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Abstract
We propose ghost imaging (GI) with deep learning to improve detection speed. GI, which uses an illumination light with 
random patterns and a single-pixel detector, is correlation-based and thus suitable for detecting weak light. However, its 
detection time is too long for practical inspection. To overcome this problem, we applied a convolutional neural network that 
was constructed based on a classification of the causes of ghost image degradation. A feasibility experiment showed that 
when using a digital mirror device projector and a photodiode, the proposed method improved the quality of ghost images.
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1 Introduction

The demand for fine processing has led to interest in the 
optical detection of micro/nano defects in a large area. Large 
fine optics for high-power lasers produce surfaces that are 
free from sub-micron defects [1–3]. Zero-defect manufactur-
ing for realizing specular surfaces has been extensively stud-
ied [4]. Recent studies in the fields of additive manufacturing 
and semiconductor processing have shown that sub-micron 
defect or particle detection is critical for maintaining fine 
processing conditions [5]. However, it is difficult to detect 
sub-micron defects because the intensity of scattered light 
substantially decreases with decreasing defect size [6].

For the optical detection of weakly scattered light from 
small defects, studies have applied physical and machine 
vision approaches. For the physical approach, many studies 
have considered the dark-field condition. The structured light 
of a spatial or spectral region offers advantages for detecting 
oriented sub-micron defects [7, 8]. A line-scanning laser 
has been applied to improve detection speed [9, 10]. Both 
the intensity and phase information of scattered light can be 
utilized with good robustness [11–13]. Localized physical 
phenomena of evanescent waves or Raman scattering allow 

the detection of sub-micron defects [14, 15]. However, the 
above methods have poor sensitivity and efficiency. For the 
machine vision approach, methods that use a microscope 
have been developed to detect the position of small surface 
defects and classify them [16–19]. The numerical aperture 
of the optical system determines the defect detection limit.

To overcome this problem, we adopt ghost imaging (GI), 
which is a single-pixel imaging method based on the cor-
relation between the intensity distribution of an illumination 
light and the light intensities detected by a bucket detector 
[20–22]. The high-sensitivity detector and correlation-based 
detection of GI make its sensitivity higher than that of gen-
eral methods. GI is thus attractive for detecting weak light 
intensity [23]. However, obtaining ghost images is ineffi-
cient because many measurements are required to acquire 
clear images for correlation calculations. Therefore, GI has 
been limited to static objects. To overcome this problem, we 
apply deep learning (DL) to reduce the number of measure-
ments required for correlation. DL is applied to predict true 
values using less information [24, 25]. Specifically, for the 
imaging field, DL can reconstruct high-resolution images 
using lower-resolution images. The image quality of GI 
with fewer measurements is low even though a GI image 
contains sample information. There are a few studies about 
DL combined with GI [26, 27]. However, these proposed 
papers were based on an analytical method, called com-
pressive sensing, rather than using correlation. Therefore, 
it is difficult to apply for detecting weak light information. 
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Accordingly, to recover an image for weak light intensity, 
we apply DL to GI (DLGI) with fewer measurements. In 
this paper, we develop a GI system and combine it with a 
convolutional neural network (CNN) based on noise analysis 
of GI towards fast defect-position-mapping of weakly scat-
tered light sources.

2  Concept of Sub‑Micron Defect Mapping 
Using Ghost Imaging with Deep Learning

The concept of sub-micron defect mapping using GI with 
DL is shown in Fig. 1. Computer-generated random patterns 
are illuminated onto a sample with small defects. Then, light 
scattered by the defects is detected by a single-pixel detector. 
GI is based on the second-order correlation of the fluctuation 
between illumination patterns and detected signals [20]. The 
distribution of correlation function G(x, y) is expressed as

where ΔIn(x, y) is the fluctuation of the spatial distribution of 
illumination patterns and ΔBn is the intensity fluctuation of 
time-dependent signals detected by the single-pixel detector 
with n measurements.

Figure 2 shows examples of GI images. A commercial 
projector was used as an illumination light (wavelength: 
532 nm) and a photodiode was used as a single-pixel detec-
tor to image a ϕ10-μm pinhole. As shown in Fig. 2, although 
the difference in illumination intensity was large (12 vs. 0.3 
mW), the reconstructed images had almost the same qual-
ity. The correlation-based imaging automatically reduced 
the noise signals in the imaging process. However, with GI, 
a sufficient number of measurements is required to obtain 
clear images. Therefore, the detection time is very long. To 
overcome this problem, a CNN was employed to improve 
ghost image quality with fewer measurements.

(1)G(x, y) = ΔIn(x, y)ΔBn,
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Fig. 1  Configuration of sub-micron defect mapping using ghost imaging with DL
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3  Design and Numerical Analysis 
of Convolutional Neural Network 
for Ghost Imaging

A CNN generally consists of convolutional layers and 
dense layers [25, 26]. Before designing the CNN for GI, 
we analyzed the degradation of reconstructed GI images. 
Figure 3 shows the causes of GI degradation, which can 
be divided into local and global causes. Local causes 
include the presence of an alternative hypothesis and a 
blurred pattern. Because GI is based on a null hypothesis 
analogy, GI with fewer measurements does not satisfy the 
condition of the null hypothesis. Therefore, some pixels 
have a high correlation value regardless of defect exist-
ence. The alternative hypothesis is independent of each 
pixel. Furthermore, the point spread function (PSF) of 
the optical setup depends on the projection setup. There-
fore, the projected pattern is blurred on the sample sur-
face. The blurred error does not depend on each pixel. A 

convolutional layer can reduce the effect of these local 
causes. Global causes include global noise around the GI 
system, which affects all pixels in the image. Environmen-
tal noise, such as atmospheric turbulence and stray light, 
and electrical noise such as shot noise, thermal noise, and 
dark current, are error sources that can cause GI image 
degradation when few measurements are used. The signal 
of scattered light affects the detected intensity. A dense 
layer can reduce the effect of these global causes.

Figure 4 shows the architecture of the CNN for GI. The 
CNN consists of an input layer, some convolutional and 
dense layers, and a softmax function for deriving probability 
distributions. The input layer uses a reconstructed image and 
its illumination patterns to avoid the alternative hypothesis. 
First, we reduced the effects of the local and global causes 
using convolutional and dense layers, respectively. Then, we 
obtained the existence probability of light at all pixels as an 
image. All layers used a rectified linear unit (ReLU) function 
as the activation function. A dataset of 4000 images, each of 

Fig. 2  Advantage of GI for detecting weak light from 10,000 measurements. Illumination power is a 12 mW and b 0.3 mW. The top graphs 
show time-dependent behavior of illumination light and the bottom images show reconstructed image of ϕ10-μm pinhole
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Fig. 3  Analysis of reconstructed image degradation for GI

Fig. 4  Architecture of CNN for GI. The input layer consists of reconstructed GI image and its illumination patterns
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which was 16 × 16 pixels and generated a numerical simula-
tion, was used for training.

We evaluated the performance of the proposed CNN 
using numerical calculations. Figures 5 and 6 show the 
simulation results for a CNN with convolutional layers 
and an input layer without and with illumination patterns, 
respectively. The sample size was 16 × 16 pixels with one 
bright pixel in the center. The prediction accuracy initially 
increased with the number of epochs and then remained at a 
constant value. The accuracy of the CNN with convolutional 
layers was higher than that without convolutional layers. 
Using illumination patterns in the input layer, with or with-
out the convolution layers, resulted in a larger difference in 
accuracy compared to the case without illumination patterns. 
This large difference is attributed to the image degradation 
contributing less to the null hypothesis condition.

To confirm the validity of the built CNN, we have com-
pared the predicted position of the conventional ghost imag-
ing with that of the proposed method. Figure 7 shows simu-
lated results of residual from set pixel between GI and DLGI. 
The numbers of measurements of GI and DLGI are from 0 
to 16. The sample size was 16 × 16 pixels with one bright 
pixel in the center. It took less than a second to derive the 
expected images from the original GI images. Each residual 
was an average of the difference between the set position and 
the predicted position over 1000 repeated measurements. 
As the number of measurements was increased, the residu-
als decreased. In particular, the residuals are smaller than 
one pixel in four or more measurements. In our proposed 

method, it is important to improve not only the detection 
speed but also the residuals. In order to meet the two require-
ments, we have determined that the measurement numbers 
were four. In the case of using the conventional GI, the 
residuals also decreased as the number of measurements 

Fig. 5  Numerical results of prediction accuracy obtained using con-
volutional layers without illumination patterns for input layer

Fig. 6  Numerical results of prediction accuracy obtained using a con-
volutional layer with four illumination patterns for input layer

Fig. 7  Comparison of simulated results of residual from set pixel 
between GI and DLGI. The number of measurements of GI and 
DLGI are from 0 to 16
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increased. However, the residual for the four measurements 
was 5.61, which was higher than the value of 0.61 measured 
using DLGI. From these results, we have determined the 
number of measurements and confirmed the effectiveness 
of the constructed CNN.

4  Experimental Results

The efficiency of GI with the CNN was experimentally 
evaluated. We used a digital mirror device (DMD) (Texas 
Instruments: DLP 3000) as a projector as shown in Fig. 8. 
Its wavelength (532 nm) was selected using an interfero-
metric filter. Computer-generated random patterns (16 × 16 
pixels) were illuminated onto a sample. The illumination 
light was scattered by the sample and detected by a pho-
todiode (Hamamatsu: S6967). The detected signals were 
converted by an analogue-to-digital device and recorded 
on a personal computer. A GI image was obtained by 
calculating the correlation efficiency between the illumi-
nation patterns and detected signals. Figure 9 shows the 
experimental results of GI images obtained without the 
CNN. To confirm the proposed principle, we used a sim-
ple sample made of a black piece of paper with a square 
hole in the center. As shown in Fig. 9, the quality of the 
conventional GI images increased with increasing number 

of measurements. With 256 measurements, although the 
detection time was long, the position of the hole was clear, 
whereas with four measurements, the reconstructed image 
was noisy.

Figure 10 shows the experimental results of recon-
structed DLGI images. The trained CNN improved the 
quality of the reconstructed images. However, as shown 
in Fig. 10a, the quality of some images was not improved. 
A histogram of the predicted hole position in images 
of 50 measurements is shown in Fig. 10b. The standard 
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Fig. 8  Experimental setup of GI for detecting scattered light

Fig. 9  Experimental results of GI images without CNN
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deviation of the predicted values was 7.11 pixels. These 
distributions are most likely due to reducing global noise 
imperfectly.

To overcome this problem, we analyzed the noise depend-
ency of the predicted positions. Fewer measurements are 
not sufficient for noise reduction. In our experimental con-
ditions, other than the detector, for example, fluctuations 
in air or light source intensity and so on, can also generate 
noise. Most of the fluctuations have a Gaussian distribu-
tion. Therefore, Gaussian distributions were used to improve 
CNNs. Figure 11 shows simulated results of residual from 
set pixel between GI and DLGI with 10% Gaussian noise 
signal derived from the experimental environment. The 

numbers of measurements of GI and DLGI are from 0 to 
32 and 4, respectively. The sample size was 16 × 16 pixels 
with one bright pixel in the center. Before the calculation 
of Eq. (1), a 10% Gaussian noise was added to the detected 
signal B in Eq. (1). The CNN was also retrained with the 
new dataset for 200 epochs with a signal containing 10% 
Gaussian noise. Each residual was an average of the dif-
ference between the set position and the predicted position 
over 1000 repeated measurements. In the case of using the 
conventional GI, the residuals decreased as the number of 
measurements increased. However, the residual for the four 
measurements was 5.61, which was higher than the value 
of 3.66 measured using DLGI. From these results, we con-
firmed the effectiveness of the reconstructed CNN by using 
10% Gaussian noise signals.

The residuals to the noise loading rate of the detection 
signal used for training were experimentally investigated by 
varying the noise loading rate of the detection signal used 
for training. The sample was the same as the one shown in 
Fig. 9. The amount of added noise was varied from 0 to 10%. 
We retrained the CNN in each noise level. Each residual was 
an average of the difference between the set position and 
the predicted position over 100 repeated measurements. As 
shown in Fig. 12, with increasing added noise, the residuals 
were decreased significantly.

Figure 13 shows the experimental results of reconstructed 
DLGI images with 10% Gaussian noise. As shown in 
Fig. 13a, the quality of DLGI images of four measurements 
was improved. A histogram of the predicted hole position 
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Fig. 10  Experimental results of GI images (n = 4) reconstructed using 
CNN. a Reconstructed GI image and b histogram of 50 predicted 
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Fig. 11  Comparison of simulated results of residual from set pixel 
between GI and DLGI using detected signal with 10% noise. The 
numbers of measurements of GI and DLGI are from 0 to 32 and 4, 
respectively

Fig. 12  Experimental results of dependence of residual from set pixel 
on the amount of noise used for CNN training
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in images of 50 measurements is shown in Fig. 13b. The 
standard deviation of the predicted values was 3.12 pixels. 
Although the cause of this Gaussian effect is not well under-
stood at this time, the proposed CNN is demonstrated to 
increase the quality of GI images.

5  Conclusions

We proposed a method that uses GI combined with DL for 
fast imaging. We introduced a CNN to increase the quality 
and speed of GI detection. The CNN had convolutional and 
dense layers and the obtained image and illuminated ran-
dom patterns were applied to its input layer. In a feasibility 
experiment that used a DMD projector and a photodiode, 
the proposed method was found to improve the quality of 
GI images. After experimental investigation, a noise-loaded 
dataset was found to be effective in reducing global noise. 
The results show that GI with a noise-trained CNN is suita-
ble for detecting a position of scattered light. In future work, 
we will attempt to improve prediction accuracy by reconsid-
ering the CNN architecture, and implement the method to 
detect sub-micron defects or particles on a Si wafer with a 
large inspection area.
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