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Abstract
Let G be a finite group and H a subgroup of G. We say that H : is generalized S-
quasinormal in G if H = 〈A, B〉 for some modular subgroup A and S-quasinormal
subgroup B of G; m-S-complemented in G if there are a generalized S-quasinormal
subgroup S and a subgroup T of G such that G = HT and H ∩ T ≤ S ≤ H . In this
paper, we study finite groups with given systems of m-S-complemented subgroups.
In particular, we prove that if F is a saturated formation containing all supersoluble
groups and E is a normal subgroup of a finite group G such that G/E ∈ F and for
every non-cyclic Sylow subgroup P of E every maximal subgroup of P not having a
nilpotent supplement in G is m-S-complemented in G, then G ∈ F .

Keywords Finite group · Modular subgroup · S-quasinormal subgroup · Generalized
S-quasinormal subgroup · m-S-complemented subgroup
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1 Introduction

Throughout this paper, all groups are finite and G always denotes a finite group.
Moreover, π(G) is the set of all primes dividing the order |G| of G; Cn denotes a
cyclic group of order n.
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AsubgroupM ofG is calledmodular inG [1, p. 43] if (1) 〈X , M∩Z〉 = 〈X , M〉∩Z
for all X ≤ G, Z ≤ G such that X ≤ Z , and (2) 〈M,Y ∩ Z〉 = 〈M,Y 〉 ∩ Z for all
Y ≤ G, Z ≤ G such that M ≤ Z .

A subgroup H of G is said to be S-permutable [2,3] or S-quasinormal [4] in G if
H permutes with every Sylow subgroup P of G, that is, HP = PH . The subgroup H
of G is said to be generalized S-quasinormal in G [5] if there are a modular subgroup
A and an S-quasinormal subgroup B of G such that H = 〈A, B〉.

Interesting applications of generalized S-quasinormal subgroups were discussed in
the paper [5]. In this paper,we consider the following generalization of such subgroups.

Definition 1.1 We say that a subgroup H of G is m-S-complemented in G if there are
a generalized S-quasinormal subgroup S and a subgroup T of G such that G = HT
and H ∩ T ≤ S ≤ H .

It is clear that every generalized S-quasinormal subgroup is m-S -complemented.
Every modular subgroup and every S-quasinormal subgroup are generalized S-
quasinormal. Now consider the following

Example 1.2 (1) Let C3 � A4 = P � A4, where A4 is the alternating group of degree
4 and P is the base group of the regular wreath product C3 � A4. Let G = (P �

A4) × (C11 � C5), where C11 � C5 is a non-abelian group of order 55. Let Q be the
Sylow 2-subgroup of A4 and R a Sylow 3-subgroup of A4. Then, PQ is supersoluble,
so some subgroup B of P with |B| = 3 is normal in PQ. Then, for every Sylow
3-subgroup G3 of G we have B ≤ P ≤ G3, so BG3 = G3 = G3B. On the other
hand, for every Sylow 2-subgroup Qx of G we have Qx ≤ PQ, so BQx = Qx B.
Hence, B is S-quasinormal in G. In view of [1, Theorem 5.1.9], A = C5 is modular
in G. Then, S = 〈A, B〉 = AB is generalized S-quasinormal in G.

Now let H = (AB)Q = A × BQ and T = PRC11. Then, G = HT and
H ∩ T = (AB)Q ∩ PRC11 = B(AQ ∩ PRC11) = B ≤ H . Hence, H is m-S-
complemented in G.

Next,we show that H is not generalized S-quasinormal inG. First note that HG = 1,
so for every modular subgroup V of H we have VG ≤ C11�C5 by Lemma 2.4 below.
Therefore, A is the largest modular subgroup of H . Assume that H is generalized S-
quasinormal in G and let W be an S-quasinormal subgroup of G such that H =
〈A,W 〉 = AW . Then, WG = 1, so W is a nilpotent subnormal subgroup of G by
[2, Theorem 1.2.17]. Hence for a Sylow 2-subgroup Q1 of W , we have 1 < Q1 ≤
O2(G) ≤ P � (Q � Cp) and so Q1 ≤ CG(P), a contradiction. Therefore, H is not
generalized S-quasinormal in G.

(2) A subgroup H of G is said to be complemented (respectively, c-supplemented
[6]) inG, if there is a subgroup T ofG such thatG = HT and H∩T = 1 (respectively,
G = HT and H ∩ T ≤ HG). It is clear that every complemented subgroup and every
c-supplemented subgroup are m-S-complemented.

(3) A subgroup H of G is said to be S-supplemented [7] (respectively, m-
supplemented [8]) in G, if there are an S-quasinormal subgroup (respectively, a
modular subgroup) S and a subgroup T ofG such thatG = HT and H ∩T ≤ S ≤ H .
Every S-supplemented subgroup and every m-supplemented subgroup are m-S-
complemented.
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Let K ≤ H be normal subgroups of G. Then we say, following [1] that H/K
is hypercyclically embedded in G if every chief factor of G between H and K is
cyclic. We say also that H is hypercyclically embedded inG if H/1 is hypercyclically
embedded in G.

Hypercyclically embedded subgroups play an important role in the theory of soluble
groups (see the books [1–3]) and the conditions under which a normal subgroup is
hypercyclically embedded were found by many authors (see, for example, the recent
papers [9–17]).

In this paper, we prove the following results in this line research.

Theorem 1.3 Let E be a normal subgroup of G and let P be a Sylow p-subgroup of
E, where p is the smallest prime dividing |E |. If every maximal subgroup of P not
having a p-nilpotent supplement in G is m-S-complemented in G, then E/Op′(E) is
hypercyclically embedded in G.

Theorem 1.4 Let E be a normal subgroup of G. Suppose that for any Sylow subgroup
P of E every maximal subgroup of P not having a nilpotent supplement in G is
m-S-complemented in G. Then, E is hypercyclically embedded in G.

Recall that the formation F is a homomorph of groups such that each group G
has the smallest normal subgroup (denoted by GF) whose quotient is still in F. A
formation F is said to be saturated if G ∈ F for any group G with G/�(G) ∈ F.

As a first application of Theorem 1.4, we prove also the following theorem which
covers many known results (see Sect. 4 below).

Theorem 1.5 Let F be a saturated formation containing all supersoluble groups, and
let X ≤ E be normal subgroups of G with G/E ∈ F. Suppose that for any Sylow
subgroup P of X every maximal subgroup of P not having a nilpotent supplement in
G is m-S-complemented in G. If X = E or X = F∗(E), then G ∈ F.

In this theorem, X = F∗(E) denotes the generalized Fitting subgroup of E [18,
Ch. X], that is, the product of all normal quasinilpotent subgroups of E .

2 Preliminaries

The first lemma collects the properties of S-quasinormal subgroups used in our proofs.

Lemma 2.1 (See Chapter 1 in [2]). Let A, B and N be subgroups of G, where A is
S-quasinormal in G and N is normal in G.

(1) AN/N is S-quasinormal in G/N.
(2) If A ≤ B, then A is S-quasinormal in B.
(3) If N ≤ B and B/N is S-quasinormal in G/N, then B is S-quasinormal in G.
(4) A is subnormal in G and AG/AG is nilpotent.
(5) If B is S-quasinormal in G, then A ∩ B and 〈A, B〉 are S-quasinormal in G.

Lemma 2.2 Let A, B and N be subgroups of G, where A is generalized S-quasinormal
in G and N is normal in G. Then
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(1) AN/N is generalized S-quasinormal in G/N.
(2) If A ≤ B, then A is generalized S-quasinormal in B.
(3) If N ≤ B and B/N is generalized S-quasinormal in G/N, then B is generalized

S-quasinormal in G.
(4) If B is generalized S-quasinormal in G, then 〈A, B〉 is generalized S-quasinormal

in G.

Proof Let A = 〈L, T 〉, where L is modular and T is S-quasinormal subgroups of G.

(1) AN/N = 〈LN/N , T N/N 〉, where LN/N is modular in G/N by Property (3)
in [1, p. 201] and T N/N is S-quasinormal in G/N by Lemma 2.1(1). Hence,
AN/N is generalized S-quasinormal in G/N .

(2) This follows from Property (2) in [1, p. 201] and Lemma 2.1(2).
(3) Let B/N = 〈V /N ,W/N 〉, where V /N is modular in G/N and W/N is S-

quasinormal in G/N . Then, B = 〈V ,W 〉, where V is modular in G by Property
(4) in [1, p. 201] and W is S-quasinormal in G by Lemma 2.1(3). Hence, B is
generalized S-quasinormal in G.

(4) This follows from Property (5) in [1, p. 201] and Lemma 2.1(5). 
�
The lemma is proved.

Lemma 2.3 Let A, B and N be subgroups of G, where A is m-S-complemented in G
and N is normal in G.

(1) If either N ≤ A or (|A|, |N |) = 1, then AN/N is m-S -complemented in G/N.
(2) If A ≤ B, then A is m-S-complemented in B.
(3) If N ≤ B and B/N is m-S-complemented in G/N, then B is m-S-complemented

in G.

Proof Let T be a subgroup of G such that AT = G and A ∩ T ≤ S ≤ A for some
generalized S-quasinormal subgroup S ofG. Then, S = 〈L, M〉, where L is a modular
and M is an S-quasinormal subgroups of G.

(1) Note that NT ∩ N A = (T ∩ A)N . Indeed, if N ≤ A, then NT ∩ N A =
NT ∩ A = N (T ∩ A). On the other hand, if (|A|, |N |) = 1, then from AT = G
we get that N ≤ T and so NT ∩ N A = T ∩ AN = N (T ∩ A). Therefore,
G/N = (AN/N )(T N/N ) and

(AN/N ) ∩ (T N/N ) = (AN ∩ T N/N ) = (A ∩ T )N/N ≤ SN/N ,

where SN/N is a generalized S-quasinormal subgroup of G/N by Lemma 2.2(1).
Hence, AN/N is m-S-supplemented in G/N .

(2) B = A(B ∩ T ) and (B ∩ T ) ∩ A = T ∩ A ≤ S ≤ A, where S is m-S-permutable
in B by Lemma 2.2(2). Hence, A is m-S-complemented in B.

(3) See the proof of (1) and use Lemma 2.2(3). 
�
The lemma is proved.

Lemma 2.4 (SeeTheorem5.2.5 in [1]). If H is amodular subgroup of G, then HG/HG

is hypercyclically embedded in G.
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Lemma 2.5 (See Theorem 1.2 in [12]). If E is a normal subgroup of G and F∗(E) is
hypercyclically embedded in G, then E is hypercyclically embedded in G.

Lemma 2.6 (See Lemma 2.16 in [7]). Suppose that G/N ∈ F, where F is a saturated
formation containing all supersoluble groups. If N is hypercyclically embedded in G,
then G ∈ F.

Lemma 2.7 (See Lemma 2.10 in [9]). Let P be a Sylow p-subgroup of G, where p is
the smallest prime dividing |G|. If every maximal subgroup of P has a p-nilpotent
supplement in G, then G is p-nilpotent.

Lemma 2.8 (SeeLemma2.12 in [19]). Let P be a normal p-subgroup of G. If P/�(P)

is hypercyclically embedded in G, then P is hypercyclically embedded in G.

3 Proofs of Theorems 1.3, 1.4 and 1.5

The product of all hypercyclically embedded subgroups of G is denoted by ZU(G)

and it is called the supersoluble hypercentre of G. Note that if A and B are nor-
mal hypercyclically embedded subgroups of G, then (in view of the G-isomorphism
AB/A � B/(B ∩ A)) the product AB is also hypercyclically embedded in G.

Proof of Theorem 1.3. Suppose that this theorem is false and consider a counterexample
(G, E) for which |G|+ |E | is minimal. Then, G is not supersoluble. Let Z = ZU(G).

(1) If R is aminimal normal subgroupof G and R is either a p′-groupor a p-subgroup
contained in E such that R 
= P , then the hypothesis holds for (G/R, ER/R).

First, we show that PR/R is a Sylow p-subgroup of ER/R. Indeed, P ∩ R is a
Sylow p-subgroup of R and PR/R � P/(P ∩ R) is a p-subgroup of ER/R. On the
other hand, from

|(ER/R) : (PR/R)| = |ER : PR| = |E ||R||P ∩ R| : |E ∩ R||P||R|
= |E ||P ∩ R| : |E ∩ R||P|

we get that |ER/R : PR/R| is a p′- number since the minimality of R implies that
we have either R ∩ E = 1 or E ∩ R = R. Therefore PR/R is a Sylow p-subgroup
of ER/R.

Now let V /R be a maximal subgroup of PR/R. Then, V = (V ∩ P)R and

p = |(PR/R) : (V /R)| = |PR : (V ∩ P)R|
= |P||R||(V ∩ P) ∩ R| : |P ∩ R||V ∩ P||R|
= |P||V ∩ R| : |P ∩ R||V ∩ P|.

First, suppose that R is a p′-group. Then, p = |P||V ∩ R| : |P ∩ R||V ∩ P| = |P :
V ∩ P|, so V ∩ P is a maximal subgroup of P . Then, by hypothesis, either V ∩ P
has a p-nilpotent supplement S in G or V ∩ P is m-S-complemented in G. In the first
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case, SR/R � S/(S ∩ R) is a p-nilpotent supplement of V /R = (V ∩ P)R/R in
G/R. In the second case, V /R ism-S-complemented in G/R by Lemma 2.3(1). Now
suppose that R is a p-subgroup contained in E . Then, R ≤ P and so p = |(PR/R) :
(V /R)| = |P : V |. Then, by hypothesis, either V has a p-nilpotent supplement S in
G or V is m-S-complemented in G. Therefore, V /R has a p-nilpotent supplement
SR/R in G/R or V /R is m-S-complemented in G/R by Lemma 2.3(1). Hence, the
hypothesis folds for (G/R, ER/R).

(2) If H/K is a chief factor of E below E and |H/K | = p, then CE (H/K ) = E .
Since p is the smallest prime dividing |E | by hypothesis, this follows from the
fact that E/CE (H/K ) � V ≤ Aut(H/K ) and from the fact that Aut(A) is a
cyclic group of order p − 1 for any group A of order p.

(3) If R is a minimal normal subgroup of G and R is either a p′-group or a p-
subgroup contained in E such that R 
= P , then ER/R is p-nilpotent and
(ER/R)/Op′(ER/R) is hypercyclically embedded in G/R.
The hypothesis holds for (G/R, ER/R) by Claim (1), so (ER/R)/Op′(ER/R)

is hypercyclically embedded in G/R by the choice of G. Therefore, ER/R is
p-nilpotent by Claim (2).

(4) Op′(G) = 1.
Assume that Op′(G) 
= 1 and let R be a minimal normal subgroup ofG contained
in Op′(G). Then, (ER/R)/Op′(ER/R) is hypercyclically embedded inG/R and
ER/R � E/E ∩ R is p-nilpotent by Claim (3). Hence, E is p-nilpotent and from

(ER/R)/Op′(ER/R) = (ER/R)/(Op′(ER)/R) = (ER/R)/(Op′(E)R/R)

and from the G-isomorphisms

(ER/R)/(Op′(E)R/R) � ER/Op′(E)R � E/E ∩ Op′(E)R

= E/Op′(E)(E ∩ R) = E/Op′(E)

we get that E/Op′(E) is hypercyclically embedded in G, contrary to the choice
of (G, E). Hence, we have (4).

(5) Z ∩ E ≤ Z∞(E).
Since Z is clearly supersoluble, a Sylow q-subgroup Q of Z , where q is the largest
prime dividing |Z |, is normal and so characteristic in Z . Then, Q is normal in G,
which implies that Z = Q and q = p by Claim (4), so Z ∩ E ≤ Z∞(E) ≤ P
since p is the smallest prime dividing E by hypothesis.

(6) P 
= R for each minimal normal subgroup R of G.
Assume that P = R and letV be anymaximal subgroupof P . Then, by hypothesis,
either V has a p-nilpotent supplement S in G or V is m-S-complemented in G.
In the former case, we have S 
= G since G is not p-nilpotent. On the other
hand, in this case, we have P = V (P ∩ T ) , where P ∩ T is clearly normal in
G and so the minimality of R = P implies that P ∩ T = 1. But then V = P .
This contradiction shows that V is m-S-complemented in G, so there are an
m-S-permutable subgroup S and a subgroup T of G such that G = VT and
V ∩T ≤ S ≤ V . Let A be a modular subgroup and B an S-quasinormal subgroup
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of G such that S = 〈A, B〉. Then, AG = 1, so AG ≤ Z by Lemma 2.4. Therefore,
A = 1 and so S = B is S-quasinormal in G. But then S is normal in G by Lemma
1.2.16 in [2]. Hence, S = 1 and so T ∩ V = 1 . But then 1 < T ∩ R < R, where
T ∩ R is normal in G. This contradiction shows that we have (6).

(7) If M is a proper subgroup of G containing E , then E/Op′(E) is hypercyclically
embedded in M . Hence E = P .
Let V be amaximal subgroup of P . Then, either V has a p-nilpotent supplement S
inG or V ism-S-complemented inG. In the former case, we haveM = V (M∩S),
so M ∩ S is a p-nilpotent supplement to V in G. In the second case, the subgroup
V is m-S-complemented in M by Lemma 2.3(2). Hence, the hypothesis holds
for (M, E), so E/Op′(E) is hypercyclically embedded in M by the choice of G .
Claim (2) implies that E is p-nilpotent. On the other hand, Op′(E) is characteristic
in E and so it is normal in G. Then, Op′(E) ≤ Op′(G) = 1 by Claim (4).
Therefore, E is supersoluble, which implies that a Sylow q-subgroup Q of E ,
where q is the largest prime dividing |E |, is normal and hence characteristic in E .
Hence, q = p and E = P = Q by Claim (4).

(8) E is p-nilpotent.
Assume that this is false. Then, E 
= P , so E = G by Claim (7).

(a) Op(G) 
= 1.
Assume that Op(G) = 1. Lemma 2.7 implies that some maximal subgroup V

of P has no p-nilpotent supplement in G, so V is m-S-complemented in G. Then,
there are a generalized S-quasinormal subgroup S and a subgroup T of G such that
G = VT and V ∩T ≤ S ≤ V . Let A be a modular subgroup and B an S-quasinormal
subgroup of G such that S = 〈A, B〉. Then, BPx = Px B = Px for all x ∈ G, so
B ≤ PG = Op(G) = 1. Hence, S = A and AG = 1; therefore, S ≤ Z ≤ Z∞(G) by
Lemma 2.4 and Claim (5) since E = G.

Since Z∞(G) is nilpotent, a Sylow p-subgroup of Z∞(G) is normal in G, so
A = S = 1 since VG = 1. Therefore, T is a complement to V in G, so for a Sylow
p-subgroup Tp of T we have |Tp| = p . Therefore, T is p-nilpotent by [20, IV, 2.8].
Hence, every maximal subgroup V of P has a p-nilpotent complement in G, so G is
p-nilpotent by Lemma 2.7. This contradiction shows that we have (a).

(b) Op(G) = CG(Op(G)) is a minimal normal subgroup of G and Op(G) �

�(G).
By Claim (a), Op(G) 
= 1. Let R be a minimal normal subgroup of G contained

in Op(G). Then, G/R is p-nilpotent by Claims (3) and (6). Hence, G is p-soluble.
Therefore, everyminimal normal subgroup R ofG is a p-group byClaim (2). Hence, R
is the uniqueminimal normal subgroupofG and R � �(G), so R = CG(R) = Op(G)

by [33, Ch. A, 15.6]. It is clear also that |R| > p, so Z = 1.
Final contradiction for (8).
Let V be anymaximal subgroup of P .We show that V has a p-nilpotent supplement

in G. Assume that this is false. Then, the subgroup V is m-S-complemented in G by
hypothesis.

First suppose that R � V . Then, W = V ∩ R is normal in P , |R : W | = p and, by
Claim (b),VG = 1.There are angeneralized S-quasinormal subgroup S and a subgroup
T of G such that G = VT and V ∩ T ≤ S ≤ V . Then, V ∩ T = S ∩ T . Arguing
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as above, we can show that S is S-quasinormal in G. Hence, S is subnormal in G by
Lemma 2.1(4). It follows that S ≤ Op(G) = R by Claim (b). Hence, S ≤ R∩V = W
and so SG = SPO p(G) = SW ≤ W by [2, Lemma 1.2.16], which implies that S = 1.
Then, T is a complement to V in G, so T is p-nilpotent.

Now let V be any maximal subgroup of P containing R, and let M be a maximal
subgroup of G such that G = R � M . Then, M � G/R is p-nilpotent, so M is a p-
nilpotent supplement to V inG. Thus, every maximal subgroup of P has a p-nilpotent
supplement inG. Therefore,G is p-nilpotent by Lemma 2.7. This contradiction shows
that we have (8).

The final contradiction. Claims (2) and (8) imply that E = P is a normal p-
subgroup of G. Let R be a minimal normal subgroup of G contained in P . Then, P/R
is hypercyclically embedded in G by Claims (3) and (6). Therefore, R � �(P) by
Lemma 2.8 and [20, III, Hilfsatz 3.3(a)]. Hence, �(P) = 1, so P is an elementary
abelian p-group. If |R| = p, then P is hypercyclically embedded in G by the Jordan–
Hölder theorem for the chief series. Hence, R is not cyclic. Moreover, R is the unique
minimal normal subgroup ofG contained in P . Indeed, suppose that for someminimal
normal subgroup N 
= R of G we also have N ≤ P . Then, P/N is hypercyclically
embedded in G and so from the G-isomorphism RN/N � R we get that |R| = p, a
contradiction.

Let W be a maximal subgroup of N such that W is normal in a Sylow p-subgroup
Gp ofG. Then,W 
= 1.We show thatW is S-quasinormal inG. Let B be a complement
to N in P and H = WB. Then, H is a maximal subgroup of P and W = H ∩ R.
Therefore, W is S-quasinormal in G in the case when H is S-quasinormal in G by
Lemma 2.1(5). From now on, we suppose that H is not S-quasinormal in G.

Assume that H has a p-nilpotent supplement U in G and let S be the normal p-
complement in U . Then, P = P ∩ HU = H(P ∩ U ), where P ∩ U is normal in G
since P is abelian. Moreover, 1 < P ∩U < P since G is not p-nilpotent. Therefore,
R ≤ P ∩U . Then, [R, S] = 1, so G/CG(R) is a p-group and so CG(R) = G since R
is a p-group. But then |R| = p. This contradiction shows that H has no p-nilpotent
supplements in G and hence H is m-S-complemented in G by hypothesis.

Let S and T be subgroups of G such that S is generalized S -quasinormal in G
and we have G = HT and H ∩ T ≤ S ≤ H . And let S = AB, where A is modular
and B is S-quasinormal in G. Then, N � H and so AG = 1, which implies that AG

is hypercyclically embedded in G by Lemma 2.4. But then A = 1 since otherwise
N ≤ AG ∩ P and so |N | = p. Therefore, S = B is S-quasinormal in G. Since
T ∩ H ≤ S ≤ H and H is not S-quasinormal in G, it follows that T < G and
for the normal subgroup T ∩ P of G we have 1 < T ∩ P . Then, N ≤ T and so
N ∩H = N ∩ S = W , which implies thatW is S-quasinormal in G by Lemma 2.1(5).
But then W is normal in G since G = GpO p(G) ≤ NG(W ) by [2, Lemma 1.2.16]
and so W = 1. Therefore, N is cyclic. This contradiction completes the proof of the
result. 
�

Proof of Theorem 1.4. Suppose that this theorem is false and consider a counterexample
(G, E) for which |G| + |E | is minimal. Let p be the smallest prime dividing |E | and
let P be a Sylow p-subgroup of E .
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Then, E is p-supersoluble by Theorem 1.3 and so E is p-nilpotent since p is the
smallest prime dividing |E | (see Claim (2) in the proof of Theorem 1.3). Note also that
if X is a non-identity Hall subgroup of E , then X = E . Indeed, the hypothesis holds
for (G/X , E/X) and for (G, X) by Lemma 2.3(1). Hence in the case X 
= E , the
choice of G implies that E/X and X are hypercyclically embedded in G. Hence, E
is hypercyclically embedded in G by the Jordan–Hölder theorem for the chief series.
This contradiction shows that E = P , so E is hypercyclically embedded in G by
Theorem 1.3. The theorem is proved. 
�
Proof of Theorem 1.5. This theorem is a corollary of Theorem 1.4 and Lemmas 2.5
and 2.6. 
�

4 Some Applications of the Results

Theorems 1.3, 1.4 and 1.5 cover many known results. In particular, from Theorem 1.5,
we get the following known results.

Corollary 4.1 (Srinivasan [21]). If the maximal subgroups of the Sylow subgroups of
G are S-quasinormal in G, then G is supersoluble.

Corollary 4.2 (Asaad [22]). LetF be a saturated formation containing all supersoluble
groups and G a group with a normal subgroup E such that G/E ∈F . If G/E ∈F and
every maximal subgroup of every Sylow subgroup of E is S-quasinormal in G, then
G ∈F .

A subgroup H of G is said to be c-normal in G [23], if there is a normal subgroup
T of G such that G = HT and H ∩ T ≤ HG . It is clear that every c-normal subgroup
of G is also m-S-complemented in G. Hence, we get from Theorem 1.5 the following
known results.

Corollary 4.3 (Wang [23]). If the maximal subgroups of the Sylow subgroups of G are
c-normal in G, then G is supersoluble.

Corollary 4.4 (Alsheik Ahmad [24]). If the maximal subgroups of the Sylow subgroups
of G not having supersoluble supplement in G are c-normal in G, then G is supersol-
uble.

Corollary 4.5 (Ramadan [25]). Let E be a normal subgroup of G with supersoluble
quotient G/E. If all maximal subgroups of the Sylow subgroups of E are normal in
G, then G is supersoluble.

Corollary 4.6 (Li, Guo [26]). Let E be a soluble normal subgroup of G with super-
soluble quotient G/E. If all maximal subgroups of the Sylow subgroups of F(E) are
c-normal in G, then G is supersoluble.

Corollary 4.7 (Wey [27]). Let F be a saturated formation containing all supersoluble
groups and G a group with a soluble normal subgroup E such that G/E ∈F . If all
maximal subgroups of the Sylow subgroups of F(E) are c-normal in G, then G ∈F.
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Corollary 4.8 (Wei, Wang, Li [28]). Let F be a saturated formation containing all
supersoluble groups and G a group with a normal subgroup E such that G/E ∈F .
If all maximal subgroups of the Sylow subgroups of F∗(E) are c -normal in G, then
G ∈F.
Corollary 4.9 (Asaad, Ramadan, Shaalan [29]). Let E be a soluble normal subgroup
of G with supersoluble quotient G/E. Suppose that all maximal subgroups of any
Sylow subgroup of F(E) are S-quasinormal in G. Then, G is supersoluble.

Corollary 4.10 (Li, Wang [30]). Let F be a saturated formation containing all super-
soluble groups and G a group with a normal subgroup E such that G/E ∈ F. If all
maximal subgroups of any Sylow subgroup of F∗(E) are S-quasinormal in G, then
G ∈ F.

Corollary 4.11 (Li, Wang [30]). Let F be a saturated formation containing all super-
soluble groups and G a group with a normal subgroup E such that G/E ∈ F. If every
maximal subgroup of every Sylow subgroup of F∗(E) is S-quasinormal in G, then
G ∈ F.

Corollary 4.12 (Wei [28]). Let F be a saturated formation containing all supersoluble
groups and G a group with a normal subgroup E such that G/E ∈ F. If every maximal
subgroup of every Sylow subgroup of E is c-normal in G, then G ∈ F.

In view of Example 1.2(ii), we get also from Theorem 1.5 the following known
results.

Corollary 4.13 (Wei, Wang and Li [31]). Let F be a saturated formation containing all
supersoluble groups and G a group with a normal subgroup E such that G/E ∈ F. If
every maximal subgroup of every Sylow subgroup of F∗(E) is c-supplemented in G,
then G ∈ F.

Corollary 4.14 (Ballester-Bolinches and Guo [32]). Let F be a saturated formation
containing all supersoluble groups and G a group with a normal subgroup E such that
G/E ∈ F. If every maximal subgroup of every Sylow subgroup of E is c-supplemented
in G, then G ∈ F.
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