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Abstract
In this study, three-probe error separation was developed with three chromatic confocal displacement sensors for round-
ness measurement. Here, the harmonic suppression is discussed first to set suitable orientation angles among three sensors. 
Monte Carlo simulation is utilized to test the error separation and optimize the orientation angles and off-axial distance. 
The experimental setup is established using chromatic confocal sensors with a precise rotary platform. The experimental 
results show that the measured roundness with an orientation-angle combination of (0°, 90.1°, and 178.6°) is much better 
than that of another nonoptimal selection (0°, 90.4°, and 177.4°). The roundness error is only 0.7% between the proposed 
measurement system and an expensive ultraprecision roundness meter. Furthermore, it is proven that the eccentricity distance 
should be decreased as small as possible to improve the measurement accuracy. In sum, this paper proposes a feasible method 
for roundness measurement with reliable simulations, easily integrated sensors, and an ordinary precision rotary platform.
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1  Introduction

Roundness is one of the most important geometrical specifi-
cations of rotational workpieces for product-quality estima-
tion, in situ processing optimization, and spindle accuracy 
test [1, 2]. As the manufacturing accuracy is rapidly devel-
oped using precise or ultraprecise spindles, the roundness 
measurement is urgently required to provide micrometer-
level or even nanometer-level accuracy.

At present, many methods have been proposed to deter-
mine the roundness error. The most common method is to 
use a coordinate measuring machine or precise scan line 
stage to reconstruct a workpiece’s profile for its roundness 
[3–5]. The measurement accuracy is seriously affected by 
the scan path, scan speed, and compensation algorithm of 
the contacting probe.

The single-probe method is another simple and direct 
method with a displacement probe and high-precision rotary 
platform [6, 7]. Except for the accuracy of the probe, the 
rotation error of the rotary platform should be as small as 
possible to ensure that all measured displacements begin 
from the rotation axis. In this way, the profile of the work-
piece is easily reconstructed with radial displacement. Thus, 
roundness can be derived from the profile using the least 
squares circle or other algorithms [8–10]. However, the 
high-precision rotary platform is usually expensive, and 
the eccentricity error of the displacement sensor seriously 
affects the measurement accuracy.

To acquire precise roundness using an ordinary rotation 
platform, the error separation technique was proposed to 
separate the artifact roundness and rotation error [11–15]. 
In the error separation technique, the reversal method and 
multiprobe method are most commonly used. The former 
assumes that the rotation error is repeatable and the reverse 
adjustment of the displacement probe or workpiece needs to 
be operated for every measurement [12, 16–18]. Although 
the separation accuracy is relatively higher than that of other 
methods, it is difficult to guarantee a complex fixture, accu-
rate reverse angle of 180°, and good data synchronization.

The multiprobe method is widely used for measuring the 
in situ spindle error or workpiece roundness error, with three 
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or more displacement sensors [12, 19–21]. These probes are 
fixed at permanent locations, and the workpiece is rotated by 
the rotary platform, improving the measurement flexibility 
and efficiency. Of course, more probes would cause more 
difficulty in the adjustment of the measurement system, 
and the uncertainty analysis is complex with various error 
sources, such as studies on the four-probe method [22].

Typically, the three-probe method is relatively simple 
to realize and can decode most components of the profile 
using three synchronous displacement sensors [21, 23–27]. 
Because the signal process involves the division operation 
in the frequency domain, harmonic suppression usually hap-
pens for some harmonic orders. Further studies found that 
the harmonic suppression mainly depends on the greatest 
common divisor of two orientation angles and 180°, allow-
ing for many flexible choices. Kato et al. [23] proposed a 
typical orientation-angle combination, i.e., (0°, 38°, and 
67°), to decrease the influence of harmonic suppression. 
Cappa et al. [24] and Ding et al. [21] reduced the suppression 
of low-order harmonics through optimization of measure-
ment angles. Moreover, Gao and Kiyono [25] combined the 
generalized three-point method and sequential three-point 
method to improve the robustness in stepwise variations. 
Shi et al. [26] proposed a hybrid three-probe method using 
two different mathematical operations to optimize individual 
harmonic coefficients. Chen et al. [27] introduced a solving 
system of the multivariable equation method to simplify the 
mathematical calculation process.

Furthermore, there are many noncontact choices of the 
displacement sensors for the three-probe method, such as 
capacitance sensors [21, 24, 25] and optical sensors [20, 26]. 
These sensors provide accuracy displacement during a rota-
tion without contacting the rugged surface of the workpiece 
and are more stable and safer than contact probes. Thus, 
noncontact sensors have been increasingly used because of 
their high precision, sensitivity, and flexibility. However, the 
valid spot sizes on the workpiece surface of capacitance sen-
sors or triangulation laser sensors are always as big as a mil-
limeter lever. Clearly, this condition will seriously affect the 
lateral resolution in the profile reconstruction, which may 
cause a certain roundness measurement error, especially for 
workpieces with a small radius.

Accordingly, to solve the above-mentioned problem, in 
this study, we employed chromatic confocal sensors with 
tens of micrometer spot size and submicron longitudinal 
resolution. Chromatic confocal sensors take advantage of 
the dispersion of white light and the confocal technique to 
encode axial positions with the wavelength of the reflected 
light from the measured surface [28–31]. The dispersion 
probe focuses the light on the measured surface to produce 
a very small spot size, similar to that in a microscope objec-
tive. Moreover, the displacement only depends on the wave-
length of the focus light, allowing for a relatively large tilt 

error to reflect little light to the conjugate detection pinhole. 
This advantage makes its measured displacement reliable 
and sensitive in the axial direction for curved surfaces [32, 
33]. Thus, we believe that chromatic confocal sensors can 
be used in the three-probe method to improve measurement 
accuracy.

In this study, we first explored the effect of the orienta-
tion-angle combination and eccentricity distance and then 
acquired an optimized combination through the Monte Carlo 
simulation. Next, an experimental setup was built up for the 
roundness measurement of a cylindrical workpiece with 
three similar chromatic confocal sensors. Lastly, we explored 
the actual influences of the orientation-angle combination 
and off-axial distance on the roundness measurement.

2 � Principles

2.1 � Three‑Probe Method

Three similar displacement sensors were mounted around 
the rotary platform, on which the workpiece is fixed, as 
shown in Fig. 1. O is the rotation center, and P is the work-
piece center. Thus, the eccentricity distance |OP| is constant 
during the rotation. The orientation angle between ProbeA 
and ProbeB is α, whereas that between ProbeA and ProbeC is 
β, which is positive in the clockwise direction. Then, three 
continuous displacement signals [SA(θ), SB(θ), and SC(θ)] 
were obtained synchronously at every rotation angle of θ.

To clearly express the dynamic change of the three sig-
nals, we used r(θ) as the radius of the workpiece at the rota-
tion angle θ. Moreover, the rotation error of the rotary plat-
form δ(θ) was divided as δx(θ) and δy(θ) at the x-axis and 
y-axis. Then, the output signals were determined as below 
when the eccentricity distance |OP| is as small as possible. 
In actual scenarios, we recommend that the maximum toler-
able |OP| should be smaller than the rotation error to avoid 
its influence in Eq. (1).

ProbeA

ProbeB

ProbeC

Rotary platform

β

α

Workpiece

O
P x

y

Fig. 1   Schematic diagram of the three-probe method
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It is difficult to extract the profile of the workpiece r(θ) 
from three known signals using ordinary algorithms. Thus, 
the error separation technique becomes a useful method to 
remove the unknown rotation error in the frequency domain. 
In detail, three signals were multiplied by three different 
coefficients (c0, c1, and c2) to be added together as a syn-
thetic signal S(θ).

Through the simple deformation of S(θ), we can separate 
the profile function r(θ) and rotation error functions [δx(θ), 
δy(θ)].

If the coefficients of δx(θ) and δy(θ) are set zeros, then we 
can get two equations for c0, c1, and c2.

In general, we can set c0 as 1 to decompose the equation to 
obtain the other parameters c1 and c2 as follows:

At the same time, we can derive the expression of S(θ):

Using the linear phase property of the Fourier transform, 
we can simplify the above formula as follows. R(ω) is the 
Fourier transmission of the profile r(θ), and H(ω) is the 
frequency-weight function.

Thus, we derive R(ω) when H(ω) is not zero. Then, the pro-
file r(θ) is calculated using the inverse Fourier transform 
of R(ω).

(1)

⎧
⎪⎨⎪⎩

SA(�)=r(�)+�x(�)

SB(�) = r(�+�)+�x(�) ⋅ cos � + �y(�) ⋅ sin �

SC(�) = r(�+�)+�x(�) ⋅ cos � + �y(�) ⋅ sin �

(2)

S(�) = c0SA(�) + c1SB(�) + c2SC(�)

= c0[r(�) + �x(�)] + c1[r(� + �) + �x(�) ⋅ cos � + �y(�) ⋅ sin �]

+ c2[r(� + �) + �x(�) ⋅ cos � + �y(�) ⋅ sin �]

(3)

S(�) = c0r(�)+c1r(� + �)+c2r(� + �)

+
(
c0+c1 cos �+c2 cos �

)
⋅ �x(�)+

(
c1 sin �+c2 sin �

)
⋅ �y(�)

(4)

{
c0+c1 cos �+c2 cos �=0

c1 sin �+c2 sin �=0

(5)c0 = 1, c1 = −
sin �

sin(� − �)
, c2 =

sin �

sin(� − �)

(6)S(�)=c0r(�)+c1r(� + �)+c2r(� + �)

(7)
S(�)=c0R(�)+c1R(�)e

i��+c2R(�)e
i��

=[c0+c1e
i��+c2e

i��]R(�)=H(�)R(�)

(8)R(�)=
S(�)

H(�)

2.2 � Harmonic Suppression

The error separation technique skillfully derives the profile 
r(θ) using the Fourier and inverse Fourier transforms. How-
ever, the frequency-weight function H(ω) is not always zero 
at every value of ω, which causes harmonic suppression. As 
a result, some frequency components of the profile cannot 
be reconstructed in the error separation. Here, we translate 
the expression of H(ω) in plural form as follows:

Thus, we can derive the following equations to make 
H(ω) = 0.

When ω = 1, Eq. (10) is the same as Eq. (4). Hence, 1 is 
definitely one of the harmonic suppression orders (ωs). In 
addition to 1, there are other solutions to satisfy Eqs. (4) 
and (10). Based on the conditions of c1 ≠ 0, c2 ≠ 0, and α < β, 
the coefficients c0, c1, and c2 can be removed using Eqs. (4) 
and (10).

Because of the periodicity and monotonicity of the tangent 
function, we can determine the unknown harmonic suppres-
sion order ωs as follows:

It is concluded that the harmonic suppression is mainly 
caused by the orientation angles, which should be chosen 
properly in the three-probe method. H(ωs) is usually set as 
1 to take part in the division of Eq. (8), and then R(ωs) is set 
as 0 to calculate r(θ) using the inverse Fourier transform. 
Because the high-frequency components of R(ωs) are always 
small to be ignored, ωs should be as big as possible except 
for ωs = 1.

3 � Simulation

In previous studies, a typical orientation-angle combination 
was proposed, i.e., (0°, 38°, and 67°). However, these angles 
are a little dense to make sensors close with one another, 
which may easily cause interferences when measuring thin 
workpieces. To obtain a suitable orientation-angle combi-
nation with big intervals, the Monte Carlo simulation was 

(9)
H(�) = c0+c1(cos�� + i sin��)+c2(cos�� + i sin��)

= c0+c1 cos��+c2 cos��+i(c1 sin�� + c2 sin��)

(10)

{
c0+c1 cos��+c2 cos��=0

c1 sin�� + c2 sin��=0

(11)tan
(�s + 1)�

2
= tan

(�s + 1)�

2

(12)
�s=1, or

�s=
360

� − �
k − 1, k,�s ∈ N∗
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performed to explore the influence of orientation angles on 
the error separation accuracy of the cylindrical workpiece.

Based on the experimental experience, the frequency 
components of the rotation error δ(θ) and profile r(θ) at 
ω > 50 are both relatively small enough to affect the meas-
urement results. Hence, we designed two types of frequency 
spectra for the rotation error and profile. Their amplitude 
distribution spectra ranges selected randomly between the 
upper and lower curves are shown in Fig. 2a, b. The phase 
distributions were all randomly selected from 0° to 360°. In 
Fig. 2c, e, two rotation error curves are randomly designed 
using the inverse fast Fourier transform according to the 
randomly selected frequency spectrum. Moreover, we plot 
two random profiles with a roundness of 4.45 and 4.69 μm 
in Fig. 2d, f.

Except for the profile r(θ) and rotation error δ(θ), the 
orientation-angle combination and eccentricity distance 
are also necessary for error separation. As the eccentric-
ity distance is constant when the workpiece is fixed on the 
rotary platform, we allowed it to change, for example, from 
0 to 25 μm. The orientation angles have a crucial influence 
on the harmonic suppression, so we set α randomly from 
85° to 95° and β from 175° to 185°. The orientation-angle 
ranges provide a loose arrangement of three probes to avoid 
the interference caused by the big probe diameter but small 
working distance.

With these orientation angles, the harmonic suppression 
orders ωs are determined based on Eq. (12). In other words, 
the frequency components at ωs of the profile r(θ) and rota-
tion error δ(θ) cannot be derived from the error separation 
calculation. In fact, the irregular direct current component of 
the profile at ω = 0 does not affect the calculation of round-
ness. Moreover, the eccentricity distance and linear com-
ponent of the profile at ωs = 1 always mix together to be 
ignored in the error separation technique and single-probe 
method. In brief, the three-probe method can reconstruct 
the profile at ω ≥ 2 except the other harmonic suppression 
orders ωs in Eq. (12).

To determine the orientation angles α and β, we consid-
ered all the combinations among the ranges of (85°, 95°) and 
(175°, 185°) with an interval of 0.1°, except for β = 180°. 
Using the error separation technique, the roundness was 
derived from the reconstructed profile using the least squares 
method. In Fig. 3a, the roundness errors from the designed 
roundness are plotted with different orientation-angle com-
binations based on the Monte Carlo simulation approach. 
The results show that when the orientation angle β changes 
within 2° away from 180°, the roundness error varies little 
with a different orientation angle α. Moreover, we explored 
the various suitable ranges of β under 16 random sets of 
profiles and rotation errors, as shown in Fig. 3b. Based on 
a comparison, the optimized angle range of β should be 
178.4–179°, whereas the orientation angle α can be freely 
set as 85–95°.

Furthermore, we tested the profile reconstruction accu-
racy using error separation. Without loss of generality, the 
orientation-angle combination was designed as (0°, 90.1°, 
and 178.6°), with other two combinations of (0°, 38°, and 
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67°) and (0°, 90.4°, and 177.4°) for comparison. In the simu-
lation, the profile and rotation error were set as those pre-
sented in Fig. 2b, c and Fig. 2e, f. The simulation results for 
the reconstructed profiles are shown in Fig. 4. Clearly, the 
profile reconstruction error is the biggest in the combina-
tion of (0°, 90.4°, and 177.4°), whereas the other two can 
achieve an approximate reconstruction accuracy of approxi-
mately ± 20 nm. In conclusion, the proposed combination of 
(0°, 90.1°, and 178.6°) is suitable for the three-probe error 
separation as the traditional selection of (0°, 38°, and 67°).

Lastly, the influence of the eccentricity distance |OP| 
was explored in the Monte Carlo simulation. Similarly, 
the profile and rotation error were set as those presented in 
Fig. 2b, c and Fig. 2e, f. The orientation-angle combination 
is defined as (0°, 90.1°, and 178.6°). The interval was set 
by 10 μm from 10 to 190 μm. Then, the roundness of the 
reconstructed profile was determined and compared with 
the theoretical roundness. The roundness error varies with 
the eccentricity distance, as shown in Fig. 5. The results 
show that the roundness error increases when the eccentric-
ity distance gets bigger. This trend is in accordance with our 
general experience that decreasing the eccentricity distance 
as small as possible improves the measurement accuracy.

4 � Experiment

The basic principle sketch of the chromatic confocal sen-
sor is plotted in Fig. 6a, b. The white light is dispersed and 
focused on the measured surface and then reflected to the 
spectrometer to derive its focus wavelength. The relation-
ship between the focus wavelength and axial positions is 
named as the response curve, from which the corresponding 
position can be quickly derived with the focus wavelength.

Figure 6c shows the experimental setup for the round-
ness measurement of a cylindrical workpiece. Three self-
designed chromatic confocal sensors [29] were used to 
achieve the displacement changes of the rotating workpiece 
surface within 400 μm. The axial resolution of the chro-
matic confocal sensors is approximately 0.1 μm in the full 
measurement range. Before the measurement, three probes 
were well adjusted to stay on the same horizontal plane and 
intersect at one point. Then, the workpiece was mounted 
on the rotary platform with a small eccentricity distance. 
The biggest rotation error of the rotary platform from Sany-
ing Motion Control Instruments Ltd. was approximately 
5 μm. The outer diameter of the workpiece is approxi-
mately 38 mm, and the probe’s diameter is approximately 
30 mm. The probe’s working distance from the probes to the 
workpiece surface is approximately 7 mm, easily causing 
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interference if the orientation angles are dense, such as (0°, 
38°, and 67°). Thus, we set these angles to be (0°, 90.1°, and 
178.6°) in the following experiments.

Based on the experimental setup, the workpiece was 
rotated for several circles to synchronously obtain the dis-
placement signals in three displacement sensors, as shown 
in Fig. 7. The signal curves turn along the rotation angle 
θ from 0° to 360°. The floating ranges are all approxi-
mately ± 10 μm, indicating a small eccentricity distance to 
a certain extent. The signal outputs (SA, SC) of ProbeA and 
ProbeC are almost contrary. In reality, the phase difference of 
SA, SB, and SC can reveal the orientation angles α and β accu-
rately. Using six measurements after a careful adjustment, 
the final orientation angles were determined and equaled 
as 90.1° and 178.6°, in accordance with the design target.

Using the error separation technique, six profile functions 
were derived from the above signals, as shown in Fig. 8. 
The radius of the workpiece varied within ± 2.5 μm, and the 
measurement repeatability was less than 0.5 μm. By equal-
ing six profile functions, the measured profile is plotted in 
the polar coordinates in Fig. 8b. Furthermore, the roundness 
was derived using the least squares method as 4.43, 4.18, 
4.54, 4.89, 4.83, and 4.66 μm, whose mean is approximately 
4.59 μm. To certify the measurement results, we employed 
an ultraprecision roundness meter from Kosaka Laboratory 
Ltd. (EC2500H) to perform a single-probe roundness meas-
urement. The rotation error of the aerostatic spindle was 
less than 20 nm, and the axial accuracy of the contacting 
displacement probe was approximately 0.1 μm/100 mm. 
The profile of the roundness meter is also plotted in Fig. 8b, 
where the frequency components at harmonic orders of 

0 and 1 were removed. Based on the results, the two pro-
files match well with each other within 1 μm. The round-
ness from the proposed three-probe experimental system is 
only 0.03 μm smaller than that from the roundness meter 
of 4.62 μm.

Another nonoptimal orientation-angle combination (0°, 
90.4°, and 177.4°) was also tested, whose orientation angle 
β is out of the optimized angle range (178.4–179°) in the 
simulation. The displacement signals, whose varying ranges 
are also ± 10 μm, are shown in Fig. 9.

In the same way, six workpiece profiles can be derived 
through error separation with the displacement signals and 
they are shown in Fig. 10a. The average of these profiles 
is plotted in the polar coordinate with the comparison of 
the measurement results using the ultraprecision roundness 
meter EC2500H in Fig. 10b. Using the least squares method, 
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the obtained average roundness from the three-probe method 
was approximately 4.15 μm, approximately 0.47 μm smaller 
than that from the roundness meter of 4.62 μm.

In conclusion, the measurement result with the orienta-
tion-angle combination (0°, 90.4°, and 177.4°) is worse than 
the proposed combination (0°, 90.1°, and 178.6°). Except 
for the adjustment uncertainty, the harmonic suppression 
could be the main reason for the measurement difference. 
According to Eq. (12), the smallest harmonic order ωs except 
1 is 239 for (0°, 90.1°, and 178.6°), bigger than 119 for (0°, 
90.4°, and 177.4°). Hence, the former combination provides 
more information on the profile than the latter one. Through 
comparison, we found that the proposed combination (0°, 
90.1°, and 178.6°) is indeed the proper choice for the three-
probe error separation.

Furthermore, we explored the influence of the eccen-
tricity distance on the roundness measurement. As shown 
in Fig. 11a, c, and e, the output signals vary with increas-
ing peak–valley ranges of approximately 24.3, 48.4, and 
125.3 μm. If the rotation error and profile are constant in the 
rotation, then the displacement output obtains its maximum 
or minimum when OP is collinear with the optical axis of 
the chromatic confocal sensor. Thus, the peak–valley range 
is approximately twice the eccentricity distance |OP|. That 
is, the eccentricity distance increases from approximately 12, 
24, and 63 μm in Fig. 11a, c, and e. According to the three-
probe error separation, the roundness is derived as 4.66, 5.07, 
and 5.18 μm in Fig. 11b, d, and f. Evidently, the last two 
results are bigger than 4.62 μm of the ultraprecision roundness 
meter. The roundness trend is in accordance with the simula-
tion results presented in Fig. 5, which show that the roundness 
error is improved as the eccentricity distance decreases.

5 � Conclusions

In this study, we examine the three-probe error separation 
for the roundness measurement. Based on the theoreti-
cal analysis, the orientation angles between displacement 

sensors play an important role in harmonic suppression. 
In detail, we derived harmonic orders to remove invalid 
frequency components in the profile reconstruction. Then, 
the Monte Carlo simulation was performed to test the 
influence of different orientation-angle combinations and 
eccentricity distances. The optimized orientation-angle 
combination of (0°, 90.1°, and 178.6°) was chosen and 
tested to avoid the interference among the three probes, 
showing a similar profile reconstruction accuracy with a 
traditional selection of (0°, 38°, and 67°). Furthermore, 
the experimental setup employed three similar chromatic 
confocal displacement sensors to monitor the surface of 
the cylinder workpiece on the rotary platform. The output 
signals were used to perform error separation for recon-
structing the profile. The measured roundness has a good 
repeatability of approximately ± 0.35 μm with an average 
roundness of 4.59 μm. By contrast, the nonoptimized ori-
entation-angle combination of (0, 90.4°, and 177.4°) was 
tested and showed an average roundness of 4.15 μm. In 
fact, the roundness was measured as 4.62 μm by an ultra-
precise roundness meter. Hence, the optimized orientation-
angle combination of (0°, 90.1°, and 178.6°) provides a 
measurement error of only 0.03 μm (0.7%), much smaller 
than that from (0°, 90.4°, and 177.4°) by 0.47 μm (10.2%). 
The comparison clearly shows the feasibility of the pro-
posed orientation-angle combination. Lastly, the influence 
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of the eccentricity distance was explored to prove that the 
roundness error decreases as the eccentricity distance 
decreases.

In conclusion, this paper provides a useful roundness 
measurement configuration of the three-probe error separa-
tion with the Monte Carlo simulation and actual measure-
ment system. The simulation can provide a reliable refer-
ence to optimize measurement parameters and processing 
algorithms. Moreover, the roundness measurement system 
was used successfully for a cylindrical workpiece using the 
optimized orientation-angle combination of (0°, 90.1°, and 
178.6°) with an ordinary low-cost rotary platform.
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