
Vol.:(0123456789)1 3

Journal of Membrane Computing (2020) 2:341–354
https://doi.org/10.1007/s41965-020-00062-y

REGULAR PAPER

Description of membrane systems with time Petri nets: promoters/
inhibitors, membrane dissolution, and priorities

Péter Battyányi1 · György Vaszil1

Received: 21 June 2020 / Accepted: 9 October 2020 / Published online: 27 October 2020
© The Author(s) 2020

Abstract
We continue the investigations of the connection between membrane systems and time Petri nets by extending the examined
class of systems from simple symbol-object membrane systems to more complex cases: rules with promoters/inhibitors,
membrane dissolution, and priority relation on the rules. By constructing the simulating time Petri net, we retain one of the
main characteristics of the Petri net model; namely, the firings of the transitions can take place in any order, and there is no
need to introduce maximal parallelism in the Petri net semantics. Instead, we substantially exploit the gain in computational
strength obtained by the introduction of the timing feature for Petri nets.

Keywords Petri nets · Promoters and inhibitors · Priorities · Membrane dissolution

1 Introduction

Several models have emerged in the past decades to model
distributed systems with interactive, parallel components.
One of them was developed by Petri [16], and since then,
the Petri nets have become the underlying system of a vast
field of research with a considerable practical interest, see
[3, 15, 19] for more information. The theory of membrane
systems was established by Păun [12], and it has proved to
be a very convenient and many-sided model of distributed
systems with concurrent processes, see [13, 14]. Here, we
continue the investigations concerning the relationship of
these two computational models.

Place/transition Petri nets are bipartite graphs, the condi-
tions of the events of a distributed system are represented by
places, and directed arcs connect the places to the transitions
which model the events. The conditions for the events are

expressed by tokens: an event can take place, i.e., a transition
can fire, if there are enough tokens in the places at the source
ends of the incoming arcs of a transition. These places are
called preconditions. The outgoing edges of a transition rep-
resent the post-condition of the events. Firing of a transition
means removing tokens from the preconditions and adding
them to the post-conditions. The number of tokens moved in
this way is prescribed by the multiplicities of the incoming
and outgoing arcs.

Membrane systems are models of distributed, synchro-
nized computational systems ordered in a tree-like structure.
The building blocks are compartments which contain mul-
tisets of objects. The multisets evolve in each compartment
in a parallel manner, and the compartments, in each com-
putational step, wait for the others to finish their computa-
tion; hence, the system acts in a synchronized manner. In
every computational step, the multisets in the compartments
evolve in a maximal parallel manner. This means that as
many evolution rules of the compartment are applied simul-
taneously in each step as possible. For more on the ways
of synchronizing P systems, see the handbook [14] and the
recent papers [2, 4].

By looking at the basic functioning of membrane systems
and place/transition nets, we might notice some similar fea-
tures. Petri net transitions consume tokens from their input
places and produce new tokens at their output places, so
in some sense they behave similarly to membrane systems
which consume, produce, and move objects around in the

The preliminary version of this paper was presented at CMC20,
the 20th Conference on Membrane Computing, August 5–8, 2019,
in Curtea de Argeş, Romania.

 * György Vaszil
 vaszil.gyorgy@inf.unideb.hu

 Péter Battyányi
 battyanyi.peter@inf.unideb.hu

1 Department of Computer Science, Faculty of Informatics,
University of Debrecen, Kassai út 26, Debrecen 4028,
Hungary

http://orcid.org/0000-0003-1213-8616
http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-020-00062-y&domain=pdf

342 P. Battyányi, G. Vaszil

1 3

regions of their membrane structure. And not only do they
behave similarly, but the functioning of place/transition nets
can naturally be described by transformations of the mul-
tisets corresponding to possible token distributions on the
places of the net. See [5, 9, 10] for more on these and similar
ideas. As we will describe later in more detail, each kind
of object in a compartment of a membrane system can be
represented by a different place, and each evolution rule by
a different transition having its input and output places. The
building of such a structural link between the two models
motivates the study of membrane systems from the point
of view of the concurrent nature of their behavior, and as a
consequence, the techniques and tools developed for Petri
nets might become applicable in the area of membrane
computing.

Besides this basic connection described above, Petri net
variants were also introduced with the aim of capturing
some of the advance features of more sophisticated mem-
brane system models. For example, in order to describe the
maximal parallel application of rules in membrane systems,
the usual semantics of place/transition nets can be extended.
So-called maximally concurrent steps in Petri nets were
already considered in [6] (independently of any motiva-
tion from membrane computing) to describe the concurrent
evolution of non-sequential systems. In order to capture the
compartmental structure and the locally maximal parallel
behavior of membrane systems, localities and a locally max-
imal concurrent semantics were introduced and investigated
for Petri nets in [9]. Furthermore, Petri nets with localities
were also used to describe membrane creation and mem-
brane dissolution in [8] and extended in [7] to model the use
of promoters and inhibitors. For more details on the specific
membrane system models and their computational power,
see the handbook [14, 20, 21] for more recent developments.
On the connections of these models to variants of Petri nets
with localities, the reader is also referred to [14].

In the present paper, we follow a different approach by
considering the possibilities provided by a model called time
Petri net developed by Merlin [11] in order to deal with the
difficulty that ordinary place/transition nets are not able to
model systems where a certain order of events must be taken
into account, see also [17, 18]. In this model, time intervals
are associated with transitions. The local time observed from
a transition can be modified by the Petri net state transition
rules, and a transition can fire only if its observed time lies
in the interval assigned to the transition by the definition of
the net. In this way, the computational power of Petri nets
is increased: the time Petri net model is Turing complete in
contrast with the original state/transition Petri net.

Besides the increase of the computational power, the fea-
ture of timing also provides a more or less natural framework
to describe the computations of membrane systems more
conveniently. In the following, we continue the research

on the connection between time Petri nets and membrane
systems initiated in [1]. One of the main features of our
construction is that the usual semantic characteristics of
Petri nets is retained when a Petri net equivalent of a mem-
brane system is presented. That is, unlike the construction
in [9] (and unlike the constructions in many other Petri net
descriptions of membrane systems), we do not stipulate that
the Petri nets should perform their computational steps in
some variant of a maximal concurrent manner. Instead of a
modified membrane system-like semantics, the attached time
intervals provide the synchronization in the corresponding
Petri nets.

The structure of the paper is the following. After provid-
ing the necessary preliminaries and definitions in Sect. 2,
we describe in Sect. 3 a variant of the basic construction of
the time Petri net simulation of symbol object membrane
systems developed in [1]. Then, in Sect. 4, this construction
is extended in order to represent some more advanced mem-
brane computational tools. Similarly to [1], there will be no
need to introduce any other “special features” (beside the
feature of time) to be able to capture the effect of priorities,
the use of promoters/inhibitors, or membrane dissolution.
Finally, the paper ends with a short section of conclusions.

2 Preliminaries and definitions

A finite multiset over an alphabet O is a mapping
M ∶ O → ℕ , where ℕ is the set of nonnegative integers. The
number M(a) for a ∈ O is called the multiplicity of a in
M. We write that M1 ⊆ M2 if for all a ∈ O , M1(a) ≤ M2(a) .
The union or sum of two multisets over O is defined
as (M1 +M2)(a) = M1(a) +M2(a) , the intersection is
(M1 ∩M2)(a) = min(M1(a),M2(a)) , while the difference is
defined for M2 ⊆ M1 as (M1 −M2)(a) = M1(a) −M2(a) for
all a ∈ O . The set of all finite multisets over an alphabet O
is denoted by M(O) ; the empty multiset is denoted by ∅.

The notation ℕ>0 stands for the set of positive integers,
while ℚ and ℚ≥0 denote the set of rational numbers and non-
negative rational numbers and ℝ and ℝ≥0 the set of real num-
bers and nonnegative real numbers, respectively.

2.1 Membrane systems

Membrane systems are computational models operating
on multisets. We define the notion of the basic symbol-
object membrane system [14] and shortly introduce the
additional features which will be discussed in more detail
in Sect. 5. A membrane system (or P system) is a tree-like
structure of hierarchically arranged membranes. The outer-
most membrane is usually called the skin membrane. The
membranes are labeled by natural numbers {1,… , n} , and
each membrane, except the skin membrane, has its parent

343Description of membrane systems with time Petri nets: promoters/inhibitors, membrane…

1 3

membrane. We use � for representing the structure of the
membrane system itself, which can also be given as a bal-
anced string of left and right brackets indexed by their labels.
If � = [1 [2 [3]3 [4]4]2 [5]5]1 , then the skin membrane has two
submembranes, while region also contains two embedded
regions. Abusing the notation, �(i) = k can also mean that
the parent of the i-th region is region k.

The regions of a P system contain multisets over a finite
alphabet O of objects. The contents of the regions evolve
through rules associated with the regions. The rules describe
how certain multisets can be transformed to other multisets.
They are applied in a maximal parallel manner, which con-
stitute the “micro-steps” of the computations. A computa-
tional step is the “macro-step” of the process: it ends when
each of the regions has finished the parallel applications of
their rules. A computational sequence is a sequence of com-
putational steps.

Here, we think of the computational steps in the regions
as consisting of two phases: first the rule application phase
produces from the objects on the left-hand sides of the rules
the labeled objects on the right-hand sides. (The labels of
the labeled objects describe the way they should be moved
between the regions: stay where they are, move to the par-
ent region, or move into one of the child regions.) Then, we
have the communication phase when the labels (also called
target indicators) are removed and all the objects are trans-
ported to the regions indicated by their labels. The P system
gives a result when it halts, i.e., when no more rules can be
applied in any of the regions. The result is a natural number
or a tuple of natural numbers counting certain objects in the
membrane(s) designated as the output membrane(s).

A P s y s t e m o f d e g r e e n ≥ 1 i s
� = (O,�,w1,… ,wn,R1,… ,Rn) where O is an alpha-
bet of objects, � is a membrane structure of n mem-
branes, wi ∈ M(O) with 1 ≤ i ≤ n are the initial contents
of the n regions, Ri with 1 ≤ i ≤ n are the sets of evolu-
tion rules associated with the regions. They are of the
form u → v , where u ∈ M(O) and v ∈ M(O × tar) with
tar = {here, out} ∪ {inj ∣ 1 ≤ j ≤ n}.

We assume that one or more membranes are desig-
nated as output membranes. A configuration is a sequence
W = (u1,… , un) , where ui is the multiset contained by mem-
brane i, 1 ≤ i ≤ n . For a rule r ∶ u → v ∈ Ri , we denote by
lhs(r) ∈ M(O) and rhs(r) ∈ M(O × tar) the left-hand side
and the right-hand side of r, respectively (u and v, for the
rule u → v). By the application of a rule u → v ∈ Ri , we
mean the process of removing the elements of u from the
multiset ui and extending ui with the labeled elements, which
are called messages. As a result, during a computational
step, a region can contain both elements of O and messages
from O × tar . We say that W is a proper configuration if
ui ∈ M(O) for each 1 ≤ i ≤ n , while W is an intermedi-
ate configuration if there is at least one region containing

elements from O × tar , that is, ui ∩ (Q × tar) ≠ � for some
i, 1 ≤ i ≤ n.

The communication phase after the rule applications
produces proper configurations from intermediate ones: the
elements coming from the right-hand sides of the rules are
added to the regions specified by the target indicators asso-
ciated with them. If the right-hand side of a rule contains a
pair (a, here) ∈ O × tar , then a is added to the region where
the rule is applied. If it contains (a, out) , then a is added to
the parent region; if it contains (a, inj) , then a is added to the
contents of region j. In this case, i must be the parent region
of j, �(j) = i must hold.

Given a (proper) configuration W, we obtain a new
(proper) configuration W ′ by executing the two phases of
the transformations determined by the parallel application
of maximal multisets of rules chosen for each compartment
of the membrane system. A rule multiset is maximal, if it
is applicable in a region, but if any other rule occurrence is
added to it, then the sum of the left-hand sides is not con-
tained in the region; that is, the extended rule multiset is
not applicable any more. We call this a computational step
and denote it by W ⇒ W ′ . A computation is a sequence of
such computational steps, and it halts when a configuration
is reached where there are no rules which can be applied. In
such a halting configuration, the result of the computation
appears as the contents of the output membranes.

We might consider additional features being present in the
membrane system. First, we can add promoters and inhibi-
tors to the rules. These are multisets of objects that regulate
the rule applications in a way that the promoter z ∈ M(O)
assigned to the rule r prescribes that z must be present in
the region where the rule is applied, while the inhibitor ¬z
with z ∈ M(O) prevents the rule from being applied if z is
present in the region.

Second, we can consider membrane dissolution. The
set of objects is extended with an additional element �
that can appear on the right-hand sides of the rules. If �
appears in a rule r which is applied in the i-th region for
some i, 1 ≤ i ≤ n , then the communication phase is executed
as above, but after that, as the result of the presence of �
in region i, the region together with its set of rules Ri dis-
appears from the P system. This means that the elements
of region i are passed over to the parent region (except � ,
which disappears), and the rules in Ri are not applied any-
more. Note that the outermost region (the skin region) can-
not dissolve.

Finally, we can consider a priority relation on rules, that
is, a partial ordering (an antisymmetric and transitive rela-
tion) �i on the set Ri , 1 ≤ i ≤ n . We say that r′ has priority
over r, or r′ has higher priority than r (denoted as r′ > r), if
(r�, r) ∈ �i . In this case, if both r′ and r were applicable in
a configuration, then r is suppressed, that is, not allowed to
be applied.

344 P. Battyányi, G. Vaszil

1 3

In Sect. 5, we show that all these features can be mod-
eled by time Petri nets. The advantage of using time Petri
nets is that the usual semantics, the usual unsynchronized
way of firing of the transitions can be preserved: we do not
inflict any additional condition on the transitions (like the
requirement that the transitions fired in a computational
step should constitute a maximal multiset).

2.2 Time Petri nets

In this section, following the definitions in [17] we define
time Petri nets, a model rendering time intervals to transi-
tions along the concept of [11]. First of all, we introduce
the underlying place/transition Petri nets and then extend
this model to the timed version.

A Petri net is a 5-tuple U = (P, T ,F,V ,m0) such that

1. P, T, F are finite, where P ∩ T = � , P ∪ T ≠ � and
F ⊆ (P × T) ∪ (T × P),

2. V ∶ F → ℕ>0,
3. m0 ∶ P → ℕ.

The elements of P and T are called places and transitions,
respectively, the elements of F are the arcs, and F is also
called the flow relation of U. The function V is the multi-
plicity (weight) of the arcs, and m0 is the initial marking.
In general, a marking is a function m ∶ P → ℕ , it can be
thought of as representing a state of the net U. We stipulate
that for every transition t ∈ T , there is a place p ∈ P such
that f = (p, t) ∈ F.

Let x ∈ P ∪ T . The pre- and post-sets of x, denoted by
∙x and x∙ , respectively, are defined as ∙x = {y | (y, x) ∈ F}
and x∙ = {y | (x, y) ∈ F}.

For each transition t ∈ T , we define two markings,
t−, t+ ∶ P → ℕ as follows:

A transition t ∈ T is said to be enabled in the marking
m, if t−(p) ≤ m(p) for all p ∈ ∙t . Applying the notation
▵ t(p) = t+(p) − t−(p) for p ∈ P , we define the firing of the
transitions of a Petri net. A transition t ∈ T can fire in m
(notation: m ⟶

t) if t is enabled in m. After the firing of
t, the Petri net obtains the new marking m� ∶ P → ℕ with
m�(p) = m(p)+ ▵ t(p) for all p ∈ P , denoted as m ⟶

t m′.
We obtain time Petri nets if we add time assigned to

transitions of the Petri net. Intuitively, the time associated
with a transition denote the last time when the transition
was fired. We are considering only bounded time intervals.

t−(p) =

{
V(p, t), if (p, t) ∈ F,

0 otherwise ,

t+(p) =

{
V(t, p), if (t, p) ∈ F,

0 otherwise .

We present the definitions from [17], see also [18] for
more information.

A time Petri net is a 6-tuple N = (P, T ,F,V ,m0, I) such
that

1. the skeleton of N given by S(N) = (P, T ,F,V ,m0) is a
Petri net, and

2. I ∶ T → ℚ ×ℚ is a function assigning a rational
interval to each transition, that is, for t ∈ T and
I(t) = [eft (t), lft (t)] , we have 0 ≤ eft (t) ≤ lft (t).

We call eft (t) and lft (t) the earliest and the latest firing
times belonging to transition t, respectively.

Given a time Petri net N = (P, T ,F,V ,m0, I) , a function
m ∶ P → ℕ is called a p-marking of N. Note that talking
about a p-marking of N is the same as talking about a
marking of S(N). A state in N is a pair u = (m, h) , where
h is a function called a transition marking (or t-marking)
in N, h ∶ T → ℝ≥0 ∪ {#} . The two markings m and h satisfy
the following properties.

For all t ∈ T ,

1. if t is not enabled in m (that is, if t−(p) > m(p) for some
p ∈ ∙t), then h(t) = #,

2. if t is enabled in m (that is, if t−(p) ≤ m(p) for all p ∈ ∙t),
then h(t) ∈ ℝ with h(t) ≤ lft (t)).

The initial state is the pair u0 = (m0, h0) , where m0 is the
initial marking and for all t ∈ T ,

A transition t ∈ T is ready to fire in state u = (m, h) (denoted
by u ⟶

t) if t is enabled and eft (t) ≤ h(t) ≤ lft (t).
Now we define the result of the firing for a transition

that is ready to fire. Let t ∈ T be a transition and u = (m, h)
be a state such that u ⟶

t . Then the state u′ resulting
after the firing of t denoted by u ⟶

t u′ is a new state
u� = (m�, h�) , such that m�(p) = m(p) +△t(p) for all p ∈ P ,
and for all transitions s ∈ T , we have

Hence, the firing of a transition changes not only the p-mark-
ing of the Petri net, but also the time values corresponding
to the transitions. If a transition s ∈ T which was enabled
before the firing of t remains enabled after the firing, then
the value h(s) remains the same, even if s is t itself. If an
s ∈ T is newly enabled with the firing of transition t, then

h0(t) =

{
0, if t is enabled in m0,

#, otherwise.

h�(s) =

⎧
⎪⎨⎪⎩

h(s), if s is enabled both in m and m�,

0, if s is not enabled in m, but enabled in m�,

#, if s is not enabled in m�.

345Description of membrane systems with time Petri nets: promoters/inhibitors, membrane…

1 3

we set h(s) = 0 . Finally, if s is not enabled after firing of
transition t, then h(s) = #.

Observe that we allow transitions to be fired several
times in a row: if t is fired resulting in the new p-marking
m′ , and t remains enabled in m′ , that is, t−(p) ≤ m�(p) holds
for all p ∈ ∙t , then the time associated with t does not
change, h�(t) = h(t).

Besides the firing of a transition, there is another possi-
bility for a state to alter, and this is the time delay step. Let
u = (m, h) be a state of a time Petri net, and � ∈ ℝ≥0 . Then,
the elapsing of time � is possible for the state u (denoted
u ⟶

�) if for all t ∈ T which are enabled in the current
marking, the new time value assigned to t is less than the
latest firing time of t. The state u′ , namely the result of the
elapsing of time by � denoted by u ⟶

� u′ , is defined as
u� = (m�, h�) , where m = m� and

Note that the definitions ensure that we are not able to skip a
transition when it is enabled: a transition cannot be disabled
by a time delay step. This kind of semantics is called the
strong semantics in [18]. Note also that classic Petri nets can
be obtained as time Petri nets having h(t) = [0, 0] , as in such
systems there are no time delay steps possible at all.

3 Connecting Petri nets and membrane
systems

We start by discussing the time Petri net simulation of the
basic variant of membrane systems we constructed in [1]
and describe a simplification in the construction that we are
going to use here. The model is based on the correspondence
between Petri nets and membrane systems described in [9].
Membrane system configurations are represented by places
(a, i) for each object a and membrane i, the number of tokens
associated with such places correspond to the multiplicity
of object a in membrane i. The rules of the membrane sys-
tem are represented by transitions which move the tokens
between the places according to the way that the rule appli-
cation changes the corresponding object multiplicities in the
membrane regions. A membrane system computation can be
simulated by such a Petri net: if the membrane system halts,
the Petri net reaches a configuration where no transitions
can fire, and the marking of the Petri net corresponds to the
halting configuration of the membrane system.

The new feature of the construction in [1] is the property
that it does not change the usual Petri net semantics, and it
simulates the maximal parallel rule application of membrane
systems without requiring that the Petri net model fires its
transitions in a maximal parallel manner. In general, both

h�(t) =

{
h(t) + � ≤ lft (t), if h(t) ≠ #,

otherwise.

by membrane systems and by Petri nets, a computational
step can be considered as a multiset of rules or as a multi-
set of transitions, respectively. In the case of Petri nets, an
application of a multiset of transitions is maximal parallel,
if augmenting the multiset by any other transition results in
a multiset of transitions that cannot be fired simultaneously
in the configuration represented by the current marking. In
the case of membrane systems, maximal parallel execution
means that no rule can be added to the multiset of rules such
that the resulting multiset still forms a multiset of applicable
rules. In our construction, the fireable transitions of the sim-
ulating Petri net can be executed in any order, and we do not
impose any restrictions on the computational sequence of the
Petri nets. This is possible, because we make an essential use
of the time feature. (Note that the original place/transition
Petri net model is not Turing complete, unlike the majority
of the variants of symbol object membrane systems.)

In short, in [1] we have shown that given a membrane
system � (without priorities, membrane dissolution and
promoters/inhibitors), there is a time Petri net N, such that
N halts if and only if � halts, and if they halt, then they
provide the same result.

In the following, we will present analogous results also
for membrane systems with extended features; that is, we
show how time Petri nets can simulate membrane systems
using rules with promoters/inhibitors, membrane systems
with priorities assigned to the rules, and systems with the
possibility of membrane dissolution.

In order to simplify the constructions, we modify the cor-
respondence between membrane system computations and
Petri nets, since we do not require that the simulating time
Petri nets halt. For each halting configuration of the mem-
brane system, the corresponding Petri net reaches a state
where the computation continues in a cycle and the markings
of places representing the membrane system configuration
do not change any more.

In order to present this idea more formally, we say that a
time Petri net N = (P, T ,F,V ,m0, I) simulates the computa-
tions of a membrane system � by stabilizing in a configura-
tion corresponding to a halting configuration of � , if there
is a subset of places PR ⊆ P and a subset transitions TR ⊆ T ,
such that if and only if � halts, N enters into a cyclic com-
putation where

1. no transition of TR is enabled,
2. the markings on the places of PR do not change, and
3. the numbers of tokens associated with the places of PR

correspond to the halting configuration of �.

Remark 1 In the following, we will show how to simulate
halting computations of different membrane system vari-
ants with Petri net computations stabilizing in configurations

346 P. Battyányi, G. Vaszil

1 3

corresponding to halting membrane system configurations.
However, the simulations also work if we apply our con-
structions to membrane systems which do not halt. In such
cases, the Petri net simulation of the membrane system
proceeds by a non-halting Petri net computation passing
through an infinite sequence of configurations which cor-
responds to the infinite sequence of configurations of the
membrane system. For more about the influence of different
ways of halting on the computational power of P systems,
also see the recent paper [4].

In the following, we first present a variant of the main
theorem from [1] to introduce the basic ideas of the con-
struction, and then we show how to modify this to be able
to represent promoters/inhibitors, membrane dissolution,
and the role of priorities on the rules.

Theorem 1 For any membrane system � (without priori-
ties, membrane dissolution and promoters/inhibitors), there
is a time Petri net N simulating the computations of � by
stabilizing in configurations corresponding to the halting
configurations in �.

Proof Let � = (O,�,w1,… ,wn,R1,… ,Rn) be a membrane
system and let N = (P, T ,F,V ,m0, I) be the corresponding
Petri net. We define N so that a computational step of � is
simulated by two subnets of N. The two subnets correspond
to the two computational phases of a computational step of
a membrane system, namely the rule application and the
communication phases. Let us see the construction in detail.

with P0 = O × {1,… , n} and P̄0 = Ō × {1,… , n} , where
Ō = {ā ∣ a ∈ O} . For 1 ≤ i ≤ n , the tokens (a, i) ∈ P0 stand
for the objects in the various compartments, while the tokens
(ā, i) ∈ P̄0 = represent the messages obtained in the course
of the rule applications.

A marking m ∶ P → ℕ corresponds to a configuration
(u1,… , un) ∈ M(O)n of � as follows. If m(p) = k for some
p = (a, i) ∈ P0 , then there are k objects a ∈ O in compart-
ment i, that is, ui(a) = k . If m(p̄) = l for some p̄ = (b̄, j) ∈ P̄ ,
then there are l copies of object b which will enter into mem-
brane j at the end of the computational step.

The presence of a token at the places papp or pcom is ena-
bling the rule application or the communication phases of
the Petri net computation, respectively.

The initial marking corresponds to the initial configura-
tion of � , m0(p) = wi(a) for every p = (a, i) ∈ P0, 1 ≤ i ≤ n ,
and m0(p̄) = 0 for all p̄ ∈ P̄0 . In addition, m0(papp) = 1 and
m0(pcom) = 0.

Let also

P = P0 ∪ P̄0 ∪ {papp, pcom}

where the transitions are defined as follows.

• For any rule r ∈ Ri for some i, 1 ≤ i ≤ n , there is a tran-
sition tr ∈ T0 corresponding to r, and

• for any place p̄ ∈ P̄0 , there is a transition sp̄ ∈ T̄0.
• The transitions tcom and tapp transform the net from the

rule application phase to the communication phase, and
from the communication phase back to the rule applica-
tion phase, respectively.

The input and output arcs and the time intervals associated
with these transitions are as follows (see Fig. 1 for the
graphical representation and an example).

– For each tr ∈ T0 , r ∈ Ri, 1 ≤ i ≤ n , we have (a, i) ∈ ∙tr
if and only if a ∈ lhs(r) , we have (b̄, j) ∈ t∙

r
 if and only

if either (b, inj) ∈ rhs(r) (where i is the parent region of
j) or (b, out) ∈ rhs(r) and region j is the parent region
of i, or we have (b, here) ∈ rhs(r) and j = i.

– Regarding the weights of the arcs, the weight of
f = (p, tr) ∈ F for some p = (a, i) ∈ P0 and r ∈ R0 is
the multiplicity of a ∈ O on the left-hand side of r,
namely V(f) = lhs(r)(a) . For f = (tr, p̄) ∈ F where
p̄ = (b̄, j) ∈ P̄0 , the weight of f is V(f) = rhs(r)(b, inj)
if region j is a child region of i, V(f) = rhs(r)(b, out) if
region j is the parent region of i, or V(f) = rhs(r)(b, here)
if i = j.

– For each sp̄ ∈ T̄0 with p̄ = (ā, i) ∈ P̄0 for some 1 ≤ i ≤ n ,
we have p̄ = (ā, i) ∈ ∙sp̄ and p = (a, i) ∈ s∙

p̄
.

– T h e w e i g h t o f e a c h o f t h e a r c s
f ∈ {(∙sp̄, sp̄), (sp̄, s

∙
p̄
) ∣ p̄ ∈ P̄0} is V(f) = 1.

– The firing time intervals associated with all of the tran-
sitions t ∈ T0 ∪ T̄0 above are I(t) = [0, 0].

In addition,

– we have papp ∈ ∙t ∩ t∙ for all t ∈ T0 and pcom ∈ ∙t ∩ t∙ for
all t ∈ T̄0 , all of these arcs having a weight of one, and

– we also have papp ∈ ∙tcom , pcom ∈ t∙
com

 , pcom ∈ ∙tapp , and
papp ∈ t∙

app
 with all of these arcs also having weight one.

– The firing time intervals associated with these transi-
tions are I(tcom) = I(tapp) = [1, 1].

To see how the above construction works, consider the
following. A computational step of a membrane system is
split into a rule application and a communication phase,
and those two phases are simulated separately and in an
alternating order. The simulation of the rule application
phase is enabled by the presence of a token at papp , and it

T = T0 ∪ T̄0 ∪ {tcom, tapp}

347Description of membrane systems with time Petri nets: promoters/inhibitors, membrane…

1 3

finishes only when no more rule applications are possible,
ensuring that the rule application happens in the maximal
parallel way. Any transition tr corresponding to a rule r
from some rule set of the membrane system can fire only if
a token is found in papp , but if no transition tr can fire (that
is, no rule r of the membrane system is applicable), then
the transition tcom is enabled at time 1, so after performing
a time delay step, a token is passed to pcom . The place pcom
is connected to each transition sp̄ ∈ T̄0 in both directions
with an arc of multiplicity 1, which means that after the
tokens have finished wandering back to their respective
places (when no sp̄ is enabled any more), then there is
still a token left in pcom . This token moves to papp (after a
time delay step) at time 1 via tapp , and the net is ready for
simulating the next membrane computational step by per-
forming a rule application phase of the simulation again.

When the Petri net arrives to a marking which corre-
sponds to a halting configuration of the membrane system,
no transitions in T0 (and hence, no transitions in T̄0) are ena-
bled, so it can only continue the cyclic computation consist-
ing of passing a token back and forth between papp and pcom
without being able to change anything else in the distribution
of the tokens, so in some sense, the representative of the
halting membrane system configuration is ”stabilized.”
 ◻

4 Extending the correspondence
to membrane systems with more features

In this section, we examine the possibility of extending our
core model to Petri nets that are able to represent various
properties of membrane systems, such as the presence of
promoters/inhibitors, membrane dissolution and a priority
relation on the rules. The obtained Petri nets each build upon
the basic model defined in the previous section, so, in most
of the cases, we restrict ourselves to emphasize only the new
elements of the constructions by which the basic Petri net
model is extended.

We begin with discussing the case of promoters and
inhibitors. We say that � = (O,�,w1,… ,wn,R1,… ,Rn,P)
is a membrane system with promoters/inhibitors, if P is
mapping which maps the rules to M(O)2 . Then P(r) is a
promoter/inhibitor pair associated with r ∈ Ri for some
i, 1 ≤ i ≤ n , denoted as (promr, inhibr).

We say that a multiset R of rule occurrences is applicable
in a configuration (u1,… , un) , if each of the following condi-
tions is fulfilled. For all 1 ≤ i ≤ n ,

1. lhs(r)(a) ⋅R(r) ≤ ui(a) for each r ∈ Ri and a ∈ O,
2. promr(a) ≤ ui(a) for each r ∈ R, r ∈ Ri, a ∈ O , and
3. inhibr ⊈ ui , or in other words, there exists an a ∈ O , such

that ui(a) < inhibr(a) for all r ∈ R, r ∈ Ri.

(a) (b)

Fig. 1 The subnet on the left simulates the application of
r ∶ ab → c3(d, in2) in region 1 (which is the parent region of 2) con-
taining one a and two b objects. The figure shows the result of a sin-
gle application of r. Transition tr corresponding to the rule consumes
an a and a b in region 1 and sends three tokens to the place (c̄, 1) ,
and one token to (d̄, 2) . This is in accordance with the fact that three
objects c should be added to region 1, and one copy of d should be
added to region 2 in the following communication phase. The sub-
net on the right simulates the communication phase of the membrane

computational step. When the simulation of a maximal parallel rule
application is finished, that is, when no transition associated with any
rule is enabled any more, a time delay step can be performed, and
then a token is passed over to pcom at time instance 1. Then, the tran-
sitions s(c̄,1), s(d̄,2) ∈ T̄0 become enabled and ensure the correct place-
ment of the tokens corresponding to the messages. When the updat-
ing of the marking is finished, a time delay step can follow, and then
the token from pcom is passed back to papp enabling the rule applica-
tion phase once more

348 P. Battyányi, G. Vaszil

1 3

Theorem 2 For any membrane system � with promoters/
inhibitors, there is a time Petri net N simulating � by sta-
bilizing in configurations corresponding to the halting con-
figurations of �.

Proof Let � = (O,�,w1,… ,wn,R1,… ,Rn,P) be a mem-
brane system with promoters/inhibitors. We construct N by
extending the construction in the proof of Theorem 1, that
is, the Petri net simulates the rule application and the com-
munication phase separately in a similar manner. Here we
concentrate on the differences concerning the rule applica-
tion phase, the other elements of the construction can be
adapted from Theorem 1.

Let N = (P, T ,F,V ,m0, I) be a time Petri net with places

where P0 ∪ P̄0 ∪ {papp, pcom} are as in the proof of Theo-
rem 1, and

P = P0 ∪ P̄0 ∪ {papp, pcom} ∪ Ppro ∪ Pinh ∪ {pini}

The initial marking corresponds to the initial configu-
ration of the membrane system as before. In addition,
m0(pini) = m0(p¬inh(r)) = m0(p¬pro(r)(a)) = m0(p¬inh(r)(a)) = 1
for all rules r, objects a ∈ O , while the rest of the places are
marked with zero.

Let also

where T = T0 ∪ T̄0 ∪ {tcom, tapp} are as int the proof of Theo-
rem 1, and

Ppro ={ppro(r), ppro(r)(a), p¬pro(r)(a) ∣ r is a rule occurrence

in� , a ∈ O},

Pinh ={pinh(r), p¬inh(r), pinh(r)(a), p¬inh(r)(a) ∣ r is a rule

occurrence in� , a ∈ O}.

T = T0 ∪ T̄0 ∪ {tcom, tapp} ∪ T � ∪ {tini}

T � ={tini(r), tpro(r), tinh(r), tpro(r)(a), tinh(r)(a), tcol(r),

t1
col(r)

, t2
col(r)

, t3
col(r)

,

tcol(r)(a), t
1
col(r)(a)

, t2
col(r)(a)

, t3
col(r)(a)

∣ r is a rule occurrence

in� , a ∈ O}.

Fig. 2 The subnet simulating the rule application phase of a mem-
brane system with promoters and inhibitors. The contents of the first
region is a2 , and r = a → c(d, in2)

3 with promr(a) = 2 , inhibr(a) = 3
is applied. The rule application phase starts when tini(r) sends a token
to all places where one token is seen. First the inhibitor multiset is
checked: if all a ∈ inhibr is present in the necessary number of occur-
rences (if the rule r should be inhibited), tokens are sent to each
pinh(r)(a) , and then to pinh(r) . (The dashed arrows represent a collection
of arcs and transitions described in the text: if the places pinh(r)(a) and
ppro(r)(a) contain tokens for all a ∈ inhibr or a ∈ promr , then a token
appears at pinh(r) or ppro(r) , respectively.) Thus, if the rule should be
inhibited, the token from p¬inh(r) is removed, and tr will not be able

to fire. After the inhibitor, the promoter is checked: if all necessary
objects are present, a token is sent to each ppro(r)(a) , and then to ppro(r) ,
which enables the firing of transition tr corresponding to the execu-
tion of rule r. Since we have also made a time delay step before, the
result of the promoter and inhibitor checks are kept the same until
the repeated application of the allowed rules (simulating the maxi-
mal parallel application of the membrane system) is finished, and
the communication phase begins. The subnet for the communication
phase is not depicted here; it is similar to the subnet in Fig. 1, except
for the transition tini which returns a token to pini (instead of papp , as in
the proof of Theorem 1)

349Description of membrane systems with time Petri nets: promoters/inhibitors, membrane…

1 3

The arcs connecting the places and transitions known from
the construction of Theorem 1 are as before, with the excep-
tion of tapp which connects the places pini and papp , and the
new transition tini connecting pcom and pini (see Fig. 2 for the
graphical representation and an example).

The input and output arcs associated with the new transi-
tions, together with the new time intervals, are as follows.

Consider all r ∈ Ri for some i, 1 ≤ i ≤ n .

(a) For each tini(r) , we have pini ∈ ∙tini(r) and p¬inh(r) ,
p¬pro(r)(a) , p¬inh(r)(a) ∈ t∙

ini(r)
.

(b) For each tpro(r) , we have ppro(r)(a) ∈ ∙tpro(r) for each
a ∈ O , and ppro(r) ∈ t∙

pro(r)
.

(c) For each tinh(r) , we have pinh(r)(a) ∈ ∙tinh(r) for each a ∈ O ,
and pinh(r) ∈ t∙

inh(r)
.

The time intervals associated with the transitions described
so far are [0, 0], while the weights of all the arcs above are
one. The transitions defined in (a) initialize the rule applica-
tion phase by putting a token to each of the necessary places
after the appearance of a token in pini activates them.

The transitions described in (b)–(c) are represented by the
dashed arrows in Fig. 2. They place a token to ppro(r) (or to
pinh(r)) if a token appears in ppro(r)(a) (or in pinh(r)(a)) for each
object a occurring in the promoter (or inhibitor) multisets
associated with the rule r.

In addition to the above,

– for each tcol(r) , we have p¬inh(r), pinh(r) ∈ ∙tcol(r) while t∙
col(r)

is empty, and the time interval associated with tcol(r) is
[0, 0].

This transition disables the firing of tr (disables the simula-
tion of rule r) if r should be inhibited (which is signaled by
the presence of a token in pinh(r)).

– For each r , we have p¬inh(r) ∈
∙t1
col(r)

 , we have
pinh(r) ∈

∙t2
col(r)

 , we have ppro(r) ∈ ∙t3
col(r)

 . For each r and
a ∈ O , we have pinh(r)(a) ∈

∙tcol(r)(a) , we have
p¬pro(r)(a) ∈

∙t1
col(r)(a)

 , we have p¬inh(r)(a) ∈ ∙t2
col(r)(a)

 , and we
have ppro(r)(a) ∈ ∙t3

col(r)(a)
 . The time interval associated

with all of these transitions is [2, 2].

The set of output places of the above described transitions
are empty, they serve as “sinks,” they remove unnecessary
tokens at the end of the rule application phase.

For the rest of the arcs and their weights, together with
the rest of the transitions and their associated time intervals,
see Fig. 2.

The time Petri net described above alternates its rule
application phase and communication phase to simulate the

computational steps of the membrane systems. The alter-
nation of the phases is guided by the cycling of a token
from pini to papp , from there to pcom , and then back to pini .
Simultaneously with the arrival of the token to papp , the rule
application simulation subnets are also initialize for each
rule, and then the checking of the presence of promoters
and inhibitors start. The subnets for the rules which are not
blocked after these checks can be executed, any of them
repeatedly, until the available objects allow. (The results of
the promoter and inhibitor checks are saved, so during the
sequential simulation of a maximal parallel rule applica-
tion step, rules can only become disabled when the objects
on their left-hand sides are not available any more.) After
the rule application phase is finished, the communication
phase reorders the created objects to their goal regions as
the system in the proof of Theorem 1 and in addition cleans
up the garbage tokens left in the places which are used for
the promoter/inhibitor checks of the rule application phase.

When the net arrives to a marking which corresponds to
a halting configuration of the membrane system, then no
rule application is possible, so no transitions can fire which
are able to change the marking on the places corresponding
to the membrane system configuration. This means that the
representant of the halting membrane system configuration
is “stabilized” in the sense of Sect. 3. ◻

Next, we turn our attention to membrane systems with
dissolution. In such systems there exists a special object �
which can appear on the right sides of rules only. If such a
rule is chosen in the actual maximal parallel rule applica-
tion, then all the rules participating in that computational
step are executed as usual, but after the maximal parallel
step is over, the region where this rule was applied disap-
pears, the objects wander into the parent region and the
rules associated with it cease to operate.

Note that if a region i, 1 ≤ i ≤ n is dissolved during a
computation, then not only the rules associated with i are
disabled, but also some rules from other rule sets: those
which contain the target indicator ini on their right-hand
sides. On the other hand, not all rules which send objects
to region i are discarded. Those which are associated with
a child region of i and contain the target indicator out con-
tinue to operate, but the objects they send “out” are sent to
the parent region of i instead.

With this in mind, we construct a time Petri net simulat-
ing the operation of a membrane system with dissolution.

Theorem 3 For any membrane system � with dissolution,
there is a time Petri net N simulating � by stabilizing in con-
figurations corresponding to the halting configurations of �.

Proof Let � = (O,�,w1,… ,wn,R1,… ,Rn, �) be a mem-
brane system with dissolution. We construct a time Petri net

350 P. Battyányi, G. Vaszil

1 3

N = (P, T ,F,V ,m0, I) simulating � . The construction again
is an extension of the construction in the proof of Theo-
rem 1. The rule application phase is very similar, except for
the presence of new places corresponding to the appearance
of the symbol � symbolizing the dissolution of the mem-
branes. The main difference manifests itself in the definition
of the communication phase: we introduce a new phase, a
“cleanup” phase for moving the elements of previously dis-
solved membranes to the parent regions. In addition, we also
need to deal with blocking the application of certain rules
which would send objects to the dissolved regions.

First we define the set of places.

where P0 ∪ P̄0 ∪ {papp, pcom} are as in the proof of Theo-
rem 1, and

P =P0 ∪ P̄0 ∪ {papp, pcom} ∪ P�∪

{pcle, (𝛿, i), (𝛿, i) ∣ 1 ≤ i ≤ n}

P� = {pr ∣ r is a rule occurrence in�}.

The initial marking corresponds to the initial configura-
tion of � with papp also containing a token as before, and
in addition, m0(pr) ≥ 1 for all rules r ∈ Ri for i, 1 ≤ i ≤ n ,
the exact value depending on the number of ways r could
be disabled due to the dissolving of membranes. More pre-
cisely, the value of m0(pr) is the number of different target
indicators of the form inj on the right-hand side of rule r, or
if this number is zero, then m0(pr) = 1 . If pr looses at least
one of these tokens during the computation, then transition
tr corresponding to rule r will not be able to fire any more.

The role of the places (𝛿, i), (𝛿, i) is similar to the places
of P0 and P̄0 : if the execution of some rule introduces � in a
region i, then a token arrives at (�, i) . Then, in the commu-
nication phase this token is moved to (𝛿, i) where it remains,
signaling to the rest of the system the fact that membrane i
is dissolved.

The other new place pcle is used to signal the beginning of
the cleanup phase, a new phase of the simulation when the
contents of dissolved membranes are moved into the parent
region.

Fig. 3 The Petri net simulat-
ing a membrane system with
dissolution. In a, b, the subnets
corresponding to the applica-
tion and communication phases
of the rule r ∶ ab → c(d, in3)

2�
are shown. When a membrane
i is dissolved, the subnet in c is
also activated before the com-
munication phase. The subnet
in d is active in the celanup
phase which is between the rule
application and the communica-
tion phases. It moves the tokens
representing the contents of
dissolved membranes to places
from where they will be moved
during the communication
phase to places corresponding
to the parent region

(a) (b)

(c) (d)

351Description of membrane systems with time Petri nets: promoters/inhibitors, membrane…

1 3

The transitions and the arcs are constructed as follows
(see also Fig. 3 for a graphical representation of the most
important subnets).

Let

where T = T0 ∪ T̄0 ∪ {tcom, tapp} has the same role as in the
proof of Theorem 1, but some additional arcs are needed
(see Fig. 3a).

– Each tr ∈ T0 where r ∈ Ri for some i, 1 ≤ i ≤ n , is also
connected to the places pr as pr ∈ ∙tr ∩ t∙

r
 with arcs of

weight m0(pr) . This has the effect that if the number of
tokens is decreased in pr , then the transition tr simu-
lating the execution of rule r cannot become enabled
(making rule r disabled in the subsequent stages of the
simulation). Moreover, if the rule r contains the dis-
solution symbol � on its right-hand side, then tr is also
connected to the place (�, i) as (�, i) ∈ t∙

r
 with an arc

of weight one. The time interval associated with tr is
[0, 0].

The rest of the transitions are defined as follows. Let

In addition to sp ∈ T̄0 , to execute the communication
phase we also need the transitions s�

p
 for each p ∈ P0 (see

Figure 3(b)).

– For each i, 1 ≤ i ≤ n and a ∈ O , we have
(𝛿, i) ∈ ∙s𝛿

(a,i)
∩ s𝛿

(a,i)
∙ and pcom, (ā, i) ∈ ∙s𝛿

(a,i)
 , (ā, j) ∈ s𝛿

(a,i)
∙

where j is the parent membrane of i, with the weight of
all these arcs being one, and the associated time interval
being [0, 0]. If the communication phase is enabled by
pcom and a token is present in (𝛿, i) , that is, if membrane
i has been dissolved in some earlier step of the computa-
tion, then the tokens are moved from the places corre-
sponding to objects in region i to the places correspond-
ing to the same type of objects in the parent membrane.
If there is no token in (𝛿, i) (membrane i is not dissolved),
then the transitions in T̄0 work as in the proof of Theo-
rem 1, but to achieve the priority of s�

(a,i)
 over s(a,i) , the

later has an associated time interval of [1, 1].

The transitions t�
i
, 1 ≤ i ≤ n , are used to disable the rules

with the target indicator ini on their right-hand side when
membrane i is dissolved (see Fig. 3c). The arcs are defined
as follows.

T = T0 ∪ T̄0 ∪ {tcom, tapp} ∪ T𝛿 ∪ {tcle}

T� ={tp, s
�
p
∣ for all p ∈ P0} ∪ {t�

i
∣ 1 ≤ i ≤ n}.

– For each i, 1 ≤ i ≤ n , we have (�, i) ∈ ∙t�
i
 and (𝛿, i) ∈ t𝛿

i
∙ .

Moreover, for all rules r with at least one object (a, ini) on
their right-hand side for some a ∈ O , we have pr ∈ ∙t�

i
 .

The time interval associated with these transitions is
[0, 0]. When a token appears in (�, i) , that is, when mem-
brane i is dissolved, the rules with target indicator ini on
their right-hand sides are disabled by removing tokens
from the corresponding places. If a rule r could be disa-
bled more than once because it contains more than one
different types of such target indicators on its right-hand
side, then the same number of tokens is assigned to pr
by the initial marking, so the functioning of the net is not
blocked (it does not run out of tokens) when it tries to
disable a rule which is already blocked.

The transitions tp, p ∈ P0 are used to perform a cleanup
phase during which the objects of dissolved membranes
are moved to places from where they will be transferred
to the parent region during the following communication
phase (see Figure 3(d)).

– Fo r each i, 1 ≤ i ≤ n and a ∈ O , we have
pcle, (a, i), (�, i) ∈

∙t(a,i) and (ā, i) ∈ t∙
(a,i)

 with all the arcs
having weight one, and the transition having the associ-
ated time interval [0, 0]. The cleanup process is invoked
once for each dissolved membrane when a token arrives
to (�, i) , that is, when membrane i has been dissolved.
After the initiation of the cleanup phase by a token at
pcle , the objects in places corresponding to membrane
i are moved to the intermediate place from where they
are transferred to the parent region of region i in the
communication phase by the subnet already discussed
above, depicted in Fig. 3b.

The functioning of the Petri net N is governed by a token
circulating between the places papp , pcle , and pcom . Ini-
tially, there is a token in papp which is moved to pcle by
transition tcle in the time interval [1, 1] when the rule appli-
cation phase is finished, that is, when there are no rule
simulating transitions left which can fire. When the token
is in tcle , the objects of the regions that have been dissolved
in the previous phase are prepared for being moved to the
parent region. This is realized in the communication phase
which is initiated when tcom moves the token further to
pcom , the associated time interval being also [1, 1]. Finally,
when all tokens representing the objects are in their cor-
rect places, the application phase is activated again by
moving the token back to papp by tapp at time interval [2, 2].

If no more rule application simulating transitions can fire,
that is, when the corresponding configuration of the simu-
lated membrane system is a halting configurations, then the
only possible computation of the net is the cycling of the

352 P. Battyányi, G. Vaszil

1 3

token between papp , pcle , and pcom , thus, it has stabilized
while representing a halting membrane system configura-
tion. ◻

Finally, we tackle the problem of the representation of
membrane systems with priorities in terms of Petri nets.
Again, our construction is an extension of the core model
presented in the proof of Theorem 1. We will modify the
simulation of the rule application phase in order to account
for the treatment of the new feature, but let us start with
examining the role of priorities in membrane systems
computations.

The system � = (O,�,w1,… ,wn,R1,… ,Rn, �) is a
membrane system with priorities, if 𝜌 ⊆

⋃n

i=1
(Ri × Ri) . A

rule r ∈ Ri , 1 ≤ i ≤ n , is strongly applicable in configura-
tion (u1,… , un) , if

1. r is applicable, that is, lhs(r) ≤ ui , and
2. for every r� ∈ Ri such that r′ > r , r′ is not applicable.

Let r1 , r2 ∈ Ri be two rules of region i, and assume that
(r1, r2) ∈ � , that is, r1 > r2 . Then, considering a computa-
tional step, r2 can be applied if r2 is applicable and in addi-
tion, r1 is not applicable (in the usual sense). For example, if
ui = a2b , r1 = ab → d and r2 = a → c , then the result of the
maximal parallel step will be ad, instead of cd, since r1 > r2
and r1 is applicable, which implies that r2 cannot be applied
in that maximal parallel step at all.

To simulate this behavior in our construction, we have to
pick out the applicable rules and examine the priority rela-
tions in order to obtain the rules that are strongly applicable.
We do this by stratifying the various tasks that have to be
performed in the rule application phase with respect to time.
Finding the strongly applicable rules takes place before the
actual rule applications are simulated.

Theorem 4 For any membrane system � with priorities,
there is a time Petri net N simulating the computations of �
by stabilizing in configurations corresponding to the halting
configurations of �.

Proof Let � = (O,�,w1,… ,wn,R1,… ,Rn, �) a membrane
system with priorities, and let us define the time Petri net
N = (P, T ,F,V ,m0, I) as follows. We extend the net con-
structed in the proof of Theorem 1 by modifying the rule
application phase. Before simulating the rule applications,
we select those rules that are applicable, then deactivate
the simulating subnets of those ones which are not strongly
applicable. Then, the communication phase is simulated in
the same way as in the proof of Theorem 1.

The set of places is defined as

where P0 ∪ P̄0 ∪ {papp, pcom} are as in the proof of Theo-
rem 1, and

The new places keep track of the applicability and strong
applicability of rules. A token in pA

r
 for some rule r signals

the applicability of r, while an additional token in pB
r
 means

that r is blocked by an applicable rule of higher priority,
and the places pr1>r2 ∈ P�

𝜌
 contain a token if r1 > r2 holds

according to � . (The role of the places of type p̄r1>r2 will be
discussed later.)

The initial marking corresponds to the initial configura-
tion of the membrane system, as before, but in addition,
instead of papp , the initial marking places a token in the new
place pini which activates the first phase of the applicabil-
ity check of the rules. Thus, m0(pini) = m0(pr1>r2) = 1 for
r1 > r2.

The transitions are defined as

where T0 ∪ T̄0 ∪ {tcom, tapp} play the same role as in the pre-
vious constructions. The transitions in T̄0 are responsible for
the simulation of the communication phase, they are defined
exactly as before. The places tini, tapp , and tcom are responsible
for initiating the different phases of the Petri net computation
by moving a token along pini , papp , pcom , and then back to
pini again. The corresponding arcs are

P = P0 ∪ P̄0 ∪ {papp, pcom} ∪ P� ∪ P�
𝜌
∪ {pini},

P� ={pA
r
, pB

r
∣ r is a rule occurrence in𝛱},

P�
𝜌
={pr1>r2 , p̄r1>r2 ∣ (r1, r2) ∈ 𝜌}.

T = T0 ∪ T̄0 ∪ {tcom, tapp} ∪ T � ∪ {tini}

Fig. 4 Subnet for checking the applicability of a rule r ∶ u → v ∈ R1
with u = ab2 . If at least one a and two bs are present in region 1, a
token is sent to pA

r

353Description of membrane systems with time Petri nets: promoters/inhibitors, membrane…

1 3

– pini ∈
∙tapp ∩ tini

∙ , papp ∈ tapp
∙ ∩ ∙tcom , a n d

pcom ∈ tcom
∙ ∩ ∙tini , the associated intervals being

I(tapp) = I(tini) = [1, 1] and I(tcom) = [4, 4].

The transitions in T ′ are

The first group of arcs connect tA
r
 with the rest of the system.

These transitions are activated by the presence of a token in
pini , and once active, they check whether the corresponding
rule is applicable or not. If all the objects on the left-hand
side of r are available in the respective regions, a token is
sent to pA

r
 (see Fig. 4 for the graphical representation and

an example).

– For each rule r ∶ u → v ∈ Ri for some i, 1 ≤ i ≤ n , if
u(a) = k > 0 for some object a ∈ O , then (a, i) ∈ ∙tA

r
∩ tA

r
∙

and the weights of these arcs are k. In addition,
pini ∈

∙tA
r
∩ tA

r
∙ , pA

r
∈ tA

r
∙ and the time interval associated

with tA
r
 is [0, 0].

The subnet simulating the rule application phase is extended
in order to be able to deal with priorities. Besides the arcs
inherited from the construction in the proof of Theorem 1,
the transitions of T0 are augmented with a mechanism which
disables the otherwise applicable rules which are suppressed
by other applicable rules with higher priority. The transitions
tr are also connected to the places of P′ and P′

�
 as follows.

(An example with the graphical representation of the subnet
can be seen in Fig. 5.)

T � ={tA
r
, t1
col(r)

, t2
col(r)

∣ r is a rule occurrence in𝛱}∪

{tr1>r2 , t̄r1>r2 ∣ r1 > r2 holds according to 𝜌}.

– For any rule r, pA
r
∈ ∙tr ∩ tr

∙ , thus, when the token is
removed from pA

r
 , transition tr cannot fire.

When a token is present in pr1>r2 (that is, when r1 > r2 holds)
and also in both pA

r1
 and in pA

r2
 , then t̄r1>r2 sends a token to pB

r2
 ,

enabling transition tcol(r2) which removes the token from pA
r2

disabling this way the firing of tr2 . This is achieved by the
following arcs.

– For any pair of rules r1 > r2 , we have pr1>r2 ∈
∙ t̄r1>r2 ,

pA
r1
, pA

r2
∈ ∙ t̄r1>r2 ∩ t̄r1>r2

∙ , and pB
r2
, p̄r1>r2 ∈ t̄r1>r2

∙ , with
t̄r1>r2 having the associated time interval of [0, 0].

– For any rule r we have pA
r
, pB

r
∈ ∙t1

col(r)
 with the associated

time interval [1, 1], and pA
r
∈ ∙t2

col(r)
 with time interval

[3, 3].

The role of t2
col(r)

 is to remove the leftover tokens after the
rule application phase.

– For any pair of rules r1 > r2 , we also have p̄r1>r2 ∈
∙tr1>r2 ,

and pr1>r2 ∈ tr1>r2
∙ . With the associated time interval

[3, 3], this transition returns the token to pr1>r2 after the
rule application phase is finished.

The places of P̄0 and the transitions of T̄0 for the commu-
nication phase are exactly the same as in the construction in
the proof of Theorem 1, so we do not repeat them here.
 ◻

Fig. 5 The blocking of a rule due to the priority relation. Having a2b
in region 1 and r1 , r2 ∈ R1 , r1 = ab → d , r2 = a → c with r1 > r2 ,
only tr1 can fire: transition t̄r1>r2 delivers a token to pB

r2
 , then at time

instance 1, the tokens from pA
r2

 and pB
r2

 are removed by transition

t1
col(r2)

 . At time instance 3, the token from p̄r1>r2 is returned to pr1>r2 by
tr1>r2 , and the leftover tokens in places of type pA

r
 (such tokens remain

if the corresponding rules have not participated in the maximal paral-
lel rule application) are cleaned up by transitions t2

col(r)

354 P. Battyányi, G. Vaszil

1 3

5 Conclusions

In this paper, we have made a step forward in relating the
membrane systems and Petri nets. We simulated membrane
systems with promoters/inhibitors, membrane dissolution,
and priority on the rules with time Petri nets, by further
developing the Petri net model presented in [1]. We were
able to simulate these sophisticated membrane computing
features by preserving an important characteristic property
of Petri nets; namely, the firings of the transitions can take
place in any order: we do not impose any additional condi-
tion on the transition sequences in order to obtain the time
Petri net model.

For a possible continuation of this line of research, it
would be interesting to investigate the possibility of simulat-
ing membrane systems using other ways of synchronization,
see [2, 4] for examples of such systems.

As another interesting direction for future research, we
would also like to mention the descriptional complexity
aspects of the presented simulations. It would be fruitful
to conduct a comparative study on the sizes of the Petri net
components necessary for simulating the different variants
of membrane systems.

Acknowledgements György Vaszil was supported by Grant K 120558
of the National Research, Development and Innovation Office of Hun-
gary (NKFIH), financed under the K 16 funding scheme. The work of
Péter Battyányi was supported through the construction EFOP-3.6.3-
VEKOP-16-2017-00002 by the European Union, cofinanced by the
European Social Fund.

Funding Open access funding provided by University of Debrecen.

Compliance with ethical standards

 Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. Aman, B., Battyányi, P., Ciobanu, G., & Vaszil, G. (2020). Local
time membrane systems and time Petri nets. Theoretical Computer
Science, 805, 175–192.

 2. Aman, B., & Ciobanu, G. (2019). Synchronization of rules in
membrane computing. Journal of Membrane Computing, 1,
233–240.

 3. Desel, J., Reisig, W., & Rozenberg, G. (Eds.). (2004). Lectures
on concurrency and Petri nets. Lecture notes in computer science
(Vol. 3098). Berlin: Springer.

 4. Freund, R. (2020). How derivation modes and halting conditions
may influence the computational power of P systems. Journal of
Membrane Computing, 2, 14p–25.

 5. Frisco, P. (2009). Computing with cells: Advances in membrane
computing. Oxford: Oxford University Press.

 6. Janicki, R., Lauer, P. E., Koutny, M., & Devillers, R. (1986). Con-
current and maximally concurrent evolution of nonsequential sys-
tems. Theoretical Computer Science, 43, 213–238.

 7. Kleijn, J., & Koutny, M. (2008). Processes of membrane systems
with promoters and inhibitors. Theoretical Computer Science,
404, 112–126.

 8. Kleijn, J., & Koutny, M. (2009). A Petri net model for membrane
systems with dynamic structure. Natural Computing, 8, 781–796.

 9. Kleijn, J. H. C. M., Koutny, M., & Rozenberg, G. (2006). Towards
a Petri net semantics for membrane systems. In R. Freund, G.
Păun, G. Rozenberg, & A. Salomaa (Eds.), Membrane computing.
WMC 2005. Lecture notes in computer science (Vol. 3850, pp.
292–309). Berlin: Springer.

 10. Kleijn, J., Koutny, M., & Rozenberg, G. (2006). Process seman-
tics for membrane systems. Journal of Automata, Languages, and
Combinatorics, 11, 321–340.

 11. Merlin, P.M. (1974). A study of the recoverability of computing
systems. Ph.D. Thesis, University of California, Irvine.

 12. Păun, G. (2000). Computing with membranes. Journal of Com-
puter and System Sciences, 61(1), 108–143.

 13. Păun, G. (2002). Membrane computing, an introduction. Berlin:
Springer.

 14. Păun, G., Rozenberg, G., & Salomaa, A. (Eds.). (2010). The
oxford handbook of membrane computing. Oxford: Oxford Uni-
versity Press.

 15. Peterson, J. L. (1981). Petri net theory and the modeling of sys-
tems. Upper Saddle River: Prentice Hall.

 16. Petri, C. A. (1962). Kommunikation mit Automaten. Dissertation,
Universität Hamburg.

 17. Popova, L. (1991). On Time Petri Nets. Journal of Information
Processing and Cybernetics, 27(4), 227–244.

 18. Popova-Zeugmann, L. (2013). Time and Petri nets. Berlin:
Springer.

 19. Reisig, W., & Rozenberg, G. (Eds.). (1998). Lectures on Petri nets.
Lecture notes in computer science, vols. 1491 and 1492. Berlin:
Springer.

 20. Sosík, P. (2019). P systems attacking hard problems beyond NP:
A survey. Journal of Membrane Computing, 1, 198–208.

 21. Zandron, C. (2020). Bounding the space in P systems with active
membranes. Journal of Membrane Computing, 2, 137–145.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/

	Description of membrane systems with time Petri nets: promotersinhibitors, membrane dissolution, and priorities
	Abstract
	1 Introduction
	2 Preliminaries and definitions
	2.1 Membrane systems
	2.2 Time Petri nets

	3 Connecting Petri nets and membrane systems
	4 Extending the correspondence to membrane systems with more features
	5 Conclusions
	Acknowledgements
	References

