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Abstract
P systems are a model of compartmentalized multiset rewriting inspired by the structure of living cells and the way they func-
tion. In this paper, we focus of a variant in P systems in which membranes have limited capacity, i.e., the number of objects 
they may hold is limited by a fixed bound. This feature corresponds to an important physical property of cellular compart-
ments. We propose several possible semantics of limited capacity and show that one of them allows real-time simulations of 
partially blind register machines, while the other one allows for obtaining computational completeness.
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1  Introduction

Membrane systems were introduced in [11] as a multiset-
rewriting model of computing inspired by the structure of 
cells and the way they function. Among the basic features 
of the original model are the hierarchical arrangement of 
the membranes and the parallel evolution of the objects con-
tained in the membrane compartments. Usually a result is 
obtained if the computation halts, i.e., if no rule is applicable 
any more.

In this paper, we consider an additional feature also 
inspired by biology, namely the limited capacity of cells 
to include objects—in total or of a specific kind. When the 
number of cells is not bounded as in P systems with active 

membranes, this biological feature of limited capacity can 
be implemented by keeping the number of objects in every 
cell below a given fixed bound. On the other hand, in the 
standard hierarchical model with a static number of cells, 
or, even if we allowed membrane dissolution, with a fixed 
upper bound for the number of cells, we can only limit the 
number of specific objects and have to allow an unbounded 
number of other objects when aiming at non-trivial theoreti-
cal results.

When the number of cells is not bounded because of using 
membrane creation and/or membrane division (together with 
membrane dissolution), the number of objects in one cell/
membrane can even be restricted to one, still allowing for 
obtaining computational completeness, thereby counting the 
number of membranes/cells instead of the number of objects 
in an output membrane/cell; for example, see [1, 3, 6].

In this paper, we investigate P systems limiting the num-
ber of (specific) objects to be contained in a membrane 
region and two different semantics of how to treat the situ-
ation when the application of a (multiset of) rule(s) would 
violate this limiting condition, either aborting or blocking 
computations which try to apply a multiset of rules leading 
to a violation of the limited capacity conditions. For the 
first variant, we show that it allows for real-time simulations 
of partially blind register machines, while the other variant 
allows for obtaining computational completeness.

The development of the fascinating area of membrane 
computing during the last 2 decades is documented in two 
textbooks, see [12] and [13]. For actual information, see the 
P systems webpage [15] and the issues of the Bulletin of 

A preliminary version of this paper was presented at ICMC 2020, 
see [5].
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the International Membrane Computing Society and of the 
Journal of Membrane Computing.

2 � Definitions

For an alphabet V, by V∗ , we denote the free monoid gen-
erated by V under the operation of concatenation, i.e., 
containing all possible strings over V. The empty string 
is denoted by � . For any string w over V, |w| denotes the 
total number of symbols in w (also called the length of 
w), and for any a ∈ V  , |w|a denotes the number of symbols 
a in w.

A multiset M with underlying set A is a pair (A,  f) 
where f ∶ A → ℕ is a mapping. For a multiset M = (A, f ) , 
its support is defined as supp(M) = {x ∈ A | f (x) > 0} . A 
multiset M is called empty or finite if its support is the 
empty set or a finite set, respectively. If M = (A, f ) is a 
finite multiset over A such that supp(M) = {a1,… , ak} , 
then it can also be represented by the string af (a1)

1
… a

f (ak)

k
 

over the alphabet {a1,… , ak} , and, moreover, all permuta-
tions of this string precisely identify the same multiset M. 
For any multiset M over V, |M| denotes the total number of 
symbols in M, and for any a ∈ V  , |M|a denotes the number 
of symbols a in M.

For further notions and results in formal language theory, 
we refer to textbooks like [7] and [14].

2.1 � Register machines

Register machines are well-known universal devices for 
computing (or generating or accepting) sets of vectors of 
natural numbers.

Definition 1  A register machine is a construct

where

–	 m is the number of registers,
–	 P is the set of instructions bijectively labeled by elements 

of B,
–	 l0 ∈ B is the initial label, and
–	 lh ∈ B is the final label.

The instructions of M can be of the following forms:

–	 p ∶ (ADD(r), q, s) , with p ∈ B ⧵
{
lh
}
 , q, s ∈ B , 1 ≤ r ≤ m.

	   Increase the value of register r by one, and non-deter-
ministically jump to instruction q or s.

–	 p ∶ (SUB(r), q, s) , with p ∈ B ⧵
{
lh
}
 , q, s ∈ B , 1 ≤ r ≤ m.

M =
(
m,B, l0, lh,P

)

	   If the value of register r is not zero then decrease the 
value of register r by one (decrement case) and jump to 
instruction q, otherwise jump to instruction s (zero-test 
case).

–	 lh ∶HALT.
	   Stop the execution of the register machine.

A configuration of a register machine is described by the 
contents of each register and by the value of the current 
label, which indicates the next instruction to be executed. 
M is called deterministic if the ADD-instructions all are 
of the form p ∶ (ADD(r), q).

In the accepting case, a computation starts with the 
input of an l-vector of natural numbers in its first l reg-
isters and by executing the first instruction of P (labeled 
with l0 ); it terminates with reaching the HALT-instruction. 
Without loss of generality, we may assume all registers to 
be empty at the end of the computation.

In the generating case, a computation starts with all 
registers being empty and by executing the first instruc-
tion of P (labeled with l0 ); it terminates with reaching the 
HALT-instruction and the output of a k-vector of natural 
numbers in its last k registers. Without loss of generality, 
we may assume all registers except the last k output regis-
ters to be empty at the end of the computation.

In the computing case, a computation starts with the 
input of an l-vector of natural numbers in its first l reg-
isters and by executing the first instruction of P (labeled 
with l0 ); it terminates with reaching the HALT-instruction 
and the output of a k-vector of natural numbers in its last 
k registers. Without loss of generality, we may assume all 
registers except the last k output registers to be empty at 
the end of the computation.

For useful results on the computational power of reg-
ister machines, we refer to [10]; for example, for proving 
computational completeness results for specific variants of 
P systems, usually the following formulations of results for 
register machines generating or accepting recursively enu-
merable sets of vectors of natural numbers with k compo-
nents or computing partial recursive relations on vectors of 
natural numbers are helpful:

Proposition 1  Deterministic register machines can accept 
any recursively enumerable set of vectors of natural num-
bers with l components using precisely l + 2 registers. With-
out loss of generality, we may assume that at the end of an 
accepting computation all registers are empty.

Proposition 2  Register machines can generate any recur-
sively enumerable set of vectors of natural numbers with k 
components using precisely k + 2 registers. Without loss of 
generality, we may assume that at the end of an accepting 
computation the first two registers are empty, and, moreover, 
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on the output registers, i.e., the last k registers, no SUB
-instruction is ever used.

Proposition 3  Register machines can compute any par-
tial recursive relation on vectors of natural numbers with 
l components as input and vectors of natural numbers 
with k components as output using precisely l + 2 + k reg-
isters, where without loss of generality, we may assume 
that at the end of a successful computation the first l + 2 
registers are empty, and, moreover, on the output regis-
ters, i.e., the last k registers, no SUB-instruction is ever 
used.

In all cases it is essential that the output registers never 
need to be decremented.

2.2 � Partially blind register machines

We now consider one-way nondeterministic machines which 
have registers allowed to hold positive or negative integers 
and which accept by reaching the HALT-instruction with 
all registers being zero. Such machines are called blind if 
their actions depend on state and input alone and not on the 
register configuration. They are called partially blind if they 
block when any register is negative (i.e., only non-negative 
register contents is allowed) but do not know whether or not 
any of the registers contains zero.

Definition 2  A partially blind register machine (PBRM) is 
a construct

where

–	 m is the number of registers,
–	 P is the set of instructions bijectively labeled by elements 

of B,
–	 l0 ∈ B is the initial label, and
–	 lh ∈ B is the final label.

The instructions of M can be of the following forms:

–	 p ∶ (ADD(r), q, s) , with p ∈ B ⧵
{
lh
}
 , q, s ∈ B , 1 ≤ r ≤ m.

	   Increase the value of register r by one, and non-deter-
ministically jump to instruction q or s.

–	 p ∶ (SUB(r), q) , with p ∈ B ⧵
{
lh
}
 , q ∈ B , 1 ≤ r ≤ m.

	   If the value of register r is not zero then decrease the 
value of register r by one and jump to instruction q, oth-
erwise abort the computation.

–	 lh ∶HALT.
	   Stop the execution of the register machine.

M =
(
m,B, l0, lh,P

)

Again, a configuration of a partially blind register 
machine is described by the contents of each register and 
by the value of the current label, which indicates the next 
instruction to be executed.

A computation works as for a register machine, yet with 
the restriction that a computation is aborted if one tries 
to decrement a register which is zero. Moreover, comput-
ing, accepting or generating now also requires all regis-
ters (except output registers) to be empty at the end of the 
computation.

2.3 � P systems

The standard model of hierarchical P systems can be defined 
as follows, for example, see [13] for several variants:

Definition 3  A (hierarchical) P system of degree m ≥ 1 is 
a construct

where

–	 O is the alphabet of objects;
–	 � is a membrane structure of degree m with membranes 

labeled in a one-to-one manner with the natural numbers 
1,… ,m;

–	 w1,… ,wm ∈ O∗ are the multisets of objects initially pre-
sent in the m regions of �;

–	 Ri , 1 ≤ i ≤ m , are finite sets of evolution rules over O 
associated with the regions 1, 2,… ,m of � ; these evolu-
tion rules are of the forms u → v where u is a multiset 
over O and v is a string from (O × {here, out, in})∗;

–	 i0 ∈ {0, 1,… ,m} indicates the output region of �.

The membrane structure and the multisets in � consti-
tute a configuration of the P system; the initial configura-
tion is given by the initial multisets w1,… ,wm . A transition 
between configurations is governed by the application of 
the evolution rules, which is done in the maximally parallel 
way, i.e., only applicable multisets of rules which cannot be 
extended by further rules are to be applied to the objects in 
all membrane regions.

The application of a rule u → v in a region containing a 
multiset M results in subtracting from M the multiset identi-
fied by u, and then in adding the multiset identified by v. The 
objects can eventually be transported through membranes 
using the targets in and out.

The P system continues with applying multisets of rules in 
the maximally parallel way until there remain no applicable 
rules in any region of � . Then, the system halts. We consider 
the number of objects from O contained in the output region i0 

� = (O,�,w1,… ,wm,R1,… ,Rm, i0)
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at the moment when the system halts as the result of the under-
lying computation of � . The set of results of all computations 
possible in � is called the set of natural numbers generated by 
� and it is denoted by N(�) if we only count the total number 
of objects in the output membrane; if we distinguish between 
the multiplicities of different objects, we obtain a set of vec-
tors of natural numbers denoted by Ps(�) . We refer to [13] for 
further details and examples.

A special variant of P systems uses so-called catalysts, 
which are objects which allow other objects to evolve, but 
never evolve themselves.

Definition 4  A catalytic P system of degree m ≥ 1 is a 
construct

where C ⊆ O is the alphabet of catalysts; the evolution 
rules are of the forms ca → cv or a → v , where c is a 
catalyst, a is an object from O ⧵ C , and v is a string from 
((O ⧵ C) × {here, out, in})∗ ; the other ingredients are defined 
as for hierarchical P systems in Definition 3. A catalytic 
P system is called purely catalytic if all rules are catalytic 
ones.

Since the beginning, the question how many catalysts are 
needed in catalytic and purely catalytic P systems for obtaining 
computational completeness has been a challenging theoretical 
question. The following result was shown in [9], establishing 
a lower bound for the computational power of catalytic P sys-
tems with only one catalyst:

Proposition 4  ([9]) Catalytic P systems with only one cata-
lyst have at least the computational power of partially blind 
register machines.

Example 1  In [9], it was shown that the vector set

(which is not semi-linear) can be generated by some (even 
extended version of a) PBRM and, therefore, by a P system 
with only one catalyst and 19 rules.

As already shown in [8], register machines with n ≥ 2 dec-
rementable registers can be simulated by catalytic P systems 
with n catalysts and by purely catalytic P systems with n + 1 
catalysts. Hence, both catalytic P systems and purely catalytic 
P systems are computationally complete.

� = (O,C,�,w1,… ,wm,R1,… ,Rm, i0),

S = {(n,m) ∣ 0 ≤ n, n ≤ m ≤ 2n}

3 � Limited capacity

In most of the variants of P systems considered in the 
literature, the number of objects in a membrane region 
is not limited. In [4], we proposed variants in which the 
number of objects a membrane may contain is bounded, 
with the bound already being given in the definition of the 
system, either limiting the total number of objects in a cell 
or only limiting the number of specific objects in a cell, 
respectively. The following definitions are given as in [4].

Definition 5  A P system with per-membrane limited capac-
ity is a construct

where ki ∈ ℕ ∪ {∞} is the total capacity of membrane i, 
1 ≤ i ≤ n , meaning that, for vi denoting the contents of mem-
brane i in the current configuration, the condition |vi| ≤ ki 
must always be enforced, unless ki = ∞ ; the other compo-
nents of the tuple are as in Subsection 2.3.

Definition 6  A P system with per-symbol limited capacity 
is a construct

where Ki ∶ O → ℕ ∪ {∞} are functions defining the per-
symbol capacity of membrane i, i.e., for w denoting the union 
of the contents of all membranes in the system, the condition 
|w|a ≤ K(a) therefore must be enforced at all times, for any 
a ∈ O , unless K(a) = ∞ ; the other components of the tuple 
are as in Sect. 2.3.

3.1 � Semantics of limited capacity

What should happen if a membrane is about to exceed its 
capacity (total or per-symbol)? Multiple kinds of behaviors 
may be considered, for example, the following variants: 

1.	 Blocking behavior Prohibit the application of (multisets 
of) rules which would produce more objects. Attempt-
ing to apply such rules blocks the system, and yields no 
result.

2.	 Destructive behavior Completely remove the offending 
membrane from the system, together with its contents.

3.	 Dissolutive behavior Dissolve the offending membrane, 
dumping its contents into its parent membrane; in this 
case, (one of) the parent membrane(s) must allow for 
more objects, as otherwise the whole system would be 
dissolved.

� = (O,�,w1,… ,wn, k1,… , kn,R1,…Rn, i0)

� = (O,�,w1,… ,wn,K1,… ,Kn,R1,…Rn, i0)
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4.	 Separation behavior Divide the offending membrane 
separating its contents across the child membranes. 
Since every child membrane only receives a part of the 
contents of the parent, the capacity constraints may be 
satisfied.

The separation behavior may be useful for P systems with 
active membranes, whereas the first three behaviors may also 
be applied for hierarchical P systems. Yet in this paper, we will 
focus on P systems with per-symbol limited capacity, i.e., we 
limit the number of specific symbols.

Remark 1  We immediately remark that the flattening 
technique, which is folklore in the membrane computing 
community, can be applied in the case of P systems with 
per-symbol limited capacity. Without loss of generality, in 
Sect. 4 we will only consider 1-membrane systems, which 
can be written in a simplified version as follows with omit-
ting the trivial membrane structure and taking the skin mem-
brane 1 as the output membrane:

Although in this paper, we want to focus on the blocking 
behavior, (see variant 1 of the possible semantics of limited 
capacity above), there are still at least two possible semantics 
for the blocking behavior itself under the maximally parallel 
derivation mode:

Semantics 1 Take all the applicable multisets of rules in the 
maximally parallel derivation mode, but discard all those 
multisets which would violate the constraints.
Semantics 2 Take all the applicable multisets of rules in 
the asynchronous derivation mode, discard the multisets 
which would violate the constraints, and then pick the non-
extendable, i.e., maximal multisets out of these applicable 
multisets of rules.

To illustrate the difference between these two semantics, con-
sider the following 1-membrane system with limited capacity:

It can formally be written as

where Kab(c) = 1 and Kab(a) = Kab(b) = ∞.

� = (O,w,K,R) and

= (O,C,w,K,R) for catalytic P systems .

�ab = ({a, b}, ab,Kab, {a → c, b → c})

In the case of Semantics 1, no multisets of rules not vio-
lating the constraint of limiting the capacity of symbols c in 
the resulting configuration would be applicable, and the P 
system will block/abort this computation.

On the other hand, under Semantics 2, �ab would be 
allowed to apply either a → c or b → c , but not both.

4 � Computational power

In this section, we investigate the computational power of 
P systems with limited per-symbol capacity: when operat-
ing with Semantics 1, they at least can simulate partially 
blind register machines in real time; when operating with 
Semantics 2, they can simulate purely catalytic P systems 
(and thus register machines) and therefore are computation-
ally complete.

4.1 � Semantics 1 allows for simulating a PBRM 
in real time

In this subsection, we will show that P systems with limited 
per-symbol capacity operating under Semantics 1 can simu-
late partially blind register machines (PBRM) in real time: 
an instruction of the register machine is simulated in one 
step of the P system. An additional cleanup procedure at the 
end of the computation takes 3 more steps. In comparison 
with the result stated in [9] showing that P systems with 
one catalyst can simulate partially blind register machines 
(without any further ingredients), we here obtain a real-time 
simulation, whereas the result there needs a cycle of n + 3 
for each step of the register machine, with n being the num-
ber of decrementable registers.

Theorem 1  Catalytic P systems with one catalyst and per-
symbol limited capacity operating with Semantics 1 can 
simulate partially blind register machines (PBRM) in real 
time, plus three additional cleanup steps at the end of the 
computation.

Proof  Consider an arbitrary partially blind register machine

The following proof is given for the most general case of a 
partially blind register machine computing a partial recur-
sive relation on vectors of natural numbers with l compo-
nents as input and vectors of natural numbers with k compo-
nents as output as well as using n decrementable registers, 
no matter how many of them are the first l input registers 
and the working registers, respectively. Moreover, we may 
assume that on the output registers, i.e., the last k regis-
ters, no SUB-instruction is ever used. On the other hand, 

M =
(
m,B, l0, lh,P

)
.
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the computation of the PBRM yields a result if and only if 
at the end of the computation all registers except the output 
registers are empty.

We now construct the P system

with per-symbol limited capacity operating under Semantics 
1 and simulating the PBRM M.

The set of objects of the construction includes register 
symbols ar for representing the contents of register r, the cat-
alyst c, and the state symbols p ∈ B . Moreover, we use dec-
rement witness symbols �r for every decrementable register 
r, 1 ≤ r ≤ n , the trap symbol # and, finally, the additional 
symbols a0, �0, lh′ . As we will see later, a0 can be interpreted 
as a register symbol for an additional decrementable register 
0, which during the whole computation has the value 1, i.e., 
in every configuration we have exactly one copy of a0 , and 
it is only eliminated in the final cleanup procedure.

Now let BSUB(r) denote the set of labels of SUB-instruc-
tions p ∶ (SUB(r), q) of decrementable registers r, 
BSUB =

⋃
1≤r≤n BSUB(r) , and BADD denote the set of labels of 

ADD-instructions, i.e., B = BADD ∪ BSUB ∪
{
lh
}
.

Observing that n = m − k , in total, we get the following 
set of objects:

The capacity of the symbols in D is limited to 1, while all 
other symbols may appear in an unlimited number of copies:

Moreover, let D∅ denote the multiset containing exactly one 
copy of each object in D and Dr the multiset containing 
exactly one copy of each object in D except �r.

Then, the starting configuration of the P system is defined 
as

where �0 is the multiset encoding the initial values of the 
registers.

The set of rules now is going to be described in several 
parts below.

First, we want all symbols in D to disappear after one 
step:

We also include the traditional trap rule # → # ∈ R.
Increment p ∶ (ADD(r), q, s):
To simulate the ADD instruction p ∶ (ADD(r), q, s) 

without letting the catalyst block the system or do unwanted 

� = (O, {c},w0,K,R)

O = {ar ∣ 0 ≤ r ≤ m} ∪ B ∪ {lh� } ∪ D ∪ {c, #},

D = {�r ∣ 0 ≤ r ≤ n}.

K(�r) = 1, 0 ≤ r ≤ n,

K(x) = ∞, x ∈ O ⧵ D.

w0 = c l0 D� a0 �0,

�r → � ∈ R for all 0 ≤ r ≤ n.

decrements, the catalyst is forced to process the state 
symbol:

When a label of an ADD instruction is present in the con-
figuration, the catalyst cannot act on any of the register 
symbols ar, 0 ≤ r ≤ m , because this would leave the state 
symbol p to be transformed to # due to the maximally par-
allel derivation mode. This evolution will not violate the 
capacity constraints, but introducing the trap symbol will 
prevent the system from ever halting. Therefore, the catalyst 
must be used in one of the two rules simulating the incre-
ment. Incidentally, these rules also replenish the supply of 
the symbols from D.

Decrement p ∶ (SUB(r), q) (no zero test):
Consider the configuration c pD∅ a0 � , where � is a string 

of register symbols describing the current contents of the 
registers. The following rules have to be applied in this 
configuration:

All the symbols from D∅ from the current configuration will 
disappear in the next configuration. The rule p → qDr will 
reintroduce almost all of the symbols, except for the particu-
lar �r corresponding to the register to be decremented. This 
allows car → c�r to be applied in the current step, because in 
the next configuration, there is still room for �r . All catalytic 
rules involving a wrong �r′ (and therefore a wrong ar′ ) cannot 
be applied, because they would introduce a second instance 
of �r′ , thus blocking the system.

Therefore, the only possible evolution from the configu-
ration c pD∅ a0 � is to the configuration c qD∅ a0 � where 
� = � − ar . Note that if the expected register symbol ar is 
not present in � , then there will be no non-extendable mul-
tiset of rules including the correct car → c�p , because then 
at least the rule ca0 → c�0 described below would become 
applicable, thus blocking (aborting) the computation without 
producing any result. This behavior corresponds to a crash 
in the PBRM when it tries to decrement a register which is 
already empty.

Final zero test, cleanup, and halting
The simulation of the decrement instruction on register 

r only works correctly when there are still some register 
symbols ar left. Indeed, as already mentioned above, to force 
the computation in the P system to abort if a decrement on 
an empty register would be tried, we at least would have 
the rule ca0 → c�0 , but as long as the decrement symbol 
�0 is re-introduced by applying a rule p → qDr simulating 
a decrement on register r, the computation in the P system 
will be forced to crash as two symbols �0 are not allowed in 
a configuration.

cp → cqarD∅ cp → csarD∅ p → #.

p → qDr car → c�r.
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On the other hand, if finally, the PBRM has reached a 
configuration with all decrementable registers r, 1 ≤ r ≤ n 
being empty, we have to allow for a final zero test: in this 
case the rule ca0 → c�0 is welcome to be applied if we have 
reached the final (halting) label lh:

The additional label lh′ is used to check whether all decre-
mentable registers are empty as required for a computation 
of the PBRM to be successful:

In this step, the catalyst is free to use one of the rules 
car → c#�0 for any non-empty register r without violating 
the limiting condition for �0 , hence, the trap symbol # is 
introduced if and only if any of the decrementable registers 
is not empty.

If all decrementable registers have been empty, in the 
final step, the system will just erase the symbols of D�0

 , 
which will disappear and the system will halt with only sym-
bols ar for the output registers n + 1 ≤ r ≤ m.

This final cleanup phase takes one step to erase a0 , 
one more step to test the presence of register symbols ar , 
1 ≤ r ≤ n , and one final step to erase the last symbols of 
D�0

 . Hence, in a successful computation, this final phase 
takes three steps.

In the case of the simulation of a non-successful compu-
tation of the PBRM, there may be many more steps applying 
rules car → c#�0 , possibly already in the second step, but 
with the trap rule # → # ∈ R causing an infinite computation 
we need not take care about this situation in detail. 	�  ◻

Remark 2  (Trapping by limited capacity) When following 
the proofs as given in [8] for simulating register machines by 
[purely] catalytic P systems, often rules introducing the trap 
symbol # as well as the rule # → # are used to guarantee an 
infinite computation and thus any computation introducing it 
to not be successful. Instead of introducing the trap symbol # 
and having the rule # → # to guarantee that any computation 
introducing # is not successful, we can limit its capacity to 1 
and use rules of the form u → v## instead of u → v# . Alter-
natively, we could limit the capacity of # to 0, meaning that 
even having to pick the rule u → v# will already block the 
evolution. This means that, if all non-extendable multisets 
of rules contain a rule of the form u → v# , then we must 
discard all multisets, thereby blocking the evolution without 
producing any result. This blocking of computations reflects 
the concept of using toxic objects as introduced in [2].

Taking advantage of the idea described in Remark 2, we 
can get an improved version of Theorem 1:

lh → lh′D�0
, ca0 → c�0

lh′ → D�0
, car → c#�0, 1 ≤ r ≤ n

Corollary 1  Catalytic P systems with one catalyst and per-
symbol limited capacity operating with Semantics 1 can 
simulate partially blind register machines in real time in a 
deterministic way, plus three additional cleanup steps at the 
end of the computation.

Proof  We follow the proof of Theorem 1 also taking into 
account Remark 2 with using K(#) = 0.

Consider an arbitrary partially blind register machine

Let n be the number of decrementable registers; let BSUB(r) 
denote the set of labels of SUB-instruction p ∶ (SUB(r), q) of 
decrementable registers r, 1 ≤ r ≤ n , BSUB =

⋃
1≤r≤n BSUB(r) , 

and BADD denote the set of labels of ADD-instructions, i.e., 
B = BADD ∪ BSUB ∪

{
lh
}
.

We now construct the P system � with per-symbol lim-
ited capacity operating under Semantics 1 for simulating 
the PBRM M; except for K, this is the same P system as 
constructed in the proof of Theorem 1.

�0 is the multiset encoding the initial values of the registers. 
D∅ and Dr are defined as in the proof of Theorem 1.

The P system � now works as described in the proof of 
Theorem 1 with the difference that no rules introducing the 
trap symbol # can ever be used, as this would contradict 
the limiting condition K(#) = 0 , i.e., whenever such a rule 
would have to be applied according to the maximally parallel 
derivation mode, the computation is aborted immediately 
without yielding a result. This means that a computation in 
� is aborted if the computation step of the PBRM would 
crash the PBRM because a decrement on an empty register 
would be carried out, whereas every allowed decrement is 
simulated in a deterministic way as required. 	�  ◻

M =
(
m,B, l0, lh,P

)
.

� = (O, {c},w0,K,R),

O = {ar ∣ 0 ≤ r ≤ m} ∪ B ∪ {lh� } ∪ D ∪ {c, #},

D = {�r ∣ 0 ≤ r ≤ n},

w0 = c l0 D� a0 �0,

K = {(#, 0)} ∪ {(�r, 1) ∣ 0 ≤ r ≤ n}

∪ {(x,∞) ∣ x ∈ O ⧵ (D ∪ {#}},

R = {cp → cqarD�, cp → csarD�,

p → # ∣ p ∶ (ADD(r), q, s) ∈ P}

∪ {p → qDr ∣ p ∶ (SUB(r), q) ∈ P}

∪ {car → c�r, �r → � ∣ 0 ≤ r ≤ n}

∪ {lh → lh�D�0
, lh� → D�0

}

∪ {car → c#�0 ∣ 1 ≤ r ≤ n}.
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4.2 � Semantics 2 allows for computational 
completeness

In this subsection, we show that P systems with limited 
per-symbol capacity are computationally complete when 
operating with Semantics 2 without any additional ingre-
dients, especially without needing any catalyst.

Remark 3  (Simulating catalytic rules) We first observe that 
when operating with Semantics 2 we can limit the parallel-
ism of a non-cooperative rule by producing a marker sym-
bol whose capacity is limited to one. For example, consider 
the rule p ∶ a → u�p together with the rule �p → � and the 
limiting condition K(�p) = 1 , i.e., the symbol �p may not 
appear in more than one copy. Then, in any multiset of rules 
allowed to be applied, p may appear in at most one copy. 
This effectively prohibits applying p more than once in any 
step.

Moreover, we can ensure that the rules compete for the 
marker symbol just as catalytic rules would compete for a 
catalyst. For example, consider two catalytic rules ca → cu 
and cb → cv . These two rules cannot be applied at the same 
time, even if both a and b are present, because the catalyst is 
only present in a single copy. We can ensure the same mutual 
exclusion by having the symbol �c with the capacity limited 
to 1 ( K(�c) = 1 ), and the rules a → u�c and b → v�c.

Remark 4  (No catalysts needed) As elaborated in Remark 3, 
catalytic rules can be replaced by non-cooperative rules, i.e., 
P systems with per-symbol limited capacity operating with 
Semantics 2 do not need catalysts for simulating purely cata-
lytic P systems.

All together, these observations imply the following 
results:

Theorem 2  P systems with per-symbol limited capacity oper-
ating with Semantics 2 without catalysts can simulate purely 
catalytic P systems.

Proof  Let � = (O,C,w,K,R) be an arbitrary purely catalytic 
P system. We now construct a P system � � = (O,w,K,R�) 
with per-symbol limited capacity, operating with Seman-
tics 2, without catalysts:

�0 is the multiset encoding the initial values of the registers.

� � = (O,w,K,R�),

w0 = l0 �0,

K = {(c, 1) ∣ c ∈ C} ∪ {(x,∞) ∣ x ∈ O ⧵ C},

R� = {a → cu ∣ ca → cu ∈ R, c ∈ C}

∪ {c → � ∣ c ∈ C}.

In the construction of � ′ the symbols c ∈ C now are not 
catalysts any more as in � , but guarantee the same effect by 
their number being limited by 1.

As described in Remark 3, any catalytic rule ca → cu ∈ R , 
c ∈ C , can be simulated by the non-cooperative rule a → cu . 
The limited capacity of the symbols c guarantees that for 
each catalyst c at most one catalytic rule ca → cu ∈ R can 
be simulated, but on the other hand if one of these catalytic 
rules can be applied, according to the maximally parallel 
derivation mode also in � ′ one of the corresponding non-
cooperative rules has to be applied. As the “catalyst symbol” 
c immediately vanishes in the next step, the room is free for 
generating it again at most once in the next derivation step 
in � ′ again. 	�  ◻

Corollary 2  P systems with per-symbol limited capacity 
operating with Semantics 2 without catalysts can simulate 
catalytic P systems.

Proof  Let � = (O,C,w,K,R) be an arbitrary catalytic P sys-
tem. As in the Proof of Theorem 2 we construct a P system 
� � = (O,w,K,R�) with per-symbol limited capacity, operat-
ing with Semantics 2, without catalysts:

In fact, we have just added the non-cooperative rules a → u 
from R to R′ . 	�  ◻

Since catalytic as well as purely catalytic P systems are 
computationally complete, for example see [8], we immedi-
ately derive the following corollary.

Corollary 3  P systems with per-symbol limited capacity 
operating with Semantics 2 are computationally complete, 
even without using catalysts.

5 � Conclusion

In this paper, we have introduced the idea of bounding the 
number of symbols that may appear in the membranes of 
a P system. This is a quite natural restriction to consider, 
given that actual biological membranes are of limited 
capacity, too. We defined per-membrane and per-symbol 
limited capacities, and defined two possible semantics for 
handling the overflow. We then showed that Semantics 1 

� � = (O,w,K,R�),

w0 = l0 �0,

K = {(c, 1) ∣ c ∈ C} ∪ {(x,∞) ∣ x ∈ O ⧵ C},

R� = {a → cu ∣ ca → cu ∈ R, c ∈ C}

∪ {a → u ∣ a → u ∈ R}

∪ {c → � ∣ c ∈ C}.
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allows non-cooperative P systems to simulate partially blind 
register machines in real time, with 3 additional cleanup 
steps at the end of the computation. We also showed that 
non-cooperative P systems operating under Semantics 2 of 
limited capacity directly simulate purely catalytic and cata-
lytic P systems (in real time), yet without needing catalysts, 
and therefore are computationally complete.

This paper only scratches the surface of the study of P 
systems with limited capacity. One immediate open problem 
is that of computational completeness of (catalytic, purely 
catalytic) P systems with limited capacity operating with 
Semantics 1 or else characterizing the computational power 
of these systems.

Furthermore, Sect. 3 gives three more different behaviors 
which P systems may adopt when their membranes overflow. 
In particular, the separation and the dissolutive behaviors 
may even better represent the phenomena one would expect 
to observe in overfull membranes in biological cells.
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