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Abstract
We continue the investigations of the connection between membrane systems and time Petri nets by extending the examined 
class of systems from simple symbol-object membrane systems to more complex cases: rules with promoters/inhibitors, 
membrane dissolution, and priority relation on the rules. By constructing the simulating time Petri net, we retain one of the 
main characteristics of the Petri net model; namely, the firings of the transitions can take place in any order, and there is no 
need to introduce maximal parallelism in the Petri net semantics. Instead, we substantially exploit the gain in computational 
strength obtained by the introduction of the timing feature for Petri nets.
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1 Introduction

Several models have emerged in the past decades to model 
distributed systems with interactive, parallel components. 
One of them was developed by Petri [16], and since then, 
the Petri nets have become the underlying system of a vast 
field of research with a considerable practical interest, see 
[3, 15, 19] for more information. The theory of membrane 
systems was established by  Păun [12], and it has proved to 
be a very convenient and many-sided model of distributed 
systems with concurrent processes, see [13, 14]. Here, we 
continue the investigations concerning the relationship of 
these two computational models.

Place/transition Petri nets are bipartite graphs, the condi-
tions of the events of a distributed system are represented by 
places, and directed arcs connect the places to the transitions 
which model the events. The conditions for the events are 

expressed by tokens: an event can take place, i.e., a transition 
can fire, if there are enough tokens in the places at the source 
ends of the incoming arcs of a transition. These places are 
called preconditions. The outgoing edges of a transition rep-
resent the post-condition of the events. Firing of a transition 
means removing tokens from the preconditions and adding 
them to the post-conditions. The number of tokens moved in 
this way is prescribed by the multiplicities of the incoming 
and outgoing arcs.

Membrane systems are models of distributed, synchro-
nized computational systems ordered in a tree-like structure. 
The building blocks are compartments which contain mul-
tisets of objects. The multisets evolve in each compartment 
in a parallel manner, and the compartments, in each com-
putational step, wait for the others to finish their computa-
tion; hence, the system acts in a synchronized manner. In 
every computational step, the multisets in the compartments 
evolve in a maximal parallel manner. This means that as 
many evolution rules of the compartment are applied simul-
taneously in each step as possible. For more on the ways 
of synchronizing P systems, see the handbook [14] and the 
recent papers [2, 4].

By looking at the basic functioning of membrane systems 
and place/transition nets, we might notice some similar fea-
tures. Petri net transitions consume tokens from their input 
places and produce new tokens at their output places, so 
in some sense they behave similarly to membrane systems 
which consume, produce, and move objects around in the 
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regions of their membrane structure. And not only do they 
behave similarly, but the functioning of place/transition nets 
can naturally be described by transformations of the mul-
tisets corresponding to possible token distributions on the 
places of the net. See [5, 9, 10] for more on these and similar 
ideas. As we will describe later in more detail, each kind 
of object in a compartment of a membrane system can be 
represented by a different place, and each evolution rule by 
a different transition having its input and output places. The 
building of such a structural link between the two models 
motivates the study of membrane systems from the point 
of view of the concurrent nature of their behavior, and as a 
consequence, the techniques and tools developed for Petri 
nets might become applicable in the area of membrane 
computing.

Besides this basic connection described above, Petri net 
variants were also introduced with the aim of capturing 
some of the advance features of more sophisticated mem-
brane system models. For example, in order to describe the 
maximal parallel application of rules in membrane systems, 
the usual semantics of place/transition nets can be extended. 
So-called maximally concurrent steps in Petri nets were 
already considered in [6] (independently of any motiva-
tion from membrane computing) to describe the concurrent 
evolution of non-sequential systems. In order to capture the 
compartmental structure and the locally maximal parallel 
behavior of membrane systems, localities and a locally max-
imal concurrent semantics were introduced and investigated 
for Petri nets in [9]. Furthermore, Petri nets with localities 
were also used to describe membrane creation and mem-
brane dissolution in [8] and extended in [7] to model the use 
of promoters and inhibitors. For more details on the specific 
membrane system models and their computational power, 
see the handbook [14, 20, 21] for more recent developments. 
On the connections of these models to variants of Petri nets 
with localities, the reader is also referred to [14].

In the present paper, we follow a different approach by 
considering the possibilities provided by a model called time 
Petri net developed by Merlin [11] in order to deal with the 
difficulty that ordinary place/transition nets are not able to 
model systems where a certain order of events must be taken 
into account, see also [17, 18]. In this model, time intervals 
are associated with transitions. The local time observed from 
a transition can be modified by the Petri net state transition 
rules, and a transition can fire only if its observed time lies 
in the interval assigned to the transition by the definition of 
the net. In this way, the computational power of Petri nets 
is increased: the time Petri net model is Turing complete in 
contrast with the original state/transition Petri net.

Besides the increase of the computational power, the fea-
ture of timing also provides a more or less natural framework 
to describe the computations of membrane systems more 
conveniently. In the following, we continue the research 

on the connection between time Petri nets and membrane 
systems initiated in [1]. One of the main features of our 
construction is that the usual semantic characteristics of 
Petri nets is retained when a Petri net equivalent of a mem-
brane system is presented. That is, unlike the construction 
in [9] (and unlike the constructions in many other Petri net 
descriptions of membrane systems), we do not stipulate that 
the Petri nets should perform their computational steps in 
some variant of a maximal concurrent manner. Instead of a 
modified membrane system-like semantics, the attached time 
intervals provide the synchronization in the corresponding 
Petri nets.

The structure of the paper is the following. After provid-
ing the necessary preliminaries and definitions in Sect. 2, 
we describe in Sect. 3 a variant of the basic construction of 
the time Petri net simulation of symbol object membrane 
systems developed in [1]. Then, in Sect. 4, this construction 
is extended in order to represent some more advanced mem-
brane computational tools. Similarly to [1], there will be no 
need to introduce any other “special features” (beside the 
feature of time) to be able to capture the effect of priorities, 
the use of promoters/inhibitors, or membrane dissolution. 
Finally, the paper ends with a short section of conclusions.

2  Preliminaries and definitions

A finite multiset over an alphabet O is a mapping 
M ∶ O → ℕ , where ℕ is the set of nonnegative integers. The 
number M(a) for a ∈ O is called the multiplicity of a in 
M. We write that M1 ⊆ M2 if for all a ∈ O , M1(a) ≤ M2(a) . 
The union or sum of two multisets over O is defined 
as (M1 +M2)(a) = M1(a) +M2(a) , the intersection is 
(M1 ∩M2)(a) = min(M1(a),M2(a)) , while the difference is 
defined for M2 ⊆ M1 as (M1 −M2)(a) = M1(a) −M2(a) for 
all a ∈ O . The set of all finite multisets over an alphabet O 
is denoted by M(O) ; the empty multiset is denoted by ∅.

The notation ℕ>0 stands for the set of positive integers, 
while ℚ and ℚ≥0 denote the set of rational numbers and non-
negative rational numbers and ℝ and ℝ≥0 the set of real num-
bers and nonnegative real numbers, respectively.

2.1  Membrane systems

Membrane systems are computational models operating 
on multisets. We define the notion of the basic symbol-
object membrane system [14] and shortly introduce the 
additional features which will be discussed in more detail 
in Sect. 5. A membrane system (or P system) is a tree-like 
structure of hierarchically arranged membranes. The outer-
most membrane is usually called the skin membrane. The 
membranes are labeled by natural numbers {1,… , n} , and 
each membrane, except the skin membrane, has its parent 
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membrane. We use � for representing the structure of the 
membrane system itself, which can also be given as a bal-
anced string of left and right brackets indexed by their labels. 
If � = [1 [2 [3]3 [4]4 ]2 [5]5 ]1 , then the skin membrane has two 
submembranes, while region also contains two embedded 
regions. Abusing the notation, �(i) = k can also mean that 
the parent of the i-th region is region k.

The regions of a P system contain multisets over a finite 
alphabet O of objects. The contents of the regions evolve 
through rules associated with the regions. The rules describe 
how certain multisets can be transformed to other multisets. 
They are applied in a maximal parallel manner, which con-
stitute the “micro-steps” of the computations. A computa-
tional step is the “macro-step” of the process: it ends when 
each of the regions has finished the parallel applications of 
their rules. A computational sequence is a sequence of com-
putational steps.

Here, we think of the computational steps in the regions 
as consisting of two phases: first the rule application phase 
produces from the objects on the left-hand sides of the rules 
the labeled objects on the right-hand sides. (The labels of 
the labeled objects describe the way they should be moved 
between the regions: stay where they are, move to the par-
ent region, or move into one of the child regions.) Then, we 
have the communication phase when the labels (also called 
target indicators) are removed and all the objects are trans-
ported to the regions indicated by their labels. The P system 
gives a result when it halts, i.e., when no more rules can be 
applied in any of the regions. The result is a natural number 
or a tuple of natural numbers counting certain objects in the 
membrane(s) designated as the output membrane(s).

A  P  s y s t e m  o f  d e g r e e  n ≥ 1  i s 
� = (O,�,w1,… ,wn,R1,… ,Rn) where O is an alpha-
bet of objects, � is a membrane structure of n mem-
branes, wi ∈ M(O) with 1 ≤ i ≤ n are the initial contents 
of the n regions, Ri with 1 ≤ i ≤ n are the sets of evolu-
tion rules associated with the regions. They are of the 
form u → v , where u ∈ M(O) and v ∈ M(O × tar) with 
tar = {here, out} ∪ {inj ∣ 1 ≤ j ≤ n}.

We assume that one or more membranes are desig-
nated as output membranes. A configuration is a sequence 
W = (u1,… , un) , where ui is the multiset contained by mem-
brane i, 1 ≤ i ≤ n . For a rule r ∶ u → v ∈ Ri , we denote by 
lhs(r) ∈ M(O) and rhs(r) ∈ M(O × tar) the left-hand side 
and the right-hand side of r, respectively (u and v, for the 
rule u → v ). By the application of a rule u → v ∈ Ri , we 
mean the process of removing the elements of u from the 
multiset ui and extending ui with the labeled elements, which 
are called messages. As a result, during a computational 
step, a region can contain both elements of O and messages 
from O × tar . We say that W is a proper configuration if 
ui ∈ M(O) for each 1 ≤ i ≤ n , while W is an intermedi-
ate configuration if there is at least one region containing 

elements from O × tar , that is, ui ∩ (Q × tar) ≠ � for some 
i, 1 ≤ i ≤ n.

The communication phase after the rule applications 
produces proper configurations from intermediate ones: the 
elements coming from the right-hand sides of the rules are 
added to the regions specified by the target indicators asso-
ciated with them. If the right-hand side of a rule contains a 
pair (a, here) ∈ O × tar , then a is added to the region where 
the rule is applied. If it contains (a, out) , then a is added to 
the parent region; if it contains (a, inj) , then a is added to the 
contents of region j. In this case, i must be the parent region 
of j, �(j) = i must hold.

Given a (proper) configuration W, we obtain a new 
(proper) configuration W ′ by executing the two phases of 
the transformations determined by the parallel application 
of maximal multisets of rules chosen for each compartment 
of the membrane system. A rule multiset is maximal, if it 
is applicable in a region, but if any other rule occurrence is 
added to it, then the sum of the left-hand sides is not con-
tained in the region; that is, the extended rule multiset is 
not applicable any more. We call this a computational step 
and denote it by W ⇒ W ′ . A computation is a sequence of 
such computational steps, and it halts when a configuration 
is reached where there are no rules which can be applied. In 
such a halting configuration, the result of the computation 
appears as the contents of the output membranes.

We might consider additional features being present in the 
membrane system. First, we can add promoters and inhibi-
tors to the rules. These are multisets of objects that regulate 
the rule applications in a way that the promoter z ∈ M(O) 
assigned to the rule r prescribes that z must be present in 
the region where the rule is applied, while the inhibitor ¬z 
with z ∈ M(O) prevents the rule from being applied if z is 
present in the region.

Second, we can consider membrane dissolution. The 
set of objects is extended with an additional element � 
that can appear on the right-hand sides of the rules. If � 
appears in a rule r which is applied in the i-th region for 
some i, 1 ≤ i ≤ n , then the communication phase is executed 
as above, but after that, as the result of the presence of � 
in region i, the region together with its set of rules Ri dis-
appears from the P system. This means that the elements 
of region i are passed over to the parent region (except � , 
which disappears), and the rules in Ri are not applied any-
more. Note that the outermost region (the skin region) can-
not dissolve.

Finally, we can consider a priority relation on rules, that 
is, a partial ordering (an antisymmetric and transitive rela-
tion) �i on the set Ri , 1 ≤ i ≤ n . We say that r′ has priority 
over r, or r′ has higher priority than r (denoted as r′ > r ), if 
(r�, r) ∈ �i . In this case, if both r′ and r were applicable in 
a configuration, then r is suppressed, that is, not allowed to 
be applied.
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In Sect. 5, we show that all these features can be mod-
eled by time Petri nets. The advantage of using time Petri 
nets is that the usual semantics, the usual unsynchronized 
way of firing of the transitions can be preserved: we do not 
inflict any additional condition on the transitions (like the 
requirement that the transitions fired in a computational 
step should constitute a maximal multiset).

2.2  Time Petri nets

In this section, following the definitions in [17] we define 
time Petri nets, a model rendering time intervals to transi-
tions along the concept of [11]. First of all, we introduce 
the underlying place/transition Petri nets and then extend 
this model to the timed version.

A Petri net is a 5-tuple U = (P, T ,F,V ,m0) such that 

1. P, T, F are finite, where P ∩ T = � , P ∪ T ≠ � and 
F ⊆ (P × T) ∪ (T × P),

2. V ∶ F → ℕ>0,
3. m0 ∶ P → ℕ.

The elements of P and T are called places and transitions, 
respectively, the elements of F are the arcs, and F is also 
called the flow relation of U. The function V is the multi-
plicity (weight) of the arcs, and m0 is the initial marking. 
In general, a marking is a function m ∶ P → ℕ , it can be 
thought of as representing a state of the net U. We stipulate 
that for every transition t ∈ T  , there is a place p ∈ P such 
that f = (p, t) ∈ F.

Let x ∈ P ∪ T  . The pre- and post-sets of x, denoted by 
∙x and x∙ , respectively, are defined as ∙x = {y | (y, x) ∈ F} 
and x∙ = {y | (x, y) ∈ F}.

For each transition t ∈ T  , we define two markings, 
t−, t+ ∶ P → ℕ as follows:

A transition t ∈ T  is said to be enabled in the marking 
m, if t−(p) ≤ m(p) for all p ∈ ∙t . Applying the notation 
▵ t(p) = t+(p) − t−(p) for p ∈ P , we define the firing of the 
transitions of a Petri net. A transition t ∈ T  can fire in m 
(notation: m ⟶

t ) if t is enabled in m. After the firing of 
t, the Petri net obtains the new marking m� ∶ P → ℕ with 
m�(p) = m(p)+ ▵ t(p) for all p ∈ P , denoted as m ⟶

t m′.
We obtain time Petri nets if we add time assigned to 

transitions of the Petri net. Intuitively, the time associated 
with a transition denote the last time when the transition 
was fired. We are considering only bounded time intervals. 

t−(p) =

{
V(p, t), if (p, t) ∈ F,

0 otherwise ,

t+(p) =

{
V(t, p), if (t, p) ∈ F,

0 otherwise .

We present the definitions from [17], see also [18] for 
more information.

A time Petri net is a 6-tuple N = (P, T ,F,V ,m0, I) such 
that 

1. the skeleton of N given by S(N) = (P, T ,F,V ,m0) is a 
Petri net, and

2. I ∶ T → ℚ ×ℚ is a function assigning a rational 
interval to each transition, that is, for t ∈ T  and 
I(t) = [ eft (t), lft (t)] , we have 0 ≤ eft (t) ≤ lft (t).

We call eft (t) and lft (t) the earliest and the latest firing 
times belonging to transition t, respectively.

Given a time Petri net N = (P, T ,F,V ,m0, I) , a function 
m ∶ P → ℕ is called a p-marking of N. Note that talking 
about a p-marking of N is the same as talking about a 
marking of S(N). A state in N is a pair u = (m, h) , where 
h is a function called a transition marking (or t-marking) 
in N, h ∶ T → ℝ≥0 ∪ {#} . The two markings m and h satisfy 
the following properties.

For all t ∈ T  , 

1. if t is not enabled in m (that is, if t−(p) > m(p) for some 
p ∈ ∙t ), then h(t) = #,

2. if t is enabled in m (that is, if t−(p) ≤ m(p) for all p ∈ ∙t ), 
then h(t) ∈ ℝ with h(t) ≤ lft (t)).

The initial state is the pair u0 = (m0, h0) , where m0 is the 
initial marking and for all t ∈ T ,

A transition t ∈ T is ready to fire in state u = (m, h) (denoted 
by u ⟶

t ) if t is enabled and eft (t) ≤ h(t) ≤ lft (t).
Now we define the result of the firing for a transition 

that is ready to fire. Let t ∈ T  be a transition and u = (m, h) 
be a state such that u ⟶

t . Then the state u′ resulting 
after the firing of t denoted by u ⟶

t u′ is a new state 
u� = (m�, h�) , such that m�(p) = m(p) +△t(p) for all p ∈ P , 
and for all transitions s ∈ T  , we have

Hence, the firing of a transition changes not only the p-mark-
ing of the Petri net, but also the time values corresponding 
to the transitions. If a transition s ∈ T  which was enabled 
before the firing of t remains enabled after the firing, then 
the value h(s) remains the same, even if s is t itself. If an 
s ∈ T  is newly enabled with the firing of transition t, then 

h0(t) =

{
0, if t is enabled in m0,

#, otherwise.

h�(s) =

⎧
⎪⎨⎪⎩

h(s), if s is enabled both in m and m�,

0, if s is not enabled in m, but enabled in m�,

#, if s is not enabled in m�.



345Description of membrane systems with time Petri nets: promoters/inhibitors, membrane…

1 3

we set h(s) = 0 . Finally, if s is not enabled after firing of 
transition t, then h(s) = #.

Observe that we allow transitions to be fired several 
times in a row: if t is fired resulting in the new p-marking 
m′ , and t remains enabled in m′ , that is, t−(p) ≤ m�(p) holds 
for all p ∈ ∙t , then the time associated with t does not 
change, h�(t) = h(t).

Besides the firing of a transition, there is another possi-
bility for a state to alter, and this is the time delay step. Let 
u = (m, h) be a state of a time Petri net, and � ∈ ℝ≥0 . Then, 
the elapsing of time � is possible for the state u (denoted 
u ⟶

� ) if for all t ∈ T  which are enabled in the current 
marking, the new time value assigned to t is less than the 
latest firing time of t. The state u′ , namely the result of the 
elapsing of time by � denoted by u ⟶

� u′ , is defined as 
u� = (m�, h�) , where m = m� and

Note that the definitions ensure that we are not able to skip a 
transition when it is enabled: a transition cannot be disabled 
by a time delay step. This kind of semantics is called the 
strong semantics in [18]. Note also that classic Petri nets can 
be obtained as time Petri nets having h(t) = [0, 0] , as in such 
systems there are no time delay steps possible at all.

3  Connecting Petri nets and membrane 
systems

We start by discussing the time Petri net simulation of the 
basic variant of membrane systems we constructed in [1] 
and describe a simplification in the construction that we are 
going to use here. The model is based on the correspondence 
between Petri nets and membrane systems described in [9]. 
Membrane system configurations are represented by places 
(a, i) for each object a and membrane i, the number of tokens 
associated with such places correspond to the multiplicity 
of object a in membrane i. The rules of the membrane sys-
tem are represented by transitions which move the tokens 
between the places according to the way that the rule appli-
cation changes the corresponding object multiplicities in the 
membrane regions. A membrane system computation can be 
simulated by such a Petri net: if the membrane system halts, 
the Petri net reaches a configuration where no transitions 
can fire, and the marking of the Petri net corresponds to the 
halting configuration of the membrane system.

The new feature of the construction in [1] is the property 
that it does not change the usual Petri net semantics, and it 
simulates the maximal parallel rule application of membrane 
systems without requiring that the Petri net model fires its 
transitions in a maximal parallel manner. In general, both 

h�(t) =

{
h(t) + � ≤ lft (t), if h(t) ≠ #,

# otherwise.

by membrane systems and by Petri nets, a computational 
step can be considered as a multiset of rules or as a multi-
set of transitions, respectively. In the case of Petri nets, an 
application of a multiset of transitions is maximal parallel, 
if augmenting the multiset by any other transition results in 
a multiset of transitions that cannot be fired simultaneously 
in the configuration represented by the current marking. In 
the case of membrane systems, maximal parallel execution 
means that no rule can be added to the multiset of rules such 
that the resulting multiset still forms a multiset of applicable 
rules. In our construction, the fireable transitions of the sim-
ulating Petri net can be executed in any order, and we do not 
impose any restrictions on the computational sequence of the 
Petri nets. This is possible, because we make an essential use 
of the time feature. (Note that the original place/transition 
Petri net model is not Turing complete, unlike the majority 
of the variants of symbol object membrane systems.)

In short, in [1] we have shown that given a membrane 
system � (without priorities, membrane dissolution and 
promoters/inhibitors), there is a time Petri net N, such that 
N halts if and only if � halts, and if they halt, then they 
provide the same result.

In the following, we will present analogous results also 
for membrane systems with extended features; that is, we 
show how time Petri nets can simulate membrane systems 
using rules with promoters/inhibitors, membrane systems 
with priorities assigned to the rules, and systems with the 
possibility of membrane dissolution.

In order to simplify the constructions, we modify the cor-
respondence between membrane system computations and 
Petri nets, since we do not require that the simulating time 
Petri nets halt. For each halting configuration of the mem-
brane system, the corresponding Petri net reaches a state 
where the computation continues in a cycle and the markings 
of places representing the membrane system configuration 
do not change any more.

In order to present this idea more formally, we say that a 
time Petri net N = (P, T ,F,V ,m0, I) simulates the computa-
tions of a membrane system � by stabilizing in a configura-
tion corresponding to a halting configuration of � , if there 
is a subset of places PR ⊆ P and a subset transitions TR ⊆ T  , 
such that if and only if � halts, N enters into a cyclic com-
putation where 

1. no transition of TR is enabled,
2. the markings on the places of PR do not change, and
3. the numbers of tokens associated with the places of PR 

correspond to the halting configuration of �.

Remark 1 In the following, we will show how to simulate 
halting computations of different membrane system vari-
ants with Petri net computations stabilizing in configurations 
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corresponding to halting membrane system configurations. 
However, the simulations also work if we apply our con-
structions to membrane systems which do not halt. In such 
cases, the Petri net simulation of the membrane system 
proceeds by a non-halting Petri net computation passing 
through an infinite sequence of configurations which cor-
responds to the infinite sequence of configurations of the 
membrane system. For more about the influence of different 
ways of halting on the computational power of P systems, 
also see the recent paper [4].

In the following, we first present a variant of the main 
theorem from [1] to introduce the basic ideas of the con-
struction, and then we show how to modify this to be able 
to represent promoters/inhibitors, membrane dissolution, 
and the role of priorities on the rules.

Theorem 1 For any membrane system � (without priori-
ties, membrane dissolution and promoters/inhibitors), there 
is a time Petri net N simulating the computations of � by 
stabilizing in configurations corresponding to the halting 
configurations in �.

Proof Let � = (O,�,w1,… ,wn,R1,… ,Rn) be a membrane 
system and let N = (P, T ,F,V ,m0, I) be the corresponding 
Petri net. We define N so that a computational step of � is 
simulated by two subnets of N. The two subnets correspond 
to the two computational phases of a computational step of 
a membrane system, namely the rule application and the 
communication phases. Let us see the construction in detail.

with P0 = O × {1,… , n} and P̄0 = Ō × {1,… , n} , where 
Ō = {ā ∣ a ∈ O} . For 1 ≤ i ≤ n , the tokens (a, i) ∈ P0 stand 
for the objects in the various compartments, while the tokens 
(ā, i) ∈ P̄0 = represent the messages obtained in the course 
of the rule applications.

A marking m ∶ P → ℕ corresponds to a configuration 
(u1,… , un) ∈ M(O)n of � as follows. If m(p) = k for some 
p = (a, i) ∈ P0 , then there are k objects a ∈ O in compart-
ment i, that is, ui(a) = k . If m(p̄) = l for some p̄ = (b̄, j) ∈ P̄ , 
then there are l copies of object b which will enter into mem-
brane j at the end of the computational step.

The presence of a token at the places papp or pcom is ena-
bling the rule application or the communication phases of 
the Petri net computation, respectively.

The initial marking corresponds to the initial configura-
tion of � , m0(p) = wi(a) for every p = (a, i) ∈ P0, 1 ≤ i ≤ n , 
and m0(p̄) = 0 for all p̄ ∈ P̄0 . In addition, m0(papp) = 1 and 
m0(pcom) = 0.

Let also

P = P0 ∪ P̄0 ∪ {papp, pcom}

where the transitions are defined as follows.

• For any rule r ∈ Ri for some i, 1 ≤ i ≤ n , there is a tran-
sition tr ∈ T0 corresponding to r, and

• for any place p̄ ∈ P̄0 , there is a transition sp̄ ∈ T̄0.
• The transitions tcom and tapp transform the net from the 

rule application phase to the communication phase, and 
from the communication phase back to the rule applica-
tion phase, respectively.

The input and output arcs and the time intervals associated 
with these transitions are as follows (see Fig. 1 for the 
graphical representation and an example).

– For each tr ∈ T0 , r ∈ Ri, 1 ≤ i ≤ n , we have (a, i) ∈ ∙tr 
if and only if a ∈ lhs(r) , we have (b̄, j) ∈ t∙

r
 if and only 

if either (b, inj) ∈ rhs(r) (where i is the parent region of 
j) or (b, out) ∈ rhs(r) and region j is the parent region 
of i, or we have (b, here) ∈ rhs(r) and j = i.

– Regarding the weights of the arcs, the weight of 
f = (p, tr) ∈ F for some p = (a, i) ∈ P0 and r ∈ R0 is 
the multiplicity of a ∈ O on the left-hand side of r, 
namely V(f ) = lhs(r)(a) . For f = (tr, p̄) ∈ F  where 
p̄ = (b̄, j) ∈ P̄0 , the weight of f is V(f ) = rhs(r)(b, inj) 
if region j is a child region of i, V(f ) = rhs(r)(b, out) if 
region j is the parent region of i, or V(f ) = rhs(r)(b, here) 
if i = j.

– For each sp̄ ∈ T̄0 with p̄ = (ā, i) ∈ P̄0 for some 1 ≤ i ≤ n , 
we have p̄ = (ā, i) ∈ ∙sp̄ and p = (a, i) ∈ s∙

p̄
.

– T h e  w e i g h t  o f  e a c h  o f  t h e  a r c s 
f ∈ {(∙sp̄, sp̄), (sp̄, s

∙
p̄
) ∣ p̄ ∈ P̄0} is V(f ) = 1.

– The firing time intervals associated with all of the tran-
sitions t ∈ T0 ∪ T̄0 above are I(t) = [0, 0].

In addition,

– we have papp ∈ ∙t ∩ t∙ for all t ∈ T0 and pcom ∈ ∙t ∩ t∙ for 
all t ∈ T̄0 , all of these arcs having a weight of one, and

– we also have papp ∈ ∙tcom , pcom ∈ t∙
com

 , pcom ∈ ∙tapp , and 
papp ∈ t∙

app
 with all of these arcs also having weight one.

– The firing time intervals associated with these transi-
tions are I(tcom) = I(tapp) = [1, 1].

To see how the above construction works, consider the 
following. A computational step of a membrane system is 
split into a rule application and a communication phase, 
and those two phases are simulated separately and in an 
alternating order. The simulation of the rule application 
phase is enabled by the presence of a token at papp , and it 

T = T0 ∪ T̄0 ∪ {tcom, tapp}
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finishes only when no more rule applications are possible, 
ensuring that the rule application happens in the maximal 
parallel way. Any transition tr corresponding to a rule r 
from some rule set of the membrane system can fire only if 
a token is found in papp , but if no transition tr can fire (that 
is, no rule r of the membrane system is applicable), then 
the transition tcom is enabled at time 1, so after performing 
a time delay step, a token is passed to pcom . The place pcom 
is connected to each transition sp̄ ∈ T̄0 in both directions 
with an arc of multiplicity 1, which means that after the 
tokens have finished wandering back to their respective 
places (when no sp̄ is enabled any more), then there is 
still a token left in pcom . This token moves to papp (after a 
time delay step) at time 1 via tapp , and the net is ready for 
simulating the next membrane computational step by per-
forming a rule application phase of the simulation again.

When the Petri net arrives to a marking which corre-
sponds to a halting configuration of the membrane system, 
no transitions in T0 (and hence, no transitions in T̄0 ) are ena-
bled, so it can only continue the cyclic computation consist-
ing of passing a token back and forth between papp and pcom 
without being able to change anything else in the distribution 
of the tokens, so in some sense, the representative of the 
halting membrane system configuration is ”stabilized.”  
 ◻

4  Extending the correspondence 
to membrane systems with more features

In this section, we examine the possibility of extending our 
core model to Petri nets that are able to represent various 
properties of membrane systems, such as the presence of 
promoters/inhibitors, membrane dissolution and a priority 
relation on the rules. The obtained Petri nets each build upon 
the basic model defined in the previous section, so, in most 
of the cases, we restrict ourselves to emphasize only the new 
elements of the constructions by which the basic Petri net 
model is extended.

We begin with discussing the case of promoters and 
inhibitors. We say that � = (O,�,w1,… ,wn,R1,… ,Rn,P) 
is a membrane system with promoters/inhibitors, if P is 
mapping which maps the rules to M(O)2 . Then P(r) is a 
promoter/inhibitor pair associated with r ∈ Ri for some 
i, 1 ≤ i ≤ n , denoted as (promr, inhibr).

We say that a multiset R of rule occurrences is applicable 
in a configuration (u1,… , un) , if each of the following condi-
tions is fulfilled. For all 1 ≤ i ≤ n , 

1. lhs(r)(a) ⋅R(r) ≤ ui(a) for each r ∈ Ri and a ∈ O,
2. promr(a) ≤ ui(a) for each r ∈ R, r ∈ Ri, a ∈ O , and
3. inhibr ⊈ ui , or in other words, there exists an a ∈ O , such 

that ui(a) < inhibr(a) for all r ∈ R, r ∈ Ri.

(a) (b)

Fig. 1  The subnet on the left simulates the application of 
r ∶ ab → c3(d, in2) in region 1 (which is the parent region of 2) con-
taining one a and two b objects. The figure shows the result of a sin-
gle application of r. Transition tr corresponding to the rule consumes 
an a and a b in region 1 and sends three tokens to the place (c̄, 1) , 
and one token to (d̄, 2) . This is in accordance with the fact that three 
objects c should be added to region 1, and one copy of d should be 
added to region 2 in the following communication phase. The sub-
net on the right simulates the communication phase of the membrane 

computational step. When the simulation of a maximal parallel rule 
application is finished, that is, when no transition associated with any 
rule is enabled any more, a time delay step can be performed, and 
then a token is passed over to pcom at time instance 1. Then, the tran-
sitions s(c̄,1), s(d̄,2) ∈ T̄0 become enabled and ensure the correct place-
ment of the tokens corresponding to the messages. When the updat-
ing of the marking is finished, a time delay step can follow, and then 
the token from pcom is passed back to papp enabling the rule applica-
tion phase once more



348 P. Battyányi, G. Vaszil 

1 3

Theorem 2 For any membrane system � with promoters/
inhibitors, there is a time Petri net N simulating � by sta-
bilizing in configurations corresponding to the halting con-
figurations of �.

Proof Let � = (O,�,w1,… ,wn,R1,… ,Rn,P) be a mem-
brane system with promoters/inhibitors. We construct N by 
extending the construction in the proof of Theorem 1, that 
is, the Petri net simulates the rule application and the com-
munication phase separately in a similar manner. Here we 
concentrate on the differences concerning the rule applica-
tion phase, the other elements of the construction can be 
adapted from Theorem 1.

Let N = (P, T ,F,V ,m0, I) be a time Petri net with places

where P0 ∪ P̄0 ∪ {papp, pcom} are as in the proof of Theo-
rem 1, and

P = P0 ∪ P̄0 ∪ {papp, pcom} ∪ Ppro ∪ Pinh ∪ {pini}

The initial marking corresponds to the initial configu-
ration of the membrane system as before. In addition, 
m0(pini) = m0(p¬inh(r)) = m0(p¬pro(r)(a)) = m0(p¬inh(r)(a)) = 1 
for all rules r, objects a ∈ O , while the rest of the places are 
marked with zero.

Let also

where T = T0 ∪ T̄0 ∪ {tcom, tapp} are as int the proof of Theo-
rem 1, and

Ppro ={ppro(r), ppro(r)(a), p¬pro(r)(a) ∣ r is a rule occurrence

in� , a ∈ O},

Pinh ={pinh(r), p¬inh(r), pinh(r)(a), p¬inh(r)(a) ∣ r is a rule

occurrence in� , a ∈ O}.

T = T0 ∪ T̄0 ∪ {tcom, tapp} ∪ T � ∪ {tini}

T � ={tini(r), tpro(r), tinh(r), tpro(r)(a), tinh(r)(a), tcol(r),

t1
col(r)

, t2
col(r)

, t3
col(r)

,

tcol(r)(a), t
1
col(r)(a)

, t2
col(r)(a)

, t3
col(r)(a)

∣ r is a rule occurrence

in� , a ∈ O}.

Fig. 2  The subnet simulating the rule application phase of a mem-
brane system with promoters and inhibitors. The contents of the first 
region is a2 , and r = a → c(d, in2)

3 with promr(a) = 2 , inhibr(a) = 3 
is applied. The rule application phase starts when tini(r) sends a token 
to all places where one token is seen. First the inhibitor multiset is 
checked: if all a ∈ inhibr is present in the necessary number of occur-
rences (if the rule r should be inhibited), tokens are sent to each 
pinh(r)(a) , and then to pinh(r) . (The dashed arrows represent a collection 
of arcs and transitions described in the text: if the places pinh(r)(a) and 
ppro(r)(a) contain tokens for all a ∈ inhibr or a ∈ promr , then a token 
appears at pinh(r) or ppro(r) , respectively.) Thus, if the rule should be 
inhibited, the token from p¬inh(r) is removed, and tr will not be able 

to fire. After the inhibitor, the promoter is checked: if all necessary 
objects are present, a token is sent to each ppro(r)(a) , and then to ppro(r) , 
which enables the firing of transition tr corresponding to the execu-
tion of rule r. Since we have also made a time delay step before, the 
result of the promoter and inhibitor checks are kept the same until 
the repeated application of the allowed rules (simulating the maxi-
mal parallel application of the membrane system) is finished, and 
the communication phase begins. The subnet for the communication 
phase is not depicted here; it is similar to the subnet in Fig. 1, except 
for the transition tini which returns a token to pini (instead of papp , as in 
the proof of Theorem 1)
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The arcs connecting the places and transitions known from 
the construction of Theorem 1 are as before, with the excep-
tion of tapp which connects the places pini and papp , and the 
new transition tini connecting pcom and pini (see Fig. 2 for the 
graphical representation and an example).

The input and output arcs associated with the new transi-
tions, together with the new time intervals, are as follows.

Consider all r ∈ Ri for some i, 1 ≤ i ≤ n . 

(a) For each tini(r) , we have pini ∈ ∙tini(r) and p¬inh(r) , 
p¬pro(r)(a) , p¬inh(r)(a) ∈ t∙

ini(r)
.

(b) For each tpro(r) , we have ppro(r)(a) ∈ ∙tpro(r) for each 
a ∈ O , and ppro(r) ∈ t∙

pro(r)
.

(c) For each tinh(r) , we have pinh(r)(a) ∈ ∙tinh(r) for each a ∈ O , 
and pinh(r) ∈ t∙

inh(r)
.

The time intervals associated with the transitions described 
so far are [0, 0], while the weights of all the arcs above are 
one. The transitions defined in (a) initialize the rule applica-
tion phase by putting a token to each of the necessary places 
after the appearance of a token in pini activates them.

The transitions described in (b)–(c) are represented by the 
dashed arrows in Fig. 2. They place a token to ppro(r) (or to 
pinh(r) ) if a token appears in ppro(r)(a) (or in pinh(r)(a) ) for each 
object a occurring in the promoter (or inhibitor) multisets 
associated with the rule r.

In addition to the above,

– for each tcol(r) , we have p¬inh(r), pinh(r) ∈ ∙tcol(r) while t∙
col(r)

 
is empty, and the time interval associated with tcol(r) is 
[0, 0].

This transition disables the firing of tr (disables the simula-
tion of rule r) if r should be inhibited (which is signaled by 
the presence of a token in pinh(r)).

– For each r , we have p¬inh(r) ∈
∙t1
col(r)

 , we have 
pinh(r) ∈

∙t2
col(r)

 , we have ppro(r) ∈ ∙t3
col(r)

 . For each r and 
a ∈ O  ,  we  have  pinh(r)(a) ∈

∙tcol(r)(a)  ,  we  have 
p¬pro(r)(a) ∈

∙t1
col(r)(a)

 , we have p¬inh(r)(a) ∈ ∙t2
col(r)(a)

 , and we 
have ppro(r)(a) ∈ ∙t3

col(r)(a)
 . The time interval associated 

with all of these transitions is [2, 2].

The set of output places of the above described transitions 
are empty, they serve as “sinks,” they remove unnecessary 
tokens at the end of the rule application phase.

For the rest of the arcs and their weights, together with 
the rest of the transitions and their associated time intervals, 
see Fig. 2.

The time Petri net described above alternates its rule 
application phase and communication phase to simulate the 

computational steps of the membrane systems. The alter-
nation of the phases is guided by the cycling of a token 
from pini to papp , from there to pcom , and then back to pini . 
Simultaneously with the arrival of the token to papp , the rule 
application simulation subnets are also initialize for each 
rule, and then the checking of the presence of promoters 
and inhibitors start. The subnets for the rules which are not 
blocked after these checks can be executed, any of them 
repeatedly, until the available objects allow. (The results of 
the promoter and inhibitor checks are saved, so during the 
sequential simulation of a maximal parallel rule applica-
tion step, rules can only become disabled when the objects 
on their left-hand sides are not available any more.) After 
the rule application phase is finished, the communication 
phase reorders the created objects to their goal regions as 
the system in the proof of Theorem 1 and in addition cleans 
up the garbage tokens left in the places which are used for 
the promoter/inhibitor checks of the rule application phase.

When the net arrives to a marking which corresponds to 
a halting configuration of the membrane system, then no 
rule application is possible, so no transitions can fire which 
are able to change the marking on the places corresponding 
to the membrane system configuration. This means that the 
representant of the halting membrane system configuration 
is “stabilized” in the sense of Sect. 3.   ◻

Next, we turn our attention to membrane systems with 
dissolution. In such systems there exists a special object � 
which can appear on the right sides of rules only. If such a 
rule is chosen in the actual maximal parallel rule applica-
tion, then all the rules participating in that computational 
step are executed as usual, but after the maximal parallel 
step is over, the region where this rule was applied disap-
pears, the objects wander into the parent region and the 
rules associated with it cease to operate.

Note that if a region i, 1 ≤ i ≤ n is dissolved during a 
computation, then not only the rules associated with i are 
disabled, but also some rules from other rule sets: those 
which contain the target indicator ini on their right-hand 
sides. On the other hand, not all rules which send objects 
to region i are discarded. Those which are associated with 
a child region of i and contain the target indicator out con-
tinue to operate, but the objects they send “out” are sent to 
the parent region of i instead.

With this in mind, we construct a time Petri net simulat-
ing the operation of a membrane system with dissolution.

Theorem 3 For any membrane system � with dissolution, 
there is a time Petri net N simulating � by stabilizing in con-
figurations corresponding to the halting configurations of �.

Proof Let � = (O,�,w1,… ,wn,R1,… ,Rn, �) be a mem-
brane system with dissolution. We construct a time Petri net 
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N = (P, T ,F,V ,m0, I) simulating � . The construction again 
is an extension of the construction in the proof of Theo-
rem 1. The rule application phase is very similar, except for 
the presence of new places corresponding to the appearance 
of the symbol � symbolizing the dissolution of the mem-
branes. The main difference manifests itself in the definition 
of the communication phase: we introduce a new phase, a 
“cleanup” phase for moving the elements of previously dis-
solved membranes to the parent regions. In addition, we also 
need to deal with blocking the application of certain rules 
which would send objects to the dissolved regions.

First we define the set of places.

where P0 ∪ P̄0 ∪ {papp, pcom} are as in the proof of Theo-
rem 1, and

P =P0 ∪ P̄0 ∪ {papp, pcom} ∪ P�∪

{pcle, (𝛿, i), (𝛿, i) ∣ 1 ≤ i ≤ n}

P� = {pr ∣ r is a rule occurrence in�}.

The initial marking corresponds to the initial configura-
tion of � with papp also containing a token as before, and 
in addition, m0(pr) ≥ 1 for all rules r ∈ Ri for i, 1 ≤ i ≤ n , 
the exact value depending on the number of ways r could 
be disabled due to the dissolving of membranes. More pre-
cisely, the value of m0(pr) is the number of different target 
indicators of the form inj on the right-hand side of rule r, or 
if this number is zero, then m0(pr) = 1 . If pr looses at least 
one of these tokens during the computation, then transition 
tr corresponding to rule r will not be able to fire any more.

The role of the places (𝛿, i), (𝛿, i) is similar to the places 
of P0 and P̄0 : if the execution of some rule introduces � in a 
region i, then a token arrives at (�, i) . Then, in the commu-
nication phase this token is moved to (𝛿, i) where it remains, 
signaling to the rest of the system the fact that membrane i 
is dissolved.

The other new place pcle is used to signal the beginning of 
the cleanup phase, a new phase of the simulation when the 
contents of dissolved membranes are moved into the parent 
region.

Fig. 3  The Petri net simulat-
ing a membrane system with 
dissolution. In a, b, the subnets 
corresponding to the applica-
tion and communication phases 
of the rule r ∶ ab → c(d, in3)

2� 
are shown. When a membrane 
i is dissolved, the subnet in c is 
also activated before the com-
munication phase. The subnet 
in d is active in the celanup 
phase which is between the rule 
application and the communica-
tion phases. It moves the tokens 
representing the contents of 
dissolved membranes to places 
from where they will be moved 
during the communication 
phase to places corresponding 
to the parent region

(a) (b)

(c) (d)
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The transitions and the arcs are constructed as follows 
(see also Fig. 3 for a graphical representation of the most 
important subnets).

Let

where T = T0 ∪ T̄0 ∪ {tcom, tapp} has the same role as in the 
proof of Theorem 1, but some additional arcs are needed 
(see Fig. 3a).

– Each tr ∈ T0 where r ∈ Ri for some i, 1 ≤ i ≤ n , is also 
connected to the places pr as pr ∈ ∙tr ∩ t∙

r
 with arcs of 

weight m0(pr) . This has the effect that if the number of 
tokens is decreased in pr , then the transition tr simu-
lating the execution of rule r cannot become enabled 
(making rule r disabled in the subsequent stages of the 
simulation). Moreover, if the rule r contains the dis-
solution symbol � on its right-hand side, then tr is also 
connected to the place (�, i) as (�, i) ∈ t∙

r
 with an arc 

of weight one. The time interval associated with tr is 
[0, 0].

The rest of the transitions are defined as follows. Let

In addition to sp ∈ T̄0 , to execute the communication 
phase we also need the transitions s�

p
 for each p ∈ P0 (see 

Figure 3(b)).

– For  each  i, 1 ≤ i ≤ n  and  a ∈ O  ,  we  have 
(𝛿, i) ∈ ∙s𝛿

(a,i)
∩ s𝛿

(a,i)
∙ and pcom, (ā, i) ∈ ∙s𝛿

(a,i)
 , (ā, j) ∈ s𝛿

(a,i)
∙ 

where j is the parent membrane of i, with the weight of 
all these arcs being one, and the associated time interval 
being [0, 0]. If the communication phase is enabled by 
pcom and a token is present in (𝛿, i) , that is, if membrane 
i has been dissolved in some earlier step of the computa-
tion, then the tokens are moved from the places corre-
sponding to objects in region i to the places correspond-
ing to the same type of objects in the parent membrane. 
If there is no token in (𝛿, i) (membrane i is not dissolved), 
then the transitions in T̄0 work as in the proof of Theo-
rem 1, but to achieve the priority of s�

(a,i)
 over s(a,i) , the 

later has an associated time interval of [1, 1].

The transitions t�
i
, 1 ≤ i ≤ n , are used to disable the rules 

with the target indicator ini on their right-hand side when 
membrane i is dissolved (see Fig. 3c). The arcs are defined 
as follows.

T = T0 ∪ T̄0 ∪ {tcom, tapp} ∪ T𝛿 ∪ {tcle}

T� ={tp, s
�
p
∣ for all p ∈ P0} ∪ {t�

i
∣ 1 ≤ i ≤ n}.

– For each i, 1 ≤ i ≤ n , we have (�, i) ∈ ∙t�
i
 and (𝛿, i) ∈ t𝛿

i
∙ . 

Moreover, for all rules r with at least one object (a, ini) on 
their right-hand side for some a ∈ O , we have pr ∈ ∙t�

i
 . 

The time interval associated with these transitions is 
[0, 0]. When a token appears in (�, i) , that is, when mem-
brane i is dissolved, the rules with target indicator ini on 
their right-hand sides are disabled by removing tokens 
from the corresponding places. If a rule r could be disa-
bled more than once because it contains more than one 
different types of such target indicators on its right-hand 
side, then the same number of tokens is assigned to pr 
by the initial marking, so the functioning of the net is not 
blocked (it does not run out of tokens) when it tries to 
disable a rule which is already blocked.

The transitions tp, p ∈ P0 are used to perform a cleanup 
phase during which the objects of dissolved membranes 
are moved to places from where they will be transferred 
to the parent region during the following communication 
phase (see Figure 3(d)).

– Fo r  each  i, 1 ≤ i ≤ n  and  a ∈ O  ,  we  have 
pcle, (a, i), (�, i) ∈

∙t(a,i) and (ā, i) ∈ t∙
(a,i)

 with all the arcs 
having weight one, and the transition having the associ-
ated time interval [0, 0]. The cleanup process is invoked 
once for each dissolved membrane when a token arrives 
to (�, i) , that is, when membrane i has been dissolved. 
After the initiation of the cleanup phase by a token at 
pcle , the objects in places corresponding to membrane 
i are moved to the intermediate place from where they 
are transferred to the parent region of region i in the 
communication phase by the subnet already discussed 
above, depicted in Fig. 3b.

The functioning of the Petri net N is governed by a token 
circulating between the places papp , pcle , and pcom . Ini-
tially, there is a token in papp which is moved to pcle by 
transition tcle in the time interval [1, 1] when the rule appli-
cation phase is finished, that is, when there are no rule 
simulating transitions left which can fire. When the token 
is in tcle , the objects of the regions that have been dissolved 
in the previous phase are prepared for being moved to the 
parent region. This is realized in the communication phase 
which is initiated when tcom moves the token further to 
pcom , the associated time interval being also [1, 1]. Finally, 
when all tokens representing the objects are in their cor-
rect places, the application phase is activated again by 
moving the token back to papp by tapp at time interval [2, 2].

If no more rule application simulating transitions can fire, 
that is, when the corresponding configuration of the simu-
lated membrane system is a halting configurations, then the 
only possible computation of the net is the cycling of the 
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token between papp , pcle , and pcom , thus, it has stabilized 
while representing a halting membrane system configura-
tion.   ◻

Finally, we tackle the problem of the representation of 
membrane systems with priorities in terms of Petri nets. 
Again, our construction is an extension of the core model 
presented in the proof of Theorem 1. We will modify the 
simulation of the rule application phase in order to account 
for the treatment of the new feature, but let us start with 
examining the role of priorities in membrane systems 
computations.

The system � = (O,�,w1,… ,wn,R1,… ,Rn, �) is a 
membrane system with priorities, if 𝜌 ⊆

⋃n

i=1
(Ri × Ri) . A 

rule r ∈ Ri , 1 ≤ i ≤ n , is strongly applicable in configura-
tion (u1,… , un) , if 

1. r is applicable, that is, lhs(r) ≤ ui , and
2. for every r� ∈ Ri such that r′ > r , r′ is not applicable.

Let r1 , r2 ∈ Ri be two rules of region i, and assume that 
(r1, r2) ∈ � , that is, r1 > r2 . Then, considering a computa-
tional step, r2 can be applied if r2 is applicable and in addi-
tion, r1 is not applicable (in the usual sense ). For example, if 
ui = a2b , r1 = ab → d and r2 = a → c , then the result of the 
maximal parallel step will be ad, instead of cd, since r1 > r2 
and r1 is applicable, which implies that r2 cannot be applied 
in that maximal parallel step at all.

To simulate this behavior in our construction, we have to 
pick out the applicable rules and examine the priority rela-
tions in order to obtain the rules that are strongly applicable. 
We do this by stratifying the various tasks that have to be 
performed in the rule application phase with respect to time. 
Finding the strongly applicable rules takes place before the 
actual rule applications are simulated.

Theorem 4 For any membrane system � with priorities, 
there is a time Petri net N simulating the computations of � 
by stabilizing in configurations corresponding to the halting 
configurations of �.

Proof Let � = (O,�,w1,… ,wn,R1,… ,Rn, �) a membrane 
system with priorities, and let us define the time Petri net 
N = (P, T ,F,V ,m0, I) as follows. We extend the net con-
structed in the proof of Theorem 1 by modifying the rule 
application phase. Before simulating the rule applications, 
we select those rules that are applicable, then deactivate 
the simulating subnets of those ones which are not strongly 
applicable. Then, the communication phase is simulated in 
the same way as in the proof of Theorem 1.

The set of places is defined as

where P0 ∪ P̄0 ∪ {papp, pcom} are as in the proof of Theo-
rem 1, and

The new places keep track of the applicability and strong 
applicability of rules. A token in pA

r
 for some rule r signals 

the applicability of r, while an additional token in pB
r
 means 

that r is blocked by an applicable rule of higher priority, 
and the places pr1>r2 ∈ P�

𝜌
 contain a token if r1 > r2 holds 

according to � . (The role of the places of type p̄r1>r2 will be 
discussed later.)

The initial marking corresponds to the initial configura-
tion of the membrane system, as before, but in addition, 
instead of papp , the initial marking places a token in the new 
place pini which activates the first phase of the applicabil-
ity check of the rules. Thus, m0(pini) = m0(pr1>r2) = 1 for 
r1 > r2.

The transitions are defined as

where T0 ∪ T̄0 ∪ {tcom, tapp} play the same role as in the pre-
vious constructions. The transitions in T̄0 are responsible for 
the simulation of the communication phase, they are defined 
exactly as before. The places tini, tapp , and tcom are responsible 
for initiating the different phases of the Petri net computation 
by moving a token along pini , papp , pcom , and then back to 
pini again. The corresponding arcs are

P = P0 ∪ P̄0 ∪ {papp, pcom} ∪ P� ∪ P�
𝜌
∪ {pini},

P� ={pA
r
, pB

r
∣ r is a rule occurrence in𝛱},

P�
𝜌
={pr1>r2 , p̄r1>r2 ∣ (r1, r2) ∈ 𝜌}.

T = T0 ∪ T̄0 ∪ {tcom, tapp} ∪ T � ∪ {tini}

Fig. 4  Subnet for checking the applicability of a rule r ∶ u → v ∈ R1 
with u = ab2 . If at least one a and two bs are present in region 1, a 
token is sent to pA

r
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– pini ∈
∙tapp ∩ tini

∙  ,  papp ∈ tapp
∙ ∩ ∙tcom  ,  a n d 

pcom ∈ tcom
∙ ∩ ∙tini , the associated intervals being 

I(tapp) = I(tini) = [1, 1] and I(tcom) = [4, 4].

The transitions in T ′ are

The first group of arcs connect tA
r
 with the rest of the system. 

These transitions are activated by the presence of a token in 
pini , and once active, they check whether the corresponding 
rule is applicable or not. If all the objects on the left-hand 
side of r are available in the respective regions, a token is 
sent to pA

r
 (see Fig. 4 for the graphical representation and 

an example).

– For each rule r ∶ u → v ∈ Ri for some i, 1 ≤ i ≤ n , if 
u(a) = k > 0 for some object a ∈ O , then (a, i) ∈ ∙tA

r
∩ tA

r
∙ 

and the weights of these arcs are k. In addition, 
pini ∈

∙tA
r
∩ tA

r
∙ , pA

r
∈ tA

r
∙ and the time interval associated 

with tA
r
 is [0, 0].

The subnet simulating the rule application phase is extended 
in order to be able to deal with priorities. Besides the arcs 
inherited from the construction in the proof of Theorem 1, 
the transitions of T0 are augmented with a mechanism which 
disables the otherwise applicable rules which are suppressed 
by other applicable rules with higher priority. The transitions 
tr are also connected to the places of P′ and P′

�
 as follows. 

(An example with the graphical representation of the subnet 
can be seen in Fig. 5.)

T � ={tA
r
, t1
col(r)

, t2
col(r)

∣ r is a rule occurrence in𝛱}∪

{tr1>r2 , t̄r1>r2 ∣ r1 > r2 holds according to 𝜌}.

– For any rule r, pA
r
∈ ∙tr ∩ tr

∙ , thus, when the token is 
removed from pA

r
 , transition tr cannot fire.

When a token is present in pr1>r2 (that is, when r1 > r2 holds) 
and also in both pA

r1
 and in pA

r2
 , then t̄r1>r2 sends a token to pB

r2
 , 

enabling transition tcol(r2) which removes the token from pA
r2

 
disabling this way the firing of tr2 . This is achieved by the 
following arcs.

– For any pair of rules r1 > r2 , we have pr1>r2 ∈
∙ t̄r1>r2 , 

pA
r1
, pA

r2
∈ ∙ t̄r1>r2 ∩ t̄r1>r2

∙ , and pB
r2
, p̄r1>r2 ∈ t̄r1>r2

∙ , with 
t̄r1>r2 having the associated time interval of [0, 0].

– For any rule r we have pA
r
, pB

r
∈ ∙t1

col(r)
 with the associated 

time interval [1, 1], and pA
r
∈ ∙t2

col(r)
 with time interval 

[3, 3].

The role of t2
col(r)

 is to remove the leftover tokens after the 
rule application phase.

– For any pair of rules r1 > r2 , we also have p̄r1>r2 ∈
∙tr1>r2 , 

and pr1>r2 ∈ tr1>r2
∙ . With the associated time interval 

[3, 3], this transition returns the token to pr1>r2 after the 
rule application phase is finished.

The places of P̄0 and the transitions of T̄0 for the commu-
nication phase are exactly the same as in the construction in 
the proof of Theorem 1, so we do not repeat them here.  
 ◻

Fig. 5  The blocking of a rule due to the priority relation. Having a2b 
in region 1 and r1 , r2 ∈ R1 , r1 = ab → d , r2 = a → c with r1 > r2 , 
only tr1 can fire: transition t̄r1>r2 delivers a token to pB

r2
 , then at time 

instance 1, the tokens from pA
r2

 and pB
r2

 are removed by transition 

t1
col(r2)

 . At time instance 3, the token from p̄r1>r2 is returned to pr1>r2 by 
tr1>r2 , and the leftover tokens in places of type pA

r
 (such tokens remain 

if the corresponding rules have not participated in the maximal paral-
lel rule application) are cleaned up by transitions t2

col(r)
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5  Conclusions

In this paper, we have made a step forward in relating the 
membrane systems and Petri nets. We simulated membrane 
systems with promoters/inhibitors, membrane dissolution, 
and priority on the rules with time Petri nets, by further 
developing the Petri net model presented in [1]. We were 
able to simulate these sophisticated membrane computing 
features by preserving an important characteristic property 
of Petri nets; namely, the firings of the transitions can take 
place in any order: we do not impose any additional condi-
tion on the transition sequences in order to obtain the time 
Petri net model.

For a possible continuation of this line of research, it 
would be interesting to investigate the possibility of simulat-
ing membrane systems using other ways of synchronization, 
see [2, 4] for examples of such systems.

As another interesting direction for future research, we 
would also like to mention the descriptional complexity 
aspects of the presented simulations. It would be fruitful 
to conduct a comparative study on the sizes of the Petri net 
components necessary for simulating the different variants 
of membrane systems.
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