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Abstract
COVID-19 is a highly contagious respiratory disease that can be infected through human exhaled breath. Human breath 
analysis is an attractive strategy for rapid diagnosis of COVID-19 in a non-invasive way by monitoring breath biomarkers. 
Mass spectrometry (MS)-based approaches offer a promising analytical platform for human breath analysis due to their 
high speed, specificity, sensitivity, reproducibility, and broad coverage, as well as its versatile coupling methods with dif-
ferent chromatographic separation, and thus can lead to a better understanding of the clinical and biochemical processes 
of COVID-19. Herein, we try to review the developments and applications of MS-based approaches for multidimensional 
analysis of COVID-19 breath samples, including metabolites, proteins, microorganisms, and elements. New features of 
breath sampling and analysis are highlighted. Prospects and challenges on MS-based breath analysis related to COVID-19 
diagnosis and study are discussed.
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1 Introduction

Coronavirus disease (COVID-19) is an infectious disease 
can be infected through person-to-person transmission by 
human exhaled breath when an infected person coughing, 
sneezing, or exhaling [1–3]. Human exhaled breath is a kind 
of bioaerosol (i.e., exhaled breath aerosol, EBA) containing 
water, volatile organic compounds (VOCs), droplets which 
can dissolve various non-volatile metabolites, salts, proteins, 
and microorganisms such as bacterial and viral particles. 
EBA is a significant source of coronavirus (SARS-CoV-2) 
emission because EBA can suspend in the contaminated 
air and cause infection by respiration action [4]. Diagnos-
ing COVID-19 now mainly depends on polymerase chain 
reaction (PCR) technique [5], which is highly expected to 
be the most reliable test for diagnosing COVID-19 by the 
genomic identification of SARS-CoV-2. Theoretically, the 
limit of PCR is a single molecule, since PCR is a molecular 

technology that can exponentially amplify a fragment of 
nucleic acid, making PCR as a powerful tool for identify-
ing special nucleic acid sequences. During PCR testing, 
coronavirus should be collected from specimen swab for 
RNA extraction and transcription to diagnose COVID-19 
[6]. Although PCR technique is effective and sensitive for 
diagnosing COVID-19, many limitations such as sampling 
quality, sample pretreatment, and tedious result time were 
frequently reported in practice applications. False-negative 
results of PCR detection drive the new development of other 
supportive analytical methods for diagnosing COVID-19 
[6–19]. To improve the accuracy of COVID-19 diagnosis, 
different clinical samples such as blood, urine, feces, saliva, 
and breath are considered for screening viruses or/and virus-
specific metabolites [20–29], which are also expected to pro-
vide new insight into the health impact of COVID-19 [30].

Mass spectrometry (MS) is a powerful analytical tool 
for investigating genomics, proteomics, metabolomics, and 
microbiomics of human diseases, due to its unique advan-
tages including sensitivity, specificity, and speed [31–33]. 
MS-based technologies are powerful analytical tools to 
investigate COVID-19 disease [34, 35]. Different MS 
approaches with various sampling, separation, and ioniza-
tion techniques, such as gas chromatography (GC), liquid 
chromatography (LC), and inductively couple plasma (ICP), 
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and matrix-assisted laser desorption/ionization (MALDI), 
can be used in omics research, biomarker discovers, quali-
tative and quantitative detection [36]. Particularly, ambi-
ent ionization (AI)-MS (e.g., paper spray [37]; desorption 
electrospray ionization, DESI) [38], and direct ionization 
(DI)-MS techniques (e.g., proton transfer reaction, PTR) 
[17], have been used for diagnosing COVID-19, and other 
direct ionization/sampling methods using direct sampling/
ionization with medical swab [39, 40] also show potential 
for COVID-19 studies. Significant MS-based metabolomic 
and proteomic studies on COVID-19-related human body 
fluids have been achieved [30, 41–47].

Considering the respiratory properties of COVID-19, 
analyzing human EBA profiles is useful in clinical and 
pathologic studies on COVID-19 [48]. Breath sampling 
technologies combining with MS methods with great 
potentials have been emerged. Multifarious analytes in 
human breath samples can be easily introduced or col-
lected by well-designed devices for online or offline anal-
ysis. Breath samples including exhaled breath condensate 
(EBC), VOCs, and EBA are commonly analyzed by MS-
based approaches. A variety of MS-based methods on the 
advances of breath analysis have been developed, some 
of which have been successfully used for diagnosis and 
research of COVID-19. Undoubtedly, MS-based breath 
analysis could provide a better diagnosis and understand-
ing of COVID-19. Thus, this paper will review and pros-
pect the MS-based multidimensional analysis of human 
breath samples for diagnosis and research of COVID-19, 

including small organic molecules, inorganic constitu-
ents, biomacromolecules and microorganisms. The future 
opportunities and challenges of these MS-based methods 
will be discussed.

2  MS‑Based Multidimensional Breath 
Analysis

Compared to other COVID-19 diagnostic techniques, MS-
based multidimensional analysis of human breath samples 
has many advantages, including total noninvasiveness, 
in vivo, easy operation, good analytical performances and 
applicability, as summarized in Tables 1 and 2. Breath analy-
sis has the potential of complementary of human body fluid 
analysis. EBC and EBA are commonly collected for MS 
diagnosis of various human diseases (Table 3). Particularly, 
metabolites, proteins, salts, and microorganisms could be 
exhaled from humans, and could provide abundant bio-
logical and clinical information for better understanding of 
COVID-19. Therefore, MS-based human breath analysis 
can be roughly divided into five categories according to the 
dimensions of analyte properties (Fig. 1): (1) DI-MS analysis 
of EBA using online sampling methods, (2) GC–MS analysis 
of volatile metabolites, (3) LC–MS analysis of non-vola-
tile metabolites and proteins, (4) MALDI-MS analysis of 
proteins and microorganisms, (5) ICP-MS analysis of trace 
elements. These MS-based multidimensional technology 

Table 1  Different methods for diagnosing COVID-19

Diagnostic methods Samples Analysis time Cost Performances References

RT-PCR Nasopharyngeal and throat swab, 
feces

3–4 h High Sensitivity: 97.2% (sputum); 
62.3% (saliva); 73.3%

[8]

Loop-mediated isothermal ampli-
fication

Throat swabs 30–60 min Medium LOD: 118.6 copies of SARS-
CoV-2 RNA per 25 μL

[9]

High-throughput automated 
sequencing

Oropharyngeal swab, blood, 
serum, plasma

1–2 days High / [10]

Lateral flow immunoassay Blood, serum, plasma  < 15 min Low Sensitivity: 88.66%; specificity: 
90.63%

[6, 11]

Enzyme-linked immunosorbent 
assay

Blood, serum, plasma 1–5 h Low Sensitivity: 97.1%; specificity: 
97.5%;

Accuracy: 97.3%

[12]

Colloidal Gold-Immunochroma-
tographic assay

Plasma 10 min Low Sensitivity: 82.4%; specificity: 
100%

[13]

CRISPR-Cas12-based lateral flow 
assay

Nasopharyngeal or oropharyngeal 
swabs

 ~ 30 min Low LOD: 10 copies/μL, Sensitivity: 
90%; specificity: 100%

[14]

Computed tomography scan Human body (lung)  < 1 h High Sensitivity: ~ 95 to 100% [8, 15]
Biosensor Respiratory and blood samples  ~ 2 h Low Sensitivity: 86.43–93.75%; speci-

ficity: 90.63–100%
[16]

Mass spectrometry Breath, blood, serum, plasma, 
urine, nasopharyngeal and 
throat swab

 ~ 5 min High Accuracy: 93%, specificity: 
85.7–100%

[17–19]
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platforms (Table 2) could provide a feasible avenue and 
comprehensive bioinformation of EBA that towards to 
COVID-19 diagnosis and research.

2.1  DI‑MS

The DI-MS and AI-MS analyses of EBA can be combined to 
one dimension here for its applicable to direct breath analysis 

Table 2  MS-based approaches for diagnosis and investigation of COVID-19

MS methods Samples Analytes Sensitivity and specificity References

DI-MS Breath VOCs Sensitivity: 90%, accuracy: 93%, Specificity: 94% by PTR-MS [17]
Nasal swabs SARS-CoV-2 Diagnostic accuracy: 86.7% and 84% for DESI-MS and LD-REIMS, 

respectively
[38]

Lysed cell Lipids 93.3% correlation to the PCR classification by PS-MS [37]
GC–MS Feces Metabolites COVID-19-altered fecal metabolites were correlated with clinical 

features, serum metabolites and gut microbes
[27]

Breath VOCs Sensitivity: 68%; specificity: 85.7%, positive predictive value (PPV): 
89.5%, negative predictive value (NPV): 60%

[19]

Blood serum VOCs Sensitivity: 94%; specificity: 83% [29]
LC–MS Urine Proteins COVID-19 pathophysiology related molecular alterations could be 

detected
[20]

Nasopharyngeal swabs Proteins LOD: 9 ×  10–13 g, relationship was observed between summed MS 
peak intensities for SARS-CoV-2 proteins and Ct values reflecting 
the abundance of viral RNA

[21]

Saliva Proteins Identifies unique peptides originating from SARS-CoV-2 nucleopro-
tein

[45]

MALDI-MS Nasopharyngeal swabs Proteins Sensitivity: 61.76%; accuracy: 67.66%, specificity: 71.72% [22]
Plasma Proteins Sensitivity: 87.50%; accuracy: 93.10%; specificity: 100% [18]
Residual nasal swab Proteins Two models were identified, exhibiting accuracy of 98.3%, positive 

percent agreement (PPA) of 100%, negative percent agreement 
(NPA) of 96%, and accuracy of 96.6%, PPA of 98.5%, and NPA of 
94%, respectively

[23]

Nasal swabs SARS-CoV-2 Accuracy: 93.9% with 7% false positives and 5% false negatives [24]
Serum Serum peptidome Sensitivity: 98%, accuracy: 99%, specificity: 100% [25]

ICP-MS Blood Metals and metalloids Whole blood iron, age, and sex were determined to be independ-
ent factors associated with the disease severity, while chromium, 
cadmium, and the comorbidity of cardiovascular disease were 
determined to be independent factors associated with the mortality

[26]

Urine Trace elements Urinary creatinine-adjusted copper of ≥ 25.57 μg/g and ≥ 99.32 μg/g 
were associated with significantly increased risk of severe illness 
and fatal outcome in COVID-19, respectively

[28]

Table 3  Breath sampling 
methods for EBA and EBC

Breath samples Sampling methods References

EBA Collecting into endotracheal tube [17]
Extracting or adsorbing onto SPME fiber [55]
Collecting into heated sampling tube [67, 68]
Collecting into a  Mylar® bag [69–71]
Collecting into a  Teflon®-bulb/Tedlar bags [72–74]
Collecting into a Bio-VOC® tube [75]
Direct introducing using heated PEEK capillary [76]

EBC Collecting into RTube kit (stored at − 80 °C) [78–80]
Collecting into TURBO-DECCS collection device (− 5.5 °C) [81]
Collecting into EcoScreen device (condensed at − 20 °C, stored at  

− 80 °C)
[82–84]

Collecting into portable condenser at − 5 °C [85, 86]
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without pre-collection and preparation of breath samples. 
Under DI-MS analysis, EBA sample is directly introduced 
from human mouth into the ionization region for direct MS 
analysis. Several outstanding articles described the direct 
MS analysis of human breath samples, e.g., PTR-MS [49], 
selecting ion flow tube mass spectrometry (SIFT-MS) [50], 
extractive electrospray ionization mass spectrometry (EESI-
MS) [51], secondary electrospray ionization mass spectrom-
etry (SESI-MS) [52], and other MS techniques [53]. These 
DI-MS techniques are well-established methods for direct 
breath analysis. Due to the continuous and non-invasive 
introduction of gaseous breath sample, breath analysis has 
great clinical potential to allow direct, real-time, in vivo, and 
online analysis of small metabolites. These unique features 
of direct MS analysis make it an attractive analytical tool for 
rapid diagnosis of COVID-19.

Grassin-Delyle et al. [17] applied PTR-MS for detecting 
breath VOCs. Breath samples were directly introduced from 
COVID-19 patients to MS via a heated transfer line. MS 
data were analyzed by multivariate analysis strategy with 
principal component analysis (PCA) and machine-learning 
algorithms with different mathematical backgrounds, includ-
ing orthogonal partial least-squares discriminant analysis 
(OPLS-DA), linear support vector machine, elastic net, and 
random forest (RF). PCA and OPLS-DA plots showed that 
breath fingerprints of COVID-19 were associated with a 
specific signature (Fig. 2). Some VOCs have been proposed 
as the biomarkers for discriminating COVID-19 and non-
COVID-19 cases. This work showed that direct MS analysis 
of breath VOCs from patients with COVID-19 could obtain 
an accuracy of 93%, which might inspire to new develop-
ment of online methods for large-scale COVID-19 screening.

The direct MS methods are mainly based on online breath 
introduction. However, the concentration of VOCs in EBA 
presents differences ranging from parts per million (ppm) to 
parts per trillion (ppt) even lower. Therefore, the concentra-
tion of VOCs in breath samples should be higher than the 
detection limit of MS methods. In spite of a highly efficient 
sample introduction, ionization, and detection in direct MS 

methods, many volatile biomarkers at extremely low concen-
trations could be undetectable. Therefore, collecting exhaled 
volatiles and EBC is still highly required to provide suffi-
cient samples to extract biomarkers for offline MS analysis 
[54]. The collected breath samples also allow the couple 
with direct/ambient MS for enhanced detection of analytes 
from EBA. Solid-phase microextraction (SPME) technique 
is commonly used for VOCs sampling for MS analysis. For 
example, Yuan et al. [55] demonstrated the collection and 
enrichment of numerous breath metabolites from EBA using 
facemask-based microextraction technique (SPME-in-mask) 
followed by detection using MS with ambient ionization 
and GC–MS (Fig. 3). The unique feature of facemask-based 
SPME-MS of EBA is that the breath sampling process was 
separated from the MS detection in time and space. Wear-
able facemask sampling also is convenient for a long-time 
sampling even many hours in daily life, enabling enrich-
ment of ultrarace VOCs. In addition, facemask could also 
protect humans from air pollutants in the ambient during 
the sampling process [55]. These new features have practi-
cal relevance for diagnosing COVID-19, because the breath 
sample is not easily handling due to their infectiousness.

2.2  GC–MS

GC–MS is a universal analytical platform, due to its excel-
lent robustness, selectivity, sensitivity, reproducibility, sep-
aration capability, and comprehensive database [56, 57]. 
Exhaled breath volatiles are largely composed of inorganic 
volatiles such as  NH3,  N2,  O2,  H2O,  CO2, and trace VOCs. 
Breath volatiles can be originated from endogenous metabo-
lites (generated by respiratory tract and internal organ sys-
tems and their microbiomes) and exogenous VOCs (gener-
ated by food, drugs, and environment and their metabolites). 
Thus, measurement of breath volatiles can gain an insight 
into the biochemical processes of human body. Pathogenic 
viruses such as COVID-19 may produce special volatiles 
serving as biomarkers.

Although inorganic volatiles is a main part of exhaled 
metabolites, however, a few studies have been conducted 
to assess the possible relationship between inorganic vola-
tiles and metabolic characteristics of COVID-19. Aldhaleei 
et al. [58] reported a new case of hepatitis B virus reac-
tivation caused by COVID-19, showing a higher level of 
ammonia (74 mmol/L) than the reference value (reference: 
16–60 mmol/L). This finding could inspire measurements 
of exhaled inorganic volatiles using GC–MS system. VOCs 
are usually required to be collected into a gas bag or gas bot-
tle for subsequentially GC–MS analysis (Table 3). GC–MS 
analysis of breath VOC and blood metabolites has been pro-
posed for COVID-19 diagnosis and research [29, 59–61]. To 
improve biomarker discovery, SPME and needle trap device 

Exhaled Breath

COVID-19

VOCs

Metabolites

Proteins

Microorganisms

Elements

GC-MS

LC-MS

MALDI-MS

ICP-MS

DI-MS

Multidimensional
Analysis

Fig. 1  MS-based multidimensional analysis of human breath with 
COVID-19
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techniques were also proposed to couple with GC–MS for 
enhanced breath analysis in COVID-19 research [55, 61–63].

The recent emergence of portable GC–MS equipment 
could further improve the capability of COVID-19 diagno-
sis as it can be easily moved for onsite testing as needed. 
A Hexin portable GC–MS 2000 (weighing 19 kg with bat-
tery) can analyze breath samples within 15 min of start-
ing up, provide a fast analysis less than 4 min (Fig. 3) and 
have a long continuous monitoring time over 2 h and battery 
standby time over 4 h. Furthermore, the availability of breath 
sampling, the SPME-in-mask (wearable facemask micro-
extraction) [55], has been developed for direct coupling 
with GC–MS for breath sampling and analysis. The port-
able GC–MS can be programmed to monitor biomarkers for 
non-specialist users and allow onsite sampling and analysis. 
This breath analysis based on potable SPME-MS would be a 
huge step forward in molecular medicine. Thus, rather than 
shipping samples (e.g., medical swab), the portable GC–MS 

can be used for not only onsite sampling and analyzing of 
COVID-19 but also other human diseases in the community, 
school, hospital, etc.

2.3  LC–MS

EBC contains a variety of non-volatile organic compounds 
and biological matrices that are potential clinical sources 
for providing valuable biochemical information about respir-
atory diseases [48, 64]. Compared to EBA sampling, there 
are many methods for EBC sampling (Table 3). LC–MS is 
commonly used for analyzing organic and biological com-
pounds and protein digestion from EBC [65, 66]. Various 
key factors may significantly affect the results of EBC sam-
pling, as listed in Table 3. Unlike collecting VOCs and non-
volatiles in EBA sampling under normal-temperature [17, 
55, 67–76], the main factor of EBC sampling is that water 
vapor, metabolites, and bioparticles from exhaled samples 
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a b

c d

Fig. 2  Representative MS data process methods for COVID-19 diagnosis: a PCA, b OPLS-DA, c complete mode with three machine-learning 
algorithms, d model with the most important features only. Adapted from [17] with permission
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were condensed into a cold collector under a low temperature 
(below zero degrees centigrade) [77–86]. Numerous special 
metabolites have been studied based on LC–MS approaches. 
Proteins could also be biomarkers of respiratory diseases 
[78, 87–89]. Optimistically, LC–MS, therefore, have been 
proposed to COVID-19 diagnosis and research that could 
bring new insight into biological impact of COVID-19 [48, 
60]. Various breath sampling systems (Table 3) have been 
successfully developed for collecting EBC [90]. Because of 
the low concentration of organic metabolites in EBC, further 
sample preparation preconcentration of breath components 
is usually required before LC–MS analysis. Lyophilization 
has been proposed as the best preconcentration option for a 
metabolic analysis of EBC [48].

Although breath proteins are easily collected by EBC 
sampling, breath proteomics analysis is difficult to inves-
tigate because of the extremely low concentration and 
complex biometrics. Previous studies on breath proteomics 
were usually conducted by protein collection, lyophiliza-
tion, matrix removal, and in-solution/gel digestion before 
LC–MS/MS analysis [78, 87, 88]. Most experiments were 
performed using pooled EBC samples to improve protein 
detection and proteome coverage. For example, Bredberg 
et al. [89] applied LC–MS system to characterize protein 

composition of endogenous EBA from pooled samples 
from six (3000 L exhaled air) and ten (4400 L exhaled 
air) healthy donors, respectively. It was found that various 
proteins could be shared by blood and bronchoalveolar lav-
age proteins, such as albumin, serotransferrin, surfactant 
protein A, α1-antitrypsin, and immunoglobulins. Lacombe 
et al. [87] further performed LC–MS-based proteomics 
characterization of pooled samples of EBC. Detailed bio-
informatics analysis of 153 proteins showed that most of 
the proteins identified corresponded to proteins secreted in 
the respiratory tract (e.g., lung and bronchi). A comparison 
study indicated that protein composition can be influenced 
by EBC sampling method [87]. These results revealed that 
EBC sampling method (Table 3) is one of the key factors 
for LC–MS-based proteomics and metabolomics study. 
A long-time and comfortable breath sampling would be 
beneficial to EBC collection. A facemask-based wearable 
microextraction device can performed breath sampling for 
several hours [55]. Although further studies and improve-
ments are needed, EBC sampling coupled with LC–MS 
strategy may constitute a powerful tool for investigating 
breath proteomics and breath metabolomics of COVID-19, 
and thus support biomarker discovery and provide new 
biomedical knowledge.

Fig. 3  Representative MS-related approaches towards to COVID-19 
study: a SPME fiber and SPME holders, b facemask-SPME breath 
sampling, c ambient SPME-MS analysis, d benchtop SPME–GC–MS 

analysis, e potable SPME–GC–MS analysis. a-c are adapted from 
[55] with permission
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2.4  MALDI‑MS

Given the fact that SARS-CoV-2 can be spread through 
breath droplets, direct identifying SARS-CoV-2 from breath 
samples is highly needed [91, 92]. MALDI-MS is an effec-
tive analytical tool for identifying microorganisms, includ-
ing bacteria, fungi, and viruses, for its high accuracy, mass 
range, and tolerance of mixtures [93–97]. Under MALDI-
MS, identifying microbes is performed by matching pep-
tide mass fingerprinting of unknown organisms or by bio-
markers of unknown organisms with the protein, peptide, 
and nucleic acid sequence database. Human coronavirus 
screening using MALDI-MS can trace back to a previous 
work by Xiu and co-workers in 2017 [98], the time before 
the COVID-19 outbreak. This work established a screening 
platform for screening pharyngeal and/or anal swab sam-
ples collected from human patients, bats, and rodents. The 
results obtained by MALDI-MS showed good concordance 
with those results by metagenomic analysis. Recently, many 
outstanding studies on versatile applications of MALDI-
MS for clinical diagnosis or molecular medicine research 
of COVID-19 have been achieved [18, 22–25]. MALDI-
MS system could be used for accurately screening known 
coronaviruses to provide pathophysiological evidence for 
emerging unknown human coronaviruses. Like LC–MS 
analysis, a minimum amount of microbial concentration 
is also required for MALDI-MS identification. Due to the 
low concentration of virus in breath samples, collection 
and preconcentration (i.e., lyophilization) of EBA and EBC 
are also required [83, 84]. Virus-specific proteins/nucleic 
acids in nasopharyngeal swab samples, plasma, or serum 
could be analyzed by MALDI-MS. A challenging task is 
that MALDI-MS analysis is based on the known coronavi-
rus sequence, which is difficult to identify a new virus. MS 
data analysis and process for identifying microorganisms is 
another challenging task. Database development, multivari-
ate analysis, artificial intelligence, and machine learning are 
promising data tools for diagnosing and predicting human 
diseases like COVID-19.

2.5  ICP‑MS

Constitution, distribution, and dynamics of trace elements in 
human body have increasingly become key clinical informa-
tion in medicine. Trace elements could serve as biomarkers 
for diagnosing human disease [99]. ICP-MS is a powerful 
analytical technique to measure elements at trace levels in 
human tissues, body fluids, and exhaled breath samples 
for better understanding of medical conditions [99]. It is 
reported that severe cases of COVID-19 patients experi-
enced an imbalance of mineral status [100, 101]. Thus, the 
balance of mineral status in body fluids and exhaled breath 
of COVID-19 patients might be significantly influenced 

through a yet-to-be-discovered bioinorganic mechanism. 
Zeng et al. [26, 28] applied ICP-MS to determinate vari-
ous elements, including Mn, Ca, Cr, Mn, Fe, Cu, Zn, As, 
Cd, Hg, Tl, Pb, and others from COVID-19 and non-severe 
COVID-19 patients’ body fluids. These studies revealed that 
significant variations of elements associated with the disease 
development of COVID-19 can be performed using ICP-MS.

The variation of trace elements in breath samples of 
COVID-19 patients is still unclear. ICP-MS characteriza-
tion of trace elements in breath samples associated with 
COVID-19 as novel biomarkers is highly expected to bet-
ter understand the underlying bioinorganic processes of 
COVID-19. Various previous investigations have shown that 
trace elements in breath samples are detectable to explore 
the patients’ variations using ICP-MS [85, 86]. These studies 
demonstrated the feasibility of ICP-MS for detecting trace 
elements in breath samples of COVID-19. Like other offline 
MS analysis, collection, and preparation of trace elements in 
breath samples (e.g., EBC, EBA) are usually required before 
ICP-MS analysis. Compared with other MS-based methods, 
the unique feature of ICP-MS is that COVID-19 could gain 
new insight at atomic dimension. Therefore, point-of-care 
treatment (e.g., micronutrient supplement) of COVID-19 
would be a new strategy based on the elemental changes 
associated with the bioinorganic process in the future.

3  Conclusions and Prospects

Currently, PCR testing is still the golden standard for diag-
nosing COVID-19. There is still a demand to develop new 
methods for COVID-19 diagnosis and research. MS-based 
multidimensional analytical platform offers a new strategy 
for detecting metabolites, proteins, microorganisms, and 
trace elements in breath samples, which contributes impor-
tant factors to develop new methods for diagnosing COVID-
19 and better understanding of the underlying physiologi-
cal, biochemical, and bioinorganic processes and the health 
impact of COVID-19. Technically, MS-based breath analysis 
is a practical and powerful method for investigating COVID-
19 with many advantages. However, there is a lack of organ-
ized clinical resources and sufficient related literature for 
investigating breath samples from different dimensions.

Prospects of MS-based breath analysis are bright: (1) 
breath EBA sampling (e.g., facemask microextraction 
sampling) coupled with portable MS approaches, potable 
GC–MS or potable ambient MS (e.g., miniature MS [102, 
103]) could provide attractive onsite diagnosis; (2) detecta-
bility of MS-based breath analysis could be further improved 
by a long-time breath sampling and sample preparation 
methods by collecting VOCs, organic metabolites, pro-
teins, microorganisms, and elements; e.g., extracting trace 
compounds in daily life using facemask-related methods; 
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(3) combining different MS approaches (e.g., ultrasensitive 
and ultrahigh-resolution MS) to establish a higher dimen-
sional MS-based platform is highly needed to extend insight 
to biologically and clinically relevant breath responses of 
COVID-19; (4) to promote deep understanding of the health 
impact of COVID-19, new data-dependent acquisition and 
data analysis methods can be expected with the new devel-
opment of big data, artificial intelligence, machine learning 
and other mathematical methods. Together with different 
types of biomarkers in breath samples, the MS-based mul-
tidimensional platform of human breath analysis may be 
clinically useful in COVID-19 and other human diseases. 
Indeed, this research requires constant collaboration from 
different disciplines, including but not limited to analyti-
cal, instrumental, biochemical, clinical, medical, and math-
ematical researchers. Therefore, it can be expected that new 
improvements and developments of multidimensional MS-
based breath analysis will bear fruits for a better diagnosis 
and understanding of human diseases in the future.
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