Skip to main content
Log in

Continuous flow synthesis of Micron size silica nanoparticles: parametric study and effect of dosing strategy

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

This work for the first time reports continuous flow synthesis of silica nano-particles of size over 1 μm using a simple tubular reactor. The systematic approach involves the study of effect of various parameters like: ammonia concentration, water concentration, electrolyte concentraton, temperature, solvent, residence time and mode of TEOS injection over a wide range. A combination of ethanol and butanol was used as the medium with relatively lower polarity. Various process parameters were optimized to obtain highly monodispersed particles of size up to 600 nm and high yield (up to 90%). Attempts of reducing the reaction time by increasing temperature or concentrations of any of the reagents resulted in significant polydispersity and even in the formation of random shape agglomerates. At the optimized conditions almost complete conversion of TEOS happenned within 40 min and further growth of particles was achieved by adding TEOS using multipoint injection approach. While multipoint dosing resulted in the formation of very small number of secondary particles, the larger particles continued to grow beyond 800 nm. Further reduction in the polarity of reaction medium was achieved by adding 20% v/v of toluene, which without changing homogeneity of the solution resulted in particles as large as 0.9–1.1 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wagner NJ, Wetzel ED (2002) Advanced body armor utilizing shear thickening fluids. US Patent 7,498,276, 3 March 2009

  2. Dederich DA, Okwuonu G, Garner T, Denn A, Sutton A, Escotto M, Martindale A, Delgado O, Muzny DM, Gibbs RA, Metzker ML (2002) Glass bead purification of plasmid template DNA for high throughput sequencing of mammalian genomes. Nucleic Acids Res 30(7)

  3. Yamasaki T, Sumioka K, Tsutsui T (2000) Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium. Appl Phys Lett 76(10):1243–1245

    Article  CAS  Google Scholar 

  4. Zettner C, Yoda M (2003) Particle velocity field measurements in a near-wall flow using evanescent wave illumination. Exp Fluids 34(1):115–121

    Article  CAS  Google Scholar 

  5. Slowing II, Trewyn BG, Giri S, Lin VSY (2007) Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Funct Mater 17(8):1225–1236

    Article  CAS  Google Scholar 

  6. Melde BJ, Johnson BJ, Charles PT (2008) Mesoporous silicate materials in sensing. Sensors-Basel 8(8):5202–5228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stober W, Fink A, Bohn E (1968) Controlled Growth of Monodisperse Silica Spheres in Micron Size Range. J Colloid Interface Sci 26(1):62–69

    Article  Google Scholar 

  8. Lee I, Yoo Y, Cheng Z, Jeong HK (2008) Generation of monodisperse mesoporous silica microspheres with controllable size and surface morphology in a microfluidic device. Adv Funct Mater 18(24):4014–4021

    Article  CAS  Google Scholar 

  9. Andersson N, Kronberg B, Corkery R, Alberius P (2007) Combined emulsion and solvent evaporation (ESE) synthesis route to well-ordered mesoporous materials. Langmuir 23(3):1459–1464

    Article  CAS  PubMed  Google Scholar 

  10. Carroll NJ, Rathod SB, Derbins E, Mendez S, Weitz DA, Petsev DN (2008) Droplet-based microfluidics for emulsion and solvent evaporation synthesis of monodisperse mesoporous silica microspheres. Langmuir 24(3):658–661

    Article  CAS  PubMed  Google Scholar 

  11. Rahman IA, Padavettan V (2012) Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review. J Nanomater 2012:8

    Article  CAS  Google Scholar 

  12. Giesche H (1994) Synthesis of monodispersed silica powders. 2. Controlled growth reaction and continuous production process. J Eur Ceram Soc 14(3):205–214

    Article  CAS  Google Scholar 

  13. De Geest BG, Urbanski JP, Thorsen T, Demeester J, De Smedt SC (2005) Synthesis of monodisperse biodegradable microgels in microfluidic devices. Langmuir 21(23):10275–10279

    Article  CAS  PubMed  Google Scholar 

  14. Wacker JB, Lignos I, Parashar VK, Gijs MA (2012) Controlled synthesis of fluorescent silica nanoparticles inside microfluidic droplets. Lab Chip 12(17):3111–3116

    Article  CAS  PubMed  Google Scholar 

  15. Yonemoto T, Kubo M (1997) T.; Tadaki, T., continuous synthesis of titanium dioxide fine particles using a slug flow ageing tube reactor. Chem Eng Res Des 75(4):413–419

    Article  CAS  Google Scholar 

  16. Khan SA, Gunther A, Schmidt MA, Jensen KF (2004) Microfluidic synthesis of colloidal silica. Langmuir 20(20):8604–8611

    Article  CAS  PubMed  Google Scholar 

  17. Ng TN, Chen X, Yeung KL (2015) Direct manipulation of particle size and morphology of ordered mesoporous silica by flow synthesis. RSC Adv 5(18):13331–13340

    Article  CAS  Google Scholar 

  18. Gutierrez L, Gomez L, Irusta S, Arruebo M, Santamaria J (2011) Comparative study of the synthesis of silica nanoparticles in micromixer–microreactor and batch reactor systems. Chem Eng J 171(2):674–683

    Article  CAS  Google Scholar 

  19. Su M (2017) Synthesis of highly monodisperse silica nanoparticles in the microreactor system. Korean J Chem Eng 34(2):484–494

    Article  CAS  Google Scholar 

  20. Matsoukas T, Gulari E (1988) Dynamics of growth of silica particles from ammonia-catalyzed hydrolysis of tetra-ethyl-orthosilicate. J Colloid Interface Sci 124(1):252–261

    Article  CAS  Google Scholar 

  21. Bogush G, Zukoski Iv C (1991) Uniform silica particle precipitation: an aggregative growth model. J Colloid Interface Sci 142(1):19–34

    Article  CAS  Google Scholar 

  22. Iler RK (1979) The chemistry of silica. Solubility, polymerization, colloid and surface properties and biochemistry of silica. Wiley Interscience, New York

  23. Alexander G (1953) The reaction of low molecular weight silicic acids with molybdic acid. J Am Chem Soc 75(22):5655–5657

    Article  CAS  Google Scholar 

  24. Makrides AC, Turner M, Slaughter J (1980) Condensation of silica from supersaturated silicic-acid solutions. J Colloid Interface Sci 73(2):345–367

    Article  CAS  Google Scholar 

  25. Rao KS, El-Hami K, Kodaki T, Matsushige K, Makino K (2005) A novel method for synthesis of silica nanoparticles. J Colloid Interface Sci 289(1):125–131

    Article  CAS  PubMed  Google Scholar 

  26. Kim H-M, Lee C-H, Kim B (2016) Sonochemical synthesis of silica particles and their size control. Appl Surf Sci 380:305–308

    Article  CAS  Google Scholar 

  27. Lee DH, Han SW, Kang DP (2015) Size change of silica nanoparticles induced by non-alcoholic solvent addition during sol–gel reaction. J Sol-Gel Sci Technol 74(1):78–83

    Article  CAS  Google Scholar 

  28. Harris MT, Brunson RR, Byers CH (1990) The base-catalyzed hydrolysis and condensation reactions of dilute and concentrated TEOS solutions. J Non-Cryst Solids 121(1–3):397–403

    Article  CAS  Google Scholar 

  29. Tan C, Bowen B, Epstein N (1987) Production of monodisperse colloidal silica spheres: effect of temperature. J Colloid Interface Sci 118(1):290–293

    Article  CAS  Google Scholar 

  30. Sadasivan S, Dubey AK, Li Y, Rasmussen DH (1998) Alcoholic solvent effect on silica synthesis—NMR and DLS investigation. J Sol-Gel Sci Technol 12(1):5–14

    Article  CAS  Google Scholar 

  31. Malay O, Yilgor I, Menceloglu YZ (2013) Effects of solvent on TEOS hydrolysis kinetics and silica particle size under basic conditions. J Sol-Gel Sci Technol 67(2):351–361

    Article  CAS  Google Scholar 

  32. Park SK, Do Kim K, Kim HT (2002) Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles. Colloid Surface A 197(1–3):7–17

    Article  CAS  Google Scholar 

  33. Nagao D, Satoh T, Konno M (2000) A generalized model for describing particle formation in the synthesis of monodisperse oxide particles based on the hydrolysis and condensation of tetraethyl orthosilicate. J Colloid Interface Sci 232(1):102–110

    Article  CAS  PubMed  Google Scholar 

  34. Bogush GH, Tracy MA, Zukoski CF (1988) Preparation of monodisperse silica particles-control of size and mass fraction. J Non-Cryst Solids 104(1):95–106

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledges the funding from the Dept. of Science and Technology (GoI)‘s Advanced Manufacturing Technologies (AMT) scheme. Authors thank Dr. Suresh Bhat for timely help in access to DLS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amol Kulkarni.

Electronic supplementary material

ESM 1

(DOCX 1526 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jundale, R., Bari, A., Thara, C. et al. Continuous flow synthesis of Micron size silica nanoparticles: parametric study and effect of dosing strategy. J Flow Chem 8, 59–67 (2018). https://doi.org/10.1007/s41981-018-0008-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-018-0008-3

Keywords

Navigation