
we do not refer the determination of K in detail, since this problem should be discussed
separately.

Values of J monotonically decrease and there is no clear “elbow”. Selected lags or
differences between lags are relatively large when K is 2, 3, 4, or 6, but it is difficult
to explain large lags. When K is less than 5, it seems that peaks are not separated well
(especially the third peak). One plausible candidate of the number of clusters is 5. The
result for K = 5 is illustrated again in Fig. 8.
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(a) K = 1(Common trend) (b) K = 2

(c) K = 3 (d) K = 4

(e) K = 5 (f) K = 6

Fig. 7 Results for K = 1, 2, . . . , 6

123



Japanese Journal of Statistics and Data Science (2022) 5:303–319 315

Table 1 Summary of KMT

C.No. 1 2 3 4 5 6 7 8 J Max |�| Max �−Min �

K

1 47 – – – – – – – 16.45 30 48

2 33 14 – – – – – – 13.85 30 46

3 20 17 10 – – – – – 12.72 27 40

4 17 15 8 7 – – – – 11.94 23 39

5 14 10 10 7 6 – – – 11.27 21 26

6 9 9 8 7 7 7 – – 10.68 30 33

7 8 8 8 8 7 7 1 – 10.18 22 25

8 9 8 7 7 6 5 4 1 9.82 22 25

Fig. 8 Result for K = 5
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Table 2 Prefectures in clusters (K = 5)

C.No. Prefecture � C.No. Prefecture � C.No. Prefecture �

1 Miyagi 21 2 Aomori 0 3 Gumma − 2

Yamagata 14 Akita − 4 Gifu 2

Fukushima 5 Toyama 6 Shizuoka 4

Niigata 3 Ishikawa 3 Kyoto − 4

Fukui − 2 Shimane 5 Yamaguchi 4

Nagano -2 Okayama 1 Fukuoka 0

Mie 8 Tokushima 15 Nagasaki − 4

Shiga 10 Kagawa − 2 Kumamoto 0

Osaka 0 Saga − 1 Miyazaki − 2

Hyogo 1 Oita 0 Kagoshima 2

Nara 0

Wakayama − 1

Tottori − 7

Ehime − 6

C.No. Prefecture � C.No. Prefecture �

4 Hokkaido − 1 5 Ibaraki 3

Iwate − 8 Tochigi − 3

Yamanashi 20 Saitama 0

Aichi − 2 Chiba 3

Hiroshima − 1 Tokyo − 1

Kochi 10 Kanagawa 0

Okinawa 9

Table 2 shows prefectures in each cluster, where � indicates the selected lag to
the common trend of each cluster. It is meaningless to compare lags among different
clusters.

It is found that Tokyo, Osaka, andHokkaido belong to different clusters. Thismeans
that the estimated common trend in the previous subsection is not so meaningful.

It is said that these COVID-19 series contain four waves. The first peak appears
around n = 70. Differences among patterns in each cluster appear in the heights of
peaks or locations of peaks. In clusters 1, 2, and 4, the fourth peak is remarkably large.
On the other hand, the third peak is largest in cluster 5.

Cluster 5 consists of prefectures in Kanto area, whose center is Tokyo, except
for Gumma. We can say that tendency of each prefecture in Kanto area is resemble.
Cluster 1mainly consists of most prefectures in Kinki area, whose center is Osaka, and
prefectures in south Tohoku area. Cluster 3 mainly consists of prefectures in Kyushu
area.

It is expected that such a statistical analysis will provide epidemiologically or
medically useful findings.
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Fig. 9 Common trends

6 Clustering of original series

In this paper, we have focused on the clustering of a multivariate trend. In this final
section, we consider the clustering of original series briefly.

The proposed KMT algorithm can be applied directly to original time series. How-
ever, the meaning of centroid of cluster becomes vague, since it is defined as the
weighted sum of original series in the ECT algorithm.

As an example, the estimated centroid of all original series of COVID-19 cases by
the ECT algorithm is shown in the upper graph in Fig. 9.

The estimated series includes seasonality and irregular fluctuation. It is clear that this
series cannot be regarded as the common trend. Moreover, the meaning of seasonality
of this series becomes vague, since lags are considered. As a result, this series is
not appropriate as the centroid. This means that the direct application of the KMT
algorithm to original series is not appropriate usually and themodification of algorithm
is required for the direct application. Note that the estimated series might be regarded
as the common trend approximately, if P is large and seasonality is absent in original
time series.

A modification is achieved easily by appending a trend estimation step between
Steps 3 and 4 in the ECT algorithm. The moving average method is a simple way
for trend estimation. In this example, we adopt the moving average method with the
triangular weight function whose support has the length 15 (half a month). The length
of the smoothed series does not change here, since the both ends of series are processed
in a simple way introduced in Brockwell and Davis (1991) for the sake of brevity. The
estimated centroid of all original series of COVID-19 cases by the modified ECT
algorithm is shown in the lower graph in Fig. 9. The estimated series can be regarded
as the common trend and then as the centroid.
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Fig. 10 Result for K = 3

Clustering of original series can be achieved by the KMT algorithm combined with
the modified ECT algorithm. A clustering result for original series of COVID-19 cases
with K = 3 is illustrated in Fig. 10.

The result is similar to the one by themultivariate trend of COVID-19 series, but not
identical. The differences occur from the seasonality components and large irregular
fluctuations in original series.

It should be considered well whether the clustering of original series is appropri-
ate or not, since original series include trends, seasonal components, and irregular
components usually. That is, results of clustering depend on various factors.

7 Concluding remarks

For the case when series are stationary processes, the cross correlation functions can
be used as the similarity measure and it is meaningless to consider the common trend.
In this case, the ECT or KMT algorithm is not efficient. On the other hand, clustering
of a multivariate trend is appropriate, if the purpose is to clarify relationship among
trends for nonstationary time series. It is expected that the proposed method provides
an additional tool for trend analysis.
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When some meaningful clusters are found by the proposed method, there is a
possibility that results can be applied to prediction. In this case, it is expected to
analyze multiple time series in the same cluster from the viewpoint of multivariate
time series analysis. However, we should note that the prediction of trends is difficult
usually because of nonstationarity.

In Step 3 of the KMT Algorithm, the number of δC (�)’s to be computed becomes
huge, when P is large and Lmax should be large. Some simplification will be required
in this case. One way is to consider a subset of lags. Another way is to derive lagged
time series previously by considering the dissimilarity function between each trend and
the common trend of all series, and then to apply the proposed method without lags.

In this paper, we assume that trends are estimated appropriately. For this assumption
roles of trend estimationmethods are important and essential. In the case of themoving
average method, the length of the moving average is crucial. We have to pay sufficient
attention for trend estimation.

When all values of time series are positive, we can try the log transformation. For
log-transformed time series, the validity of our methods becomes doubtful. However,
the log transformation cannot be applied to time series including zero values like
COVID-19 series. On the other hand, the proposed method can be applied to time
series including not only zero but also negative values.

Similarly to usual k-means method, the determination of the cluster size is impor-
tant. Further studies are expected for determination of K . An extension to fuzzy
clustering, that is, an extension from hard to soft clustering is an issue in future.
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