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Abstract
This work is motivated by the following question in data-driven study of dynamical
systems: given a dynamical system that is observed via time series of persistence
diagrams that encode topological features of snapshots of solutions, what conclusions
can be drawn about solutions of the original dynamical system? We address this
challenge in the context of an N dimensional system of ordinary differential equation
defined inRN . To each point inRN (e.g. an initial condition) we associate a persistence
diagram. The main result of this paper is that under this association the preimage of
every persistence diagram is contractible. As an application we provide conditions
under which multiple time series of persistence diagrams can be used to conclude the
existence of a fixed point of the differential equation that generates the time series.

Keywords Topological data analysis · Persistent homology · Dynamical systems ·
Fixed point theorem
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1 Introduction

Topological data analysis (TDA), especially in the form of persistent homology, is
rapidly developing into a widely used tool for the analysis of high dimensional data
associated with nonlinear structures (Edelsbrunner and Harer 2010; Zomorodian and
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Carlsson 2005; Oudot 2015). That topological tools can play a role in this subject
should not be unexpected, given the central role of nonlinear functional analysis in the
study of geometry, analysis, and differential equations, for example. What is perhaps
surprising is that, to the best of our knowledge, there have been no systematic attempts
to rigorously analyze the dynamics of differential equations using persistent homology.

Persistent homology is often used as a means of data reduction. A typical example
takes the form of a complicated scalar function defined over a fixed domain, where the
geometry of the sub-(super)-level sets is encoded via homology. Of particular interest
to us are settings in which the scalar function arises as a solution to a partial differential
equation (PDE); we are interested in tracking the evolution of the function, but exper-
imental data only provides information on the level of digital images of the process.
Furthermore, capturing the dynamics of a PDE often requires a long time series of
rather large digital images. Thus, rather than storing the full images, one can hope to
work with a time series of persistence diagrams. Our aim is to draw conclusions about
the dynamics of the original PDE from the time series of the persistence diagrams.
This is an extremely ambitious goal and far beyond our capabilities at the moment.
A much simpler question is the following: if there is an attracting region in the space
of persistence diagrams, under what conditions can we conclude that there is a fixed
point for the PDE?

This paper represents a first step towards answering the simpler question. The-
orem 4.3 shows that given an ordinary differential equation (ODE) with a global
compact attractor A ⊂ R

N and a neighborhood in the space of persistence diagrams
that is mapped into itself under the dynamics, then there exists a fixed point for the
ODE. In applications one could consider the ODE as arising from a finite difference
approximation of the PDE.

The challenge is that to obtain results one must understand the topology of dataP ,
the space of data having a fixed persistence diagram P , a topic for which there are
only limited results. That the structure of dataP is complicated follows directly from
the fact that persistent homology can provide tremendous data reduction, but in a
highly nonlinear fashion. With this in mind, the primary goal of this paper is to show
that for a reasonable class of problems the space dataP is a finite set of contractible,
simplicial sets. The importance of this result is that it opens the possibility of applying
standard algebraic topological tools, e.g., Lefschetz fixed point theorem,Conley index,
to dynamics that is observed through the lens of persistent homology.

To state our goal precisely requires the introduction of notation. Throughout this
paper SN denotes the 1-dimensional simplicial complex composed out of N vertices
[i] (i = 1, . . . , N ) and N − 1 edges [i, i + 1] (i = 1, . . . , N − 1). It is a simplicial
decomposition of closed bounded interval in R.

We study filtrations of SN defined as follows.

Definition 1.1 Let z = (z1, . . . , zN ) ∈ R
N . Define f : RN × SN → R by

f (z, σ ) :=
{
z j if σ = [ j],
max

{
z j , z j+1

}
if σ = [ j, j + 1].

For r ∈ R, we set SN (z, r) := {σ ∈ SN : f (z, σ ) ≤ r} .
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Definition 1.2 Given z = (z1, . . . , zN ) ∈ R
N , we can reorder the coordinates of z

such that

z j1 ≤ z j2 ≤ · · · ≤ z jN .

The sublevel-set filtration of SN at z,1 which we write as SF
N (z), is given by

SN (z, z j1) ⊆ SN (z, z j2) ⊆ · · · ⊆ SN (z, z jN ).

Because SF
N (z) is a finite filtration of simplicial complexes, completely determined

by z, we can use classical results from (Edelsbrunner and Harer 2010; Zomorodian
and Carlsson 2005) to compute the persistence diagram of SF

N (z). We treat this as a
map

Dgm : RN → Per,

where Per denotes the space of all persistence diagrams. Thus the space dataP of all
z ∈ R

N having persistence diagram P is just Dgm−1(P). We remark that there are a
variety of topologies that can be put on Per such that Dgm becomes a continuous map
(Chazal et al. 2016; Cohen-Steiner et al. 2007).

Since SN is one-dimensional and contractible, we are only concerned with the
persistent homology H0, i.e., the persistence diagrams associatedwith connected com-
ponents. Therefore for the rest of the paper we restrict our study to consist of the family
Per of persistence diagrams of level zero.

Here is the main result of this paper.

Theorem 1.3 For every persistence diagram P, the space dataP ⊂ R
N is composed

of a finite number of mutually disjoint components. Each component is contractible,
and is homeomorphic to a finite union of convex, potentially unbounded polytopes.

The proof of Theorem 1.3 is not particularly difficult, but it is technical. We first
describe the connected components of dataP ; see Lemma 2.4. In Sect. 2.2, we intro-
duce the poset Str of cellular strings, which are be used to decompose each component
as a finite union of convex polytopes in Sect. 2.3. In Sect. 3, we show that the realization
of Str is contractible.

To emphasize that Theorem 1.3 is not a trivial result, we use Fig. 1 to demonstrate
that dataP is not a convex subet of RN . In particular, consider the vectors v =
(v1, . . . , v4) and w = (w1, . . . , w4) on the left of Fig. 1. It is left to the reader to
check that Dgm(v) = Dgm(w) and that this persistence diagram is given by the pair
of black dots (see right of Fig. 1). Note that the vectors inR4, indicated (on the left) in
blue stars and red squares, lie on a straight line from v to w. However, the persistence
diagrams indicated (on the right) in blue and red clearly differ from Dgm(v). Thus,
the red and blue vectors do not lie in dataDgm(v).

In Sect. 4 we apply Theorem 1.3 to prove the existence of fixed points with given
persistence diagrams for a dissipative ordinary differential equation.

1 Analogous results can be obtain for superlevel set filtrations (see Sect. 5).
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Fig. 1 Non-convexity of the preimage dataP under the persistence map Dgm. In the left figure the two
vectors, v = (v1, . . . , v4) and w = (w1, . . . , w4), lie in the preimage of the persistence diagram P ,
composed out of two black points visible on the right figure. Applying Dgm to convex linear combinations
of v and w results in a path in the persistence plane illustrated on the right (the convex path is marked in
grey, and two sample vectors on the path are marked using red squares and blue stars) (color figure online)

2 Invariants for a fixed persistence diagram

Fix a persistence diagram P . To describe the structure of the space dataP , we intro-
duce two levels of invariants: the critical value sequences, representing the connected
components of dataP , and (for each of these), a partially ordered set Str indexing a
polytope decomposition of the component.

2.1 Components

Fix a persistence diagram P . To describe the (finitely many) connected components
of dataP , it is useful to introduce notation that records the order in which the relevant
local maxima and minima occur.

We say that z = (z1, . . . , zN ) ∈ R
N is a typical point if its coordinates are distinct.

If z is a typical point and 1 < n < N , we say that zn is a local minimum (of z) if
zn−1 > zn < zn+1, and a local maximum if zn−1 < zn > zn+1; it is a local extremum
if it is a local minimum or maximum. We say that z1 and zN are boundary extrema;
z1 is a local minimum (resp., maximum) if z1 < z2 (resp., z1 > z2).

Definition 2.1 The critical value sequence of a typical point z = (z1, . . . , zN ) is

cv(z) = (
zn1, . . . , znK

) ∈ R
K ,

where the znk are the local extrema of z, excluding boundary extrema that are local
maxima, and n1 < n2 < · · · < nK .

Example 2.2 Let z = (1.5,−0.9, 1.1, 2.1, 1.4) ∈ R
5. The local minimum is z2 and

the local maximum is z4. The boundary extrema are z1 and z5. Since z1 is also a local
maximum we do not include it in the critical value sequence. Thus h = cv(z) =
(−0.9, 2.1, 1.4).
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The following notion emphasizes the structure of the critical value sequences.

Definition 2.3 A 010 critical value sequence of (odd) length K is a vector cv =
(z1, . . . , zK ) ∈ R

K with the property that

zn1 < zn2 > zn3 < · · · < znK−1 > znK .

A 101 critical value sequence is defined similarly, with the inequalities reversed.

Since we are using sublevel set filtrations to compute the persistence diagram we
focus on 010 critical value sequences.

Lemma 2.4 below shows that the local extrema of z are determined up to order
by its persistence diagram, and hence that there are only finitely many critical value
sequences for any fixed persistence diagram.

Recall that a persistence diagram is a finite collection of persistence points{
pi = (pbi , p

d
i )

}
, where pbi and pdi denote birth and death values, respectively. Since

SN is connected, the persistence diagram of a typical point z has a unique persistence
point pi = (pbi , p

d
i ) such that pbi = minn=1,...,N zn and pdi = ∞; without loss of

generality, we may relabel pi as p1.

Lemma 2.4 Let z ∈ R
N be a typical point with persistence diagram{

pm = (pbm, pdm) | m = 1, . . . , M
}

.

Then, z has K = 2M − 1 local extrema; the local minima of z are precisely
{
pbm

}M
m=1

and the interior local maxima of z are precisely
{
pdm

}M
m=2.

We leave the proof of Lemma 2.4 to the reader, remarking that it still holds when
z ∈ R

N is not a typical point, except that the persistence diagram may be a multiset
(there may be multiple copies of a single persistence point).

Given a point z with persistence diagram P , let C(z) denote the component of
dataP containing z.

The following lemma shows that dataP is the disjoint union of the finitely many
disjoint components C(z), indexed by the critical value sequences. The proof follows
from the observation that the order of the local extrema cannot be changed while
preserving the persistence diagram.

Lemma 2.5 If z and z′ are typical points in R
N then C(z) = C(z′) if and only if

cv(z) = cv(z′).
Moreover, C(z) is the closure of the set of typical points in C(z).

This proves the first assertion in Theorem 1.3.

Remark 2.6 The components C(z) group vectors into equivalence classes that can
be characterized using the notion of chiral merge tree as defined in Curry (2018).
Corollary 5.5 of Curry (2018) shows that the number of chiral merge trees realizing
diagram P is equal to 2N−1 ∏N

j=2 μB(I j ), where B is the barcode realization of P , i.e.
set of intervals I j = [b j , d j ] having the birth and death values of the j-th persistence
point as its endpoints, and μB(I j ) is the number of intervals in B that contain I j .
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2.2 Cellular strings

In this section, we define the poset Str(N , M) of cellular strings associated to M
points arising from a vector in R

N . Thus we fix N and M , where N ≥ 2M − 1.
Consider a string of symbols s = s1 · · · sN of length N , where each symbol sn is

either 0, 1, or X (we refer to 0 and 1 as bits). Any such string can be represented as
s = γ1 · · · γJ where each block γ j is a substring made up of a single symbol (that is,
γ j is 0 · · · 0, 1 · · · 1, or X · · · X ), and consecutive blocks have different symbols. We
refer to s = γ1 · · · γJ as the canonical representation of s.

Definition 2.7 Fix M < N . A 010 cellular string2 is a symbol string s of length N
such that, for the canonical representation s = γ1 · · · γJ :

(i) the symbols that make up γ j and γ j+1 are different;
(ii) γ1 and γJ consist of the symbols 0 or X ;
(iii) if γ j consists of the symbol X , then the symbol of γ j−1 is different from the

symbol of γ j+1;
(iv) there are exactly M values of j for which γ j consists of the symbol 0.

The set Str(N , M) of cellular strings is a poset, where s′ < s if the string s is obtained
from s′ by replacing some of the bits 0 and 1 in s′ by X .

The dimension of a cellular string s, dim(s), is the number of symbols X in s. It
follows from (iv) that M of the blocks γ j have the form 0 · · · 0, and M − 1 have the
form 1 · · · 1. Thus, K = 2M − 1 of the blocks are bitstrings. If these bitstrings are
γ j1, . . . , γ jK , then the symbol for γ jk is 0 if k is odd and 1 if k is even. Since each
block has at least one symbol, it follows that any cellular string has dimension at most
L = N − K .

We write Str(r)(N , M) for the sub-poset of all cellular strings whose first r − 1
symbols are X . Note that Str(N , M) = Str(1)(N , M) and Str(L+1)(N , M) =
{X · · · X010 · · · 10}.
Proposition 2.8 An element of Str(N , M) is maximal if and only if it is an L-
dimensional cellular string, where L = (N − K ).

Proof Let s = γ1 . . . γJ ∈ Str(N , M). By definition, dim(s) ≤ L . Conversely, sup-
pose that the symbol X appears in s has less than L times. Then some bitstring γ j has
length ≥ 2. Let s′ be the cellular string obtained by replacing the first symbol of γ j

by X . Then s < s′, so s is not maximal. 
�
Since both N and M are fixed in our analysis, we simplify the notation and write

Str for Str(N , M). Figure 2 illustrates the poset Str when M = 2, K = 3 and N = 5;
the right column is Str(2).

Lemma 2.9 Every string s′ is the greatest lower bound of the set of L-dimensional
strings s with s′ < s.

It follows that Str has the least upper bound property: if two strings have a lower
bound, they have a greatest lower bound.

2 A 101 cellular string is defined similarly, interchanging 0 and 1.
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Fig. 2 The string posetStr forM = 2 and N = 5.Two-dimensional, one-dimensional, and zero-dimensional
strings are surrounded by rectangles, ellipses, and nothing, respectively. The arrows indicate the partial order.
The rightmost column is the sub-poset Str(2)

Proof We proceed by downward induction on the dimension d of s′, the case d = L
being clear. Consider the canonical representation, s′ = γ1 · · · γJ . If d < L , then some
bitstring γ j has length ≥ 2. Consider the strings s1 = γ1 · · · γ j−1X γ̄ γ j+1 · · · γJ and
s2 = γ1 · · · γ j−1γ̄ Xγ j+1 · · · γJ where γ̄ is a bitstring consisting of the same symbol
as γ j but of length one less than γ j . Since this is the form of any cellular string s
satisfying s′ < s and dim s = dim s′ + 1, the result follows. 
�

Let s be an L-dimensional cellular string. Successively replacing an X adjacent to
a bit (0 or 1) by that bit yields a chain of strings s = sL > sL−1 > · · · > s1 > s0. It
follows that every maximal chain in the poset has length L .

Example 2.10 Consider a string s(n) = σ10X · · · X1σ2 with a block of n consecutive
X ’s (where σ1 and σ2 are fixed substrings). Let Str/s(n) denote the sub-poset of Str
consisting of all strings s′ ≤ s(n) which begin in σ10 and end in 1σ2. Then Str/s(n)

is isomorphic to the poset In of integer intervals [i, j] with 1 ≤ i ≤ j ≤ n + 1. (The
string corresponding to [i, j] is

σ10 · · · 0X · · · X1 · · · 1σ2;

it has i 0’s and the first 1 is in the ( j + 1)st spot.)
If s is a cellular string with k blocks of successive X ’s (of lengths n1, . . . , nk),

the sub-poset Str/s of strings s′ < s in Str is isomorphic to the product of posets
Str/s(n1), . . . , Str/s(nk), i.e., to the poset

In1 × · · · × Ink .
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2.3 The polytopes

We now turn to identifying the polytopes of Theorem 1.3. Fix a 010 critical value
sequence cv = (

zn1, . . . , znK
)
as in Definition 2.3. To each d-dimensional cellular

string s we assign a d-dimensional polytope T (s) in R
N ; T (s) will be a product of

simplices.
Let s = γ1γ2 · · · γJ be the canonical representation of a string s, as inDefinition 2.7.

Let n j denote the length of the substring γ j , so N = ∑
n j .

• If γ j is either 0 · · · 0 or 1 · · · 1, and γ j is the kth block from the left involving 0 or
1, we set

T (γ j ) = {zk}nk = (zk, . . . , zk).

• If γ1 is a block X · · · X , then

T (γ1) = {
(x1, . . . , xn j ) ∈ R

n j : ∞ ≥ x1 ≥ · · · ≥ xn1 ≥ z1
}
.

• If γJ is a block X · · · X , then

T (γJ ) = {
(x1, . . . , xn j ) ∈ R

n j : zk ≤ x1 ≤ · · · ≤ xn1 ≤ ∞}
.

• If γ j is a block X · · · X (for 1 < j < J ), and γ j−1 is the kth block from the left
involving 0 or 1, then

T (γ j ) = {
(x1, . . . , xn j ) ∈ R

n j
}

where{
zk ≤ x1 ≤ · · · ≤ xn j ≤ zk+1 if k is odd;
zk ≥ x1 ≥ · · · ≥ xn j ≥ zk+1 if k is even.

• We define T (s) ⊂ R
N to be the concatenation:

T (s) = T (γ1γ2 · · · γJ ) =
J∏

j=1

T (γ j ).

Let P be a persistence diagram and z ∈ dgm−1(P). The componentC(z) of dataP
is the union of the T(s), where s ∈ Str and T (s) is defined using the critical value
sequence cv(z). This is clear from Definition 2.1.

Since the critical value sequence is always assumed to be fixed, we will suppress it
in the notation.

Example 2.11 Consider the case K = 3 and N = 5. If s = 01XX0, then
(γ1, . . . , γ4) = (0, 1, XX , 0). So, (n1, n2, n3, n4) = (1, 1, 2, 1) and hence

T (01XX0) = {z1} × {z2} × {(x1, x2) : z2 ≥ x1 ≥ x2 ≥ z3} × {z3}
∼= �0 × �0 × �2 × �0.
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If s = X01X0, then (γ1, . . . , γ4, γ5) = (x, 0, 1, x, 0). So, (n1, n2, n3, n4, n5) =
(1, 1, 1, 1, 1) and hence

T (X01X0) = [z1,∞) × {z1} × {z2} × [z3, z2] × {z3} ∼= [0,∞)

×�0 × �0 × �1 × �0

Similarly, T (X0100) = [z1,∞) × {z1} × {z2} × {z3} × {z3} ∼= [0,∞) × �0 × �0 ×
�0 × �0.

Observe that X0100 < X01X0 and T (X0100) ⊂ T (X01X0).

Let Poly denote the poset of polytopes in R
N under inclusion. By definition, T

maps strings in Str to polytopes in Poly.

Lemma 2.12 T : Str→ Poly is an injective poset morphism, and preserves greatest
lower bounds.

Proof Suppose that s′ < s and 1 + dim s′ = dim s. If s′ = γ1 · · · γJ is the canonical
form, then some γ j has the form a · · · a (where a is 0 or 1), and s has the form

s1 = γ1 · · · γ̄ j X · · · γJ or s2 = γ1 · · · X γ̄ jγJ ,

where γ̄ j = a · · · a has one fewer bit that γ j . It is clear from the definition of T that
T (s1) = T (s2), and T (s′) is the intersection of T (s1) and T (s2), as desired. 
�

2.4 Geometric realization of posets

Let C be a poset (partially ordered set). For any c ∈ C , we write C/c for the sub-poset{
c′ : c′ ≤ c

}
; C is the union of the C/c. If c1 and c2 have a greatest lower bound c12,

then (C/c1) ∩ (C/c2) = C/c12.
By definition, the geometric realization BC of any poset C is a simplicial complex

whose k-dimensional simplices are indexed by the chains c0 < c1 < · · · ck of length
k in C . It is the union of the realizations B(C/c) of the sub-posets C/c; if c1 and c2
have a greatest lower bound c12, then B(C/c1) and B(C/c2) intersect in B(C/c12).
See Weibel (2013, IV.3.1) for more details.

Here are some basic facts; see Weibel (2013, IV.3) for a discussion. A poset
morphism f : C → C ′ determines a continuous map BC → BC ′, and a natural
transformation η : f � f ′ between morphisms gives a homotopy Bη : BC → BC ′
between f and f ′. In addition, realization commutes with products: B(C1 × C2) ∼=
(BC1) × (BC2). Applying these considerations to the poset Str, we see that its real-
ization BStr is the union of the polytopes B(Str/s), and if s12 is the greatest lower
bound of s1 and s2 then B(Str/s1) ∩ B(Str/s2) is B(Str/s12).

Let s be a cellular string.We saw in Example 2.10 that the poset Str/s is isomorphic
to the product In1 × · · · × Ink of the posets In j of integer intervals in [1, n j + 1],
corresponding to the blocks of n j succesive X ’s in s. It is well known that B(In) is
homeomorphic to the n-simplex �n . Thus

B(Str/s) ∼=
∏

B(In j )
∼= �n1 × · · · × �nk .
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By construction, T (s) = ∏
T (γ j ) also has this form. Hence we have a natural home-

omorphism

B(Str/s) ∼=
∏

B(Str/s(n j )) ∼=
∏

B(In j )
∼=

∏
T (γ j ) = T (s).

Theorem 2.13 BStr is homeomorphic to C(z).

Proof Byconstruction,C(z) = ⋃
T (s), and BStr = ⋃

B(Str/s). It suffices to observe
that for each s1, . . . , sn the restriction of the BStr/si ∼= T (si ) induces a homeomor-
phism between the intersection of the B(Str/si ) and the intersection T (si ). This holds
because the two sides are identified with B(Str/s′) and T (s′), where s′ is the greatest
lower bound of the si . 
�

3 Contractibility

We now define a poset morphism F1 : Str → Str, and modify it to define poset
morphisms F� : Str(�) → Str(�) for � > 1.

Definition 3.1 Let s be an L-dimensional cellular string. We define F1(s) to be the
string obtained from s by transposing thefirst (i.e., leftmost) X with the bit immediately
preceding it. If X is the initial symbol, we set F1(s) = s.

If s is a lower-dimensional cellular string, we define F1(s) as follows. If s has
an initial X with no 00 or 11 preceding it, we do as before: transpose X with the
bit immediately preceding it, or do nothing if X is the initial symbol. If s begins
with a block of n + 1 zeroes, say s = 00 · · · 0σ2, we replace the initial 0 by X , so
F1(s) = X0 · · · 0σ2. Otherwise, the string must have the form s′ = σ1abbσ2, where
a, b are bits, a = b, σ1 is an (alternating) bitstring not ending in a, and σ2 is the
remainder of the string. We set

F1(s
′) = σ1aabσ2.

The definition of F� : Str(�) → Str(�) mimics that of F1. Specifically, if s = βσ ,
where β = X · · · X is a block of length � − 1 then F�(s) = βF1(σ ).

Example 3.2 In Fig. 2, the map F1 sends strings surrounded by rectangles (resp.,
ellipses) from one column to strings surrounded by rectangles (resp., ellipses) in the
second column to the right, while leaving the last column fixed. Thus F1(01100) =
00100 and F1(00100) = X0100.

Since Str(2) is the rightmost column, the map F2 acts on this column, mapping
strings surrounded by rectangles (resp., ellipses) to those two rows down. Thus
F2(XX010) = XX010, F2(X0010) = XX010, and F2(XX010) = XX010.

Lemma 3.3 F1 :Str→ Str is a poset morphism, and is the identity on the sub-poset
Str(2).

Furthermore, FK
1 (Str) = Str(2).
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Proof We proceed by downward induction on d = dim(s) to show that if s′ < s then
F1(s′) ≤ F1(s). If s′ contains an x with no 00 or 11 preceeding it, the same is true for
s and the inequality is evident.

Next, suppose that s′ = σ1abb · · · bσ2, where σ1a is an alternating bitstring. If
s = σ1abb · · · bσ ′

2 for some σ2 ≤ σ ′
2 then

F(s′) = σ1aab · · · bσ2 < F(s) = σ1aab · · · bσ ′
2.

For s1 = σ1aXb · · · and s2 = σ1ab · · · bXσ2, we also have F(s′) < F(s1) and
F(s′) < F(s2). Otherwise, either s1 < s or s2 < s; in these cases, F1(s1) ≤ F1(s) or
F1(s2) ≤ F1(s), by induction, and hence F(s′) < F(s).

Finally, if s′ = 00 · · · 0σ then either s1 = X0 · · · 0σ ≤ s or else s2 = 00 · · · 0Xσ ≤
s. By induction, F1(s1) ≤ F1(s) or F1(s2) ≤ F1(s), so it suffices to observe that
F1(s′) ≤ F1(s1), F1(s2). 
�
Remark 3.4 The proof of Lemma 3.3 also shows that each F� is a poset morphism.

We can filter the poset Str by sub-posets Fili , where Fil0 = Str(2), FilK = Str and
Fili is the full poset on the set of strings s with Fi

1(s) ⊂ Str(2). In Fig. 2, for example,
Fil1 (resp., Fil2) is the rightmost 3 columns (resp., 5 columns). Since F1 maps Fili
to Fili−1, the geometric realization of BF1 restricts to a continuous map from BFili
to BFili−1. We will prove:

Proposition 3.5 The inclusions BFili−1 ⊆ BFili are homotopy equivalences. Hence
BStr(2) ⊆ BStr is a homotopy equivalence.

Proof For i > 0, we define poset morphisms F1,i : Fili → Fili−1 ⊆ Fili to be the
identity on Fili−1 and F1 otherwise. The geometric realization of F1,i is a continuous
map BFili → BFili−1 ⊆ BFili which is the identity on BFili−1.

We will prove that, on geometric realization, BF1,i is homotopic to the identity on
BFili .

We define a poset morphism h : Fili → Fili as follows. If s ∈ Fili−1 then
h(s) = s; if s /∈ Fili−1, define h(s) to be the greatest lower bound of s and F1(s).
Thus Bh is a continuous map from BFili to itself. For s ∈ Fili , the inequalities
s ≥ h(s) ≤ F1,i (s) yield natural transformations idi⇐h � F1. and hence homotopies
between the maps idi (the identity map on BFili ), Bh and BF1,i . 
�
Corollary 3.6 Each BStr(�+1) ⊂ BStr(�) is a homotopy equivalence. In particular,
the inclusion of the point BStr(L+1) in BStr is a homotopy equivalence, i.e., BStr is
contractible.

Remark 3.7 We can describe the map T (s) → T (F1(s)) induced by F1. For example,
suppose that s = σ1γ j−1γ jσ2, where σ1 = γ1 · · · γ j−1 is an alternating bitstring of
length ≥ 2 and γ j is a block X · · · X . Then T (γ j−1) = {z j−1} and T (γ j ) ⊂ R

n j

is defined by inequalities, either z j−1 ≤ x1 · · · or z j−1 ≥ x1 · · · , depending on the
parity of j . The map F1 sends T (γ j−1) × T (γ j ) to the subset

T (X) × {z j−1} × T (γ ′),
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where T (X) is defined by z j−2 ≤ x1 ≤ z j−1 and T (γ ′) is defined by the equations
z j−1 ≤ x2 · · · or z j−2 ≥ x1 · · · . In effect, the map sends x1 to z j−1.

4 Existence of fixed points for flows

As an application of Theorem 1.3, we establish the existence of a fixed point solution
of a ordinary differential equation whose trajectories are being observed in the space
of persistence diagrams. To be more precise consider a differential equation ż = f (z),
z ∈ R

N , with the property that it possesses a compact global attractor A (Raugel
2002). Given an initial condition z(0) = z̄ ∈ R

N , we write z(t) = ϕ(t, z̄), t ∈ [0,∞)

for the solution in forward time. The important consequence of the existence of a
compact global attractor is that there exists R > 0 such that for any initial condition
z̄ there exists tz̄ > 0 such that ‖ϕ(t, z̄)‖ < R for all t ≥ tz̄ . We say that R is a
bound forA. Observing the persistence diagrams along a trajectory results in a curve
Dgm(ϕ(t, z̄)) ∈ Per. In what follows we do not assume that we have knowledge of
the nonlinearity of f , or of the actual trajectories ϕ(t, z); we are only given the curves
Dgm(ϕ(t, z̄)) of persistence diagrams.

Even if the persistence diagram is constant, we cannot conclude that the underlying
differential equation has a fixed point. As an example, consider a differential equation
in R

3 with a periodic solution in which the first coordinate z1 = 0 is constant, and
(z2, z3) oscillates with the property that 1 ≤ z2 ≤ z3. The associated curve in Per
consists of the constant persistence diagram P = {(0,∞)}.

However, Theorem 4.3 provides a scenario under which the observation of suf-
ficiently many trajectories suggests the existence of a fixed point for the unknown
ordinary differential equation that generates the dynamics. More general theorems are
possible and, as will be discussed in a later paper, these techniques can be lifted to the
setting of partial differential equations defined on bounded intervals. The purpose of
this example is to emphasize the importance of Theorem 1.3 from the perspective of
data analysis. Thus, we focus on a much more modest result. We will show that if a
particular type of neighborhood in Per is positively invariant under the dynamics, i.e.
if Dgm(z) is in the neighborhood implies that Dgm(ϕ(t, z)) is in the neighborhood
for all t > 0, then there exists a fixed point for the differential equation that generates
the dynamics. To state and obtain such a result requires the introduction of additional
notation.

Definition 4.1 We shall say that a persistence diagram

P =
{
pm = (pbm, pdm) : m = 1, . . . , M

}
is sparse if each persistence point is unique, i.e. pm = pn for all m = n.

Given a sparse persistence diagram we can choose μ > 0 such that ‖pm − pn‖∞ ≥
4μ for all m = n and |pdm − pbm | ≥ 4μ for all m.

Example 4.2 A sparse persistence diagram Q is shown in Fig. 3. We can choose μ =
0.25. A possible critical value sequence associated to Q is cv(z) = (3, 4.5, 1, 3.5, 2).
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Fig. 3 A sparse persistence
diagram Q with persistence
points
{(1, ∞), (2, 3.5), (3, 4.5)}. The
boxes indicate the set NQ for
μ = 0.25

We use μ to define subsets of RN and Per. We begin by constructing a subset of
R

N using the set of cellular strings Str(N , M). Choose a point ẑ with persistence
diagram P . This gives rise to a fixed critical value sequence cv(ẑ) and the associated
component C(ẑ) ⊂ R

N of dataP is given by

C(ẑ) =
⋃

s∈Str(N ,M)

T (s).

By Theorem 1.3, C(ẑ) is a contractible union of polytopes.
Let Bμ(C(ẑ)) ⊂ R

N be the set of points that lie within a distance μ of C(ẑ) using
the sup-norm. The bound on the choice ofμ guarantees that if s′, s′′ ∈ Str(N , M) are of
maximal dimension and there does not exist s ∈ Str(N , M) such that s < s′ and s < s′′,
then Bμ(T (s′)) and Bμ(T (s′′)) are disjoint. Therefore Bμ(C(ẑ)) is contractible.

We now turn to the subset of Per. For each m = 1, . . . , M set

Pm :=
{
p = (pb, pd) : ‖p − pm‖1 ≤ μ

}

and

D :=
{
p = (pb, pd) : pb ∈ [pb1 − μ, R] and 0 ≤ pd − pb ≤ μ

}

for some R > sup{pbm} + μ. See Fig. 3. Define NP ⊂ Per to be the set of persistence
diagrams generated by elements of RN with the property that for each m = 1, . . . , M
there exists a unique persistence point in Pm and any other persistence points lie in D.

These constructions allow us to prove the following theorem concerning the exis-
tence of fixed points of the unknown, underlying dynamical system ϕ.

Theorem 4.3 Consider adynamical systemgeneratedbyanordinary differential equa-
tion that has a global compact attractor A with a bound R, and whose trajectories
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are represented by ϕ(t, z). Let P be a sparse persistence diagram and let NP ⊂ Per
be defined as above. Assume that if Dgm(z) ∈ NP , then Dgm(ϕ(t, z)) ∈ NP for all
t ≥ 0.

Then, for each component of Dgm−1(NP ) ⊂ R
N there exists a vector ẑ such that

Dgm(ẑ) ∈ NP and ϕ(t, ẑ) = ẑ for all t ∈ R, i.e. ẑ is a fixed point for the dynamical
system.

Proof We begin with the observation that if z ∈ Bμ(C(ẑ)) and there exists t1 > 0 such
that ϕ(t1, z) /∈ Bμ(C(ẑ)), then there exists t0 ∈ (0, t1] such that Dgm(ϕ(t0, z)) /∈ NP .
This follows from the stability theorem of persistent homology using the bottleneck
distance (Cohen-Steiner et al. 2007). This contradicts the hypothesis, therefore, that
Bμ(C(ẑ)) is a contractible, positively invariant region under the dynamics. ByMcCord
andMischaikow (1996, Proposition 3.1) the Conley index of the maximal invariant set
is that of a hyperbolic attracting fixed point. By McCord (1988, Corollary 5.8) (which
utilizes the well known Lefschetz fixed point theorem), the maximal invariant set in
Bμ(C(ẑ)) contains a fixed point. 
�

5 Conclusion and future work

Recall from Remark 2.6 that Curry (2018) provides a count of the contractible compo-
nents of the preimage of a persistencemap. However, to the best of our knowledge, this
paper provides the first detailed analysis of the homotopy type of these of a compo-
nents. Although we have presented the results in the context of sublevel set filtrations,
the same arguments can be applied in the setting of superlevel set filtrations. The only
significant change is that one needs to use 101 cellular strings; see Definitions 2.3 and
2.7.

Theorem 4.3, and the use of persistence diagrams to obtain results about the dynam-
ics of an ODE, may appear somewhat artificial. However, consider a PDE, such as
a reaction diffusion equation, defined on an interval. A finite spatial sampling of the
solution at a time point gives rise to a vector. We can think of this vector as arising
from two different proceedures: (i) numerical, e.g. the values of an ODE derived from
a Galerkin approximation to the PDE, or (ii) experimental, e.g. a pixelated image of
the solution. Theorem 4.3 is applicable in both cases, and one expects that for fine
enough discretization or resolution that the results of Theorem 4.3will be applicable to
the PDE. The example involving images brings us much closer to current treatments
of complex spatio-temporal dynamics (Kramar et al. 2016; Levanger et al. 2019).
Hence, the natural next step in our research is to obtain an analogous result about
existence of fixed points for one-dimensional PDEs whose trajectories are observed
in the persistence space.

Finally, the obvious open question as a result of this paper is: given a d-dimensional
simplicial complex S with a function f , similar in form to that of Definition 1.1, can
one determine the homology of components of the pre-image of a persistence diagram?
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