
Vol.:(0123456789)1 3

CCF Transactions on Networking (2020) 3:51–65
https://doi.org/10.1007/s42045-020-00029-8

REGULAR PAPER

OpenTSN: an open‑source project for time‑sensitive networking
system development

Wei Quan1 · Wenwen Fu1 · Jinli Yan1 · Zhigang Sun1

Received: 9 February 2020 / Accepted: 13 May 2020 / Published online: 5 August 2020
© The Author(s) 2020

Abstract
Time-sensitive networking (TSN) is a promising technique in many fields such as industrial automation and autonomous
driving. The standardization of TSN has been rapidly improved by the IEEE 802.1 TSN working group. Currently, it has
formed a comprehensive standard system with a wide range of choices. However, there is a large gap between TSN standards
and application specific TSN systems. Designers need to determine the required TSN standards and standard implementa-
tion methods based on the application’s transmission performance and reliability requirements. Therefore, an easy-to-use
developing platform for rapid TSN system prototyping and evaluation plays a vital role in the application of TSN technolo-
gies. This article mainly introduces OpenTSN, an open source project that supports rapid TSN system customization. This
project has three features, which are SDN-based TSN network control mechanism, time-sensitive management protocol and
time-sensitive switching model, for building an efficient TSN system. OpenTSN opens all the hardware and software source
codes so that designers can quickly and flexibly customize the TSN system according to their own needs, maximizing the
reuse of existing code and reducing the customization complexity. With this project, two FPGA-based prototyping examples
with star and ring topology are presented at the experimental section. The experiment results show that the synchronization
precision of the entire testing network is under 32 ns and the transmission performance matches the theory analysis of the
testing Cyclic Queue and Forwarding based TSN network.

Keywords Time sensitive networking · Open source · System customization · Switch architecture

1 Introduction

In many distributed hard real-time and safety-critical appli-
cation domains, such as automotive and industrial control
applications, the current proprietary bus-based network-
ing technologies are reaching their limits in supporting the
increasing communication bandwidth requirements (Yang
et al. 2019). To cope with these emerging requirements,
Ethernet has a great potential to replace field buses for the

ever-increasing bandwidth and high compatibility. However,
the nondeterministic queuing delay and packet loss impedes
the switched Ethernet from providing deterministic forward-
ing service. The deterministic forwarding service has strict
requirements on latency, packet loss, and delay variation (jit-
ter) during the packet transmission, which is highly desirable
for strict real-time and safety-critical applications (Nasrallah
et al. 2019).

To empower standard Ethernet with deterministic capa-
bility, Time Sensitive Networking (TSN) is proposed as a
new paradigm which introduces new time-based features on
Ethernet devices. Currently, TSN Task Group has published
comprehensive standards and drafts on time synchronization,
flow control, flow management, and flow integrity according
to the classification method in Nasrallah et al. (2018). These
published and ongoing standards have formed a compre-
hensive standard system with a wide range of choices for
designers to implement a TSN system. TSN has a wide range
of application areas, and each TSN application has its spe-
cific requirement. The selection and implementation of TSN

 * Zhigang Sun
 sunzhigang@nudt.edu.cn

 Wei Quan
 w.quan@nudt.edu.cn

 Wenwen Fu
 fuwenwen16@nudt.edu.cn

 Jinli Yan
 yanjinli10@nudt.edu.cn

1 College of Computer, National University of Defense
Technology, Deya road No. 109, Changsha, Hunan, China

http://orcid.org/0000-0002-0934-8324
http://crossmark.crossref.org/dialog/?doi=10.1007/s42045-020-00029-8&domain=pdf

52 W. Quan et al.

1 3

standards are highly related to its applications. Designers
need to determine the required TSN standards and standard
implementation methods based on the application’s trans-
mission performance and reliability requirements.

Taking the industrial automation as an example, control
loops are basic elements for industrial automation systems,
including programming logic controller (PLC), sensors and
actuators . It is essential for control loops to guarantee the
roundtrip latency from control application to device. Accom-
modating with other unpredictable data in the same network
increases the difficulty of deterministic latency for control
loops. TSN can make it practical by using a serial of TSN
standards like IEEE 802.1 AS to provide a general synchro-
nization mechanism on lay 2 network, IEEE 802.1Qch to
provide a micro-second level per-hop latency and end-to-
end delay jitter and IEEE 802.1CB to increase the system
reliability.

However, there is a large gap between TSN standards and
application specific TSN systems. Even though there are
several ASIC solutions like Broadcom BCM53 serials for
TSN switches. It is still hard to fulfill the gap between the
diverse TSN application requirements and TSN standards.
As these ASIC solutions suffer from the flexibility problem.
Besides that, as there is no ASIC solutions for TSN end-
system until now, it is impossible to implement an entire
TSN network system by using these ASIC chips. To over-
come this problem, TTTech and Intel propose a preliminary
idea of using FPGA customization and configurability to
develop optimized TSN devices and systems. In this article,
we present OpenTSN, an open-source TSN System devel-
oping project which enables a fast customization of FPGA-
based TSN system to achieve this goal. Our work not only
realizes the preliminary idea presented in Time-Sensitive
Networking, but also extends it by providing basic design
methods for implementing an application-specific TSN sys-
tem. By using this project, designers can rapidly customize
their TSN systems on FPGAs from different level, e.g. sys-
tem level, device level and module level with maximal reuse
of standard modules.

The OpenTSN project contains two hardware compo-
nents TSNSwitch and TSNNic, and one software component
TSNLight. TSNSwitch and TSNNic represent FPGA-based
switches and network adapters enabled with deterministic
transmission capability. TSNLight is a software TSN net-
work controller that controls the underlying TSN devices in
a centralized mode. With these components, designers can
build a basic TSN system by customizing the correspond-
ing components according to their application requirements.

Our proposed OpenTSN has three features: (1) a SDN-
based TSN network control mechanism based on the cen-
tralized control model of 802.1Qcc. With this mechanism,
the TSN controller can provide static traffic management
for periodic time-sensitive flows and dynamic traffic

management for stochastic flows; (2) a time-sensitive man-
agement and control protocol designed for layer 2 TSN net-
works. This protocol is simple and efficient compared to
network management protocol like NETCONF (Schonwal-
der et al. 2010). It takes the advantages of the determinis-
tic transmission ability of a TSN network to achieve a reli-
able network control and management; (3) a time-sensitive
switching model. This model decomposes the processing
pipeline into TSN-related and TSN-unrelated modules with
a unified communication interface, which makes design-
ers easy to extend new TSN features on a TSN switch.
The above features are the implementation foundation of
OpenTSN. Currently, a star topology TSN network system
and a ring topology TSN network system have been built in
OpenTSN to demonstrate the ability of OpenTSN.

The rest of this paper is organized as follows. The motiva-
tion is introduced in Sect. 2. The OpenTSN overview is pre-
sented in Sect. 3. Section 4 describes the main components
in OpenTSN. In Sect. 5, prototyping examples and related
experimental results are presented, followed by the related
work in 6 and conclusion in Sect. 7.

2 Motivation

TSN has various application areas, such as Audio Video
Bridging (AVB Systems), mobile fronthaul networks, indus-
trial automation, automotive networks, utility, etc. The deter-
ministic data transmission requirements may vary widely
among these TSN applications in terms of bandwidth, reli-
ability, latency and jitter (i.e. delay bound). For instance, the
bandwidth requirements of augmented and virtual reality
(AR/VR) applications are thousands of time larger than that
of industrial control applications. The reliability of a high-
voltage distribution network is 3 orders of magnitude higher
than that of a medium-voltage distribution network. With
regard to the requirements of latency and jitter, the end-to-
end latencies should be on the order of a few microseconds
to a few milliseconds for industrial applications (Wollschlae-
ger et al. 2017). Applications like power grid system have
very tight delay bounds, e.g., only a few microseconds, while
others have more relaxed delay bounds up to a millisecond
(Nasrallah et al. 2018). To accommodate these diverse deter-
ministic transmission requirements, 11 technique standards
have been published by the IEEE 802.1 TSN task group
(TG) in the last 10 years. The published standards involve
the main features of a TSN system including synchroniza-
tion, latency, reliability and resource management. And the
TSN standards will be expanded by many ongoing projects
in the near future. With these standards, designers are able to
develop their TSN systems using the standard that best suits
the application requirements. For example, traffic shaping
alone has covered 4 standards, including three published

53OpenTSN: an open-source project for time-sensitive networking system development

1 3

standards IEEE 802.1Qav, IEEE 802.1Qbv, IEEE 802.1Qch
and one ongoing project IEEE P802.1Qcr (2020), which pro-
vides developers with a variety of choices.

However, there is a large gap between the diverse TSN
application requirements and TSN standards, which makes
it difficult for designers to customize their TSN system on
demand. Even though profile standard1 has been or is being
specified by the 802.1 TSN TG for some of the targeted
application areas to describe which TSN standards to use
and how. The TSN system implementation details such as
network topology, device buffer and queue size, time syn-
chronization precision and so on need to be determined by
designers. The selected TSN standards should be carefully
customized according to the application requirements as the
universal solution provided in a standard may not the best
solution for the targeted problem.

To fulfill the gap between the diverse TSN application
requirements and TSN standards, several ASIC-based solu-
tions have been proposed. As TSN pioneers, Broadcom,
Marvell and NXP, have released a series of TSN switching
chips supporting typical TSN standards. However, the big-
gest problem of ASIC-based solutions is flexibility. These
commercial TSN chips are normally developed by a Bottom-
up method without considering specific application require-
ments. Therefore, the resource partitioning for tables, queues
and buffers in these chips is fixed. And the fixed resource
partitioning may be over-provisioning or under-provisioning
for the target TSN application. Any feature adjustment like
the extension for a new TSN standard means a redesign of
the chip. To overcome this problem, TTTech collaborated
with Intel and published a white paper about how FPGA
customization and configurability can be used to develop
optimized TSN devices and systems for your application.
They conclude four benefits, which are re-programmability,
workload consolidation and acceleration, I/O flexibility,
functional safety and security, for implementing TSN on
FPGAs. However, this study only provides a preliminary
idea without implementation details. Therefore, flexible
solutions to fulfill the gap between the diverse TSN appli-
cation requirements and TSN standards are urgently needed
to make TSN technology practical.

3 OpenTSN overview

OpenTSN aims to provide an open-source TSN system
developing project that can help developers rapidly cus-
tomize their TSN systems on FPGAs from different level,

e.g. system level, device level and module level. This open-
source project provides not only the source code of each
components of a TSN system, but also the design docu-
ments for each components. These documents introduce
the architecture, interfaces, workflow, design parameters of
modules and so on. Designers can develop new modules
using the defined interfaces and assemble them with mod-
ules provided in OpenTSN to achieve a module level system
development. As modules developed in OpenTSN provide
several parameters for customization, such as the synchro-
nization frequency and the master/slave configuration of
the time synchronization module, designers can easily do a
device level reconfiguration on the developed components
in OpenTSN. A system level TSN network development is
achieved by selecting the proper number of corresponding
OpenTSN components according to the specific system level
requirements like topology.

To give an overview, the design principles, architecture
and key features of OpenTSN will be introduced in this
section.

3.1 Design principles of OpenTSN

Before the development of OpenTSN, several design princi-
ples had been established for a better use of this open-source
project by TSN system designers. These principles mainly
concentrate on the simplicity, flexibility and extensibility of
a TSN system, which are explained as following.

3.1.1 An overall TSN system solution

Different with the ASIC solutions targeted for TSN switches,
OpenTSN provides FPGA-based hardware solutions for both
TSN switches (TSNSwitch) and adapters (TSNNic), and a
TSN network controller (TSNLight) for the control and man-
agement of a TSN network built in OpenTSN. Besides that,
an experimental testbed is built in OpenTSN based on a pro-
grammable network platform embedded with a xilinx FPGA.
With this experimental testbed, designers can evaluate their
developed TSN network system. OpenTSN also provides
a few demonstrations of typical TSN applications to show
how a TSN network system can be built. OpenTSN tries to
make the customization of a TSN network system as simple
as possible.

3.1.2 Modular design supporting flexible customization
and extension

OpenTSN uses a modular design for both the hardware
devices and software controller to support the flexibility
and extensibility of system customization. For the imple-
mentation of hardware devices, the platform-unrelated logic
takes a modular design. It contains TSN-related modules

1 A TSN profile selects features, options, configurations, defaults,
protocols, and procedures of bridges, end stations, and LANs to build
a bridged network for the given TSN application.

54 W. Quan et al.

1 3

and TSN-unrelated modules. These modules constitute a
complete TSN packet processing pipeline with the open
data communication interface. Therefore, designers can
extend their own modules or assemble the existing modules
to achieve their specific functions. For the TSN controller
implementation, core software modules are provided to
cooperatively provide basic services for high-level applica-
tions. Based on these core modules, different application can
be developed for specific application requirements. Users
can either add their specific functions in the core modules
or develop new applications based on the existing core
modules.

3.1.3 Platform and application independent system design

To increase the flexibility for cross-platform migration,
OpenTSN concentrates on the core techniques of TSN.
For TSNSwitch and TSNNic, OpenTSN divides the hard-
ware implementation into two parts, platform-related and
platform-unrelated logic. The platform-related logic takes
charge of the input/output processing like Ethernet and PCIE
for the platform-unrelated logic. Between the platform-
related and platform-unrelated logic, OpenTSN uses open
interfaces for data and control information exchange which
will be introduced at the demonstration section. Under this
partition, a cross-platform migration can be achieved by
only replacing the platform-related logic under the defined
interfaces. Besides that, OpenTSN adopts an application-
independent system design by and providing parameterized
hardware modules which are not limited to specific appli-
cations and an application unrelated TSN controller which
seperates the implemenation of a TSN network and the
application-related management of this network.

3.2 OpenTSN architecture

OpenTSN mainly includes three basic components, i.e. TSN-
Switch, TSNNic and TSNLight as illustrated in Fig. 1, for
building a TSN system. TSNSwitch and TSNNic represent
switches for switching data between ethernet ports and net-
work adapters for adapting data between local CPU and the
network. Both of them are enabled with deterministic trans-
mission capability. TSNSwitch is composed of pure FPGA
logic where TSNNic includes both FPGA logic and end-
system supports on the local CPU. OpenTSN provides gen-
eral TSN-unrelated modules, e.g. local management, packet
parsing, forwarding and switching, and TSN related modules
like time synchronization, traffic shaping for implementing
the hardware of TSNSwitch and TSNNic. To facilitate mod-
ule assembly, a unified communication interface is defined
between modules for data delivering by adding a MetaData
(MD) to each packet. With these user modules, designers can
rapidly build a deterministic packet transmission pipeline
for their FPGA-based TSN devices. Around this pipeline,
a platform-related logic, namely FPGA OS, is provided for
IO processing.

Besides these two hardware components, OpenTSN pro-
vides TSNLight to control the underlying TSN devices.
TSNLight is a software TSN network controller that ena-
bles a centralized controlling of the target TSN network.
It provides core modules like events, topology and device
management. Based on these fundamental modules, TSN-
Light can handle different flow transmission requirements
with different core applications and monitor the state of the
running network. Between TSNLight and underlying TSN
devices, network management and control information is
carried by a time sensitive management protocol (TSMP).
TSMP is designed for OpenTSN to control FPGA-based

Resource Database
Topology Info

Flow Features

Time Sensitive Management Protocol (TSMP)

Core Modules

Allocatable
Resource

Device Resource

Configurable
Resource Event

Manager
Device

Manager

Topology
Manager

Flow
Manager

Core Applications

TSN Network Insight

Dynamic Traffic Mgt.

Static Traffic Mgt.

Southbound API

Northbound APITalker

TSN Stack

Packet Buffer
Managemer

Flow Manager
L2-L4

Protocol Lib

TSN API

Time Sync Info Pkt

Host
Layer

Network
Layer

Configration
frame

Beacon
frame

MD+Pkt

MD+Pkt

TSNNic User Modules
Time SyncLocal Ctrl & Mgt

Ethernet
RX

TSNNic FPGA OS
Ethernet

TX

Flow
Filter

Map&
Fwd

PIFO-based
Scheduler

PIFO
Mgt

Lookup
Tables

DMA
Ctrl

MD+Pkt Key/Action

TSN-unrelated modules TSN-related modules

TSNSwitch User Modules

Lookup TablesEthernet RX

TSNSwitch FPGA OS

Ethernet TX

Time SyncLocal Ctrl & Mgt

Packet
Switch

Flow
Filter

Packet
Sched

Gate
Ctrl&Mgt

TSN-unrelated modules TSN-related modules

MD+Pkt Key/Action

TSNSwitch User Modules

Lookup TablesEthernet RX

TSNSwitch FPGA OS

Ethernet TX

Time SyncLocal Ctrl & Mgt

Packet
Switch

Flow
Filter

Packet
Sched

Gate
Ctrl&Mgt

TSN-unrelated modules TSN-related modules

MD+Pkt Key/Action

MD+Pkt

MD+Pkt MD+Pkt

Local CPU

FPGA Logic

FPGA Logic FPGA Logic

Listener

TSN Stack

Packet Buffer
Managemer

Flow Manager
L2-L4

Protocol Lib

TSN API

Time Sync Info Pkt

TSNNic User Modules
Time SyncLocal Ctrl & Mgt

Ethernet
RX

TSNNic FPGA OS
Ethernet

TX

Flow
Filter

Map&
Fwd

PIFO-based
Scheduler

PIFO
Mgt

Lookup
Tables

DMA
Ctrl

TSN-unrelated modules TSN-related modules

Local CPU

FPGA Logic

MD+Pkt MD+PktMD+Pkt Key/Action MD+PktMD+Pkt

Fig. 1 OpenTSN architecture

55OpenTSN: an open-source project for time-sensitive networking system development

1 3

TSN devices. The details of each components in OpenTSN
will be explained in the following section.

Currently, OpenTSN supports IEEE 802.1AS, IEEE
802.1 Qci, IEEE 802.1 Qav, IEEE 802.1 Qbv, IEEE
802.1Qch for implementing FPGA-based TSN devices and
IEEE 802.1Qcc in the TSN controller. These standards are
provided as modules with the unified interface for reus-
age. The grey parts in Fig. 1 can be extended or changed by
TSN system designers. For example, new standards can be
extended by designers to rebuild a new FPGA-based TSN
device. To improve the efficiency of the overall network
resources, new flow scheduling algorithms can be added into
TSNLight and new applications can be developed using the
northbound interface provided by TSNLight.

3.3 Key features of OpenTSN

This subsection mainly introduces the key features of
OpenTSN. The implementation details of OpenTSN will be
introduced in the next section.

3.3.1 SDN‑based TSN network control mechanism

OpenTSN uses a centralized control model proposed in IEEE
802.1Qcc. In this centralized control model, network devices
including TSNSwitch and TSNNic are configured by the
controller as shown in Fig. 1. For user management, infor-
mation of talkers and listeners is statically described using
configuration files according to the definition of user/net-
work configuration information in IEEE 802.1Qcc. With this
configuration files and the statically abstracted underlying
network resources, the TSN network controller TSNLight
can analyze the corresponding configuration parameters and
configure the target network. Besides such static network
configuration, it also provides dynamic network manage-
ment similar to a SDN controller like Floodlight (Floodlight
controller 2017). With such a SDN-based control mecha-
nism, TSNLight can dynamically allocate network resource
for flows that are unknown to the network in advance when
a table-miss event is triggered.

Under the above mentioned features, the TSN network
controller is able to manage different types of network flows.
We divide flows into three categories, i.e. time sensitive
(TS) flows, rate-constrained (RC) flows and best-effort (BE)
flows. TS flows represent flows requiring deterministic trans-
mission. Packets of this type of flow are generated periodi-
cally and must arrive at the destination within the deadline
with ultra-low jitter and packet loss. RC flows are flows with
a preserved bandwidth allocation and BE flows only need
a best-effort service provided by the TSN network. Under
this definition, the features of TS and RC flows are pre-
determined while the BE flows are generated dynamically.
To facilitate the debugging and diagnosis of a customized

TSN network, TSNLight provides the ability of collecting
network statistics periodically and sampling flow packets on
specific network devices through the control channel.

3.3.2 Time sensitive management protocol

OpenTSN uses TSMP (Time Sensitive Management Proto-
col) as the communication protocol between the TSN con-
troller and devices. TSMP works on the second layer of the
OSI network model as illustrated in the grey part of Fig. 2. It
is encapsulated in a PTP/PCF frame if IEEE 802.1AS (IEEE
802.1AS Standard 2015)/AS6802 (AS6802 Standard 2016)
is used for time synchronization in the underlying TSN net-
work. This protocol contains two main messages, Configu-
ration (C) and Beacon (B) which are distinguished by the
message type section in a PTP/PCF header. Message C and
B represent controlling information encapsulated in configu-
ration packet from controller to device and state and other
information encapsulated in beacon packet from device to
controller. In each message class, there are multiple sub-
class messages defined in the TSMP header. In message C,
the sub-class messages include configurations for tables and
control registers like switchtable_update, synfreq_update,
etc. And message B includes state_report, table_miss,
packet_sampling, etc. state_report reports all states of tables
and statistic registers. packet_sampling simples the packets
passing though the device. These two TSMP messages are
triggered periodically similar to the Beacon messages in
IEEE 802.11. table_miss contains the packet triggered this
table miss event and the corresponding device information.

TSMP provides a reliable transmission guarantee for net-
work management and control information. There are two
methods to achieve this goal. One of the methods is mapping
TSMP packets (besides table_miss) as time-sensitive pack-
ets supported in the underlying TSN network. As the TSN
network provides a deterministic transmission service for
time sensitive flows. The information transmitted between
the controller and devices by TSMP can be highly reliable.
The other method is using a conformation reply for each
configuration. However, this method will reduce the reli-
ability of TSMP compared to the first method.

As can be seen from Fig. 2, compared to the recom-
mended network management protocols like NETCONF
and RESTCONF in IEEE 802.1Qcc (IEEE 802.1Qcc
Standard 2018), TSMP is more simple and efficient. Pro-
tocols like NETCONF and RESTCONF use application-
level security such as SSH and HTTP respectively to
achieve transmission security. And the reliability is guar-
anteed by TCP protocol. This means the controller host
and network devices need to support a standard TCP/IP
stack and complicate high-level protocol parser. However,
considering some closed systems with pure FPGA-based

56 W. Quan et al.

1 3

TSN network devices, it is hard to support such complicate
network management protocols. And the security problem
can be ignored in such system. TSMP, on the other hand,
can be easily implemented on FPGA. If TSN devices in the
target network contain CPUs, these complicated protocols
can be extended in OpenTSN.

3.3.3 Time sensitive switching model

The time sensitive switching model is proposed to support
deterministic transmission for TSN switches, which con-
tains processing logics (A–G) and storages (Ingress queue,
Describer queue, Packet buffer and Egress queue), as shown
in Fig. 3. Logic A is in charge of packet preprocessing like

Fig. 2 The comparison of TSMP and protocols recommended in 802.1Qcc

Fig. 3 A time sensitive switching model for TSN switches

57OpenTSN: an open-source project for time-sensitive networking system development

1 3

CRC checking, timestamping and so on. As an aggregator,
logic B schedules data from multiple queues with a round-
robin algorithm and adds a metadata before each packet.
Logic C forwards time synchronization and configuration
packets to Logic D for global network time synchroniza-
tion processing and local control/management of modules
respectively. And it forwards other packets (TS, RC, BE
packets) to packet buffers with their descriptors sent to the
corresponding queues. Meanwhile, it controls the enqueue
gates and executes flow metering. Logic E controls the
dequeue gates and schedules the descriptor from all queues
based on the scheduling algorithm. Logic F reads the cor-
responding packet of descriptor from packet buffers and
forwards the scheduled packets to egress queues. Logic G
mainly handles CRC calculations, queue rate regulations and
transparent clock processing.

In the above processes, traffic shaping and scheduling are
critical to achieve deterministic forwarding for TS traffic.
Traffic shaping determines at which time slot a packet can
enter and leave the corresponding queue. Traffic schedul-
ing determines the output order of packets from different
queues in the same scheduling slot. More specifically, it
is essential to configure a suitable slot value (d) and stor-
age size. On one hand, the slot value is not only related to
the end-to-end transmission latency, which must be abided
for meeting the real-time application requirement, but also
determines the jitter range. On the other hand, it is necessary
to save memory resource by configuring suitable parameters
as the memory resource on chip is significantly precious.
The parameters of d and storage size are related to the delay
and jitter requirements of applications. In the CQF model,
there is a clear relationship between d and the transmission
jitter (the transmission jitter is 2*d). And the storage size is
related to the time period d as will be explained later.

The value of d contains static protection time (Pt) and
dynamic time of scheduling (St). Pt contains t_1 to t_3 and
t_5 to t_7 as shown in Fig. 3, which can be acquired by mul-
tiple experiments in a prototyping system. Table 1 shows the
time analysis of each process in our star topology TSN pro-
totyping system of OpenTSN. While St is the dynamic part

of d represented by t_4 fluctuating within fixed thresholds,
which can be calculated as St=d-Pt. The packet buffer size
should be large enough to accommodate all the packets dur-
ing the time period St. And the depth of descriptor queues
are equal to the maximum number of frames that the packet
buffer is able to accommodate.

4 Main components in OpenTSN

In current OpenTSN project, there are two hardware com-
ponents TSNSwitch and TSNNic, and one software compo-
nent TSNLight as mentioned in Sect. 3.2. The implementa-
tion details of these components will be introduced in this
section.

4.1 TSNSwitch

In a standard Ethernet switch, ingress processing, switching
and egress processing are three common processing steps.
These three steps are also required in a TSN switch. Dif-
ferent with a standard switch, a TSN switch needs to add
TSN-related features into these steps. In order to achieve
the ability of deterministic transmission, key functions
like time synchronization, time-based shaping are required
on a TSN switch. Time synchronization provides a global
uniform time among all TSN switches. Time-based shap-
ing controls the outport enqueue and dequeue time of each
packet. These TSN functions should be placed in a proper
position in the processing pipeline. For example, time-based
shaping should be placed in the egress processing pipeline.
Functions like time synchronization should be placed in
the ingress processing pipeline as a switching function is
required for synchronization packets. In OpenTSN, TSN-
Switch is built according to the time sensitive switching
model as described in Sect. 3.3.3. Under this model, design-
ers can extend the required TSN standards in the processing
pipeline of TSNSwitch.

For implementing a typical TSNSwitch, the packet pro-
cessing pipeline requires seven stages accroding to the

Table 1 Time analysis in TSN
switching model

Name Description Time consumption
FPGA impl. under 125
MHZ

t1 Time for checking CRC, timestamping and deserializing 0.5 μs
t2 Ingress queue delay (upbound) 4.5 μs
t3 Time for filtering, metering and parsing frames 0.2 μs
t4 Including looking up table, writing frames into packet buffer, writing

describers into corresponding queues and scheduling describers
St

t5 Submitting metadata 0.2 μs
t6 Time for parsing metadata, shaper, reading frames from packet buffer 0.4 μs
t7 Time for refreshing transparent clock, CRC calculation and deserializing 1 μs

58 W. Quan et al.

1 3

swithcing model. The first and last stage of this pipeline are
implemented in the FPGA OS. And for the implementation
of other stages, OpenTSN provides six loosely-coupled mod-
ules including three TSN-related and three TSN-unrelated
modules as illustrated in Fig. 1. The FPGA OS contains logic
for Ethernet preprocessing/postprocessing (CRC, times-
tamping, etc.) and switching tables with an open lookup
interface. The three TSN-unrelated modules are explained
as following. Local Ctrl&Mgt is the local manager of TSN-
Switch which is in charge of network management proto-
col processing, configration and periodic state reporting of
local modules. Packet Switch is used to lookup the output
information from the switching table for each packet with
the specified packet fields.2 Flow Filter classifies the input
packets with the user-defined packet features and maps them
onto different flows for the following traffic policing. About
the TSN-related modules, Time Sync synchronizes the time
among the global TSN network. Gate Ctrl&Mgt provides
enqueue and dequeue control and traditional queue manage-
ment under the selected TSN shaping standard. Each queue
executes open/close operations at a specified time according
to the pre-determined configurations. Packet Sched is used
to select the packets in which queue should be sent out. And
there are shapers limiting the bandwidth of specific queues.

Between modules of TSNSwitch, Metadata as mentioned
in Sect. 3.2 is defined to delivery shared information. The
MD is composed of Buf ID, Outport, Meter ID, Queue ID
and Pkt Len. The Buf ID is used to indicate the index of the
address where the packet is stored in the packet buffer pool.
Outport is used to index the corresponding resource that
the packet belongs to. Meter ID and Queue ID represent the
index of a meter and queue that the packet traverses, respec-
tively. With this definition, modules are decoupled so that
they can be reused without further modifications or extended
with new TSN standards. OpenTSN provides multiple selec-
tions for the TSN-related modules to satisfy different TSN
transmission requirements. Taking the shaping module for
example, IEEE 802.1 Qav, IEEE 802.1 Qbv and IEEE 802.1
Qch have implemented. And many ongoing modules like
AS6802 (AS6802 Standard 2016) for time synchronization
will be provided in the near future. These modules are built
with some static configuration parameters like synchroniza-
tion precession for Time Sync and time slot size for Gate
Ctrl&Mgt. Designers need to determine these application-
specific static parameters for a TSN system customization.
When the application scenario changes, users can rapidly
rebuild a TSNSwitch by substitute corresponding modules

or even only by regulating the related parameters. Therefore,
the development effort is greatly reduced.

4.2 TSNNic

In OpenTSN, TSNNic works as a network adapters con-
necting the TSN networks and users and guaranteeing the
deterministic communication between them. In this section,
the architecture and core data structure would be described
in detail.

4.2.1 Architecture of TSNNic

The TSNNic architecture is shown at the left and right side
of Fig. 1. Similar to TSNSwitch, the Network layer con-
sits of TSNNic FPGA OS and packet processing pipeline in
TSNNic User Modules. Compared to TSNSwitch, TSNNic
FPGA OS adds DMA Ctrl module to transfer packet data
between CPU memory and FPGA memory. With regard to
TSNNic pipeline, the main difference between TSNSwitch
and TSNNic is the TSN-related modules including PIFO
Mgt. and PIFO-based Scheduler. These two modules are
used to guarantee that each TSN packet is transmitted at the
configured time slot. PIFO Mgt. adopts the the Push-In First-
Out Queue Structure and First-in First-Out (FIFO) structure
to hold the packet descriptors. PIFO-based Scheduler selects
packets from the PIFO and FIFO structures according to the
current network time.

In the Host Layer, TSNNic consists of TSN Stack and
TSN API. TSN Stack mainly contains three following mod-
ules. Packet Buffer Manager module allocates dedicated
packet buffers from the CPU memory for TS/RC/BE flows.
Flow Manager stores the registered flow features and sub-
mits them to TSNLight for getting scheduling information.
L2–L4 protocol Lib module provide packet encapsulation
and decapsulation services. Besides, the TSN stack synchro-
nizes the CPU time with the underlying hardware logic peri-
odically, which provides precise time for upper application.

The TSN API provides two kinds of APIs for the devel-
opment of real-time applications. First, the register/unreg-
ister APIs are used to register/unregister the flow features
during the initialization phase, including the source host,
destination host, period, deadline, packet length. Second, the
Socket-like APIs provide easy-to-use interfaces for sending
and receiving the UDP/IP/raw MAC packets without con-
sidering the control of time.

4.2.2 Core data structure and workflow

The design of core data structure in TSNNic plays a crucial
role in guarantee the forwarding determinism of TSN flows
and support different types of flows synchronously. The core
data structures are depicted in Fig. 4.

2 According to the packet information of MAC header and/or other
information such as VLAN header, packets will get the corresponding
outport ID, queue ID, meter ID and so on from the switching table for
egress processing.

59OpenTSN: an open-source project for time-sensitive networking system development

1 3

(1) Packet descriptor. The descriptor is generated and
attached before the packet data by TSN stack. The fileds of
descriptor includes Flow ID, Flow Type, Time Slot, Pkt Len
and Pkt Addr. Flow ID and Flow Type indicates which flow
and flow type that the current packet belongs to. Time Slot
is the specified sending time of this packet. Pkt len and Pkt
Addr is the length and address in FPGA RAM of this packet.

(2) PIFO-based descriptor list (PPDL) and FIFO-based
descriptor list (FPDL). PPDL uses the Push-In First-Out
Queue (PIFO) (Sivaraman et al. 2016) to organize descrip-
tors of TSN packets while FPDL uses the First-in First-out
structure to store packet descriptors. PPDL provides a flex-
ible sorting of packet descriptors according to the sending
time of each packet. The packet descriptor is inserted into
the FPDL directly without sorting.

(3) Time slot map table. The time slot map table is built
to compute the sending time of each TSN packet. The key
field is Flow ID while the value field contains Slot Offset,
Period ID and Period Size. The Slot Offset indicates the time
slot relative to the start of each period. The Period ID is the
index of period that the current TSN flow stays and Period
Size indicates the time interval taken to produce the TSN
packets in a round. These value fileds are used to compute
the absolute sending time of each TSN packet. Period ID
value would be updated when the current packet is sent out.

The TX workflow of TSNNic is described as follows.
First, the user app generates the application data and submits
it into the TSN stack. Second, The TSN stack generates the
packet descriptor and attaches it to the packet data. Third,
when the MAP & FWD module receives packet, it allocates
a packet buffer to hold the packet data and writes the buffer
address into the packet descriptor. Finally, the MAP & FWD
module identifies which flow type the current packet belongs

to. For TSN packets, it computes the sending time slot with
the Time Slot Map Table, followed by enqueuing the packet
descriptor into PPDL. While for RC/BE packets, it directly
put the descriptor into the corresponding FPDL.

The RX data flow of TSNNic is very simple. When the
TSNNic receives packets from the ethernet port, it performs
flow filtering to verify the validity of packet. Then, it trans-
fers the packet data into the CPU RAM with DMA Ctrl mod-
ule. Finally, the user application would access this packet at
the specified time.

4.3 TSNLight

TSNLight is a centralized network controller which provides
a platform for developers to implement various manage-
ment applications. In TSN networks, how to map the upper
application flows onto the underlying TSN-related resources
both temporally and spatially is very critical to guarantee the
quality of service (QoS). Thus, a global resource abstraction
is the foundation for developers to design control applica-
tions. TSNLight provides such functions to fully explore the
ability of a customized TSN network. And the architecture
of TSNLight is depicted in Fig. 1. The TSNLight control-
ler consists of core applitions and core modules. The core
modules provide a resource database and related modules to
manage these resources. The core applications includes two
traffic management applications to allocate the underlying
resources for static flows and dynamic flows respectively,
and a network monitoring application to analysis the net-
work states like synchronization precision, flow latency and
jitter based on the statistics collected from the network. The
core applications interact with the core modules with func-
tion calls. TSNLight configures the resource and collect the

Fig. 4 The core data structure and workflow in TSNNic

60 W. Quan et al.

1 3

state information of TSN switches and TSN end systems via
the southbound API. Besides, a northbound API is provided
by TSNLight for high-level applications to control and man-
age the TSN network.

The Core Modules includes the essential functions of
TSNLight. Resource Database provides a core resource
view for the upper scheduling algorithms. There are three
types of resource including the topology, flow feature and
device resource. Topology Info describes all nodes, including
switches, end systems, and their connectivity. Flow Feature
presents the basic attributes of time-sensitive flows, such
as source, destination, period, etc. The Device Resource is
divided into configurable resource and allocatable resource.
The configurable resource denotes the configuration infor-
mation that will be installed into the data plane, includ-
ing the time slot size, gate control lists. The allocatable
resource shows the state of queue resources identified by
space (switch and port) and time (time slot). Flow Manager
manages the features of time-sensitive flows, rate-constraint
flows and best-effort flows from the centralized user con-
figuration application. And it provides function interface for
the scheduling applications. Topology Manager stores the
topology info into the resource database. Besides, it peri-
odically checks the state of every link and discovers new
nodes. Device Manager configures the underlying TSN
switches and end system according to the current configur-
able resources. Event Manager classifies the external packets
from data plane into different events. The core applications
register the required events and the corresponding event
handlers. When the event manager receives the registered
events, it would execute the related event callbacks. TSMP
Protocol provides the encapsulation and decapsulation of the
control packets as introduced in Sect. 3.3.2.

In TSNLight, the resource scheduling algorithm is the
key to improve the TSN network utilization. Therefore, the
design of the scheduling algorithm is highly depend on the
TSN standards especially the shaping standard implemented
in the target TSN network. Currently, a static resource sched-
uling algorithm has been proposed in OpenTSN to support
a Cyclic Queuing and Forwarding (CQF) (IEEE 802.1Qch
Standard 2017) based TSNSwitch and TSNNic. A CQF-
based TSNSwitch in OpenTSN only contains 4 queues per
port, two for time-sensitve flows, one for rate-constrained
flows and one for best-effort flows. And the gate control
mechanism of CQF only distinguish odd/even time slots.
These implementations reduce the resource scheduling com-
plexity. As page limitations, interested readers can refer to
Yan et al. (2020) for further details of this algorithm.

5 Demonstration examples

5.1 Fast prototyping in OpenTSN

To customize a TSN system in OpenTSN, designers need
to determine four key properties according to the applica-
tion requirements. These properties include: (1) topology.
It determines the number of switches and their connections.
Since the number of enabled ports is different, the number
of queues, the volume of the packet buffer and the number of
per-port tables of TSN devices would be affected. (2) Flow
features. It includes the number of flows and their perfor-
mance requirements (latency, jitter, bandwidth, packet loss,
etc). These influence the shaping standard selection and the
size of tables, per-queue depth and packet buffer size of TSN
devices. (3) Synchronization precision. It determines the
selection of synchronization standards and the implementa-
tion platforms (software/hardware), which could affect mem-
ory, computing and bandwidth resources. (4) Reliability. It
determines the synchronization algorithms (gPTP(IEEE
802.1AS Standard 2015)/AS6802(AS6802 Standard 2016))
and reliability-related standards like frame replication and
elimination (IEEE 802.1CB Standard 2017). These applica-
tion requirements affect the selection of function modules
and the resource specification of each module.

OpenTSN can use different FPGA platforms for imple-
menting a TSN prototype by replacing the platform-related
code. TSNLight is a software controller which can be exe-
cuted on a standard Linux system. After the above properties
of the target TSN system are determined, FPGA bit files
of TSNSwitch and TSNNic can be built by assembling the
corresponding hardware modules and downloaded onto the
target platform. Related to the time-based shaping stand-
ard selected for TSNSwitch and TSNNic, different traf-
fic planning and scheduling algorithms can be adopted in
TSNLight’s core applications to generate a customized TSN
controller. Beside system customization, OpenTSN also sup-
ports new standard extension by developing new hardware
modules and software modules/applications according to the
open interfaces listed in Table 2.3 For demonstration pur-
pose, a star topology intra-satellite TSN network system and
a ring topology industrial control TSN network system have
been built in OpenTSN, which will be introduced in details
in the next subsection. The currently implemented and
ongoing core modules of OpenTSN are shown in Table 3.
Notice that, these implemented FPGA modules do not have
a one-to-one relationship with the logic modules shown in
Fig. 1. The configurations to these modules in a customized

3 The detailed definition of these interfaces can be found in the
design documents in OpenTSN git repository. https ://gitee .com/opent
sn/openT SN/tree/maste r.

https://gitee.com/opentsn/openTSN/tree/master
https://gitee.com/opentsn/openTSN/tree/master

61OpenTSN: an open-source project for time-sensitive networking system development

1 3

TSN system can be found in details in the user manuals in
OpenTSN repository.

5.2 Prototyping examples

5.2.1 Typical demonstrations

In this section, we mainly introduce the two typical dem-
onstration examples of OpenTSN as shown in Fig. 5. As

the selected demonstration examples given in OpenTSN
have different requirements in topology, flow features and
reliability. Two obviously different TSN systems need to be
customized. According to the corresponding requirement,
the prototyping systems are built by assembling the cor-
responding modules with proper parameters in OpenTSN.

The left side of Fig. 5 shows a star topology TSN network
which is normally used as industrial control network, intra-
satellite network, etc. In this TSN network, the TSNSwitch

Table 2 Open interfaces in OpenTSN

Components Interface Usage State

TSNSwitch/Nic Data transmission This interface contains five hardware signals for packet transmission between modules Done
Metadata A data structure defined for Control information exchange, embedded in the interface of data

transmission
Done

Lookup table A lookup interface defined for the forwarding and switching Module, containing Key and Result Ongoing
TSNLight Southbound API An open interface defined for Information exchange between the controller and devices Done

Northbound API An open interface defined for Information exchange between the controller and applications Ongoing

Table 3 Open modules in
OpenTSN

Components Module Usage State

TSNSwitch/Nic PTP Time synchronization Done
AS6802 Time synchronization Ongoing
LCM Local control and management Done
ESW Ethernet switching Done
EMF Ethernet mapping and forwarding Ongoing
EOS-Qav/Qbv/Qch Qav/Qbv/Qch based filtering, queuing, scheduling Done
EOS-PIFO PIFO based filtering, queuing, scheduling Ongoing

TSNLight FM/TM/DM/EM Flow/topology/device/event management module Done
TSMP TSMP protocol lib Done
TSN_Insight Network monitoring app. Done
TSN_STM Static traffic management app. Done
TSN_DTM Dynamic traffic management app. Ongoing

Fig. 5 OpenTSN demonstrations

62 W. Quan et al.

1 3

and TSNNic are implemented based on Xilinx Zynq 7020
FPGA SoC. For the TSNSwitch, all the processing modules
are running on FPGA. With respect to the TSNNic, FPGA is
used to implement the time synchronization and time-based
packet receiving/sending and the TSN stack and applications
run on CPU. The star topology contains five TSNSwitches
in total and the core switch has four child nodes. The right
side of Fig. 5 shows a typical ring topology TSN network
for Ethernet Train Backbone (ETB). Different with the star
topology TSN network, the TSNSwitches in this ring topol-
ogy TSN network are implemented on Altera Arria 10 based
FPGA platform with two ports supporting dual-direction
deterministic transmission and two general Ethernet ports.
For both prototyping system, a packet generator is running
on a TSNNic to generate three types of flows (time-sensitive
flow, rate-constrained flow and best-effort flow as mentioned
before). Each type of flow is generated under the config-
ured packet header and features like bandwidth, period (for
time-sensitive flow only), etc. The TSN analyzer in the star
topology TSN network is used for experimental supports
which adds a timestamp for all TSMP Beacon packets peri-
odically sent from the underlying devices for further analysis
by TSNLight. A web camera is applied to the TSN system
with a terminal for real-time video display. All the devices
are connected with 1Gbps Ethernet cables.

5.2.2 Experimental setups and results

As the above introduced demonstration systems gives simi-
lar experimental results with regard to the metrics of syn-
chronization precision and transmission performance. In this
article, we select the star topology TSN network to do our
experiments. This prototyping system adopts 1588 PTP syn-
chronization protocol and Cyclic Queuing and Forwarding
model (CQF) as the core features implemented in FPGA.
In our experiments, the features of TS flows that we gener-
ate are guided with the IEC 60802 standard. This standard
describes the typical flow features in the production cell and
line. Here we generate 1024 TS flows and the period of each
TS flow is 10 ms. The packet size of each flow is between 64
and 1500 B. In the star topology, the number of hops that all
the packets traverse between any end systems is 3.

The experiments include two main parts, synchronization
precision and transmission performance. For the first experi-
ment, we test the precision of pure hardware PTP protocol
in our testbed. The TSNSWITCH_0 is selected as the master
node and other switches are slave nodes. The period of syn-
chronization is set to 1 ms. The offset of time synchroniza-
tion between the slave nodes and the master node is shown
in Fig. 6a. This test is executed for 200 rounds. The maxi-
mal difference is less than 32 ns and most of the results are
between 0 and 16 ns. Thus, it demonstrates that the imple-
mentation of PTP on our platform is effective. In the second

experiment, the transmission performance (latency, jitter and
packet loss) is evaluated under different packet size, time slot
size and background flows. Since the priority of TS flows is
the highest and other flows cannot preempt the bandwidth,
the packet loss in all the experiments is 0.

The theoretical latency range of CQF model is between
(hop - 1)*slot and (hop + 1)*slot. Thus, the transmission
delay is positively related to the number of hops and time
slot size. Here we use standard deviation of latency to
describe the jitter, which is only positively related to the
time slot size. As shown in Fig. 6b, the latency increases
slightly as the packet size increases. The reason is that the
time for outputting the packet is positively correlated with
the packet size. The second case shows the change of latency
under different time slot size in Fig. 6c. The average latency
and jitter are increased manyfold according to the upper and
lower bound of CQF above. Finally, we inject RC flows and
BE flows with different loads simultaneously as background
flows. The bandwidth of RC flows and BE flows are the
same here. The results show that there is no affection on the
latency and jitter of critical TS flows in Fig. 6d.

In summary, the tested prototype built in OpenTSN not
only can guarantee high precision of time synchronization,
but also provide deterministic transmission performance that
follows the theoretical results.

6 Related works

As a newly emerged technique, TSN has received a lot of
research interests. However these research works mainly
focus on the scheduling algorithms. Only a few works focus
on the system-level TSN network development and evalua-
tion. For a system-level TSN network development, the most
related work is Time-Sensitive Networking. This work pro-
pose an idea for implementing TSN devices and systems
using FPGA SoC (Time-Sensitive Networking). However,
this study only provide preliminary ideas without implemen-
tation details. Our proposed OpenTSN is an FPGA-based
solution. Therefore, OpenTSN can get the flexibility advan-
tages of FPGA solutions for supporting new TSN technolo-
gies as mentioned in Sect. 2.

Considering the ASIC-based TSN products, the industry
has built some TSN test beds for constructing TSN systems
with products from different companies. Huawei and many
other companies built the OPC UA over TSN testbed (Opc
ua over tsn testbed 2019). The testbed dedicated to provide
edge computing technology stacks like OPC UA over TSN
in manufacturing and other industrial markets, to ensure
that industrial needs and requirements to be best addressed
through members’ products. Industrial Internet Consortium
(IIC) also created two physical instances of the TSN test-
bed (Iic tsn testbed 2019). One is hosted in North America

63OpenTSN: an open-source project for time-sensitive networking system development

1 3

the other is hosted in Germany. These testbeds are used for
plugfest activities where member companies collaborate to
test implementations and interoperability. However, the test-
beds can not directly support the deployment of new TSN
technologies

There are some simulation based solutions presented in
literatures. For example, Jiang et al. (2018) build a TSN
simulation model by OMNeT++ containing traffic schedul-
ing (TAS) and time synchronization (gPTP). And the results
of simulation model shows there is no influence for time-
sensitive traffic with regulating the bandwidth of BE traffic,
which is not convincing as the BE traffics transmission may
result in the delay of time-sensitive traffic at the point of
switching time slot. Meyer et al. (2013) present a module

with time-sensitive traffic and AVB traffic for analyzing
mutual influence. While the time-sensitive traffic is not in
accordance with the one in IEEE 802.1 Qbv. Nevertheless,
the insights on CBS is worthy of learning. Pahlevan and
Obermaisser (2018) implement TAS and PSFP functions of
switches on OPNET framework, using the regular Ethernet
workstation as an end station. To acquire better QoS, they
design the end station by FPGA with controllable sending
time of time-sensitive traffic. Falk et al. (2019) propose Nest-
ing, which is an OMNeT++ simulation model for TSN with
two switches under the time-aware and credit-based shaping.
Compared to real FPGA based TSN systems, these simula-
tion based solutions have the accuracy drawback of software
simulations.

Fig. 6 Experimental results

64 W. Quan et al.

1 3

7 Conclusion

To help developers rapidly customize and evaluate a TSN
system on FPGAs from different level, this article presented
OpenTSN. It is an open source project which contains the
necessary hardware and software components. These com-
ponents are built based on the concluded basic features
including a SDN-based TSN network control mechanism,
a time-sensitive management protocol and a time-sensitive
switching model. Under these properties, components can
work together to provide required deterministic transmis-
sion. Each component can be customized from different level
according to the system requirements like network topology,
device buffer and queue size, time synchronization preci-
sion and so on. This article analyzed the architecture of each
component in details so that designers can fully understand
and use OpenTSN. The ability of our proposed OpenTSN
has been verified by the demonstrating TSN systems.

Acknowledgements This work is supported by National Natural Sci-
ence Foundation of China (Grant nos. 61802417, 61601483, 61702538)
and National Key Research and Development Program of China (Grant
nos. 2018YFB1800505, 2018YFB1800402).

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

AS6802 Standard (2016). https ://www.sae.org/stand ards/conte nt/as680
2

Broadcom 53570 TSN chip (2017). https ://docs.broad com.com/docs-
and-downl oads/53570 -PB101 .pdf

Floodlight controller (2017). https ://1.ieee8 02.org/tsn/802-1qci
IEEE 802.1AS Standard (2015). www.ieee8 02.org/1/pages /802.1as.

html
IEEE 802.1CB Standard (2017). https ://1.ieee8 02.org/tsn/802-1cb
IEEE 802.1Qav Standard (2018). http://www.ieee8 02.org/1/pages

/802.1av.html
IEEE 802.1Qbv Standard (2015). http://www.ieee8 02.org/1/pages

/802.1bv.html
IEEE 802.1Qcc Standard (2018). https ://1.ieee8 02.org/tsn/802-1qcc/
IEEE 802.1Qch Standard (2017). https ://1.ieee8 02.org/tsn/802-1qch/
IEEE 802.1Qci Standard (2017). https ://1.ieee8 02.org/tsn/802-1qci
IEEE 802.1Qcr (2020). https ://1.ieee8 02.org/tsn/802-1qcr//
IEEE TSN Task Group (2012). https ://1.ieee8 02.org/tsn/
Iic tsn testbed (2019). https ://www.iicon sorti um.org/time-sensi tive-

netwo rks.htm

Marvell 88e6390X TSN chip (2019). https ://www.marve ll.com/switc
hing/asset s/LinkS treet _88E63 90X_FINAL 2.pdf

NXP SJA1105 TSN chip (2019). https ://www.nxp.com/produ cts/inter
faces /ether net-/autom otive -ether net-switc hes/five-ports -avb-tsn-
autom otive -ether net-switc h:SJA11 05TEL

Opc ua over tsn testbed (2019). https ://e.huawe i.com/uk/news/uk/2019/
edge-compu ting-opc-ua-hanno ver-messe

OpenTSN Project (2019). https ://gitee .com/opent sn/openT SN/tree/
maste r

Overview of TTE Applications and Development at NASA/JSC (2016).
https ://ntrs.nasa.gov/archi ve/nasa/casi.ntrs.nasa.gov/20160 01236
3.pdf

Time-Sensitive Networking: From Theory to Implementation in Indus-
trial Automation (2019). https ://www.intel .com/conte nt/dam/
www/progr ammab le/us/en/pdfs/liter ature /wp/wp-01279 -time-
sensi tive-netwo rking -from-theor y-to-imple menta tion-in-indus
trial -autom ation .pdf

Traffic types mapping to TSN mechanism (2019). http://group er.ieee.
org/group s/802/1/files /publi c/docs2 019/60802 -Hotta -Traff ic-
Types -Mappi ng-to-TSN-Mecha nism-0119-v01.pdf

Falk, J., Hellmanns, D., Carabelli, B., Nayak, N., Dürr, F., Kehrer,
S., Rothermel, K.: Nesting: Simulating ieee time-sensitive net-
working (tsn) in omnet++. In: 2019 International Conference on
Networked Systems (NetSys), pp. 1–8. IEEE (2019)

Jiang, J., Li, Y., Hong, S.H., Xu, A., Wang, K.: A time-sensitive net-
working (tsn) simulation model based on omnet++. In: 2018
IEEE International Conference on Mechatronics and Automation
(ICMA), pp. 643–648. IEEE (2018)

Meyer, P., Steinbach, T., Korf, F., Schmidt, T.C.: Extending ieee 802.1
avb with time-triggered scheduling: a simulation study of the
coexistence of synchronous and asynchronous traffic. In: 2013
IEEE Vehicular Networking Conference, pp. 47–54. IEEE (2013)

Nasrallah, A., Balasubramanian, V., Thyagaturu, A., Reisslein, M.,
ElBakoury, H.: Cyclic queuing and forwarding for large scale
deterministic networks: a survey. arXiv :1905.08478 (arXiv pre-
print) 2019

Nasrallah, A., Thyagaturu, A.S., et al.: Ultra-low latency (ull) net-
works: The ieee tsn and ietf detnet standards and related 5g ull
research. IEEE Commun. Surv. Tutori. 21(1), 88–145 (2018)

Pahlevan, M., Obermaisser, R.: Evaluation of time-triggered traffic in
time-sensitive networks using the opnet simulation framework.
In: 2018 26th Euromicro International Conference on Parallel,
Distributed and Network-based Processing (PDP), pp. 283–287.
IEEE (2018)

Schonwalder, J., Bjorklund, M., Shafer, P.: Network configuration man-
agement using netconf and yang. IEEE Commun. Mag. 48(9),
166–173 (2010)

Sivaraman, A., Subramanian, S., Alizadeh, M., Chole, S., Chuang, S.T.,
Agrawal, A., Balakrishnan, H., Edsall, T., Katti, S., McKeown,
N.: Programmable packet scheduling at line rate. In: Proceedings
of the 2016 ACM SIGCOMM Conference, SIGCOMM ’16, pp.
44–57, New York, NY, USA, (2016) Association for Computing
Machinery

Wollschlaeger, M., Sauter, T., Jasperneite, J.: The future of industrial
communication: automation networks in the era of the internet of
things and industry 4.0. IEEE Ind. Electron. Mag. 11(1), 17–27
(2017)

Yan, J., Quan, W., Jiang, X., Sun, Z.: Injection time planning: making
cqf practical in time-sensitive networking (2020)

Yang, X., Sun, Z., Li, J., Yan, J., Li, T., Quan, W., Xu, D., Antichi,
G.: Fast: enabling fast software/hardware prototype for network
experimentation. In: Proceedings of the International Symposium
on Quality of Service, pp. 1–10 (2019)

http://creativecommons.org/licenses/by/4.0/
https://www.sae.org/standards/content/as6802
https://www.sae.org/standards/content/as6802
https://docs.broadcom.com/docs-and-downloads/53570-PB101.pdf
https://docs.broadcom.com/docs-and-downloads/53570-PB101.pdf
https://1.ieee802.org/tsn/802-1qci
http://www.ieee802.org/1/pages/802.1as.html
http://www.ieee802.org/1/pages/802.1as.html
https://1.ieee802.org/tsn/802-1cb
http://www.ieee802.org/1/pages/802.1av.html
http://www.ieee802.org/1/pages/802.1av.html
http://www.ieee802.org/1/pages/802.1bv.html
http://www.ieee802.org/1/pages/802.1bv.html
https://1.ieee802.org/tsn/802-1qcc/
https://1.ieee802.org/tsn/802-1qch/
https://1.ieee802.org/tsn/802-1qci
https://1.ieee802.org/tsn/802-1qcr//
https://1.ieee802.org/tsn/
https://www.iiconsortium.org/time-sensitive-networks.htm
https://www.iiconsortium.org/time-sensitive-networks.htm
https://www.marvell.com/switching/assets/LinkStreet_88E6390X_FINAL2.pdf
https://www.marvell.com/switching/assets/LinkStreet_88E6390X_FINAL2.pdf
https://www.nxp.com/products/interfaces/ethernet-/automotive-ethernet-switches/five-ports-avb-tsn-automotive-ethernet-switch:SJA1105TEL
https://www.nxp.com/products/interfaces/ethernet-/automotive-ethernet-switches/five-ports-avb-tsn-automotive-ethernet-switch:SJA1105TEL
https://www.nxp.com/products/interfaces/ethernet-/automotive-ethernet-switches/five-ports-avb-tsn-automotive-ethernet-switch:SJA1105TEL
https://e.huawei.com/uk/news/uk/2019/edge-computing-opc-ua-hannover-messe
https://e.huawei.com/uk/news/uk/2019/edge-computing-opc-ua-hannover-messe
https://gitee.com/opentsn/openTSN/tree/master
https://gitee.com/opentsn/openTSN/tree/master
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160012363.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160012363.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01279-time-sensitive-networking-from-theory-to-implementation-in-industrial-automation.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01279-time-sensitive-networking-from-theory-to-implementation-in-industrial-automation.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01279-time-sensitive-networking-from-theory-to-implementation-in-industrial-automation.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01279-time-sensitive-networking-from-theory-to-implementation-in-industrial-automation.pdf
http://grouper.ieee.org/groups/802/1/files/public/docs2019/60802-Hotta-Traffic-Types-Mapping-to-TSN-Mechanism-0119-v01.pdf
http://grouper.ieee.org/groups/802/1/files/public/docs2019/60802-Hotta-Traffic-Types-Mapping-to-TSN-Mechanism-0119-v01.pdf
http://grouper.ieee.org/groups/802/1/files/public/docs2019/60802-Hotta-Traffic-Types-Mapping-to-TSN-Mechanism-0119-v01.pdf
http://arxiv.org/abs/1905.08478

65OpenTSN: an open-source project for time-sensitive networking system development

1 3

Wei Quan born in 1987. PhD,
assistant professor in College of
Computer Science and Technol-
ogy, National University of
Defense Technology. His main
research interests cover time-
sensitive network, software
defined network and FPGA
design.

Wenwen Fu born in 1994. PhD
candidate in National University
of Defense Technology. His
main research interests include
programmable network, data
center network and time-sensi-
tive network.

Jinli Yan born in 1993. PhD can-
didate in National University of
Defense Technology. His main
research interests include time-
sensitive network, data center
network and software defined
network.

Zhigang Sun born in 1974. PhD,
professor in College of Com-
puter Science and Technology,
National University of Defense
Technology. Chair of FAST
opensource project. His main
research interests include soft-
ware defined network, time-sen-
sitive network, network architec-
ture, FPGA design and network
security.

	OpenTSN: an open-source project for time-sensitive networking system development
	Abstract
	1 Introduction
	2 Motivation
	3 OpenTSN overview
	3.1 Design principles of OpenTSN
	3.1.1 An overall TSN system solution
	3.1.2 Modular design supporting flexible customization and extension
	3.1.3 Platform and application independent system design

	3.2 OpenTSN architecture
	3.3 Key features of OpenTSN
	3.3.1 SDN-based TSN network control mechanism
	3.3.2 Time sensitive management protocol
	3.3.3 Time sensitive switching model

	4 Main components in OpenTSN
	4.1 TSNSwitch
	4.2 TSNNic
	4.2.1 Architecture of TSNNic
	4.2.2 Core data structure and workflow

	4.3 TSNLight

	5 Demonstration examples
	5.1 Fast prototyping in OpenTSN
	5.2 Prototyping examples
	5.2.1 Typical demonstrations
	5.2.2 Experimental setups and results

	6 Related works
	7 Conclusion
	Acknowledgements
	References

