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Abstract
The Kingdom of Bahrain has experienced accelerated development growth since the 1980s. These rapid land demands 
increased the pressure on the country area to rebuild urban centers and cities surrounding the coast. The purpose of this 
research is to detect and investigate changes in land use and land cover (LULC), which is one of the most critical aspects of 
planning and managing the use of land as a natural resource. The massive growth in land demand, particularly in small-area 
countries like Bahrain, forces decision-makers to re-plan the main island areas (Bahrain, Muharraq, Sitra, and Nabih Saleh). 
The study focuses on mapping the LULC changes detection over 1986–2020. It employs an integrated approach of remote 
sensing and GIS (Geographic Information System) to analyze and evaluate the changes in the LULC area in the main islands 
using multi-temporal and multispectral Landsat satellite imagery acquired in 1986, 1994, 2000, 2005, 2013, and 2020. In 
addition, high-resolution satellite images of different dates IKONOS 2000, GeoEye1 2011, 2013, Worldview3 2019, ASTER 
2012, 2013, and multiresolution seamless image database-MrSID 1994, 1998 were used to enhance the LULC classification. 
Furthermore, different ancillary data were utilized to adjust the decision of LULC classes. The images were supervised using 
Maximum Likelihood Classifier (MLC) algorithms to generate the seven LULC maps. The seven-raster classification maps 
revealed overall accuracies exceeding 85%, and overall Kappa statistics range between 87 and 95%. The results indicate that 
the increment in the built-up area was dominant over the last 3 decades.
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1 Introduction

The Kingdom of Bahrain’s rapid development boom during 
the 1980s raised the demand for land, particularly in coastal 
areas, over the past 34 years (1986–2020). As a result, the 
pressure on the country’s overall area to develop urban 
centers and re-design the existing cities along the shore had 
intensified due to this growing land demand. Therefore, 
different information and statistics on LULC are required 
for sustainable land resource management and policymak-
ing processes to monitor continually, model, and update 
changes.

Remote sensing science and techniques play an essen-
tial role in producing spatial information and detailed raw 
data on terrestrial phenomena using space-borne platforms 
(Jansen and Gregorio 2004). These data on different geo-
graphical locations facilitate the characterization and evalu-
ation of the changes (Yuan et al. 2005). Remote sensing 
data’s spatial, temporal, and spectral characteristics are 
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utilized to map LULC to aid in land resource management 
decision-making (Berlanga-Robles and Ruiz-Luna 2002). 
The emergence of satellite imagery has developed tools for 
systematic observation of land cover from space (Mollicone 
et al. 2003). Data required for large land areas are collected 
at different time intervals and used to monitor changes on 
the earth’s surface (Jensen 2005). Landsat data help assess 
LULC for different years, analyze changes, understand land-
use patterns and factors, and build databases for long-term 
monitoring tools when combined with geographic infor-
mation system data and various statistical analytical tools 
(Jensen 2005). GIS and Remote sensings are effective tech-
niques for obtaining precise and timely data and information 
on the spatial distribution of LULC changes over broad areas 
(Guerschman et al. 2003; Rogan and Chen 2004; Zsuzsanna 
et al. 2005). Remote sensing and GIS data have been used 
to map land uses and land cover and detect changes in many 
studies over the past fifty years. These data have been used 
to study expansion and urbanization, quantify land changes, 
and study the effects of land changes in faster, straightfor-
ward ways than traditional methods in survey studies (Da 
Costa and Cintra 1999). GIS provides a versatile framework 
for gathering, storing, displaying, and evaluating digital 
data needed for change detection (Demers 2008; Wu et al. 
2006). GIS relies heavily on remote sensing imagery as a 
data source. Satellite imagery is employed to recognize syn-
optic data of the earth’s surface (Ulbricht and Heckendorff 
1998). Over the last 20 years, researchers concentrated on 
using remotely sensed image band characterization to study 
urban and nonurban area changes (Gadal and Ouerghemmi 
2019; Vigneshwaran and Kumar 2018; Jacquin et al. 2008; 
Xu 2007; Zha et al. 2003). Due to their ability to provide 
immediate and synoptic usage of land cover, remotely 
sensed images are suitable tools for identifying, managing, 
and monitoring urban built-up areas, spatial distribution, 
and expansion (Hegazy and Kaloop 2015; Rawat and Kumar 
2015). Many types of research used different classification 
techniques such as supervised, unsupervised, object-based, 
or deep learning classification in their studies for extract-
ing urban areas from a multispectral satellite image (Ghosh 
and Siddique 2018; Bramhe et al. 2018; Forget et al. 2017; 
Hegazy and Kaloop 2015; Rawat and Kumar 2015; Zhang 
et al. 2014; Ndehedehe et al. 2013). With a spatial accuracy 
of 30 m, Landsat multispectral images became the back-
bone of large-scale land cover change studies due to the long 
period covered by satellite data over 45 years (Duan et al. 
2020; Tewabe and Fentahun 2020; Lu et al. 2010; Wulder 
et al. 2008; Cohen and Goward 2004). Many satellite images 
are being used to monitor and study land cover changes, such 
as SPOT, ASTER, IR, IKONOS, QuickBird, WorldView1, 
2, 3 (Allen et al. 2013; Lu and Weng 2009). The land cover 
information extracted from remote sensing data is an essen-
tial part of various applications, including land-use mapping 

and monitoring of variables. Different satellite-based LC 
data applications have been created in the last 30 years. The 
most important of which is the analysis of land cover dynam-
ics that significantly impacts natural habitats (Yuan et al. 
2005), as well as the creation of LC maps utilizing a variety 
of classification methods, all of which are linked to direct 
statistics to determine classification accuracy and error ratio. 
Land cover analysis and classification results are based on 
four main characteristics: temporal, spatial, radiometric, and 
spectral accuracy (Allen et al. 2013). Macleod and Con-
galton (1998) identified four manifestations of detection of 
land-use changes in the study of land resources, namely, the 
detection of changes that have occurred, the determination 
of nature of change, the measurement of the areal extent of 
change, and the assessment of the spatial pattern of change 
(Macleod and Congalton 1998). Landsat Multispectral Scan-
ner (MSS), Thematic Mapper (TM), and Enhanced Thematic 
Mapper Plus (ETM+) data have been broadly employed in 
studies towards the determination of land cover since 1972, 
the starting year of the Landsat program, mainly in forest 
and agricultural areas (Campbell 2007). The availability of 
detailed data on land uses for urbanization is essential for 
planning processes (Jensen and Cowen 1999). Remote sens-
ing data have become the cornerstone of all urban studies 
emphasizing mapping and analyzing the changes in area, 
extent, and patterns (Wang et al. 2020). Open access to earth 
observation satellite data provides spatially valid datasets 
over broad areas with great spatial detail and temporal fre-
quency (Xiao et al. 2006). The availability of many free sat-
ellite images and GIS layers and improvements in remote-
sensing data gathering with increased spatial accuracy allow 
and improve quantitative studies of the rate and pattern of 
urban LULC change (Epstein et al. 2002).

2  Study Area

The Kingdom of Bahrain is an archipelago of 36 low-
lying islands that vary in size, surrounded by shallow 
waters no deeper than 20 m. The country is located in 
the southern part of the Arabian Gulf. Its territorial water 
covers roughly 9200  km2 and accounts for more than 
90% of the total area. In 2015, the country’s land area 
was estimated to be 782.4  km2 (2020), including rocky 
coral atolls (Fashts), as shown in Fig. 1. The coastal length 
is more than 537 km, and the marine area is more than 
9200 km (Information and eGovernment Authority 2020). 
The country has significant population and infrastructure 
growth, which has raised the demand for land (UNDP 
2018). As a result, the country’s land area has increased 
from 697  km2 in 1987 to 782  km2 in 2019 (Information 
and eGovernment Authority 2020). Due to the increased 
demand for land, the increment rate reached its maximum 
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point (21  km2/year) between 1997 and 2007 (UNDP 2018). 
The majority of the country’s population (more than 95%) 
lives in densely populated coastal areas (Mesaiqer and 
Al-Zayani 2008). From the 1950s until 2007, the popula-
tion increased by 2.7 percent per year, reaching around 
435,654 in 1987 and over 544,366 in 1994. In 2013, the 
estimated population was 1,253,191, which was expected 
to grow to 1,523,084 by 2020 (CIO (1986–2013); Infor-
mation and eGovernment Authority 2020). According to 
CIO’s (1986–2013) predictions, the country’s population 
will reach 2.2 million by 2030 (Information and eGovern-
ment Authority 2018; UNDP 2018). Increased demand for 
land, notably for urbanization and creating new cities and 
residential facilities, has increased population. More than 
half of Bahrain’s main island is almost entirely urbanized. 
Aside from considerable pressure on infrastructure, health, 
education, and social services, the country is vulnerable to 
some issues due to its arid desert climate and small land 
area (UNDP 2018; UNdata 2021).

3  Methodology

3.1  Data Acquisition

In this analysis, we used 30 m dry season six Landsat cloud-
free datasets: Landsat-5, Thematic Mapper (TM) from 
August 14, 1986, Landsat-7 from July 11, 2000, Enhanced 
Thematic Mapper Plus (ETM+) from July 25, 2005, and 
Landsat-8 Operational Land Imager (OLI) from August 24, 
2013, and August 11, 2020. Table 1 shows the specifics of 
Landsat satellite image data downloaded from the Earth 
Explorer website of the United States Geological Survey 
(USGS) (https:// earth explo rer. usgs. gov/). Earth Explorer is 
an online website that allows searching, viewing, exporting 
information, and downloading earth science data from the 
USGS (EROS 2021). In addition, the images were spatially 
registered on the World Geodetic System (WGS84) and then 
re-projected the data to the Northern Hampshire zone 39N 
on Universal Transverse Mercator (UTM) projection. We 

Fig. 1  The Kingdom of Bahrain Islands location between Saudi 
Arabia and Qatar in the Arabian Gulf. This (Satellite Image map 
download from https:// earth explo rer. usgs. gov/, then Mosaic. ID: 
L1C_T39RVJ_A030419_20210419T071115, Acquisition Date: 

2021/04/19, Platform: SENTINEL-2A, Tile Number: T39RVJ.AND, 
ID: L1C_T39RVK_A030419_20210419T071115, Acquisition Date: 
2021/04/19, Platform: SENTINEL-2A, Tile Number: T39RVK)

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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used the Maximum Likelihood Classifier (MLC) algorithms 
to classify the images. All the maps were assigned to the 
WGS 1984 UTM Global Geodetic Coordinates System. We 
used the 2020 Landsat 8 OLI image as the master reference 
for all the images and data used in this study.

3.2  Ancillary Data

Ancillary data, also known as auxiliary data, are frequently 
utilized to improve image classification and accuracy. Due to 
the limitations of spectral information for defining change, 
researchers must rely on auxiliary data (Franklin 1995). 
To determine LULC Changes processes, many researchers 
used ancillary data as input features with multi-temporal 
images (Hurskainen et al. 2019; Feng et al. 2018; Zhu et al. 
2016; Zoungrana et al. 2015; Yu et al. 2013). This study 
used high-resolution satellite images for different dates: 
IKONOS 2000, GeoEye1 2011, 2013, Worldview3 2019, 
and the multiresolution seamless image database-MrSID 

1994, 1998, and ASTER 2012, 2013 to enhance the LULC-
classification. We used auxiliary data, mainly Bahrain topo-
graphic scanned maps from the “Survey and Land Registra-
tion Bureau (SLRB)” scale 1: 50,000, 25,000, and 10,000, 
to adjust the decision of LULC-classes, Fig. 2. In addition, 
we assimilated the four digital governorates zoning maps; 
Capital, Muharraq, Northern, and Southern (UPDA 2022) 
that published by the general directorate of urban planning 
at the “Urban Planning and Development Authority” https:// 
upda. gov. bh/ to validate the classification results (Harris and 
Ventura 1995).

3.3  LULC Classes Definition

The classification of LULC is based mainly on its creation, 
with the levels being divided into numerous levels based on 
the level of accuracy and purpose necessary. We adapted the 
LULC level-1 classification from Anderson et al. (1976). 
Most of these categories were based on statistical data, aerial 

Table 1  Details of Landsat Band data used for this study collected from EarthExplorer

Year Satellite/sensor Date of acquisition Sensor Land cloud 
cover (%)

Resolution (m) Wavelength (μm)

2020 Landsat 8 OLI 11-08-2020 Operational Land Imager (OLI) 0.3 30 m Band 1: 0.435–0.451
Band 2: 0.452–0.512
Band 3: 0.533–0.590
Band 4: 0.636–0.673
Band 5: 0.851–0.879
Band 6: 1.566–1.651
Band 7: 2.107–2.294

2013 24-08-2013 0

2005 Landsat 7 ETM+ 25-07-2005 Enhanced Thematic Mapper Plus (ETM+) 0 Band 1: 0.45–0.52
Band 2: 0.52–0.60
Band 3: 0.63–0.69
Band 4: 0.76–0.90
Band 5: 1.55–1.75
Band 7: 2.09–2.35

2000 11-07-2000
1994 Landsat 5 TM 20-08-1994 Thematic Mapper (TM) 0
1986 14-08-1986 0

Fig. 2  Ancillary data: a 
IKONOS 2000, b MRSID 1994, 
c Bahrain Zoning Map, 2017, 
and d topographic map 1:25,000 
of the same area from 1986

https://upda.gov.bh/
https://upda.gov.bh/
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photos, satellite imagery data, or directly based on Anderson 
et al. (1976) or other land classifications. We created a clas-
sification scheme for this study based on prior knowledge 
of the study region and information derived from auxiliary 
data and information (Anderson et al. 1976). The accessi-
ble digital Bahrain Zoning maps (UPDA 2022) and other 
auxiliary data were the primary sources for identifying the 
research area’s main LULC classes. As a result, seven LULC 
classes covering the surface study area were identified and 
classified, including the reclaimed area (Rec), vegetation 
(Veg), built-up/urban area (Bul), rock outcrop (Roc), bare 
ground (Bar), gypsic soil (Gyp), and wetland/sabkhas region 
(Wetland/Sabkhas) (Wet). Table 2 displays the seven LULC 
classification schemes adapted for this study.

3.4  Image Preprocessing

This study used multitemporal and multispectral Landsat 
satellite images acquired in 1986, 1994, 2000, 2005, 2013, 
and 2020. The changes in the LULC areas were detected 
using a Supervised Maximum Likelihood Classification 
algorithm for the six temporal dates. Remote sensing and 
GIS Software were used to handle the geometric and radi-
ometric enhancement, mosaicking, and the sub-setting of 
Landsat 5 Thematic Mapper (TM), Landsat 7, Enhanced 
Thematic Mapper Plus (ETM+), and Landsat 8 Operational 
Land Imager (OLI) images. Furthermore, high-resolution 
satellite images of different dates IKONOS, 2000, Geo-
Eye1 2011, 2013, Worldview3, 2019, ASTER, 2012, 2013 
and multiresolution seamless image database-MrSID 1994, 
1998 were used to enhance the LULC-classification. Image-
preprocessing operations for this study include geometric 
correction (rectification), ETM+ Scan Line Corrector–SLC 
off and gap filling, radiometric, and atmospheric calibra-
tion (Lu et al. 2004). Geometric (rectification), ETM+ Scan 
Line Corrector–SLC off and gap filling, radiometric, and 

atmospheric calibration are a few of the image-preprocessing 
techniques used in this study (Lu et al. 2004). All the images 
were co-registered and radiometrically calibrated to com-
pare different temporal dates of the study area. Radiometric 
calibration was done to reduce or correct errors in the digi-
tal numbers of the images. The calibrated Digital Numbers 
(DNs) were first transformed to absolute units of at-sensor 
spectral brightness and then to Top-Of-Atmosphere (TOA) 
reflectance (Chander et al. 2009). The DNs stored in the 
original image are converted into biophysical variables of 
standard significance (reflectance). For Landsat 5, 7, and 8, 
the TOA spectral radiance is calculated using the band-spe-
cific multiplicative rescaling factor. The TOA reflectance is 
then adjusted for the solar angle. TOA reflectance has three 
advantages over at-sensor spectral radiance when compar-
ing images from different sensors. First, the time difference 
between data collection reduces the cosine effect of differ-
ing solar zenith angles. Second, TOA reflectance adjusts for 
spectral band changes in exo-atmospheric solar irradiance, 
resulting in varied values of exo-atmospheric solar irradi-
ance. Third, the TOA reflectance compensates for differ-
ences in Earth–Sun distance between data gathering dates. 
These variances might be significant geographically and 
temporally (Chander et al. 2009).

3.5  Image Classification

We employed the supervised classification methodology to 
classify the LULC categories (sites) into the predetermined 
seven classes in this study, Table 2. Combining training sam-
ples (sites) with prior knowledge and familiarity with the 
study area is necessary to complete the supervised classifica-
tion (Jensen 2005). The training sites were chosen based on 
visible areas in all the image sources. We began by defining 
polygons around representative portions of each LULC cat-
egory (Sites) in each Landsat image as identified and defined 

Table 2  Definitions of LULC classes ( Source: modified partially from Anderson, 1976)

LULC classes Code Description

Reclaimed Rec Areas with a natural or artificial cover because of dredging and reclamation mainly surround the coast. In addition, 
it includes the drilled and backfills with marine sand. It has been used for construction purposes after that

Vegetation Veg It comprises an area covered by various plants, whether seasonal or permanent, scattered trees, and palm trees
Built-up/urban area Bul Areas include heavily used areas covered by constructions. These include cities, municipalities, villages, and 

developed areas adjacent to public roads, transportation, electricity, communications and infrastructure, shopping 
centers, commercial and industrial parks, institutions, and other constructions relevant to non-agricultural human 
industries

Rock outcrop Roc Fragmented carbonate and dolomitic carbonate rocks dominate Bahrain’s structural Dome outcrop
Bare land Bar Areas with exposed soils and un-vegetated land generally contain thin soil, bare soil, sand, or rocks
Gypsic soil Gyp Areas covered with Gypsisols soil are a fine white powder, crystals, pebbles, and stones formed through dissolution 

from calcium sulfate
Wetlands/sabkhas Wet In-land and near shallow coasts, marshes, mudflats, natural sabkhas, and the in-land are formed by dredging and 

filling
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in Table 2. Between 200 and 500 training sites were identi-
fied in each rectified satellite image. We employed the maxi-
mum likelihood classifier-MLC to produce spectral signa-
tures to classify all the pixels in the image after the training 
sites had been established. Following the first classification, 
a majority filter was used to smooth the classification results 
by reducing noise from the classed raster maps, resulting 
in the final LULC raster maps utilized for further analysis. 
The 1:10,000 Bahrain topographic maps were utilized to 
construct ground signatures for the supervised categoriza-
tion of the 1986 image. For the 1994 supervised classifica-
tion, ground control signatures were created using MrSID 
orthophotos from 1994 and Bahrain topographic maps at a 
scale of 1:10,000. The ground signature was created for the 
2000 Landsat ETM image using high-resolution IKONOS 
2000. The Landsat 2005 ETM image and the Landsat 2013 
OLI image, ASTER 2005 and 2013, were utilized to con-
struct ground signatures. Ground signatures for the Landsat 
2020 OLI were created utilizing Sentinel 2. The six images 
were classified into seven classes, namely built-up/urban 
area (Bul), bare land (Bar), gypsic soil (Gyp), reclaimed 
land (Rec), rock outcrop (Roc), vegetation (Veg) and wet-
lands/sabkhas (Wet) as displayed in Table 2. We then super-
vised all the images using the maximum MLC algorithm 
(Lillesand and Kiefer 1999).

3.6  Accuracy Assessment

The error matrix is the most used technique for determin-
ing accuracy (Congalton and Green 2019). The classifi-
cation accuracy can be evaluated to produce an overall 
measure of the map’s quality, which can then be used to 
compare alternative change detection systems (Foody 
2002). The minimum level of accuracy in interpreting 
remote sensing data to identify LULC classes should be 
at least 85% (Anderson et al. 1976). These standards error 
matrices (accuracy assessment statistics) are computed 
based on the same data references for each image to cal-
culate the components of overall accuracy, user’s accuracy, 
producer’s accuracy, error of commission (EC), error of 
omission (EO), and kappa coefficient. Overall accuracy 
(OA) is the total number of successes compared to the 
total number of samples in the categorized image. It is 
calculated by summing the number of correctly classified 
values and dividing it by the total number of values in the 
confusion matrix in Eq. (1). User’s accuracy (UA) is the 
probability of classified pixel on each map representing the 
actual class on the ground or real-world location (Congal-
ton 1991; Jensen 2005; Campbell 2007) and is calculated 
using Eq. (2). On the other hand, the producer’s accuracy 
(PA) measures the error of omission. It is the probability 
that a reference pixel is classified correctly. It is calculated 
by dividing the number of corrected classified samples 

of a specific category by the total number of reference 
samples using Eq. (3). The error of commission (EC) is 
the proportion of a pixel that is predicted to be in a class, 
but it does not. It is calculated using Eq. (4). The error 
of omission (EO) is the proportion of observed pixels on 
the ground that are not classified on the map, and it cor-
responds to the producer’s accuracy. The kappa coefficient 
(KC) is a measure of the difference between the actual 
agreement between reference data and an automated clas-
sifier and the chance agreement between the reference data 
and a random classifier, expressed using Eq. (5) (Lillesand 
et al. 2015). The percentage of correctly categorized pixels 
is calculated from the percentage expected by chance. It 
measures the difference between the actual agreement and 
chance (random) agreement between the map and the vali-
dation data on the ground (Congalton 2001). The higher 
the classification accuracy of the map, the more valuable 
it is for land administrators and land-use planners. The KC 
(Koc et al. 2012) is a discrete multivariate approach for 
determining the level of agreement or accuracy. Its value 
ranges from −1 to 1. However, it frequently falls between 
0 and 1 (Zanotta 2018):

where r is the rows number in the matrix, xii is the number 
of observations in row i and column i (the diagonal ele-
ments), x+i and xi+ are the marginal totals of row i and col-
umn j, respectively, and N is the observations’ number.

This study used the error matrix (confusion matrix), the 
most efficient accuracy assessment method for the six-time 
period’s MLC raster classified maps: 1986, 1994, 2000, 
2005, 2013, and 2020 (Roy and Inamdar 2019). We used 
this step to quantitatively assess how efficiently the clas-
sified remotely sensed data pixels were sampled into cor-
rected LULC’s category. The resulting classified images 

(1)
OverallAccuracy(OA)

=
Sumofdiagonaltallied(correctlyindentified)

Totalnumberofsamples
× 100

(2)
User�s Accuracy (UA)

=
Samples correctly identified in the row

Row total
× 100

(3)
Producer’sAccuracy (PA)

=
Samples correctly identified in the column

Column total
× 100

(4)
Error ofOmission (EO) =

∑

off Diagonal element of Column

Column Total
× 100

(5)KappaCoeffient (KC) =
N
∑r

i=1
xii −

∑r

i=1
(xi+ × x+1)

N2 −
∑r

i=1
(xi+ × x+1)
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were verified pixel by pixel for the accuracy assessment 
(Keshtkar et al. 2017). The seven classes, Table 2, were 
considered for accuracy assessment with a minimum of 
71 sample points for each defined class, as recommended 
by Congalton (1991). We used the “Equalized stratified 
random” sampling method to create randomly distributed 
points, where each class has the same number of points. 
Four hundred and ninety-seven (497) systematic point 
samples for each classified image were used to test the 
precision by comparing them with specific points from 
the available ancillary data for this study. We calculated 
the confusion error matrix considering an accuracy level 
equal to or above 85% to be an excellent and reliable 
LULC classification as recommended by previous studies 
(Alrababah and Alhamad 2006; Manandhar et al. 2009; 
Koc et al. 2012). We used the confusion matrix for obtain-
ing descriptive and analytical statistics of the classifica-
tion accuracy assessment, as explained in Sup Tables 1–6 
(Foody, 2002; Congalton, 1991; Jensen, 2005).

3.7  Change Detection

Change detection aims to compare the spatial representation 
of two points in time while controlling all variations due to 
differences in the variables of interest (Green et al. 1994). 
The ability to identify changes in the earth’s surface features 
in real-time and with high accuracy lays the groundwork 
for a greater understanding of the linkages and interactions 
between human and natural events, allowing for improved 
resource management and use (Lu et al. 2004). The most 
common data type used to detect changes is geographic data, 
usually in digital forms such as satellite imagery, analog 
format (earlier aerial images), and vector format (maps). 
Other data types, such as historical and economic data, 
can be employed (Singh 1989). Due to the availability of 
massive archival data sets in recent decades, several digital 
change detection algorithms and methodologies for evaluat-
ing and identifying LULC changes have been developed and 
evaluated (Dewidar 2004). These methods and procedures 
have been thoroughly examined, with great descriptions and 
summaries supplied (Haque and Basak 2017). Since digital 
change detection is significantly influenced by the temporal, 
spatial, spectral, and thematic resolutions of remotely sensed 
data, choosing the right change detection approach is criti-
cal for producing accurate findings (Lu et al. 2004). Image 
differencing, image rationing, PCA, CVA, and Post-Classi-
fication Comparison are the most common approaches for 
detecting changes (Xu et al. 2009; Bekalo 2009). The use of 
machine-learning techniques on remotely sensed imageries 
has recently received a lot of consideration (Maxwell et al. 
2018; Adam et al. 2014). LULC classification applications 
have used different machine-learning advanced methods. For 
the supervised classification techniques, many researchers 

used support vector machine (SVM), spectral angle mapper 
(SAM), Mahalanobis distance (MD), random forest (RF), 
fuzzy adaptive resonance theory-supervised predictive 
mapping (Fuzzy ARTMAP), radial basis function (RBF), 
decision tree (DT), multilayer perception (MLP), naive 
Bayes (NB), maximum likelihood classifier (MLC), and 
fuzzy logic (Ma et al. 2019; Shih et al. 2019). The Affinity 
Propagation (AP) cluster method, fuzzy c-means algorithms, 
K-means algorithms, and ISODATA are examples of unsu-
pervised classification approaches (iterative self-organizing 
data) (Maxwell et al. 2018; Camps-Valls et al. 2011). As 
a result, multiple studies on LULC modeling have been 
conducted utilizing various machine-learning techniques 
(Talukdar et al. 2020) and comparing machine-learning 
algorithms (Camargo et al. 2019). In addition, some research 
has been conducted to determine the most appropriate and 
accurate algorithm for LULC mapping among the many 
machine-learning classifiers (Camargo et al. 2019; Jamali 
2019). In this study, we used the GIS-based change detection 
approach, which integrates GIS and remote sensing method 
(Lu et al. 2004) to explore and identify the changes that have 
taken place to the spatial extent and pattern of our study area 
(Gallego 2004). We used GIS because of its ability to incor-
porate a different source of data with different data accura-
cies and formats (Petit and Lambin 2001) for long-period 
intervals into LULC change detection (Lu et al. 2004). This 
approach helps analyze the direction, rate, and spatial pattern 
of LULC changes (Weng 2002). The magnitude of change 
(MC), the percentage of change (PC), and the annual rate of 
change (ARC) of the classified images were calculated based 
on the following equations:

where Ai is the class area  (km2) at the initial time, Af is the 
class area  (km2) at the final time, and (n) is the number of 
years of the study period.

There are different techniques for change detection analy-
sis, and the most common and used ones include post-clas-
sification comparison, image ratio, and manual on-screen 
digitization of change, principal components analysis, image 
regression, conventional image differentiation, and multi-
date image classification (Ayele et al. 2018; Lu et al. 2004). 

(6)MC(km2) = Ai − Af

(7)PC(%) =
Ai − Af

Ai

× 100

(8)ARC(km2year−1) =
Ai − Af

n

(9)ARC(%) =
Ai − Af

Ai × n
× 100
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Fig. 3  Land Use Land Cover (LULC) classes for a 1986, b 1994, c 2000, d 2005, e 2013 and f 2020
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We used the post-classification comparison techniques to 
integrate the six classified images, which were classified 
individually to produce a land cover raster map, Fig. 3a–f, 
Tables  3 and 4. Then, we compared the corresponding 
classes to identify areas where change has occurred (El-
Hattab 2016). We build a series of “from-to” matrixes by 
comparing them on a pixel-by-pixel basis (Jensen 2005; Al-
doski et al. 2013). It involves the overlay (or “stacking”) 
of two or more classified images. Change areas are simply 
those not classified the same at different times. The multi-
date change detection uses a binary mask applied to two 
dates (Jensen 1996; Dobson et al. 1995) and quantifies the 
change rates and magnitude (Ukor et al. 2016). The degree 
of change detection success depends on the accuracy of 
each image classification (Jensen 2005). Many researchers 
utilizing USGS-Landsat achieves data (Islam et al. 2018; 
Matlhodi et al. 2019; Tena et al. 2019; Butt et al. 2015; 
Rawat and Kumar 2015) to undertake post-classification 
technique-based MLC for detecting LULC changes. Pairs 
of the produced classified raster maps of the six dates 
(1986, 1994, 2000, 2005, 2013, and 2020) were compared 
by applying Boolean logical “AND” operation using GIS 
Software. Three matrices were developed to understand 

the changing status and magnitude rate for 1986 to 2005, 
2005 to 2020, and 1986 to 2020, Table 5. In addition, six 
chord diagrams were created using Microsoft Power BI to 
visualize the classified raster maps classes (Fig. 4a–f), and 
three to visualize the changes in the specified temporal dates 
(Fig. 5a–c). In addition, the data presented in Table 5 was 
used to create three-chord diagrams to visualize the changes 
for the specified years in this study: 1986–2005, 2005–2020, 
and 1986–2020 (Fig. 5a–c). These diagrams represent the 
changes in the seven LULC-classes in the study area: recla-
mation, vegetation, built-up, rock outcrop, bare soil, Gypsic 
soil, and wetland from the “initial year” to the “first year.” 
The data in the three tables were reconstructed and added 
to the program to fit the parameters’ criteria. The Chord 
visual offers three fields (From, To, and Values). The data 
from the initial year go into the first field (From), the data 
from the first year (year of change) go into the second field 
(To), and the change between classes goes into the third field 
(Values). Finally, the Chord diagram is displayed accord-
ing to the parameters selected visually (Data Visualization | 
Microsoft Power BI, n.d.; Ferrari and Russo 2016). Different 
researchers have employed Chord-Diagram, as a graphical 
approach for visualizing the inter-relationships between data 

Table 3  LULC area by class 
and its percentage to the total 
area  (km2) 1986–2020

1986 1994 2000 2005 2013 2020

Total area in  km2 and %

Class Area % Area % Area % Area % Area % Area %

Reclaimed 41.6 6.0 131.4 18.6 54.2 7.6 34.9 4.8 52.8 6.9 64.1 8.2
Vegetation 78.4 11.2 55.4 7.8 83.2 11.6 64.6 8.8 62.2 8.1 54.4 6.9
Built-up 87.7 12.6 102.5 14.5 112.1 15.6 143.2 19.6 190.9 24.8 312.2 39.8
Rock outcrop 33.0 4.7 19.0 2.7 24.3 3.4 17.6 2.4 21.8 2.8 18.9 2.4
Bare soil 288.9 41.4 205.4 29.1 266.5 37.2 208.1 28.4 163.7 21.2 301.1 38.4
Gypsic soil 57.8 8.3 38.6 5.5 81.8 11.4 42.9 5.9 58.6 7.6 6.3 0.8
Wetland/sabkhas 110.8 15.9 154.6 21.9 94.7 13.2 220.7 30.2 220.8 28.6 27.3 3.5
Total 698.2 100 706.8 100 716.8 100 731.9 100 770.9 100 784.4 100

Table 4  LULC classes in 1986, 2005, and 2020 and the spatio-temporal changes of the study area

1986 2005 2020 Change 1986–2005 Change 2005–2020 Change 1986–2020 Annual rate of 
change 1986–2020

LULC classes Area  (km2) Area  (km2) % Area  (km2) % Area  (km2) % Area  (km2) %

Reclaimed 41.6.0 34.9 64.1 −6.66 16.01 29.2 83.67 22.54 35.16 0.66 −1.59
Vegetation 78.38 64.6 54.4 −13.76 17.56 −10.17 15.74 −23.93 43.99 −0.70 −0.90
Built-up 88.00 143.2 312.2 55.5 63.07 169.05 118.05 224.54 71.92 6.60 7.49
Rock outcrop 33.00 17.6 18.9 −15.47 46.88 1.36 7.73 −14.11 74.66 −0.42 −1.26
Bare soil 289.00 208.1 301.1 −80.84 27.97 93.05 44.71 12.22 4.06 0.36 0.12
Gypsic soil 57.80 42.9 6.3 −14.9 25.78 −36.6 85.31 −51.5 817.46 −1.51 −2.62
Wetland/sabkhas 110.80 220.7 27.3 109.99 99.27 −193.4 87.63 −83.41 305.53 −2.45 −2.22
Total area 698.20 731.9 784.4 – – – – – – – –
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in building the transition matrices (e.g., Chen et al. 2017; 
Ferrara et al. 2021; Kacem et al. 2021; Xiao et al. 2021; 
Siddique et al. 2020; Vinatier and Arnaiz 2018; Viana and 
Rocha 2020).

4  Results and Discussion

4.1  Accuracy Assessment

We used six confusion matrices to assess the classification 
accuracy in this study. Sup Tables 1–6 indicate that the 
image classification achieved satisfying accuracy results. 
The OA of the classified images was 88.73, 89.54, 89.13, 
88.93, 90.34, and 95.77% for the temporal dates 1986, 1994, 
2000, 2005, 2013, and 2020, respectively, thus ascertain-
ing that the classification was within the excellent range 
according to Anderson et al. (1976), as he indicated that 
the minimum accuracy value for reliable LC-classifica-
tion is 85%. The KA reached 86.85, 87.79, 87.32, 87.09, 
88.73, and 95.07% for 1986, 1994, 2000, 2005, 2013, and 
2020, individually. The results of the seven classes for all 
the temporal times have excellent individual user’s accu-
racy ranges between 80% and more than 94% for 1986. The 
user’s accuracy for all the classes is outstanding except for 
the “Rock outcrop,” about 80.28%, and “Gypsic soil,” which 
is 81.69%. In 1994, the UA ranged from 73% to more than 
97%, and the results indicate that the “Vegetated” surfaces 

were most accurately classified (97.18). The less accurate 
class is “Reclaimed” land, 73.24%. In 2000, the UA ranged 
between 70 and 100%. The 2000 classified image results 
indicate that the “Vegetated” and “Rock outcrop” surfaces 
were most accurately classified (95.77%). The less accurate 
class is Gypsic, which is 83.1%. The 2005 classified image 
results indicate that the “Vegetation” surface revealed that 
UA reached 95.55%, while all the other classes of UA ranged 
between 83.1% and 87.32%. The UA of 2013 and 2020 
Landsat8 OLI-classified images ranged between 91.55% and 
98.59% and 87.32 and 100%, respectively. The producer’s 
accuracy (PA) has a nearly excellent result for all class-clas-
sified images. In 1986, the PA ranged between 76.47 and 
100%. In addition, the results indicate that the “Reclaimed 
area” surfaces were most accurately classified (100%). The 
less accurate class is “Bare Land” land, 76.47%. In 1994, 
the PA ranged between 68% and more than 98.39%. Further-
more, the results indicate that the “Gypsic soils” surfaces 
were most accurately classified (98.39). The less accurate 
class is the “Bare land” area, 68%. The 2000 classified image 
results indicate that the “Rock outcrop.” Moreover, “Gypsic 
soils” surfaces were most accurately classified (100%). The 
less accurate class is the built-up area, which is 77.11%. 
The 2005 classified image results indicate that the “Gypsic 
soils” surface revealed a PA up to 96.72%, while all the other 
classes of PA ranged between 77.78 and 95.24%. The UA 
of 2013 and 2020 Landsat8 OLI-classified images ranged 
between 93.15 and 100% and 92.65 and 100%, respectively.

Table 5  LULC-classes change 
detection for 1986–2005, 2005–
2020, and 1986–2020  (km2)

LULC classes Period Rec Veg Bul Roc Bar Gyp Wet

Reclamation (Rec) 1986–2005 −6.7 1.1 12.3 0.2 5.6 4.2 14.1
2005–2020 29.2 0.7 25 0.2 1.8 0.1 0.4
1986–2020 22.5 1.3 18.2 0.1 18 0.6 1.0

Vegetation (Veg) 1986–2005 0.5 −13.8 16.9 0.0 0.1 1.5 16.1
2005–2020 0.5 −10.2 26.7 0.0 0.6 0.0 0.6
1986–2020 1.0 −23.9 43.6 0.0 1.6 0.0 0.5

Built-up area (Bul) 1986–2005 3.4 6.4 55.5 0.1 3.8 1.8 11.8
2005–2020 3.2 4.8 169 0.0 1.8 0.0 0.5
1986–2020 2.0 4.1 241.7 0.0 9.0 0.2 0.7

Rock outcrop (Roc) 1986–2005 1.8 0.1 2.0 −15.5 11.9 0.4 1.9
2005–2020 2.1 0.0 6.3 1.4 2.8 0.0 0.0
1986–2020 3.8 0.2 12.3 −14.1 7.5 0.1 0.1

Bare soil area (Bar) 1986–2005 3.1 3.5 21.3 1.5 −80.8 12.3 78.9
2005–2020 4.9 1.1 25.8 12 93.1 0.1 0.3
1986–2020 6.5 5.4 60.8 9.3 12.2 1.6 3.1

Gypsic soil (Gyp) 1986–2005 1.7 4.4 7.5 0.5 6.3 −14.9 19.6
2005–2020 2.1 0.8 7.6 0 25.8 −36.6 1.5
1986–2020 3.7 4.5 23.9 0.4 20.4 −51.5 1.2

Wetland/sabkhas (Wet) 1986–2005 3.1 5.4 14.4 0.4 12.1 5.0 110.0
2005–2020 14.6 9.5 64.9 0.4 102.5 0.8 −193.4
1986–2020 8.4 5.5 35.4 0.0 40.3 0.1 −83.4



797Detecting and Assessing the Spatio‑Temporal Land Use Land Cover Changes of Bahrain Island During…

1 3Published in partnership with CECCR at King Abdulaziz University

Fig. 4  Chord diagrams visualize the total area of LULC-classes and the total area, by  km2 for a 1986, b 1994, c 2000, d 2005, e 2013, and f 2020

Fig. 5  a–c Chord diagrams explain the total area of LULC-classes transition by  km2 during for a 1986–2005, b 2005–2020, and c 1986–2020
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4.2  LULC Classified Maps

The six classified raster maps were used to reach the objec-
tives of LULC change detection in this study. Table 3, 
Fig. 3a–f, and chord diagram Fig. 4a–f explicate the result 
of the six classified raster maps of 1986, 1994, 2000, 2005, 
2013, and 2020 in detail. The chord diagram represents flows 
(connections) between the seven classes of LULC (reclama-
tion, vegetation, built-up, rock outcrop, bare soil, gypsic soil, 
and wetland/sabkhas). A fragment on the outer part of the 
circular layout represents each class in the chord diagram, 
and then arcs are drawn between each class. The size of the 
arc is proportional to the significance of the change. The 
results of the 1986 LULC classified image Fig. 3a shows 
that Bare soil dominates a total area (41.4%), followed by 
wetland and sabkhas (15.9%), as illustrated in Fig. 4a. The 
built-up area covered 12.6% of the total area. More than 
78  km2 of vegetation covered the ground, accounting for 
11.2% of the total land surface. The rock outcrop takes up 
the minor land, accounting for only 4.7% of the total area. 
The 1994 LULC classified map results are demonstrated in 
Table 3, Figs. 3b, and 4b; the bare soil dominates a total 
area (29.1%), followed by wetland and sabkhas (21.9%). the 
built-up area covered 14.5% of the total area. More than 
55.4  km2 of vegetation covered the ground, accounting for 
7.8% of the total land surface. The rock outcrop takes up a 
minor land area, accounting for only 2.7% of the total area. 
In 2000, the results of the classified image Figs. 3c and 4c 
indicated that the rock outcrop covers a minor part of the 
total area, which is 3.4% or 24.3  km2. Bare soil covers a 
significant part of the total area, 37.2% (266.5  km2), whereas 
the wetland and sabkhas cover 13.2% (94.7  km2). The built-
up area covers about (15.6%) 112.1  km2 of the total area. 
The reclaimed area covers the smallest amount of land, 
accounting for only 7.6% of the total area. According to the 
classification results of 2005, Figs. 3d and 4d, wetland and 
sabkhas account for 30.2% of the total area or 220.7  km2. 
Bare soil class accounts for 28.4% (208.1  km2) of the entire 
area. Nonetheless, the built-up area covers 19.6% (143.2 
 km2) of the land. Vegetation land covers 8.8% of the total 
land area (64.6  km2). The smallest class is the gypsic soils, 
which make up 5.9% of the total land area (42.9  km2). In the 
2013 classified image results, Figs. 3e and 4e, the land area 
was covered by 28.6% wetland and sabkhas (220.8  km2), fol-
lowed by built-up land (190.9  km2, 24.8% of the total area). 
The bare soil covered 21.2% or 163.7  km2. The reclaimed 
area covered 6.9% or 52.8  km2 of the total area. The LULC 
classes for 2020, Fig. 3f, indicate that the built-up land and 
bare soil area almost occupied the same total area of 312.2 
and 301.1  km2, which account for 39.8% and 38.4% of the 
total area, respectively, Fig. 4f. On the other hand, the gypsic 
soils occupied the minor area this year and reached 0.8% or 
6.3  km2 of the total area.

4.3  LULC Change Detection

The spatial analysis was conducted to assess the patterns 
of LC-change and overall LU-changes from 1986 to 2020. 
The LULC-classes of the study area were reclaimed, veg-
etation, built-up, rock outcrop, bare land, gypsic soils, 
and wetland/sabkhas. We designated three critical years: 
the starting year of the study, 1986, the mid-year 2005 
(approximately), and 2020. The change detection analysis 
concentrated on three periodic times by creating three area 
matrices from 1986–2005 and 2005–2020, and the whole 
period of the temporal study dates from 1986 to 2020. The 
changing patterns were depicted using chord diagrams. 
Table 4 illustrates the LULC classes in 1986, 2005, and 
2020 for each class, the total area, and the spatio-temporal 
changes in the study area for the last 34 years. In addition, 
three chords’ diagrams, Fig. 5a–c presents the changes 
from 1986–2005, 2005–2020, and 1986–2020. The total 
area of Bahrain has been increased by about 86  km2 from 
1986 to 2020. Dredging and reclaiming the islands’ shal-
low water areas added nearly 33.8 and 52  km2 to the total 
land area between 1986 and 2005 and 2005 and 2020. The 
LULC change detection for the last 34 years in Bahrain 
revealed that the “Built Up” areas increased, whereas 
gypsic soils, rock outcrop areas, wetland/Sabkhas, and 
vegetation decreased, Table 4. Comparing the statistics of 
1986 and 2005 (19 years) reveals that there is a decline in 
reclaimed, vegetation, rock outcrop, bare soil, and gypsic 
soil areas by 66.6, 13.76, 15.47, 80.84, and 14.90  km2, 
respectively, while there is an increase in built-up areas 
by 55.50  km2. Between 2005 and 2020 (15 years), the 
changes indicate a decline in wetland/sabkhas, Gypsic soil, 
and vegetation areas by 193.40, 36.60, and 10.17  km2, 
respectively. The built-up area has grown to reach 169.05 
 km2. The changes in the last 34 years indicate that the 
built-up area is the most dominant category-class. From 
1986 to 2020, the built-up area increased from 88  km2 
(12.6%) in 1986 to 224.54  km2 (39.8%) of the total area 
of Bahrain land in 2020, respectively. The wetland/sab-
khas, gypsic soils, vegetation, and rock outcrop have lost 
83.41, 51.50, 23.93, and 14.11  km2. The produced change 
maps and matrices were used to understand the changing 
status and magnitude rate for 1986–2005, 2005–2020, and 
1986–2020.

Table 4 shows that four LULC classes have registered 
a negative annual change from 1986 to 2020. The veg-
etation, rock outcrop, gypsic soil, and wetland/sabkhas 
classes have recoded loss annually by −0.70, −0.42, 
−1.51, and −2.45  km2, respectively. The annual rate of 
change (ARC) of these classes were −1.59, −0.90, −1.26, 
−2.26, and −2.22%, respectively, for the same period. The 
built-up and bare soil gain was annually 6.6 and 0.36  km2, 
respectively, and their annual rate of change was 7.49 and 
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0.12%, respectively. Built-up areas have registered the 
highest annual growth rate. The wetland/sabkhas regis-
tered the lowest annual growth rate in the last 34 years.

4.3.1  LULC Change Detection from 1986 to 2005

Table 5 and Fig. 5a depict LULC change transitions from 
1986 to 2005. The LULC class is stated in terms of  km2. 
Most changes in the classes’ category between 1986 and 
2005 were in negative values except for built-up and 
wetland/sabkhas classes. The reclaimed areas converted 
mostly to wetland (14.1  km2). During this period, the veg-
etation class lost 13.8  km2 and converted mainly to built-
up. Furthermore, the rock outcrop class area lost 15.5  km2, 
which converted to bare soil in 2005. 78.9  km2 of the bare 
soil lands changed to wetlands in 2005, and 19.6  km2 of 
the wetlands in 2005 were Gypsic soil in 1986. Moreo-
ver, 14.4  km2 of the wetland in 1986 converted to built-up 
areas in 2005. Around 11.8  km2 of the built-up area in 
1986 became wetland areas in 2005 (reconstruction of new 
urban area). The chord diagram transitions are colorized 
to see how LULC-classes changed from 1986 to 2005. In 
1986, the dominant classes were bare soils, wetland/sab-
khas, and built-up areas, while in 2005, the bare soil area 
lost more than 80  km2. The change detection from 1986 to 
2005 indicates the shifting to the built-up area and reduc-
tion in vegetation land; however, the wetland/sabkhas were 
still the dominant class in 2005.

4.3.2  LULC Change Detection from 2005 to 2020

Table 5 and Fig. 5b describe the LULC-classes change 
transitions from 2005 to 2020. Three classes’ category 
changes were negative, which means loss of wetland/sab-
khas, Gypsic, and vegetation. The built-up, bare soils and 
reclamation classes increased in the area. Reclaimed areas 
have become mostly built-up areas; at least 25  km2 from 
the reclaimed areas have been converted to built-up class. 
The vegetation class lost 10.2  km2 and converted mainly to 
built-up. The rock-outcrop class area lost 6.30  km2, which 
converted to bare soil in 2020. 25.8  km2 of the bare soil 
lands were changed to built-up areas by 2020, 102.5  km2 
of the wetland in 2005 have converted to bare soil areas, 
and around 64.9  km2 became built-up areas by 2020. The 
chord diagram visualizes the transitions of LULC-classes 
changes from 2005 to 2020. In 2005, the dominant classes 
were wetland/sabkhas, bare soils, and built-up areas. The 
chord diagram shows the reduction in vegetation land. The 
change detection from 2005 to 2020 indicates that the shift-
ing to the built-up area has become dominant. Built-up area 
is equal to 20% of the country’s total area in 2005.

4.4  LULC Change Detection from 1986 to 2020

Table 5 and Fig. 5c depict the LULC-classes change tran-
sitions from 1986 to 2020. Most changes in the classes’ 
category between 1986 and 2020 were directed to built-up 
areas. The reclaimed areas were converted mostly to built-
up and wetlands/sabkhas, and 18.2 and 18  km2 were added 
to these classes. The vegetation class lost 43.6  km2, which 
converted mainly to built-up areas. The rock outcrop class 
area lost 14.1  km2, which converted mainly to bare soil in 
2005. 60.8  km2 of the bare soil areas changed to built-up by 
2020. In addition, 23.9 and 34.4  km2 from the gypsic soil 
wetland/sabkhas were added to built-up areas. 12.3  km2 of 
the rock outcrop areas in 1986 converted to built-up areas 
by 2020. Around 83.4  km2 of the wetland/sabkhas area in 
1986 was lost. The change detection from 1986 to 2020 indi-
cates the shifting of most LULC-classes to the built-up area 
and the reduction in vegetation and wetland/sabkhas land in 
the last 34 years. The change detection from 1986 to 2005 
indicates the shifting to the built-up area and the reduction 
in vegetation land.

5  Conclusions

This study integrated remote sensing and GIS to quantify 
and analyze the LULC changes in Bahrain’s main islands 
over 34 years from 1986 to 2020. Moreover, LULC changes 
between 1986, 2005, and 2020 were demonstrated and visu-
alized using statistics and chord diagrams. Furthermore, the 
identified seven LULC-classes revealed substantial change 
patterns in the study area. LULC-changes were determined 
using six multitemporal Landsat satellite imagery, and the 
classification accuracy was measured using the confusion 
matrix. The overall classification accuracy was acceptable. 
Conferring to the quantitative evidence from our study, Bah-
rain Island has witnessed significant land use and land cover 
changes since 1986. The study results showed a significant 
change in the LULC during the study period. During the 
study period, the built-up areas showed an increasing trend 
of 7.5% annually, while the Gypsic, wetland/sabkhas, and 
vegetation showed a decreasing trend of 2.26, 2.22, and 
0.9%, respectively. The changes in LULC were effectively 
captured by the remote sensing Landsat satellite sensors 
with different spectral, spatial, and temporal resolutions with 
GIS analysis. The change detection analysis using GIS and 
remote sensing delivers valuable information to understand 
the annual patterns of land use dynamics for planners and 
decision-makers; therefore, sustainable land management 
planning is possible. The expansion of the built-up area in 
the study area was mainly at the expense of vegetation and 
wetland/sabkhas lands. The results indicate that the built-
up area covered more than 40% of Bahrain’s main islands 
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land. For the environment’s long-term sustainability, LULC 
changes should be constantly monitored in the future. More-
over, Landsat TM5, ETM+7, and OLI8 images archives and 
the newly invented remote sensing satellite imagery should 
be used to create and monitor accurate maps of LULC 
changes in Bahrain.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s41748- 022- 00315-z.

Funding The authors have not disclosed any funding.

Declarations 

Conflict of interest The corresponding author states that there is no 
conflict of interest on behalf of all the authors.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Adam E, Mutanga O, Odindi J, Abdel-Rahman EM (2014) Land-use/
cover classification in a heterogeneous coastal landscape using 
RapidEye imagery: evaluating the performance of random for-
est and support vector machines classifiers. Int J Remote Sens 
35(10):3440–3458

Al-doski J, Mansor SB, Zulhaidi Mohd Shafri H (2013) Change detec-
tion process and techniques. Civil Environ Res 3(10):37–46

Allen TR, Wang Y, Crawford TW (2013) Remote sensing of land cover 
dynamics. Treatise on geomorphology, vol 3. Elsevier, Amster-
dam, pp 80–102

Alrababah MA, Alhamad MN (2006) Land use/cover classification 
of arid and semi-arid Mediterranean landscapes using Landsat 
ETM. Int J Remote Sens 27(13):2703–2718

Anderson JR, Hardy EE, Roach JT, Witmer RE (1976) A land use 
and land cover classification system for use with remote sensor 
data. U.S. Geological Survey Professional Paper, No. 964. USGS, 
Washington, D.C. https:// pubs. usgs. gov/ pp/ 0964/ report. pdf

Ayele GT, Tebeje AK, Demissie SS, Belete MA, Jemberrie MA, 
Teshome WM et al (2018) Time series land cover mapping and 
change detection analysis using geographic information system 
and remote sensing, Northern Ethiopia. Air Soil Water Res 
11:1178622117751603

Bekalo MT (2009) Spatial metrics and Landsat data for urban landuse 
change detection in Addis Ababa, Ethiopia (p. 89). Doctoral dis-
sertation. https:// run. unl. pt/ bitst ream/ 10362/ 5403/1/ TGEO0 008. 
pdf

Berlanga-Robles CA, Ruiz-Luna A (2002) Land use mapping and 
change detection in the coastal zone of northwest Mexico using 
remote sensing techniques. J Coastal Res 18(3):514–522

Bramhe VS, Ghosh SK, Garg PK (2018) Extraction of built-up areas 
using convolutional neural networks and transfer learning from 
sentinel-2 satellite images. Int Arch Photogramm Remote Sens 
Spatial Inf Sci 42(3):79–85

Butt A, Shabbir R, Ahmad SS, Aziz N (2015) Land use change map-
ping and analysis using Remote Sensing and GIS: A case study 
of Simly watershed, Islamabad, Pakistan. Egypt J Remote Sens 
Space Sci 18(2):251–259

Camargo FF, Sano EE, Almeida CM, Mura JC, Almeida T (2019) 
A comparative assessment of machine-learning techniques for 
land use and land cover classification of the Brazilian tropical 
savanna using ALOS-2/PALSAR-2 polarimetric images. Remote 
Sens 11(13):1600

Campbell JB (2007) Introduction to remote sensing, 4th edn. The Guil-
ford Press, New York

Camps-Valls G, Benediktsson JA, Bruzzone L, Chanussot J (2011) 
Introduction to the issue on advances in remote sensing image 
processing. IEEE J Sel Top Signal Process 5(3):365–369

Chander G, Markham BL, Helder DL (2009) Summary of current radi-
ometric calibration coefficients for Landsat MSS, TM, ETM+, 
and EO-1 ALI sensors. Remote Sens Environ 113(5):893–903. 
https:// doi. org/ 10. 1016/j. rse. 2009. 01. 007

Chen T, Peng L, Wang Q, Liu S (2017) Measuring the coordinated 
development of ecological and economic systems in Hengduan 
Mountain area. Sustainability 9(8):1270. https:// doi. org/ 10. 3390/ 
su908 1270

CIO. (1986–2013). Central Information Authority, Kingdom of the 
Navy. http:// www. cio. gov. bh/ cioeng/ defau lt. aspx

Cohen WB, Goward SN (2004) Landsat’s role in ecological applica-
tions of remote sensing. Bioscience 54(6):535–545

Congalton RG (1991) A review of assessing the accuracy of classifica-
tions of remotely sensed data. Remote Sens Environ. https:// doi. 
org/ 10. 1016/ 0034- 4257(91) 90048-B

Congalton RG (2001) Accuracy assessment and validation of remotely 
sensed and other spatial information. Int J Wildland Fire 10(3–
4):321–328. https:// doi. org/ 10. 1071/ wf010 31

Congalton R, Green K (2019) Assessing the accuracy of remotely 
sensed data: principles and practices, 3rd edn. Taylor and Fran-
cis, London

Da Costa SMF, Cintra JP (1999) Environmental analysis of metro-
politan areas in Brazil. ISPRS J Photogramm Remote Sens 
54(1):41–49

DeMers MN (2008) Fundamentals of geographic information systems, 
4th edn. Wiley, Hoboken

Dewidar KM (2004) Detection of land use/land cover changes for the 
northern part of the Nile delta (Burullus region), Egypt. Int J 
Remote Sens 25(20):4079–4089

Dobson MC, Ulaby FT, Pierce LE (1995) Land-cover classification 
and estimation of terrain attributes using synthetic aperture radar. 
Remote Sens Environ 51(1):199–214. https:// doi. org/ 10. 1016/ 
0034- 4257(94) 00075-X

Duan Y, Wang X, Wei Y (2020) Land use change analysis of Daishan 
Island using multi-temporal remote sensing imagery. Arab J 
Geosci 13:741. https:// doi. org/ 10. 1007/ s12517- 020- 05513-5

El-Hattab MM (2016) Applying post classification change detection 
technique to monitor an Egyptian coastal zone (Abu Qir Bay). 
Egypt J Remote Sens Space Sci 19(1):23–36

Epstein J, Payne K, Kramer E (2002) Techniques for mapping sub-
urban sprawl. Photogramm Eng Remote Sens 68(9):913–918

EROS (2021) Earth Resources Observation and Science (EROS) 
Center. https:// www. usgs. gov/ cente rs/ eros/ data

Feng D, Yu L, Zhao Y, Cheng Y, Xu Y, Li C, Gong P (2018) A 
multiple dataset approach for 30-m resolution land cover 

https://doi.org/10.1007/s41748-022-00315-z
http://creativecommons.org/licenses/by/4.0/
https://pubs.usgs.gov/pp/0964/report.pdf
https://run.unl.pt/bitstream/10362/5403/1/TGEO0008.pdf
https://run.unl.pt/bitstream/10362/5403/1/TGEO0008.pdf
https://doi.org/10.1016/j.rse.2009.01.007
https://doi.org/10.3390/su9081270
https://doi.org/10.3390/su9081270
http://www.cio.gov.bh/cioeng/default.aspx
https://doi.org/10.1016/0034-4257(91)90048-B
https://doi.org/10.1016/0034-4257(91)90048-B
https://doi.org/10.1071/wf01031
https://doi.org/10.1016/0034-4257(94)00075-X
https://doi.org/10.1016/0034-4257(94)00075-X
https://doi.org/10.1007/s12517-020-05513-5
https://www.usgs.gov/centers/eros/data


801Detecting and Assessing the Spatio‑Temporal Land Use Land Cover Changes of Bahrain Island During…

1 3Published in partnership with CECCR at King Abdulaziz University

mapping: a case study of continental Africa. Int J Remote 
Sens 39(12):3926–3938. https:// doi. org/ 10. 1080/ 01431 161. 
2018. 14520 73

Ferrara A, Biró M, Malatesta L, Molnár Z, Mugnoz S, Tardella FM, 
Catorci A (2021) Land-use modifications and ecological implica-
tions over the past 160 years in the central Apennine mountains. 
Landsc Res. https:// doi. org/ 10. 1080/ 01426 397. 2021. 19229 97

Ferrari A, Russo M (2016) Introducing Microsoft power BI. Microsoft 
Press, Washington

Foody GM (2002) Status of land cover classification accuracy assess-
ment. Remote Sens Environ 80(1):185–201

Forget Y, Linard C, Gilbert M (2017) Automated supervised classifi-
cation of Ouagadougou built-up areas in Landsat scenes using 
OpenStreetMap. In 2017 Joint Urban Remote Sensing Event 
(JURSE), pp. 1–4. IEEE. https:// ieeex plore. ieee. org/ abstr act/ 
docum ent/ 79245 71

Franklin J (1995) Predictive vegetation mapping: geographic modelling 
of biospatial patterns in relation to environmental gradients. Prog 
Phys Geogr 19(4):474–499

Gallego FJ (2004) Remote sensing and land cover area estimation. Int 
J Remote Sens 25(15):3019–3047. https:// doi. org/ 10. 1080/ 01431 
16031 00016 19607

Ghosh S, Siddique G (2018) Change detection of built up areas apply-
ing built-up index for Chandannagar city. Int J Technol Res 
Manag 5(4):1–7

Green L, Fry AF, Myerson J (1994) Discounting of delayed rewards: 
a life-span comparison. Psychol Sci 5(1):33–36. https:// doi. org/ 
10. 1111/j. 1467- 9280. 1994. tb006 10.x

Guerschman JP, Paruelo JM, Bella CD, Giallorenzi MC, Pacin F (2003) 
Land cover classification in the Argentine Pampas using multi-
temporal Landsat TM data. Int J Remote Sens 24(17):3381–3402. 
https:// doi. org/ 10. 1080/ 01431 16021 00002 1288

Haque MI, Basak R (2017) Land cover change detection using GIS and 
remote sensing techniques: a spatio-temporal study on Tanguar 
Haor, Sunamganj, Bangladesh. Egypt J Remote Sens Space Sci 
20(2):251–263. https:// doi. org/ 10. 1016/j. ejrs. 2016. 12. 003

Harris PM, Ventura SJ (1995) The integration of geographic data with 
remotely sensed imagery to improve classification in an urban 
area. Photogramm Eng Remote Sens 61(8):993–998

Hegazy IR, Kaloop MR (2015) Monitoring urban growth and land 
use change detection with GIS and remote sensing techniques 
in Daqahlia governorate Egypt. Int J Sustain Built Environ 
4(1):117–124. https:// doi. org/ 10. 1016/j. ijsbe. 2015. 02. 005

Hurskainen P, Adhikari H, Siljander M, Pellikka PKE, Hemp A (2019) 
Auxiliary datasets improve accuracy of object-based land use/
land cover classification in heterogeneous savanna landscapes. 
Remote Sens Environ 233:111354. https:// doi. org/ 10. 1016/j. rse. 
2019. 111354

Information and eGovernment Authority (2018) Bahrain open data por-
tal. Central Organization Statistics. https:// www. iga. gov. bh/ en/

Information and eGovernment Authority (2020) Bahrain open data por-
tal. Central Organization Statistics. https:// www. iga. gov. bh/ en/

Islam K, Jashimuddin M, Nath B, Nath TK (2018) Land use classifi-
cation and change detection by using multi-temporal remotely 
sensed imagery: The case of Chunati wildlife sanctuary, Bang-
ladesh. Egypt J Remote Sens Space Sci 21(1):37–47. https:// doi. 
org/ 10. 1016/j. ejrs. 2016. 12. 005

Jacquin A, Misakova L, Gay M (2008) A hybrid object-based clas-
sification approach for mapping urban sprawl in periurban envi-
ronment. Landsc Urban Plan 84(2):152–165. https:// doi. org/ 10. 
1016/j. landu rbplan. 2007. 07. 006

Jamali A (2019) Evaluation and comparison of eight machine learn-
ing models in land use/land cover mapping using Landsat 8 
OLI: a case study of the northern region of Iran. SN Appl Sci 
1(11):1–11

Jansen LJM, Di Gregorio A (2004) Obtaining land-use information 
from a remotely sensed land cover map: results from a case study 
in Lebanon. Int J Appl Earth Obs Geoinf 5(2):141–157. https:// 
doi. org/ 10. 1016/j. jag. 2004. 02. 001

Jensen JR (1996) Introductory digital image processing: a remote sens-
ing perspective, 2nd edn. Prentice Hall, Upper Saddle River

Jensen JR (2005) Introductory digital image processing: a remote sens-
ing perspective, 3rd edn. Prentice Hall, Upper Saddle River

Jensen JR, Cowen DC (1999) Remote sensing of urban/suburban 
infrastructure and socio-economic attributes. Photogramm Eng 
Remote Sens 65:611–622

Kacem HA, Maanan M, Rhinane H (2021) The value of carbon seques-
tration and storage in coastal habitats areas in North West of 
Morocco. In E3S Web of Conferences, vol. 240. EDP Sciences. 
https:// doi. org/ 10. 1051/ e3sco nf/ 20212 40010 03

Keshtkar H, Voigt W (2016) A spatiotemporal analysis of landscape 
change using an integrated Markov chain and cellular automata 
models. Model Earth Syst Environ 2(1):1–13

Koc D, Ikiel C, Atalay A, Ustaoglu B (2012) Land use and land cover 
(LULC) classification using spot-5 image in the Adapazari plain 
and its surroundings, Turkey. Online J Sci Technol 2:37–42

Lillesand TM, Kiefer RW (1999) Remote sensing and image interpreta-
tion, 4th edn. Wiley, Hoboken

Lillesand T, Kiefer RW, Chipman J (2015) Remote sensing and image 
interpretation, 7th edn. Wiley, Hoboken

Lu D, Weng Q (2009) Extraction of urban impervious surfaces from an 
IKONOS image. Int J Remote Sens 30(5):1297–1311

Lu D, Mausel P, Brondizio E, Moran E (2004) Change detection tech-
niques. Int J Remote Sens 25(12):2365–2401. https:// doi. org/ 10. 
1080/ 01431 16031 00013 9863

Lu D, Hetrick S, Moran E (2010) Land cover classification in a com-
plex urban-rural landscape with QuickBird imagery. Photo-
gramm Eng Remote Sens 76(10):1159–1168

Ma L, Liu Y, Zhang X, Ye Y, Yin G, Johnson BA (2019) Deep learn-
ing in remote sensing applications: a meta-analysis and review. 
ISPRS J Photogramm Remote Sens 152:166–177

Macleod RD, Congalton RG (1998) A quantitative comparison 
of change-detection algorithms for monitoring eelgrass 
from remotely sensed data. Photogramm Eng Remote Sens 
64(3):207–216

Manandhar R, Odeh IO, Ancev T (2009) Improving the accuracy of 
land use and land cover classification of Landsat data using post-
classification enhancement. Remote Sens 1(3):330–344

Matlhodi B, Kenabatho PK, Parida BP, Maphanyane JG (2019) 
Evaluating land use and land cover change in the Gaborone 
dam catchment, Botswana, from 1984–2015 using GIS and 
remote sensing. Sustainability 11(19):5174. https:// doi. org/ 10. 
3390/ su111 95174

Maxwell AE, Warner TA, Fang F (2018) Implementation of machine-
learning classification in remote sensing: an applied review. Int 
J Remote Sens 39(9):2784–2817

Mesaiqer ARA, Al-Zayani AK (2008) The environment in the King-
dom of Bahrain is real and challenging, 1st edn. Bahrain Cen-
tre for Studies and Research, Manama Kingdom (In Arabic)

Mollicone D, Achard F, Eva H, Belward AS, Federici S, Lumicisi A, 
et al. (2003) Land use change monitoring in the Framework of 
the UNFCCC and its Kyoto Protocol: report on current capabili-
ties of satellite remote sensing technology. European Communi-
ties, Luxembourg. EUR, 20867

Ndehedehe CE, Oludiji SM, Asuquo IM (2013) Supervised learning 
methods in the mapping of built up areas from Landsat-based 
satellite imagery in part of Uyo Metropolis. N Y Sci J 6(9):45–52

Petit CC, Lambin EF (2001) Integration of multi-source remote sens-
ing data for land cover change detection. Int J Geogr Inf Sci 
15(8):785–803. https:// doi. org/ 10. 1080/ 13658 81011 00744 83

https://doi.org/10.1080/01431161.2018.1452073
https://doi.org/10.1080/01431161.2018.1452073
https://doi.org/10.1080/01426397.2021.1922997
https://ieeexplore.ieee.org/abstract/document/7924571
https://ieeexplore.ieee.org/abstract/document/7924571
https://doi.org/10.1080/01431160310001619607
https://doi.org/10.1080/01431160310001619607
https://doi.org/10.1111/j.1467-9280.1994.tb00610.x
https://doi.org/10.1111/j.1467-9280.1994.tb00610.x
https://doi.org/10.1080/0143116021000021288
https://doi.org/10.1016/j.ejrs.2016.12.003
https://doi.org/10.1016/j.ijsbe.2015.02.005
https://doi.org/10.1016/j.rse.2019.111354
https://doi.org/10.1016/j.rse.2019.111354
https://www.iga.gov.bh/en/
https://www.iga.gov.bh/en/
https://doi.org/10.1016/j.ejrs.2016.12.005
https://doi.org/10.1016/j.ejrs.2016.12.005
https://doi.org/10.1016/j.landurbplan.2007.07.006
https://doi.org/10.1016/j.landurbplan.2007.07.006
https://doi.org/10.1016/j.jag.2004.02.001
https://doi.org/10.1016/j.jag.2004.02.001
https://doi.org/10.1051/e3sconf/202124001003
https://doi.org/10.1080/0143116031000139863
https://doi.org/10.1080/0143116031000139863
https://doi.org/10.3390/su11195174
https://doi.org/10.3390/su11195174
https://doi.org/10.1080/13658810110074483


802 S. S. Aljenaid et al.

1 3 Published in partnership with CECCR at King Abdulaziz University

Rawat JS, Kumar M (2015) Monitoring land use/cover change using 
remote sensing and GIS techniques: a case study of Hawalbagh 
block, district Almora, Uttarakhand, India. Egypt J Remote Sens 
Space Sci 18(1):77–84. https:// doi. org/ 10. 1016/j. ejrs. 2015. 02. 002

Rogan J, Chen D (2004) Remote sensing technology for mapping and mon-
itoring land-cover and land-use change. Prog Plan 61(4):301–325

Roy A, Inamdar AB (2019) Multi-temporal Land Use Land Cover 
(LULC) change analysis of a dry semi-arid river basin in 
western India following a robust multi-sensor satellite image 
calibration strategy. Heliyon 5(4):e01478. https:// doi. org/ 10. 
1016/j. heliy on. 2019. e01478

Shih HC, Stow DA, Tsai YH (2019) Guidance on and comparison 
of machine learning classifiers for Landsat-based land cover 
and land use mapping. Int J Remote Sens 40(4):1248–1274

Siddique MA, Dongyun L, Li P, Rasool U, Khan TU, Farooqi TJA 
et al (2020) Assessment and simulation of land use and land 
cover change impacts on the land surface temperature of 
Chaoyang District in Beijing, China. PeerJ 8:e9115. https:// 
doi. org/ 10. 7717/ peerj. 9115

Singh A (1989) Review article digital change detection techniques 
using remotely sensed data. Int J Remote Sens 10(6):989–1003

Talukdar S, Singha P, Mahato S, Praveen B, Rahman A (2020) 
Dynamics of ecosystem services (ESs) in response to land use 
land cover (LU/LC) changes in the lower Gangetic plain of 
India. Ecol Ind 112:106121

Tena TM, Mwaanga P, Nguvulu A (2019) Impact of land use/land 
cover change on hydrological components in Chongwe River 
Catchment. Sustainability 11(22):6415. https:// doi. org/ 10. 
3390/ su112 26415

Tewabe D, Fentahun T (2020) Assessing land use and land cover 
change detection using remote sensing in the Lake Tana Basin, 
Northwest Ethiopia. Cogent Environ Sci 6(1):1778998. https:// 
doi. org/ 10. 1080/ 23311 843. 2020. 17789 98

Ukor CD, Ogbole J, Alaga A (2016) Analysis of land use land cover 
change in Ikeja, Lagose State. Nigeria using remote sensing 
and Gis techniques. Int J Sci Technol 5(10):462–472

Ulbricht KA, Heckendorff WD (1998) Satellite images for recogni-
tion of landscape and landuse changes. ISPRS J Photogramm 
Remote Sens 53(4):235–243. https:// doi. org/ 10. 1016/ S0924- 
2716(98) 00006-9

UNdata (2021) A world of information. Popular Statistical Table, Coun-
try (Area) and Regional Profiles. 2 Population, Surface Area and 
Density. United Nations Statistics Division. http:// data. un. org/_ 
Docs/ SYB/ PDFs/ SYB64_1_ 202110_ Popul ation ,% 20Sur face% 
20Area% 20and% 20Den sity. pdf. Accessed 3 January 2022

UNDP (2018) Bahrain Human Development Report 2018: Pathways to 
Sustainable Economic Growth in Bahrain. United Nations Devel-
opment Programme 2021. https:// www. bh. undp. org/ conte nt/ 
bahra in/ en/ home/ libra ry/ human_ devel opment/ Bahra in_ Human_ 
Devel opment_ Report_ 2018. html

UPDA (2022) A New Strategy for a Brighter Future. Urban Planning 
and Development Authority. Kingdom of Bahrain. https:// upda. 
gov. bh/ en/ categ ory/ map- of- bahra in- natio nal- detail- land- use- 
plan, https:// upda. gov. bh/ Media/ Zonni ngMap pings/ 20190 90808 
31200 93_ tpb0a 222_ qfj. pdf, https:// www. arcgis. com/ apps/ webap 
pview er/ index. html? id= b4f12 e4d50 4b4f7 daa4e d7743 548d7 1a, 
https:// upda. gov. bh/ en/ categ ory/ capit al- gover norate

Viana CM, Rocha J (2020) Evaluating dominant land use/land cover 
changes and predicting future scenario in a rural region using 
a memoryless stochastic method. Sustainability 12(10):4332. 
https:// doi. org/ 10. 3390/ su121 04332

Vigneshwaran S, Kumar SV (2018) Extraction of built-up area using 
high resolution sentinel-2a and google satellite imagery. Inter-
national Archives of the Photogrammetry, Remote Sensing & 
Spatial Information Sciences, 42. https:// pdfs. seman ticsc holar. 
org/ a456/ f6308 b9363 12b1f c42b9 9e92d 81751 ef5946. pdf

Vinatier F, Arnaiz AG (2018) Using high-resolution multitemporal 
imagery to highlight severe land management changes in Medi-
terranean vineyards. Appl Geogr 90:115–122. https:// doi. org/ 10. 
1016/j. apgeog. 2017. 12. 003

Wang SW, Gebru BM, Lamchin M, Kayastha RB, Lee WK (2020) 
Land use and land cover change detection and prediction in the 
Kathmandu district of Nepal using remote sensing and GIS. 
Sustainability 12(9):3925. https:// doi. org/ 10. 3390/ su120 93925

Weng Q (2002) Land-use change analysis in the Zhujiang Delta of 
China using satellite remote sensing, GIS, and stochastic mod-
eling. J Environ Manage 64(3):273–284

Wu Q, Li H, Wang R, Paulussen J, He Y, Wang M, Wang B, Wang Z 
(2006) Monitoring and predicting land use change in Beijing 
using remote sensing and GIS. Landsc Urban Plan 78(4):322–
333. https:// doi. org/ 10. 1016/j. landu rbplan. 2005. 10. 002

Wulder MA, White JC, Goward SN, Masek JG, Irons JR, Herold M, 
Cohen WB, Loveland TR, Woodcock CE (2008) Landsat con-
tinuity: Issues and opportunities for land cover monitoring. 
Remote Sens Environ 112(3):955–969. https:// doi. org/ 10. 1016/j. 
rse. 2007. 07. 004

Xiao J, Shen Y, Ge J, Tateishi R, Tang C, Liang Y, Huang Z (2006) 
Evaluating urban expansion and land use change in Shijiazhuang, 
China, by using GIS and remote sensing. Landsc Urban Plan 
75(1–2):69–80. https:// doi. org/ 10. 1016/j. landu rbplan. 2004. 12. 005

Xiao D, Niu H, Guo J, Zhao S, Fan L (2021) Carbon storage change anal-
ysis and emission reduction suggestions under land use transition: 
a case study of Henan Province, China. Int J Environ Res Public 
Health 18(4):1844. https:// doi. org/ 10. 3390/ ijerp h1804 1844

Xu H (2007) Extraction of urban built-up land features from Landsat 
imagery using a thematic oriented index combination technique. 
Photogramm Eng Remote Sens 73(12):1381–1391

Xu L, Zhang S, He Z, Guo Y (2009) The comparative study of three 
methods of remote sensing image change detection. In 2009 17th 
International Conference on Geoinformatics, 1–4. IEEE.

Yu L, Wang J, Gong P (2013) Improving 30 m global land-cover 
map FROM-GLC with time series MODIS and auxiliary 
data sets: a segmentation-based approach. Int J Remote Sens 
34(16):5851–5867

Yuan F, Sawaya KE, Loeffelholz BC, Bauer ME (2005) Land cover 
classification and change analysis of the Twin Cities (Minnesota) 
Metropolitan Area by multitemporal Landsat remote sensing. 
Remote Sens Environ 98(2–3):317–328

Zanotta DC, Zortea M, Ferreira MP (2018) A supervised approach for 
simultaneous segmentation and classification of remote sensing 
images. ISPRS J Photogramm Remote Sens 142:162–173

Zha Y, Gao J, Ni S (2003) Use of normalized difference built-up index 
in automatically mapping urban areas from TM imagery. Int J 
Remote Sens 24(3):583–594

Zhang J, Li P, Wang J (2014) Urban built-up area extraction from 
Landsat TM/ETM+ images using spectral information and mul-
tivariate texture. Remote Sens 6:7339–7359. https:// doi. org/ 10. 
3390/ rs608 7339

Zhu Z, Gallant AL, Woodcock CE, Pengra B, Olofsson P, Loveland 
TR, Jin S, Dahal D, Yang L, Auch RF (2016) Optimizing selec-
tion of training and auxiliary data for operational land cover 
classification for the LCMAP initiative. ISPRS J Photogramm 
Remote Sens 122:206–221. https:// doi. org/ 10. 1016/j. isprs jprs. 
2016. 11. 004

Zoungrana BJ, Conrad C, Amekudzi LK, Thiel M, Da ED, Forkuor G, 
Löw F (2015) Multi-temporal Landsat images and ancillary data 
for land use/cover change (LULCC) detection in the Southwest 
of Burkina Faso, West Africa. Remote Sens 7(9):12076–12102

Zsuzsanna D, Bartholy J, Pongracz R, Barcza Z (2005) Analysis of 
land-use/land-cover change in the Carpathian region based on 
remote sensing techniques. Phys Chem Earth 30:109–115

https://doi.org/10.1016/j.ejrs.2015.02.002
https://doi.org/10.1016/j.heliyon.2019.e01478
https://doi.org/10.1016/j.heliyon.2019.e01478
https://doi.org/10.7717/peerj.9115
https://doi.org/10.7717/peerj.9115
https://doi.org/10.3390/su11226415
https://doi.org/10.3390/su11226415
https://doi.org/10.1080/23311843.2020.1778998
https://doi.org/10.1080/23311843.2020.1778998
https://doi.org/10.1016/S0924-2716(98)00006-9
https://doi.org/10.1016/S0924-2716(98)00006-9
http://data.un.org/_Docs/SYB/PDFs/SYB64_1_202110_Population,%20Surface%20Area%20and%20Density.pdf
http://data.un.org/_Docs/SYB/PDFs/SYB64_1_202110_Population,%20Surface%20Area%20and%20Density.pdf
http://data.un.org/_Docs/SYB/PDFs/SYB64_1_202110_Population,%20Surface%20Area%20and%20Density.pdf
https://www.bh.undp.org/content/bahrain/en/home/library/human_development/Bahrain_Human_Development_Report_2018.html
https://www.bh.undp.org/content/bahrain/en/home/library/human_development/Bahrain_Human_Development_Report_2018.html
https://www.bh.undp.org/content/bahrain/en/home/library/human_development/Bahrain_Human_Development_Report_2018.html
https://upda.gov.bh/en/category/map-of-bahrain-national-detail-land-use-plan
https://upda.gov.bh/en/category/map-of-bahrain-national-detail-land-use-plan
https://upda.gov.bh/en/category/map-of-bahrain-national-detail-land-use-plan
https://upda.gov.bh/Media/ZonningMappings/20190908083120093_tpb0a222_qfj.pdf
https://upda.gov.bh/Media/ZonningMappings/20190908083120093_tpb0a222_qfj.pdf
https://www.arcgis.com/apps/webappviewer/index.html?id=b4f12e4d504b4f7daa4ed7743548d71a
https://www.arcgis.com/apps/webappviewer/index.html?id=b4f12e4d504b4f7daa4ed7743548d71a
https://upda.gov.bh/en/category/capital-governorate
https://doi.org/10.3390/su12104332
https://pdfs.semanticscholar.org/a456/f6308b936312b1fc42b99e92d81751ef5946.pdf
https://pdfs.semanticscholar.org/a456/f6308b936312b1fc42b99e92d81751ef5946.pdf
https://doi.org/10.1016/j.apgeog.2017.12.003
https://doi.org/10.1016/j.apgeog.2017.12.003
https://doi.org/10.3390/su12093925
https://doi.org/10.1016/j.landurbplan.2005.10.002
https://doi.org/10.1016/j.rse.2007.07.004
https://doi.org/10.1016/j.rse.2007.07.004
https://doi.org/10.1016/j.landurbplan.2004.12.005
https://doi.org/10.3390/ijerph18041844
https://doi.org/10.3390/rs6087339
https://doi.org/10.3390/rs6087339
https://doi.org/10.1016/j.isprsjprs.2016.11.004
https://doi.org/10.1016/j.isprsjprs.2016.11.004

	Detecting and Assessing the Spatio-Temporal Land Use Land Cover Changes of Bahrain Island During 1986–2020 Using Remote Sensing and GIS
	Abstract
	1 Introduction
	2 Study Area
	3 Methodology
	3.1 Data Acquisition
	3.2 Ancillary Data
	3.3 LULC Classes Definition
	3.4 Image Preprocessing
	3.5 Image Classification
	3.6 Accuracy Assessment
	3.7 Change Detection

	4 Results and Discussion
	4.1 Accuracy Assessment
	4.2 LULC Classified Maps
	4.3 LULC Change Detection
	4.3.1 LULC Change Detection from 1986 to 2005
	4.3.2 LULC Change Detection from 2005 to 2020

	4.4 LULC Change Detection from 1986 to 2020

	5 Conclusions
	References




