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Received: 13 January 2019 / Accepted: 20 August 2019 / Published online: 30 August 2019
© The Author(s) 2019

Abstract
For a given pre-cubical set (�-set) K with two distinguished vertices 0, 1, we prove
that the space �P(K )10 of d-paths on the geometric realization of K with source 0 and
target 1 is homotopy equivalent to its subspace �Pt (K )10 of tame d-paths. When K
is the underlying �-set of a Higher Dimensional Automaton A, tame d-paths on K
represent step executions of A. Then, we define the cube chain category of K and
prove that its nerve is weakly homotopy equivalent to �P(K )10.

Keywords Directed path space · Pre-cubical set · Higher Dimensional Automaton ·
Synchronization · Tame path · Homotopy colimit

Mathematics Subject Classification 55P15 · 55P35 · 68N30 · 68Q85

1 Introduction

A directed space, or a d-space (Grandis 2003), is a topological space X with a distin-
guished family of paths �P(X), called d-paths, that contains all constant paths and is
closedwith respect to concatenations and non-decreasing reparametrizations. Directed
spaces serve asmodels in concurrency: points of a given directed space represent possi-
ble states of a concurrent program, while d-paths represent possible partial executions.
It is important to know the homotopy type of the space �P(X)

y
x of d-paths beginning

at the point x and ending at the point y. If x and y are the initial and the final state
of the program, respectively, it represents the “execution space” of the program mod-
eled by X . Also, calculation of some invariants of d-spaces, e.g. component categories
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Fig. 1 The d-path in the left-hand picture is tame; it represents an execution which can be divided into two
steps: in the first, a and c are performed and, in the second, b is performed. No such division is possible for
the d-paths in the right-hand picture

(Raussen 2007; Ziemiański 2019b) and natural homology (Dubut et al. 2015), requires
knowledge of the homotopy types of d-path spaces between two particular points.

In this paper, we consider this problem for d-spaces that are geometric realizations
of pre-cubical sets, called also �-sets. �-sets play an important role in concurrency:
Higher Dimensional Automata introduced by Pratt (1991) are �-sets equipped with
a labeling of edges, and then executions of a Higher Dimensional Automaton can
be interpreted as d-paths on the geometric realization of the underlying �-set. van
Glabbeek (2006) has shown that many other models for concurrency (e.g. Petri nets)
can be translated to Higher Dimensional Automata and, therefore, to �-sets.

The problem of calculating the homotopy types of d-path spaces between two
vertices of a �-set was studied in several papers, e.g. Raussen (2010, 2012) and
Ziemiański (2017, 2019a). All these results work only for special classes of �-sets,
like Euclidean complexes or proper �-sets, i.e., those whose triangulations are sim-
plicial complexes. There are some interesting examples of �-sets that do not fall into
any of these classes; notably, the universal labeling �-sets !� introduced by Goubault
(2002), see also Fahrenberg and Legay (2013). In this paper, we consider �-sets in
their full generality.

For an arbitrary �-set K with two distinguished vertices 0, 1, we prove that the
space of d-paths �P(|K |)10 with source 0 and target 1 is homotopy equivalent to its sub-
space �Pt (|K |)10 of tame d-paths (Theorem 6.1). A d-path is tame if it can be divided
into segments each of which runs from the initial to the final vertex of some cube (see
Fig. 1). Then we define the cube chain category of K , denoted Ch(K ), and prove that
the geometric realization of the nerve of Ch(K ) is weakly homotopy equivalent to the
space of tame d-paths on K (Theorem 7.5). This provides a combinatorial model for
the execution space of K (Theorem 7.6), which can be used for explicit calculations of
its homotopy type. All these constructions are functorial with respect to K , regarded
as an object in the category of bi-pointed�-sets. These theorems generalize the results
of Ziemiański (2017).

Theorem 6.1 is interesting in itself. In terms of Higher Dimensional Automata,
tame d-paths represent synchronized executions: at every step, a number of processes
performs one complete step while the others remain idle. As a consequence of The-
orem 6.1, not only homotopy classes of synchronized executions of a given Higher
Dimensional Automaton are the same as homotopy classes of all executions but also
the respective execution spaces are homotopy equivalent. Thus, onemay expect that all

123



Spaces of directed paths on pre-cubical sets II 47

phenomena concerning executions of Higher Dimensional Automata can be observed
as well after restricting to synchronized executions only.
Organization of the paper and relationship withZiemiański (2017). The paper consists
of two parts. The main goal of the first part (Sects. 3–6) is to prove the tamification
theorem (Theorem 6.1), that of the second part (Sects. 7–10) is to prove Theorems 7.5
and 7.6. The general outline of this paper resembles that of Ziemiański (2017) but we
need to use more subtle arguments here.

Fix a bi-pointed �-set K with initial vertex 0 and final vertex 1. All d-paths α ∈
�P(K )10 have integral L1-lengths (Raussen 2009), and the spaces of d-paths having
length n, denoted �P(K ; n)10, will be handled separately for every n ∈ Z≥0.

In Sect. 3 we define tracks, which are sequences of cubes such that for two subse-
quent cubes, some upper face of the preceding cube is a lower face of the succeeding
one. Tracks were investigated by Fahrenberg and Legay (2013); they called them cube
paths. Then we prove that every d-path α ∈ �P(K )10 is a concatenation of d-paths
contained in consecutive cubes of some track. In Sect. 4, we define the set of actions
that correspond to a given track C. In Sect. 5, we introduce progress functions of tracks
and investigate the relationship between progress functions of a track C and d-paths
contained in C. Then in Sect. 6, we construct, in a functorial way, a self-map of the
space �P(K ; n)10 that is homotopic to the identitymap andmaps all natural d-paths (i.e.,
parametrized by length) into tame d-paths. The proof of the latter statement makes
essential use of progress functions. Since the space of natural d-paths is homotopy
equivalent to the space of all d-paths, this implies Theorem 6.1.

This argument is essentially different from the one used in the proof of the tamifica-
tion theorem in the previous paper (Ziemiański 2017, Theorem 5.6). That one follows
from a similar result for d-simplicial complexes (Ziemiański 2012), which was proved
by constructing a certain self-deformation of a given d-simplicial complex. This self-
deformation was given by a direct but complicated and non-functorial formula and it
is not clear how to interpret it in terms of concurrent processes.While a general outline
of the argument is similar, the tamification via progress functions is more intuitive:
a d-path α contained in a track C is deformed to a tame d-path by “speeding up” the
executions of the actions of C.

In the second part, we introduce cube chains: sequences of cubes in K such that
the final vertex of the preceding cube is the initial vertex of the succeeding one. They
constitute a special case of tracks. Then, we formulate the main result of the second
part of the paper stating that the nerve of the category Ch(K ) of cube chains on K is
weakly homotopy equivalent to the space of natural tame d-paths on K (Theorem 7.5).
A natural d-path α ∈ �N (K )10 is tame if and only it is contained in some cube chain,
i.e., it admits a presentation as a concatenation of d-paths contained in consecutive
cubes of a given cube chain c. Such a presentation is called a natural tame presentation
of α; the difficulty that arises here is due to the fact that α may have many natural tame
presentations in c. This is essentially more complicated than the situation considered
in Ziemiański (2017), where there is a good cover of the space of natural tame d-paths
�Nt (K )10 indexed by the poset of cube chains on K , and the analogue of Theorem 7.5
can be proven using the Nerve Lemma.
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48 K. Ziemiański

Instead of a good cover, we need to investigate the functor G := �N[0,n](�∨(−)
)10 :

Ch(K ) → Top, where G(c) is the space of natural tame presentations in c, equipped
with a map FK

n : colim G → �Nt[0,n](K )10. In Sect. 8, we investigate properties of
natural tame presentations. In Sects. 9 and 10, we apply the results of Sect. 8 to prove
that the middle and the right-hand map in the sequence (7.5)

|Ch(K )| ←− hocolim G −→ colim G
FK
n−−→ �Nt[0,n](K )10

are weak homotopy equivalences. This is easy for the left-hand map, so Theorem 7.5
follows.

2 Preliminaries

In this section we recall definitions and introduce notation that is used later on. See
Fajstrup et al. (2006) or Fajstrup et al. (2016) for surveys which cover most of these
topics.

2.1 d-spaces

Grandis (2003) defines a d-space as a pair (X , �P(X)), where X is a topological space
and �P(X) is a family of paths on X (with domain [0, 1]) that contains all constant paths
and which is closed with respect to concatenations and non-decreasing reparametriza-
tions. In this paper, it is more convenient to use a slightly different, though equivalent,
definition.Ad-space is a topological space X equippedwith a d-structure.Ad-structure
on X is a collection of families of paths { �P[a,b](X)}a<b∈R,

�P[a,b](X) ⊆ P[a,b](X) := map([a, b], X),

called d-paths, such that

• every constant path constx[a,b] : [a, b] 	 t 
→ x ∈ X is a d-path,
• for every non-decreasing function f : [a, b] → [c, d] and every d-path α ∈

�P[c,d](X), the path α ◦ f is a d-path, i.e., α ◦ f ∈ �P[a,b](X),
• if a < b < c and α ∈ �P[a,b](X), β ∈ �P[b,c](X) are d-paths such that α(b) = β(b),
then the concatenation of α and β:

(α ∗ β)(t) =
{

α(t) for t ∈ [a, b],
β(t) for t ∈ [b, c].

is a d-path, i.e., α ∗ β ∈ �P[a,c](X).

This definition is equivalent to theoriginal definitionbyGrandis: if (X , { �P[a,b](X)}a<b)

is a d-space, then (X , �P[0,1](X)) is a d-space in Grandis’ sense. If (X , �P(X)) is a d-
space in Grandis’ sense, then by letting

�P[a,b](X) = {[a, b] 	 t 
→ α((t − a)/(b − a)) ∈ X | α ∈ �P(X)}
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Spaces of directed paths on pre-cubical sets II 49

we obtain the d-space as defined above.Wewill occasionallywrite �P(X) for �P[0,1](X).
The sets �P[a,b](X) are topological spaces,with the compact-open topology inherited

from the space of all paths P[a,b](X) = map([a, b], X).
Given two d-spaces X ,Y , a continuous map f : X → Y is a d-map if f ◦ α ∈

�P[a,b](Y ) for every d-path α ∈ �P[a,b](X) and for all a < b ∈ R. The family of d-spaces
with d-maps forms the category dTop, which is complete and cocomplete.

For a d-space X and x, y ∈ X , denote by �P[a,b](X)
y
x ⊆ �P[a,b](X) the subspace of

d-paths α such that α(a) = x and α(b) = y.
A bi-pointed d-space is a d-space X with two distinguished points: an initial point

0X and a final point 1X ∈ X . A bi-pointed d-map is a d-map that preserves the initial
and the final points. The category of bi-pointed d-spaces and bi-pointed maps will be
denoted by dTop∗∗.

2.2 Directed intervals and cubes

Let s < t ∈ R. The directed interval is the d-space
−−→[s, t] such that �P[a,b](

−−→[s, t]) is the
space of non-decreasing continuous functions [a, b] → [s, t]. The d-space �I = −−→[0, 1]
will be called the directed unit interval.

The directed n-cube �I n is the categorical product of n copies of the directed unit
interval. A path on �I n is a d-path if all its coordinates are d-paths in �I , i.e., they are non-
decreasing functions. Points of �I n will be denoted by bold letters, and their coordinates
are distinguished by upper indices, so that, for example x = (x1, x2, . . . , xn) ∈ �I n .
A similar convention will be used for d-paths: for β ∈ �P( �I n), β i ∈ �P( �I ) denotes the
i th coordinate of β. We will write |x| for ∑n

i=1 x
i .

Whenever �I or �I n are considered as bi-pointed d-spaces, their initial and final points
are 0, 1 ∈ �I and 0 = (0, . . . , 0), 1 = (1, . . . , 1) ∈ �I n, respectively.

2.3 Quotient d-spaces

Let X ,Y be topological spaces and let p : X → Y be a quotient map. Assume that
X is equipped with a d-structure { �P[a,b](X)}a<b∈R. The quotient d-structure on the
space Y is defined in the following way: a path α ∈ P[a,b](Y ) is a d-path if and only
if there exist numbers a = t0 < · · · < tn = b and d-paths βi ∈ �P[ti−1,ti ](X) such that
α(t) = p(βi (t)) for t ∈ [ti−1, ti ]. The quotient d-structure is the smallest d-structure
on Y such that p is a d-map. The space Y with this quotient d-structure will be called
the quotient d-space of X .

2.4 �-sets

Apre-cubical set, ora�-set K is a sequence of disjoint sets (K [n])n≥0 with a collection
of face maps (dε

i : K [n] → K [n − 1]) for n > 0, ε ∈ {0, 1}, i ∈ {1, . . . , n} such
that dε

i d
η
j = dη

j−1d
ε
i for all ε, η ∈ {0, 1} and i < j . Elements of the sets K [n] will

be called n--cubes or just cubes and 0-cubes will be called vertices. The dimension of
a cube c is the integer dim(c) such that c ∈ K [dim(c)]. For �-sets K , L , a �-map
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50 K. Ziemiański

f : K → L is a sequence of maps f [n] : K [n] → L[n] that commute with the face
maps. The category of �-sets and �-maps will be denoted by �Set.

An example of a �-set is the standard n-cube �n , such that �n[k] is the set of
functions {1, . . . , n} → {0, 1, ∗} that take value ∗ for exactly k arguments. The face
map dε

i converts the i th occurrence of ∗ into ε. The only element of �n[n] will be
denoted by un . For any �-set K , there is a 1–1 correspondence between the set of
n-cubes K [n] and the set of �-maps �n → K : for every c ∈ K [n] there exists a
unique map fc : �n → K such that fc(un) = c.

The kth skeleton of a �-set K is the sub-�-set K(k) ⊆ K given by

K(k)[n] =
{
K [n] for n ≤ k,

∅ for n > k.
(2.1)

The boundary of the standard n-cube is ∂�n := �n
(n−1).

Given a �-set K , a subset A = {a1 < · · · < ak} ⊆ {1, . . . , n} and ε ∈ {0, 1},
define the iterated face map

dε
A := dε

a1 ◦ dε
a2 ◦ · · · ◦ dε

ak : K [n] → K [n − k]. (2.2)

Denote dε := dε{1,...,n} : K [n] → K [0]. For a cube c ∈ K [n], d0(c) and d1(c) will be
called the initial and the final vertex of c, respectively.

A bi-pointed �-set is a triple (K , 0K , 1k), where K is a �-set and 0K , 1K ∈ K [0]
are distinguished vertices; we will write 0 and 1 for 0K and 1K whenever this does
not lead to confusion. The category of bi-pointed �-sets and base-points-preserving
�-maps will be denoted by �Set∗∗.

2.5 Geometric realization

Let K be a �-set. The geometric realization of K is the quotient d-space

|K | =
⎛
⎝∐

n≥0

K [n] × �I n
⎞
⎠ / ∼ . (2.3)

The relation ∼ is generated by (c, δε
i (x)) ∼ (dε

i (c), x) for all n ≥ 1, i ∈ {1, . . . , n},
ε ∈ {0, 1}, c ∈ K [n] and x ∈ �I n−1, where

δε
i : �I n−1 	 (x1, . . . , xn−1) 
→ (x1, . . . , xi−1, ε, xi , . . . , xn−1) ∈ �I n

is the coface map. For c ∈ K [n] and x = (x1, . . . , xn) ∈ �I n , [c; x] ∈ |K | denotes
the point represented by (c, x). Every point p ∈ |K | admits a unique canonical
presentation p = [cp; xp] such that x j

p �= 0, 1 for all j . The cube cp will be called
the carrier of p. Each presentation of p has the form

p = [c′, δε1
i1

(. . . (δ
εr
ir

(xp)) . . . )],
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Spaces of directed paths on pre-cubical sets II 51

where c′ ∈ K [dim(cp) + r ] is a cube such that dε1
i1

(. . . (dεr
ir

(c′)) . . . ) = cp.
For A = {a1 < · · · < ak} ⊆ {1, . . . , n} and ε ∈ {0, 1}, the iterated coface map is

defined by the formula

δε
A := δε

ak ◦ δε
ak−1

◦ · · · ◦ δε
a1 : �I n−k → �I n (2.4)

Notice that if

Ā = {ā1 < · · · < ān−k} = {1, . . . , n}\A,

and x = (x1, . . . , xn−k) ∈ �I n−k , then

δε
A(x)i =

{
ε for i ∈ A,

x j for i = ā j ∈ Ā.
(2.5)

Also, we have [dε
A(c); x] = [c; δε

A(x)] for all c, x and A.
Every �-map f : K → L induces the d-map

| f | : |K | 	 [c; x] 
→ [ f (c); x] ∈ |L|. (2.6)

Thus, the geometric realization defines the functors | − | : �Set → dTop and | − | :
�Set∗∗ → dTop∗∗.

We will usually skip the vertical bars and write �P(K ) for �P(|K |).

2.6 Presentations of d-paths

Let K be a �-set. A presentation of a d-path α ∈ �P[a,b](|K |) consists of
• a sequence (ci )li=1 of cubes of K , and
• a sequence (βi ∈ �P[ti−1,ti ]( �I dim(ci )))li=1 of d-paths,

such that

• a = t0 ≤ t1 ≤ · · · ≤ tl−1 ≤ tl = b, and
• α(t) = [ci ;βi (t)] for every i ∈ {1, . . . , l} and t ∈ [ti−1, ti ].

We write such a presentation as

α = t0[c1;β1] t1∗ [c2;β2] t2∗ · · · tl−1∗ [cl;βl ]tl . (2.7)

It follows immediately that every d-path in |K | admits a presentation.

2.7 Length

Let K be a�-set. The L1-length, or just the length of a d-path α ∈ �P[a,b](K ) is defined
as

len(α) =
l∑

i=1

|βi (ti )| − |βi (ti−1)| =
l∑

i=1

dim(ci )∑
j=1

β
j
i (ti ) − β

j
i (ti−1), (2.8)
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52 K. Ziemiański

for some presentation (2.7) of α. The length was introduced by Raussen (2009, Sec-
tion 2). This definition does not depend on the choice of a presentation, and defines,
for every a < b ∈ R, a continuous function len : �P(K )[a,b] → R≥0 (Raussen
2009, Proposition 2.7). If x, y ∈ |K | and d-paths α, α′ ∈ �P[a,b](K )

y
x are d-homotopic

(i.e., they are contained in the same path-connected component of �P[a,b](K )
y
x ) then

len(α) = len(α′). Furthermore, if K is a bi-pointed �-set, then the length of every
d-path α ∈ �P[a,b](K )10 is an integer. As a consequence, there is a decomposition

�P[a,b](K )10
∼=

∐
n≥0

�P[a,b](K ; n)10, (2.9)

where �P[a,b](K ; n)10 stands for the space of d-paths having length n.

2.8 Naturalization

We say that a d-path α ∈ �P[a,b](K ) is natural if len(α|[c,d]) = d − c for every
a ≤ c ≤ d ≤ b. Let �N[a,b](K ) ⊆ �P[a,b](K ) denote the subspace of natural d-paths.

Natural d-paths were introduced and studied by Raussen (2009). He proved that for
every d-pathα ∈ �P[a,b](K ) there exists a unique natural d-path nat(α) ∈ �N[0,len(α)](K )

such that
α(t) = nat(α)(len(α|[a,t])). (2.10)

Furthermore, for a bi-pointed �-set K , the map

natKn : �P[0,n](K ; n)10 	 α 
→ nat(α) ∈ �N[0,n](K )10 (2.11)

is a homotopy inverse of the inclusion map (Raussen 2009, Propositions 2.15 and
2.16). The map natKn is functorial with respect to K ∈ �Set∗∗.

2.9 Tame paths

A d-path α ∈ �P[a,b](K )10 is tame if it admits a presentation (2.7) such that, for every
i ∈ {1, . . . , l − 1}, α(ti ) is a vertex, i.e., has the form [v; ()] for some v ∈ K [0]. This
definition generalizes the earlier definitions for d-paths on d-simplicial complexes
(Ziemiański 2012) and on proper �-sets (Ziemiański 2017).

If α is tame, then one can impose an even stronger condition on its presentation. For
every i , all coordinates of βi (ti ) are either 0 or 1; if β

j
i (ti ) = 0, then β

j
i (t) = 0 for all

t ∈ [ti−1, ti ]. Hence the segment [ci , βi ] may be replaced by [d0j (ci ), β ′
i ], where β ′

i is
the path obtained from βi by skipping its j th coordinate. By repeating this operation,
we obtain a presentation such that βi (ti ) = (1, . . . , 1) for all i . In a similar way, we
can guarantee that βi (ti−1) = (0, . . . , 0). A presentation (2.7) such that βi (ti−1) = 0
and βi (ti ) = 1 for all i will be called a tame presentation of α.

Let �Pt
[a,b](K )10 (resp. �Nt

[a,b](K )10) denote the space of all tame (resp. natural tame)
d-paths on K from 0 to 1.
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3 Tracks

Let K be a bi-pointed �-set. Every d-path α ∈ �P(K )10 is a concatenation of d-paths
having the form [c;β], where c is a cube of K and β is a d-path in �I dim(c). We will
show that we can impose extra conditions on the cubes and the paths which appear in
such a presentation.

Definition 3.1 A track C in K is a sequence of triples (ci , Ai , Bi )li=1, where

• c1, . . . , cl are cubes of K ,
• Ai , Bi ⊆ {1, . . . , dim(ci )}

such that

(a) d0A1
(c1) = 0K ,

(b) d1Bl (cl) = 1K ,
(c) d1Bi (ci ) = d0Ai+1

(ci+1) for every i ∈ {1, . . . , l − 1}.
(d) the sets A1, Bl and Bi ∪ Ai+1 are non-empty.

Remark Tracks are equivalent to cube paths introduced by Fahrenberg and Legay
(2013, Section 3).

Proposition 3.2 For every trackC = (ci , Ai , Bi )li=1 we have
∑l

i=1 |Ai | = ∑l
i=1 |Bi |.

Proof. Conditions (a), (b) and (c) imply that dim(c1) = |A1|, dim(ci+1) = dim(ci )−
|Bi | + |Ai+1| and dim(cl) = |Bl |. We have

|Bl | = dim(cl) = dim(c1) +
l∑

i=2

|Ai | −
l−1∑
i=1

|Bi | =
l∑

i=1

|Ai | −
l−1∑
i=1

|Bi |.

The integer
∑ |Ai | = ∑ |Bi | will be called the length of the track C and denoted

len(C).

Definition 3.3 Let C = (ci , Ai , Bi )li=1 be a track in K and let α ∈ �P[a,b](K )10. Denote
ei = d1Bi (ci ) = d0Ai+1

(ci+1). A presentation

α = t0[c1;β1] t1∗ [c2;β2] t2∗ · · · tl−1∗ [cl;βl ]tl

is a C-presentation of α if there exist points xi ∈ �I dim(ei ), i ∈ {1, . . . , l − 1} such that
for all i :

(1) βi (ti ) = δ1Bi
(xi ),

(2) βi+1(ti ) = δ0Ai+1
(xi ).

We say that α is contained in C if it admits a C-presentation. The space of d-paths
contained in C will be denoted by �P[a,b](K ,C).

Proposition 3.4 If α ∈ �P[a,b](K ;C), then len(α) = len(C).
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54 K. Ziemiański

Proof. Choose a C-presentation of α, as in Definition 3.3. For every i ∈ {1, . . . , l} we
have

len(α|[ti−1,ti ]) = len(βi ) = |βi (ti )| − |βi (ti−1)| = |Bi | + |xi | − |xi−1|,

when assuming |x0| = |xl | = 0. Thus,

len(α) =
l∑

i=1

len(α|[ti−1,ti ]) =
l∑

i=1

|Bi | = len(C).

Fajstrup proved (Fajstrup 2005, 2.20) that if K is a geometric�-set (Fajstrup 2005,
2.8) then every d-path α ∈ �P(K )10 is contained in a track called the carrier sequence
of α. Below we prove an analogue of this result for arbitrary �-sets.

Proposition 3.5 Every non-constant d-pathα ∈ �P[a,b](K )10 is contained in some track.

Proof Choose a presentation

α = t0[c1;β1] t1∗ [c2;β2] t2∗ · · · tl−1∗ [cl;βl ]tl .

such that the integer l +∑l
i=1 dim(ci ) is minimal among all presentations of α. Then:

(1) β
j
i (ti ) > 0 for all i ∈ {1, . . . , l}, j ∈ {1, . . . , dim(ci )}. Otherwise, there exist i, j

such that β
j
i (ti ) = 0, which implies that β

j
i (t) = 0 for all t ∈ [ti−1, ti ]. Hence,

the segment [ci , βi ] may be replaced by

[d0j (ci ), (β1
i , . . . , β

j−1
i , β

j+1
i , . . . , β

dim(ci )
i )],

which contradicts the assumption that l + ∑
dim(ci ) is minimal.

(2) β
j
i (ti−1) < 1 for all i ∈ {1, . . . , l}, j ∈ {1, . . . , dim(ci )}; the argument is similar.

(3) For every i ∈ {1, . . . , l−1}, there exists j ∈ {1, . . . , dim(ci )} such thatβ j
i (ti ) = 1,

or there exists k ∈ {1, . . . , dim(ci+1)} such that βk
i+1(ti ) = 0. Assume otherwise;

since 0 < β
j
i (ti ), βk

i+1(ti ) < 1 for all j, k, [ci , βi (ti )] and [ci+1, βi+1(ti )] are both
canonical presentations of the point α(ti ). Thus, ci = ci+1, βi (ti ) = βi+1(ti ) and
the two segments [ci ;βi ] and [ci+1;βi+1] may be replaced by the single segment
[ci ;βi ∗ βi+1].

(4) dim(c1), dim(cl) > 0. Otherwise the segment [c1;β1] (resp. [cl , βl ]) could be
merged with [c2;β2] (resp. [cl−1, βl−1]), which exists since α is not constant.

Let

Ai = { j ∈ {1, . . . , dim(ci )} | β
j
i (ti−1) = 0}

Bi = { j ∈ {1, . . . , dim(ci )} | β
j
i (ti ) = 1}.
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We will check that C = (ci , Ai , Bi )li=1 is a track. We have 0K = [c1;β1(a)] and
β
j
i (a) < 1 for all j ; thus, β j

i (a) = 0 (since α(t0) = 0K is a vertex). Therefore, A1 =
{1, . . . , dim(c1)} and d0A1

(c1) = 0K . Similarly, Bl = {1, . . . , dim(cl)} and d1Bl (cl) =
1K . Thus, conditions (a) and (b) of Definition 3.1 are satisfied. Condition 3.1.(d)
follows from (3). It follows from (1) and (2) that, for every i , there exist:

• a unique xi ∈ �I dim(ci )−|Bi | such that δ1Bi (xi ) = βi (ti ), and

• a unique yi ∈ �I dim(ci+1)−|Ai+1| such that δ0Ai+1
(yi ) = βi+1(ti ).

We have

α(ti ) = [ci ;βi (ti )] = [ci ; δ1Bi (xi )] = [d1Bi (ci ); xi ]
α(ti ) = [ci+1;βi+1(ti )] = [ci+1; δ0Ai+1

(yi )] = [d0Ai+1
(ci+1); yi ].

All coordinates of both xi and yi are different fromboth 0 and 1. Thus, [d1Bi (ci ); xi ] and
[d0Ai+1

(ci+1); yi ] are both canonical presentations of the samepoint and, therefore, they

are equal. As a consequence, d1Bi (ci ) = d0Ai+1
(ci+1), which proves that Definition 3.1.

(c) is satisfied. Thus,C is a track.Moreover, the pointsxi = yi fit into theDefinition 3.3;
hence, α is contained in C.

4 Actions

Every d-path α between vertices of a �-set K having length n can be interpreted as
a performance of n different actions. This is an easy observation if K is a Euclidean
complex in the sense of Raussen and Ziemiański (2014). In this section we will show
how to interpret actions when K is an arbitrary �-set.

Fix a bi-pointed �-set K and a track C = (ci , Ai , Bi )li=1 in K having length n. For
i ∈ {1, . . . , l}, denote

qi = dim(ci ) − |Bi | = dim(ci+1) − |Ai+1|,
Āi = {ā1i < ā2i < · · · < āqi−1

i } = {1, . . . , dim(ci )}\Ai ,

B̄i = {b̄1i < b̄2i < · · · < b̄qii } = {1, . . . , dim(ci )}\Bi . (4.1)

Consider the set of pairs (i, r) such that i ∈ {1, . . . , l}, r ∈ {1, . . . , dim(ci )}. We
will call these pairs local C-actions (or local actions if C is clear). Let ∼ be the
equivalence relation on the set of local C-actions generated by

(i, b̄ j
i ) ∼ (i + 1, ā j

i+1) (4.2)

for all i ∈ {1, . . . , l − 1}, j ∈ {1, . . . , qi }.
Definition 4.1 A C-action (or an action if C is clear) is an equivalence class of the
relation ∼. The set of all C-actions will be denoted by T (C). The C-action represented
by (i, r) will be denoted [i, r ].
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56 K. Ziemiański

The following proposition justifies the definition above.

Proposition 4.2 Fix i ∈ {1 . . . , l − 1}. Let x = (x1, . . . , xdim(ci )) ∈ I dim(ci ), y =
(y1, . . . , ydim(ci+1)) ∈ I dim(ci+1) be points such that

• x j = 1 for every j ∈ Bi ,
• yk = 0 for every k ∈ Ai+1,
• x j = yk whenever [i, j] = [i + 1, k].

Then [ci ; x] = [ci+1; y].
Proof. Since x j = 1 for all j ∈ Bi and yk = 0 for all k ∈ Ai+1, we have

x = δ1Bi (x
b̄1i , xb̄

2
i , . . . , xb̄

qi
i ), y = δ0Ai+1

(yā
1
i+1, yā

2
i+1 , . . . , yā

qi
i+1)

For all r ∈ {1, . . . , qi }, we have [i, b̄ri ] = [i + 1, āri+1]. Therefore,

[ci ; x] = [d1Bi (ci ); (xb̄
1
i , xb̄

2
i , . . . , xb̄

qi
i )]

= [d0Ai+1
(ci+1); (yā

1
i+1 , yā

2
i+1 , . . . , yā

qi
i+1)] = [ci+1, y].

Let us collect some basic properties of C-actions:

(1) For every i ∈ {1, . . . , l − 1}, the sequences of actions

([i, r ])r∈{1,...,dim(ci )}\Bi and ([i + 1, s])s∈{1,...,dim(ci+1)}\Ai+1 (4.3)

are equal.
(2) Every action p ∈ T (C) has at most one representative having the form (i, r) for

a fixed i . If such a representative exists, its second coordinate will be denoted by
r(p, i), so that p = [i, r(p, i)]. In such a case we will say that the action p is
active at the i th stage.

(3) For a given action p, the set of stages at which p is active forms a (non-empty)
interval, i.e., has the form

{i : beg(p) ≤ i ≤ end(p)} (4.4)

for some integers 1 ≤ beg(p) ≤ end(p) ≤ l. Denote

T 1
i (C) = {p ∈ T (C) | end(p) < i}

T ∗
i (C) = {p ∈ T (C) | beg(p) ≤ i ≤ end(p)}

T 0
i (C) = {p ∈ T (C) | i < beg(p)}. (4.5)

These are the sets of actions that are finished, active and unstarted, respectively,
at the i th stage.
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Spaces of directed paths on pre-cubical sets II 57

(4) For every i , the following pairs of conditions are equivalent:

beg(p) = i ⇔ p = [i, r ] for some r ∈ Ai

end(p) = i ⇔ p = [i, r ] for some r ∈ Bi . (4.6)

(5) We have

{1, . . . , l} � T 0
1 (C) ⊇ T 0

2 (C) ⊇ · · · ⊇ T 0
k (C) = ∅

∅ = T 1
1 (C) ⊆ T 1

2 (C) ⊆ · · · ⊆ T 1
k (C) � {1, . . . , l}. (4.7)

5 Progress functions

In this section we introduce progress functions, which provide a convenient descrip-
tion of d-paths contained in a given track C. Fix a bi-pointed �-set K , a track
C = (ci , Ai , Bi )li=1 in K and numbers a < b ∈ R.

Definition 5.1 A progress function of C is a sequence f = ( f p)p∈T (C) of non-
decreasing continuous functions [a, b] → [0, 1] such that there exist numbers

a = t0 ≤ t1 ≤ · · · ≤ tk = b

such that for every p ∈ T (C)

• f p(t) = 0 for t ≤ tbeg(p)−1,
• f p(t) = 1 for t ≥ tend(p).

Let PF[a,b](C) be the space of progress functions of the trackC, with the compact-open
topology.

For every progress function f ∈ PF[a,b](C) and an action p ∈ T (C) we have
f p(a) = 0 and f p(b) = 1. Thus, f p can be regarded as a d-path in �P[a,b]( �I )10, and
PF[a,b](C), as a subspace of �P[a,b]( �I T (C))10. The support of f p, defined by

supp( f p) := {t ∈ [a, b] | 0 < f p(t) < 1}

is an open interval. We will denote its endpoints by a p
f and bp

f so that

• supp( f p) = (a p
f , bp

f ),
• f p(t) = 0 for t ∈ [a, a p

f ],
• f p(t) = 1 for t ∈ [bp

f , b].
For any sequence of numbers (ti ) satisfying Definition 5.1 we have

tbeg(p)−1 ≤ a p
f < bp

f ≤ tend(p). (5.1)

The support of a progress function f is the set

supp(f) =
⋃

p∈T (C)

supp( f p). (5.2)
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58 K. Ziemiański

In the remaining part of this section we will describe the relationship between
progress functions of C and d-paths contained in C. Let f = ( f p)p∈T (C) be a progress
function of C. Our goal is to construct a d-path αf ∈ �P(K ;C)10 that corresponds to f .
For every i ∈ {1, . . . , l} let

afi := max
p∈T 1

i (C)

bp
f , bfi := min

p∈T 0
i (C)

a p
f . (5.3)

If T 1
i (C) = ∅ (resp. T 0

i (C) = ∅), we take afi = a (resp. bfi = b). The interval [afi , bfi ]
is the maximal one that is disjoint from the supports of functions f p for actions p that
are not active at the i th stage. For every i define a d-path βf

i ∈ �P[afi ,bfi ](
�I dim(ci )) by

βf
i (t) = ( f [i,1](t), f [i,2](t), . . . , f [i,dim(ci )](t)), (5.4)

and let αf
i = [ci ;βf

i ] ∈ �P[afi ,bfi ](K ) .

Proposition 5.2 For every progress function f ∈ F[a,b](C):

(a) [a, b] = ⋃l
i=1[afi , bfi ],

(b) αf
i (t) = αf

j (t) for all i , j and t ∈ [afi , bfi ] ∩ [afj , bfj ].

Proof By (4.7)wehavea = af1 ≤ af2 ≤ · · · ≤ afl andb
f
1 ≤ bf2 ≤ · · · ≤ bfl = b. Choose

a sequence (ti )li=0 satisfying the condition inDefinition 5.1. For every i ∈ {1, . . . , l−1}
we have

afi+1 = max
p∈T 1

i+1(C)

bfp
(5.1)≤ max

p∈T 1
i+1(C)

tend(p)
(4.5)≤ ti

(4.5)≤ min
p∈T 0

i (C)

tbeg(p)−1

(5.1)≤ min
p∈T 0

i (C)

afp = bfi .

This implies (a). To prove (b), it is enough to check that αf
i (t) = αf

i+1(t) for every
t ∈ [afi+1, b

f
i ]. For r ∈ {1, . . . , dim(ci )} we have

r ∈ Bi
(4.6)⇒ end([i, r ]) = i ⇒ [i, r ] ∈ T 1

i+1(C) ⇒ afi+1 ≥ b[i,r ]
f

⇒ f [i,r ](afi+1) = 1.

Thus, f [i,r ](t) = 1 for all r ∈ Bi . As a consequence,

( f [i,1](t), . . . , f [i,dim(ci )](t)) = δ1Bi ( f
[i,b̄1i ](t), . . . , f [i,b̄qii ](t)),

where b̄ j
i and qi are defined in (4.1). Finally,

αf
i (t) = [ci ; ( f [i,1](t), . . . , f [i,dim(ci )](t))] = [ci ; δ1Bi ( f

[i,b̄1i ](t), . . . , f [i,b̄qii ](t))]
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= [d1Bi (ci ); ( f [i,b̄1i ](t), . . . , f [i,b̄qii ](t))].

In a similar way we can show that

αf
i+1(t) = [d0Ai+1

(ci+1); ( f [i+1,ā1i+1](t), . . . , f [i+1,ā
qi
i+1](t))].

Since d0Ai+1
(ci+1) = d1Bi (ci ) and [i, b̄ j

i ] = [i + 1, ā j
i+1] for all j , the conclusion

follows.

Definition 5.3 The d-path associated to a progress function f ∈ PF[a,b](C) is the
unique d-path αf ∈ �P[a,b](K ;C) such that α(t) = αf

i (t) for every t ∈ [afi , bfi ].
Proposition 5.2 guarantees that αf exists and is determined uniquely.

The construction presented above defines the map

RC : PF[a,b](C) 	 f 
→ αf ∈ �P[a,b](K ;C), (5.5)

which can be shown to be continuous. We skip a proof of this fact since it is tedious
and not necessary for proving the main results of this paper.

Now we will construct a progress function associated to a given d-path α ∈
�P[a,b](K ;C). Choose a C-presentation

α = t0[c1;β1] t1∗ [c2;β2] t2∗ · · · tl−1∗ [cl;βl ]tl . (5.6)

Proposition 5.4 Let p ∈ T (C). Then

(a) β
r(p,i)
i (ti ) = β

r(p,i+1)
i+1 (ti ) whenever beg(p) ≤ i < end(p),

(b) β
r(p,i)
i (ti−1) = 0 for i = beg(p),

(c) β
r(p,i)
i (ti ) = 1 for i = end(p).

Proof Assume that beg(p) ≤ i < end(p). Then r(p, i) /∈ Bi and there exists j ∈
{1, . . . , qi } such that r(p, i) = b̄ j

i . Furthermore, r(p, i + 1) = ā j
i+1. Let xi ∈ �I qi be

a point such that βi (ti ) = δ1Bi
(xi ) and βi+1(ti ) = δ0Ai+1

(xi ). We have

β
r(p,i)
i (ti ) = β

b̄ j
i

i (ti ) = δ1Bi (xi )
b̄ j
i

(2.5)= x j
i

(2.5)= δ0Ai+1
(xi )

ā j
i+1

= β
ā j
i+1

i+1 (ti ) = β
r(p,i+1)
i+1 (ti ).

If i = beg(p), then r(p, i) ∈ Ai and

β
r(p,i)
i (ti−1) = δ0Ai

(xi )r(p,i) = 0.

A similar argument shows (c).
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For an arbitrary action p ∈ T (C) let us define the function

f pα : [a, b] 	 t 
→

⎧⎪⎨
⎪⎩
0 for t ≤ tbeg(p)−1

β
r(p,i)
i (t) for beg(p) ≤ i ≤ end(p) and t ∈ [ti−1, ti ]

1 for t ≥ tend(p)

(5.7)

and let fα = ( f pα )p∈T (C). Proposition 5.4 implies that this definition is valid.

Proposition 5.5 fα is a progress function on C. Moreover, αfα = α.

Proof. The sequence (ti ) from the presentation (5.6) satisfies the conditions required
in Definition 5.1. Notice that [ti−1, ti ] ⊆ [afαi , bfαi ], for all i ∈ {1, . . . , l}. Then, for
every t ∈ [ti−1, ti ], αfα

i (t) is well-defined, and

αfα (t) = α
fα
i (t) = [ci ; ( f [i,1]

α (t), . . . , f [i,dim(ci )]
α (t))]

= [ci ; (β
r([i,1],i)
i (t), . . . , βr([i,dim(ci )],i)

i (t))]
= [ci ; (β1

i (t), . . . , β
dim(ci )
i (t))] = [ci ;βi (t)] = α(t).

The function fα will be called the progress function of α ∈ �P(K ;C) with the
presentation (5.6). Proposition 5.5 implies that the mapRC is surjective. This map is
not, in general, a bijection: fα depends not only on the d-path α but also on the choice
of its presentation, as shown in the example below.

Example 5.6 Let K be the �-set having exactly one cube in dimensions 0, 1, 2 and
no cubes in higher dimensions. Let e be the only 2-dimensional cube and let C =
(c1 = e, A1 = {1, 2}, B1 = {1, 2}). Let α ∈ �P[0,2](K ) be the d-path given by the
C-presentation α = [e;β], where

β(t) =
{

(t, 0) for t ∈ [0, 1]
(1, t − 1) for t ∈ [1, 2].

Then T (C) = {[1, 1], [1, 2]} and the progress function of α is given by

f [1,1]
α (t) =

{
t for t ∈ [0, 1]
1 for t ∈ [1, 2]. , f [1,2]

α (t) =
{
0 for t ∈ [0, 1]
t − 1 for t ∈ [1, 2]. ,

But α has another C-presentation, namely α = [e;β ′], where

β ′(t) =
{

(0, t) for t ∈ [0, 1]
(t − 1, 1) for t ∈ [1, 2],

which gives the progress function with f [1,1]
α and f [1,2]

α swapped.

123



Spaces of directed paths on pre-cubical sets II 61

The following observation, which relates the progress function of a d-path with
its L1-length, plays an important role in the succeeding section. It is an immediate
consequence of the definitions.

Proposition 5.7 Fixα ∈ �P[a,b](K ;C) and itsC-presentation (5.6). For every t ∈ [a, b]
we have

len(α|[a,t]) =
∑

p∈T (C)

f pα (t).

In particular, if α is natural, then f pα is a 1-Lipschitz function for every p ∈ T (C).

6 Tamification theorem

In this section wewill use the results obtained above to prove that the spaces of d-paths
and of tame d-paths are homotopy equivalent. The main result is the following:

Theorem 6.1 For every n ≥ 0 and every K ∈ �Set∗∗, all the inclusions in the diagram

�Pt[0,n](K ; n)10 �P[0,n](K ; n)10

�Nt[0,n](K )10 �N[0,n](K )10

�⊆

�⊆

�
⊆

�
⊆ (6.1)

are homotopy equivalences.

For the vertical maps this follows from Raussen (2009). The main idea of the proof
of Theorem 6.1 is to construct a functorial self-map of �P[0,n](K ; n)10 that is homotopic
to the identity and maps �N[0,n](K )10 into �Pt[0,n](K ; n)10.

Any d-map g : �I → �I that preserves 0 and 1 induces a self-d-map gK of |K | such
that

gK ([c; h1, . . . , hn]) = [c; g(h1), . . . , g(hk)] (6.2)

for every k ≥ 0, c ∈ K [k]. Furthermore, a homotopy gs between g0 = id and g1 = g
induces a homotopy between gK and the identity map on |K |. Below we introduce a
“path-length-parametrized” analogue of this construction.

Let R : −−→[0, n]× �I → �I be an arbitrary d-map such that R(t, 0) = 0 and R(t, 1) = 1
for all t ∈ [0, n]. For every k ≥ 0, R induces the map

Rk : −−→[0, n] × �I k 	 (t; h1, . . . , hk) 
→ (R(t, h1), . . . , R(t, hk)) ∈ �I k .
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The maps Rk are compatible with the face maps, i.e., for every ε ∈ {0, 1}, k ≥ 0 and
i ∈ {1, . . . , k + 1}, the diagram

−−→[0, n] × �I k �I k

−−→[0, n] × �I k+1 �I k+1

�Rk

�
id×δε

i
�
δε
i

�Rk+1

(6.3)

commutes. As a consequence, for every K ∈ �Set, themaps Rk induce the continuous
d-map

RK : −−→[0, n] × |K | → |K |, (6.4)

such that
RK (t, [c; x]) = [c; Rk(t, x)] = [c; R(t, x1), . . . , R(t, xk)] (6.5)

for c ∈ K [k], x = (x1, . . . , xk) ∈ �I k .
For s ∈ [0, 1], define the map Rs : −−→[0, n] × �I → �I by the formula Rs(t, h) =

sR(t, h) + (1− s)h. The collection of maps RK
s : −−→[0, n] × |K | → |K | induced by the

maps Rs is a homotopy between RK and the projection on the second factor.
These maps define, for 0 ≤ a ≤ b ≤ n, the following self-maps of d-path spaces:

R̄ : �P[a,b]( �I ) → �P[a,b]( �I )
R̄k : �P[a,b]( �I k) → �P[a,b]( �I k)
R̄K : �P[a,b](K ) → �P[a,b](K )

such that R̄(α)(t) = R(t, α(t)), R̄k(α)(t) = Rk(t, α(t)), R̄K (α)(t) = RK (t, α(t)).
All these maps are homotopic to the respective identities via the families of maps R̄s ,
R̄k
s and R̄K

s that are defined in a similar way.

Now assume that R : −−→[0, n] × �I → �I satisfies the following conditions:

(a) R(t, h) = 0 for h ∈ [0, 1
4 ],

(b) R(t, h) = 1 for h ∈ [ 34 , 1],
(c) For every h ∈ [0, 1], the support of R(−, h),

supp(R(−, h)) = {t ∈ [0, n] | 0 < R(t, h) < 1}

is an interval having length less or equal to 1
4n .

Such a function exists; an example is given by the formula (Figs. 2, 3)

R(t, h) = min(1,max(0, (4nt + 12n2h − 8n2))).

These assumptions imply the following properties of R̄:

Proposition 6.2 For every α ∈ �P[0,n]( �I )10, the support of R̄(α) is an open interval
having length less or equal to 1

4n .
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Fig. 2 A contour plot of the
function R (not up to scale).
Values between 0 and 1 are
taken only in the narrow stripe

0 n t
0

1
4

3
4

1

1
4

3
4

h

R(t, h) = 0

R(t, h) = 1

< 1
4n

α

R̄K(α)

Fig. 3 If a �-set K is simple enough and α is a natural d-path on K , then R̄K (α) = Q ◦ α for a certain
self-map Q of |K |. The map Q sends the shaded areas into vertices

Proof Obviously R̄(α)(0) = R(0, α(0)) = 0 and R̄(α)(n) = R(n, α(n)) = 1.
Assume that s < t ∈ supp(R̄)(α), i.e., 0 < R̄(α)(s) ≤ R̄(α)(t) < 1. Then

0 < R̄(α)(s) = R(s, α(s)) ≤ R(t, α(s)) ≤ R(t, α(t)) = R̄(α)(t) < 1.

Hence s, t ∈ supp(R(−, α(s))), which implies that t − s < 1
4n .

Proposition 6.3 Assume that α ∈ �P[0,n]( �I )10 is a 1-Lipschitz function. If t ∈
supp(R̄(α)), then [t − 1

4 , t + 1
4 ] ⊆ supp(α).

Proof Assume that R̄(α(t)) = R(t, α(t)) > 0. By condition (a), we have α(t) > 1
4 ,

which implies that α(t − 1
4 ) > 0. Using condition (b) we obtain that α(t) < 3

4 and,
therefore, α(t + 1

4 ) < 1.

Proposition 6.4 If α ∈ �N[0,n](K )10, then R̄K (α) is tame.

Proof Denote ω = R̄K (α). Choose a track C = (ci , Ai , Bi )li=1 containing α, and a
C-presentation

α = t0[c1;β1] t1∗ · · · tl−1∗ [cl;βl ]tl , (6.6)

Immediately from the definition follows that

ω(t) = [ci ; Rdim(ci )(t, βi (t))] (6.7)

for all i ∈ {1, . . . , l}, t ∈ [ti−1, ti ]. Thus,

ω = t0[c1; R̄dim(c1)(β1)] t1∗ · · · tl−1∗ [cl; R̄dim(cl )(βl)]tl (6.8)
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is a C-presentation of ω. Let fα = ( f pα )p∈T (C) and fω = ( f pω )p∈T (C) be the progress
functions of α and ω associated to the presentations (6.6) and (6.8), respectively.
Clearly f pω = R̄( f pα ) for all p ∈ T (C). Recall that

supp(fω) =
⋃

p∈T (C)

supp( f pω ) =
⋃

p∈T (C)

(a p
fω

, bp
fω

).

Let

supp(fω) = (x1, y1) ∪ · · · ∪ (xr , yr ) ⊆ (0, n)

be the decomposition into the union of connected components, ordered increasingly.
Let y0 = 0, xr+1 = n. For every s ∈ {1, . . . , r}, let As ⊆ T (C) be the set of actions
p such that supp( f pω ) ⊆ (xs, ys); clearly,

T (C) = A1 ∪̇ · · · ∪̇ Ar .

For every s ∈ {1, . . . , r} pick an index i(s) ∈ {1, . . . , l} such that [ti(s)−1, ti(s)] ∩
(xs, ys) �= ∅. Choose a sequence (zs)rs=0 such that z0 = 0, zr = n and ys ≤ zs ≤ xs+1
for s ∈ {1, . . . , r − 1}. For every s ∈ {0, . . . , r}, ω(zs) is a vertex.

Our goal is to show that

ω = z0[ci(1);βfω
i(1)]

z1∗ [ci(2);βfω
i(2)]

z2∗ · · · zl−1∗ [cr ;βfω
i(r)]

zr
(*)

is a tame presentation.
By Proposition 6.2, for every s ∈ {1, . . . , r} the length of the interval (xs, ys) is

less than 1
4n |As | ≤ 1

4 . Since f pα is a 1-Lipschitz function for every action p (Proposi-
tion 5.7), by Proposition 6.3 we have

(xs, ys) ⊆
⋂
p∈As

supp( f pα ).

For every s ∈ {1, . . . , r} choose us ∈ [ti(s)−1, ti(s)] ∩ (xs, ys).
Fix s ∈ {1, . . . , r}. Assume that p ∈ T 1

i(s)(C). For every s′ ≥ s we have

1 = f pα (ti(s)−1) ≤ f pα (us) ≤ f pα (us′).

Therefore, us′ /∈ supp( f pα ), which implies that p /∈ As′ . As a consequence,

p ∈ A1 ∪ · · · ∪ As−1

and then bp
fω

≤ ys−1. Therefore, for all s we have

afωi(s) = max
p∈T 1

i(s)(C)

bfωp ≤ ys−1.

123



Spaces of directed paths on pre-cubical sets II 65

A similar argument shows that also

bfωi(s) = min
p∈T 0

i(s)(C)

a p
fω

≥ xs+1.

Since [zs−1, zs] ⊆ [ys−1, xs+1] ⊆ [afωi(s), bfωi(s)], we have

ω|[zs−1,zs ]
Prop. 5.5= αfω |[zs−1,zs ] = α

fω
i(s)|[zs−1,zs ] = [ci(s);βfω

i(s)|[zs−1,zs ]],

which shows that (*) is a tame presentation of ω.

Proposition 6.5 For every s ∈ [0, 1], R̄K
s ( �Pt[0,n](K )10) ⊆ �Pt[0,n](K )10.

Proof If α = t0[c1;β1] t1∗ · · · tl−1∗ [cl;βl ]tl is a tame presentation, then also

R̄K
s (α) = t0[c1; R̄dim(c1)

s (β1)]] t1∗ · · · tl−1∗ [cr ; R̄dim(cr )
s (βr )]tl

is a tame presentation, since R̄dim(ci )
s (βi )(ti−1) = 0 and R̄dim(ci )

s (βi )(ti ) = 1
for all i .

Proof of Theorem 6.1 By Proposition 6.4, the diagram (6.1) can be completed to the
diagram

�Pt[0,n](K ; n)10 �P[0,n](K ; n)10

�Nt[0,n](K )10 �N[0,n](K )10

�⊆

�⊆

�
⊆ �

�
� ⊆

�
�

�
���

R̄K

Since R̄K : �P[0,n](K ; n)10 → �P[0,n](K ; n)10 is homotopic to the identity via the maps
R̄K
s , the right-hand triangle of the diagram commutes up to homotopy. For similar rea-

sons, Proposition 6.5 implies that also the left-hand triangle commutes up to homotopy.
Both vertical inclusions are homotopy equivalences: their homotopy inverses are the
naturalization maps (see Sect. 2.8), since the a naturalization of a tame d-path is tame.
Now an easy diagram-chasing argument shows that all the maps in the diagram are
homotopy equivalences.

Let TamK
n : �P[0,n](K ; n)10 → �Nt[0,n](K )10 be the composition

�P[0,n](K ; n)10
natKn−−→ �N[0,n](K )10

R̄K−−→ �Pt[0,n](K ; n)10
natKn−−→ �Nt[0,n](K )10. (6.9)

The following is an immediate consequence of Theorem 6.1:
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Corollary 6.6 For every n ≥ 0 and every bi-pointed �-set K ∈ �Set∗∗, the map TamK
n

is a homotopy inverse of the inclusion i Kn : �Nt[0,n](K )10 ⊆ �P[0,n](K ; n)10. Further-

more, the maps TamK
n are functorial with respect to K , i.e., they define the natural

transformation �P[0,n](−; n)10 ⇒ �Nt[0,n](−)10 of functors �Set∗∗ → Top.

7 Cube chains

In this section we define the cube chain category Ch(K ) of a bi-pointed �-set K , and
formulate the main results of the paper.

Definition 7.1 Let (K , 0K , 1K ), (L, 0L , 1L) be bi-pointed �-sets. The sequential
wedge, or the wedge of K and L is a bi-pointed �-set (K ∨ L, 0K∨L , 1K∨L) such
that

• (K ∨ L)[n] = K [n]∐ L[n] for n > 0,
• (K ∨ L)[0] = (K [0]∐ L[0])/1K ∼ 0L ,
• the face maps of K ∨ L are the disjoints unions of the face maps of K and L ,
• 0K∨L = 0K , 1K∨L = 1L .

Remark The sequential wedge operation is associative but not commutative. Similarly,
one can define the “parallel” wedge of K and L by identifying 0K with 0L and 1K
with 1L in K

∐
L . This will not be needed here; in this paper we use only sequential

wedges.

Let Seq(n) be the set of sequences of positive integers n = (n1, . . . , nl) such that
n1 + · · · + nl = n. For n ∈ Seq(n),

• |n| = n is the length of n,
• l(n) = l is the number of elements of n,
• tni = ∑i

j=1 n j for i ∈ {0, . . . , l(n)} is the i th vertex of n,

• Vert(n) = {tni }l(n)
i=0 is the set of vertices of n.

Definition 7.2 Let n ∈ Seq(n). The wedge n-cube is the bi-pointed �-set

�∨n := �n1 ∨ �n2 ∨ · · · ∨ �nl ,

where �ni is regarded as a bi-pointed �-set by taking 0 = (0, . . . , 0), 1 = (1, . . . , 1).
The geometric realization of �∨n will be denoted by �I∨n. For i ∈ {0, . . . , l(n)},

vni = 1�ni = 0�ni+1 ∈ �∨n[0]

is the i th vertex of �∨n.

Let �Chn be the full subcategory of �Set∗∗ with objects �∨n for n ∈ Seq(n). We
will introduce a notation for some morphisms of�Chn . Let un ∈ �n[n] be the unique
top dimension cube. For a partition

{1, . . . ,m1 + m2} = A ∪̇ B, |A| = m2 > 0, |B| = m1 > 0,
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let ϕA,B : �m1 ∨ �m2 → �m1+m2 be the unique bi-pointed �-map such that
ϕA,B(um1) = d0B(um1+m2) and ϕA,B(um2) = d1A(um1+m2). For n ∈ Seq(n),
i ∈ {1, . . . , l(n)} and A ∪̇ B = {1, . . . , ni } let

δi,A,B : �n1 ∨ · · · ∨ �ni−1 ∨ �|A| ∨ �|B| ∨ �ni+1 ∨ · · · �nl

id�n1 ∨···∨id�ni−1 ∨ϕA,B∨id�ni+1 ∨···∨id�nl−−−−−−−−−−−−−−−−−−−−−−−−−−−→ �n1

∨ · · · ∨ �ni−1 ∨ �ni ∨ �ni+1 ∨ · · ·�nl = �∨n. (7.1)

Fix a bi-pointed �-set K ∈ �Set∗∗.
Definition 7.3 A cube chain in K (of length n) is a bi-pointed �-map c : �∨nc → K
for some nc ∈ Seq(n). The multi-index n = nc will be called the type of c. For short
we denote l(c) = l(nc), tci = tnci .

There is a 1–1 correspondence between cube chains in K and sequences of cubes
(c1, . . . , cl) such that d0(c1) = 0K , d1(cl) = 1K and d1(ci ) = d0(ci+1) for all
i ∈ {1, . . . , l − 1}. Indeed, a cube chain c : �∨n → K determines the sequence
(c(udim(ci )))

l
i=1, and a sequence (ci )li=1 determines the unique �-map

c : �dim(c1) ∨ · · · ∨ �dim(cl ) → K (7.2)

such that c(udim(ci )) = ci . This shows that the notion of a cube chain defined here
coincides with the definition introduced in Ziemiański (2017). Below, we will identify
cube chains c and the corresponding sequences (c1, . . . , cl) satisfying the conditions
above.

Definition 7.4 The length n cube chain category Ch(K ; n) of K is the slice category
�Chn ↓ K . In other words, objects of Ch(K ; n) are cube chains of length n, and
morphisms from a to b are commutative diagrams

�∨na K

�∨nb K

�a

�
ϕ

�
=

�b

(7.3)

in �Set∗∗. The full cube chain category of K is Ch(K ) := ∐
n≥0 Ch(K ; n).

For c ∈ Ch(K ; n), i ∈ {1, . . . , l(nc)} and A ∪̇ B = {1, . . . , nci } denote di,A,B(c) =
c ◦ δi,A,B . The morphism di,A,B(c) → c of Ch(K ; n) that is given by the composition
with δi,A,B will be also denoted by δi,A,B .

There is a forgetful functor dom : Ch(K ; n) → �Set∗∗ that assigns to every cube
chain c : �∨nc → K its domain�∨nc . This is equippedwith the natural transformation
dom → constK , which is induced by the chains themselves. For every n ≥ 0, this
transformation induces the map

FK
n : colim

a∈Chn(K ;n)10

�N[0,n](�∨na)10 → �Nt[0,n](K )10 (7.4)
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into the space of tame d-paths, since all d-paths in �N[0,n](�∨na)10 are tame; see the
discussion in the beginning of the next section for details.

Consider the sequence of maps

|Ch(K ; n)| AK
n←−− hocolim

c∈Ch(K ;n)

�N (�∨nc)10
QK
n−−→ colim

c∈Ch(K ;n)

�N (�∨nc)10
FK
n−−→ �Nt[0,n](K )10,

(7.5)
where AK

n is the composition

hocolim
c∈Ch(K ;n)

�N (�∨nc)10 → hocolim
c∈Ch(K ;n)

{∗} ∼= |Ch(K ; n)|,

and QK
n is the natural map from the homotopy colimit to the colimit of the functor

�N (�∨n(−)
)10.

Theorem 7.5 For every K ∈ �Set∗∗, all the maps in the sequence (7.5) are weak
homotopy equivalences.

Proof It follows fromZiemiański (2017, Proposition6.2.(1)) that the space �N[0,n](�∨n)10
is contractible for every n ∈ Seq(n). As a consequence, the map AK

n is a weak homo-
topy equivalence by Dugger (2008, Proposition 4.7). The maps QK

n and FK
n are weak

homotopy equivalences by Propositions 10.4 and 9.7, respectively.

As an immediate consequence, we obtain the main result of this paper.

Theorem 7.6 The functors

�Set∗∗ 	 (K , 0, 1) 
→ �P(K )10 ∈ hTop

and

�Set∗∗ 	 (K , 0, 1) 
→ |Ch(K )| ∈ hTop

are naturally equivalent. In particular, for every bi-pointed�-set K , the spaces �P(K )10
and |Ch(K )| are homotopy equivalent.

Proof For every K ∈ �Set∗∗, there is a sequence of maps

|Ch(K )| =
∐
n≥0

|Ch(K ; n)| �−−−−→
Theorem 7.5

∐
n≥0

�Nt[0,n](K ; n)10
⊆−−−−→

Theorem 6.1

∐
n≥0

�P(K ; n)10 =
(2.9)

�P(K )10

which are all functorial weak homotopy equivalences.
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8 Natural tame presentations

In this sectionwe study properties of presentations of natural tame paths on an arbitrary
bi-pointed �-set K . Fix an integer n ≥ 0, which will be the length of all d-paths
considered here.

If
α = t0[c1;β1] t1∗ [c2;β2] t2∗ · · · tl−1∗ [cl;βl ]tl , (8.1)

is a tame presentation of a tame natural d-path α ∈ �Nt[0,n](K )10, then c = (c1, . . . , cl)
is a cube chain in K , and

β = β1 ∗ β2 ∗ · · · ∗ βl ∈ �N[0,n]( �I∨nc)10 (8.2)

is a natural d-path such that α = [c;β] = |c| ◦ β. For every pair (c, β) such that
c ∈ Ch(K ; n) and β ∈ �N[0,n](K )10 we can associate the presentation (8.1) when we
take βi = β|[tci−1,t

c
i ], regarded as a natural d-path in �I nci ⊆ �I∨nc . This is construction

is correct: since β(tci ) = vn
c

i , the whole segment βi lies in the i th cube of the wedge
cube �I∨nc . This identifies tame presentations of natural paths having length n with
elements of

∐
c∈Ch(K ;n)

�N[0,n]( �I∨nc)10 that are mapped into α by the composition

∐
c∈Ch(K ;n)

�N[0,n]( �I∨nc)10 → colim
c∈Ch(K ;n)

�N[0,n]( �I∨nc)10
Fn
K−→ �Nt[0,n](K )10. (8.3)

Thus, elements of
∐

c∈Ch(K ;n)
�N[0,n]( �I nc)10 will be also called natural tame presenta-

tions, or nt-presentations for short.
For any d-path α ∈ �P[a,b](K ) denote

Vert(α) = α−1(|K(0)|) = {t ∈ [a, b] | α(t) is a vertex}. (8.4)

Note that if α ∈ �N[0,n](K )10, then Vert(α) ⊆ {0, 1, . . . , n}. If additionally α admits a
natural tame presentation α = [c;β], then Vert(nc) ⊆ Vert(α).

Definition 8.1 A natural tame presentation α = [c;β] is
(a) minimal if Vert(α) = Vert(nc),
(b) regular if for every i ∈ {1, . . . , l(c)} there exists t ∈ [tci−1, t

c
i ] such that βi (t) ∈

(0, 1)n
c
i ,

(c) equivalent to a natural tame presentation α = [c′;β ′] if both (c, β) and (c′, β ′)
represent the same element in colimc∈Ch(K ;n)

�N[0,n]( �I∨nc)10.

Equivalently, α = [c;β] is not regular if βi ∈ �N[tci−1,t
c
i ](∂ �I nci ) for some i ∈

{1, . . . , l(c)}.
The set of equivalence classes of nt-presentations of α is just (Fn

K )−1(α). The
example below shows that there may exist non-equivalent nt-presentations of a given
natural tame path.
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Example 8.2 Let K = �3 ∪∂�3 �3 be the union of two standard 3-cubes, glued along
their boundaries.Denote the 3-cubes of K by c and c′ and choose a d-pathα ∈ �N (∂ �I 3)10
that is not tame. But α regarded as a d-path in K is tame; it has two different tame
presentations: [c;α] and [c′;α], which are not equivalent. The two presentations are
not regular.

Proposition 8.3 Assume that α = [c;β] is an nt-presentation. Assume that k ∈
Vert(α)\Vert(nc). Then there exists an nt-presentation α = [c′;β ′] that is equiv-
alent to [c;β] such that Vert(nc

′
) = Vert(nc) ∪ {k}.

Proof Let i ∈ {1, . . . , l(c)} be an integer such that tci−1 < k < tci . We have βi (k) ∈
{0, 1}nci ; denote

A = { j ∈ {1, . . . , nci } | β
j
i (k) = 1}, B = { j ∈ {1, . . . , nci } | β

j
i (k) = 0}.

Obviously β
j
i |[tci−1,k] ≡ 0 for all j ∈ B and β

j
i |[k,tci ] ≡ 1 for all j ∈ A. Therefore,

there exist unique paths γ ∈ �N[tci−1,k]( �I |A|)10, γ ′ ∈ �N[k,tci ]( �I |B|)10 such that βi |[tci−1,k] =
δ0B(γ ), βi |[k,tci ] = δ1A(γ ′). As a consequence,

[ci ;βi ] = [ci ; δ0B(γ )] ∗ [ci ; δ1A(γ ′)] = [d0B(ci ); γ ] ∗ [d1A(ci ); γ ′].

Let

c′ = (c1, . . . , ci−1, d
0
B(ci ), d

1
A(ci ), ci+1, . . . , cl(c)) ∈ Ch(K ; n),

β ′ = β1 ∗ · · · ∗ βi−1 ∗ γ ∗ γ ′ ∗ βi+1 ∗ · · · ∗ βl(c) ∈ �N[0,n]( �I∨nc′ )10.

We have di,A,B(c) = c′. The map

�N[0,n](δi,A,B)10 : �N[0,n]( �I∨nc′ ) → �N[0,n]( �I∨nc)

induced by the morphism δi,A,B : c′ → c sends β into β ′. As a consequence, the
presentations [c;β] and [c′, β ′] are equivalent. The condition Vert(nc′

) = Vert(nc) ∪
{k} follows immediately from the definition of c′.

Proposition 8.4 Every natural tame presentation is equivalent to a minimal natural
tame presentation.

Proof This follows by induction from Proposition 8.3.

Proposition 8.5 Every regular nt-presentation is minimal.

Proof Assume that [c, β] is a regular nt-presentation. Then, for every i ∈ {1, . . . , l(c)}
there exists tn

c

i−1 < t < tn
c

i such that βi (t) ∈ (0, 1)dim(ci ), which implies that

Vert(βi ) = {tnci−1, t
nc
i }. Since Vert(α) = ⋃

i Vert(βi ), the presentation [c;β] is mini-
mal.
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A d-path α ∈ �Nt[0,n](K )10 is regular if it admits a regular presentation. To prove
that all nt-presentations of regular d-paths are equivalent, we need the following.

Lemma 8.6 Let α, β ∈ �P[a,b]( �Im) be d-paths such that:

(a) α(a) = β(a) = 0,
(b) α(b) = β(b) /∈ ∂ �I n, i.e., 0 < α j (b) = β j (b) < 1 for all j ,
(c) for every t ∈ [a, b], the sequences (α1(t), . . . , αm(t)) and (β1(t), . . . , βm(t)) are

equal after removing all 0’s.

Then α = β.

Proof Induction with respect to m. For m = 1 this is obvious. Let s ∈ [a, b] be
the maximal number such that α j (s) = 0 for some j ∈ {1, . . . , n}. Condition (c)
implies that α(t) = β(t) for t > s, since there are no 0’s to remove. By continuity
also α(s) = β(s). If s = 0, then the lemma is proven. Assume s > 0 and let
A = { j | α j (s) = β j (s) = 0}. Let α′, β ′ ∈ �P[a,s]( �Im−|A|) be the paths obtained
from α|[a,s] and β|[a,s] by removing all coordinates belonging to A. By the inductive
hypothesis, we have α′ = β ′ and, therefore, α|[a,s] = β|[a,s].

Proposition 8.7 Every regular natural tame d-path α ∈ �Nt[0,n](K )10 admits a unique
minimal nt-presentation, which is regular. As a consequence, all nt-presentations of α
are equivalent.

Proof Let α = [c;β] be a regular nt-presentation and let α = [c′;β ′] be a minimal
presentation. By Proposition 8.5, we have Vert(nc) = Vert(α) = Vert(nc

′
) and hence

nc = nc
′
. Fix i ∈ {1, . . . , l(c) = l(c′)} and choose t ∈ [tci−1, t

c
i ] such that βi (t) ∈

�I nci \∂ �I nci .Now [ci ;βi (t)] is a canonical presentation of the pointα(i). Since dim(c′
i ) =

dim(ci ), also [c′
i , β

′
i (t)] is a canonical presentation of α(t), which implies that ci = c′

i
and βi (t) = β ′

i (t). Applying Lemma 8.6 we obtain that βi |[tci−1,t] = β ′
i |[tci−1,t], and the

“opposite” analogue of this lemma implies that βi |[t,tci ] = β ′
i |[t,tci ]. As a consequence,

ci = c′
i and βi = β ′

i for all i , and hence c = c′ and β = β ′. Thus, the minimal
nt-presentation of α is unique and all nt-presentations of α are equivalent to it.

Proposition 8.8 Assume that K ⊆ �n. Then every natural tame path α ∈ �Nt[0,n](K )10
admits a unique minimal presentation.

Proof Let α = [c, β] and α = [c′, β ′] be minimal nt-presentations. We have n :=
nc = nc

′
. For every i ∈ {1, . . . , l(c) = l(c′)} we have

[d0(c′
i ); ()] = [c′

i ; 0] = [c′
i , β

′
i (t

n
i−1)] = α(tni−1) = [ci , βi (t

n
i−1)] = [ci , 0] = [d0(ci ); ()]

[d1(c′
i ); ()] = [c′

i ; 1] = [c′
i , β

′
i (t

n
i )] = α(tni ) = [ci , βi (t

n
i )] = [ci , 1] = [d1(ci ); ()].

Thus, ci = c′
i since they have the same extreme vertices. Furthermore, all the maps

|ci | : �I ni → �I n are injective, which shows that βi = β ′
i .
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9 Comparison of the colimit and the space of natural tame d-paths

Fix a bi-pointed �-set K and an integer n ≥ 0. In this Section we investigate the
sequence of surjective maps

∐
c∈Ch(K ;n)

�N[0,n]( �I∨nc)10 → colim
c∈Ch(K ;n)

�N[0,n]( �I∨nc)10
Fn
K−→ �Nt[0,n](K )10. (9.1)

The spaces appearing in this sequence are, respectively from left to right, the space of
nt-presentations, the space of equivalence classes of nt-presentations and the space of
natural tame d-paths. The main goal of this section is to prove that the map Fn

K is a
homotopy equivalence. Recall that TamK

n is the tamification map defined in (6.9).

Proposition 9.1 Let α ∈ �Nt[0,n](K )10. Assume that Vert(α) = Vert(TamK
n (α)). Then α

is a regular natural tame d-path.

Proof Let α = [c;β] be a minimal nt-presentation. Then also

TamK
n (α) = [c;Tam�∨nc

n (β)]

is a minimal nt-presentation, since Tamn is functorial, and

Vert(TamK
n (α)) = Vert(α) = Vert(nc).

Assume that α is not regular. Thus, there exists i ∈ {1, . . . , l(c)} such that βi ∈
�N[tci−1,t

c
i ](∂ �I nci )10. Then

Tam�∨nc
n (β)i := Tam�∨nc

n (β)|[tci−1,t
c
i ] ∈ �N[tci−1,t

c
i ](∂ �I nci )10

is tame (regarded as a d-path in ∂ �I nci ) and, therefore, k ∈ Vert(Tam�∨nc
n (βi )) for some

tci−1 < k < tci . This contradicts the assumption, since k /∈ Vert(α).

Proposition 9.2 Let α ∈ �Nt[0,n](K )10. If α = [c;β] and α = [c′;β ′] are equiv-

alent nt-presentations, then also TamK
n (α) = [c;Tam�∨nc

n (β)] and TamK
n (α) =

[c′;Tam�∨nc′
n (β ′)] are equivalent nt-presentations.

Proof This follows from the functoriality of Tamn .

Below we change decorations at Tam; the upper index in Tamm stands for the
m-fold composition.

Proposition 9.3 Assume that m ≥ n. Let α ∈ �Nt[0,n](K )10 and let α = [c;β] and α =
[c′;β ′] be nt-presentations of α. Then the nt-presentations Tamm(α) = [c;Tamm(β)]
and Tamm(α) = [c′;Tamm(β ′)] are equivalent.
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Proof We have an ascending sequence of sets

{0, n} ⊆ Vert(α) ⊆ Vert(Tam(α))

⊆ Vert(Tam2(α)) ⊆ · · · ⊆ Vert(Tamm(α)) ⊆ {0, . . . , n}.

Hence, there exists r ∈ {0, . . . ,m − 1} such that Vert(Tamr (α)) = Vert(Tamr+1(α)).
By Proposition 9.1, Tamr (α) is a regular tame path and hence, by Proposition 8.7,
the nt-presentations Tamr (α) = [c;Tamr (β)] and Tamr (α) = [c′;Tamr (β ′)] are
equivalent. Now the conclusion follows from Proposition 9.2.

In terms of diagrams, Proposition 9.3 states that for every m ≥ n in the diagram of
solid arrows

colim
c∈Ch(K ;n)

�N[0,n]( �I∨nc)10 colim
c∈Ch(K ;n)

�N[0,n]( �I∨nc)10

�Nt[0,n](K )10
�Nt[0,n](K )10

�Tamm

�

FK
n

�

FK
n

�Tamm
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��
f K ,m

(9.2)

there exists a function f K ,m that makes the upper triangle commutative. Since FK
n is

surjective, also the lower triangle commutes. However, it is not clear whether f K ,m is
continuous. We will tackle with this problem in the rest of this section, starting with
the following lemma.

Proposition 9.4 Let X ,Y be metric spaces and let L > 0. Let LipL(X ,Y ) denote
the space of L-Lipschitz maps X → Y with compact-open topology and let Y X be
the space of all continuous maps X → Y with the product topology. Assume that Y

is compact. Then the inclusion map LipL(X ,Y )
⊆−→ Y X is a homeomorphism on its

image.

Proof We need to prove the following statement: for every compact subset K ⊆ X , an
open subset U ⊆ Y and f ∈ LipL(X ,Y ) such that f (K ) ⊆ U there exist sequences
x1, . . . , xn of points of X and U1, . . . ,Un of open subsets of Y such that

∀g∈LipL (X ,Y )

(
(∀ni=1 g(xi ) ∈ Ui ) ⇒ g(K ) ⊆ U

)
.

Since f (K ) is compact, the distance d between f (K ) and Y\U is strictly positive.
Let {x1, . . . , xn} be a family of points of K such that the family of open balls having
radius d/2L and centered at the xi ’s cover K . Let Ui = B( f (xi ), d/2). Assume that
g ∈ LipL(X ,Y ) is a function such that g(xi ) ∈ Ui for all i . For every x ∈ K there
exists i ∈ {1, . . . , n} such that distX (x, xi ) < d/2L . Therefore,

distY (g(x), f (xi )) ≤ distY (g(x), g(xi )) + distY (g(xi ), f (xi ))

≤ L distX (x, xi ) + d/2 ≤ d.
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As a consequence, g(x) ∈ U , which ends the proof.

Proposition 9.5 For every n ∈ Seq(n), the space �N[0,n]( �I∨n)10 is compact.

Proof Since

�N[0,n]( �I∨n)10 ∼=
l(n)∏
i=1

�N[tni−1,t
n
i ]( �I ni )10,

it is sufficient to prove that �N[0,n]( �I n)10 is compact. But �N[0,n]( �I n)10 is a closed subset
of Lip1(I , I

n), with L1-metric on I n , so the statement follows from Proposition 9.4.

Proposition 9.6 If K is finite, then the map f K ,m (9.2) is continuous for m ≥ n. For
arbitrary K , f K ,m is continuous for m ≥ n + 1.

Proof If K is finite, then so is Ch(K ; n). Thus, colim
c∈Ch(K ;n)

�N[0,n]( �I∨nc)10 is compact by

Proposition 9.5 and then the left-handverticalmap is a quotientmap.As a consequence,
fm is continuous for m ≥ n.
Assume that m ≥ n + 1. For any d-path α ∈ �Nt[0,n](K )10 there exists a finite

sub-�-set L ⊆ K such that α ∈ �N[0,n](L)10. Let

UL = {x ∈ |K | | dist(x, |L|) < 1
4 },

where dist stands for the L1-distance on |K |. The set �Nt[0,n](UL)10 is an open neigh-

borhood of α, which is mapped by Tam into �Nt[0,n](L)10; this follows from properties

(a) and (b) of R. The restriction of f K ,m to �Nt[0,n](U )10 is equal to the composition of
continuous maps

�Nt[0,n](U )10
Tam−−→ �Nt[0,n](L)10

f L,m−1

−−−−→ colim
c∈Ch(L;n)

�N[0,n]( �I∨nc)10 ⊆ colim
c∈Ch(K ;n)

�N[0,n]( �I∨nc)10.

Thus, f K ,m it is continuous at every point (d-path) α.

As a consequence, for everym ≥ n+1 (9.2) is a commutative diagramof continuous
maps. Since the horizontal maps are homotopic to the identities on the respective
spaces, we obtain:

Proposition 9.7 The map

FK
n : colim

c∈Chn(K )10

�N[0,n]( �I∨nc)10 → �Nt[0,n](K )10

is a homotopy equivalence with a homotopy inverse f Kn+1.
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10 Comparison of the homotopy colimit with the colimit

Fix a bi-pointed �-set K and an integer n ≥ 0.
In this section we show that the map

QK
n : hocolim

c∈Ch(K ;n)

�N (�∨nc)10 → colim
c∈Ch(K ;n)

�N (�∨nc)10 (10.1)

is a weak homotopy equivalence. We will use the following criterion due to Dugger
(2008). Let C be an upwards-directed Reedy category (Dugger 2008, Definition 13.6)
and let F : C → Top be a diagram. The latching object of c ∈ Ob(C) is

LcF := colim∂C↓c F ◦ dom, (10.2)

where ∂C ↓ c is the slice category over the object cwith the identity object idc removed,
and dom : C ↓ c → C is the forgetful functor. The latching object is equipped with the
latching map �c : LcF → F(c) that is induced by the cocone {F(ϕ)}(ϕ:a→c)∈∂C↓c.

Proposition 10.1 (Dugger 2008, Proposition 14.2) Assume that the latching map �c

is a cofibration for every object c ∈ Ob(C). Then F is projective-cofibrant and so
hocolimC F → colimC F is a weak equivalence.

The category Ch(K ; n) admits a grading deg(a) = n − l(a), which makes it an
upwards-directed Reedy category: for every non-identity morphism ϕ : a → b in
Ch(K ) we have l(a) > l(b).

For every c ∈ Ch(K ; n), the functor

Ch(�∨nc)10 	 (�∨na a−→ �∨nc) 
→

⎛
⎜⎜⎜⎜⎝

�∨na K

�∨nc K
�

a

�c◦a

�
=

�c

⎞
⎟⎟⎟⎟⎠ ∈ Ch(K ; n) ↓ c (10.3)

is an isomorphism of categories: the functor dom : Ch(K ; n) ↓ c → �Chn is its
inverse. Furthermore, the functors �N[0,n](�∨n(−)

)10 onCh(�∨nc) and �N[0,n](�∨n(−)
)10◦

dom on Ch(K ; n) ↓ c are naturally equivalent. As a consequence, the latching map
Lc �N[0,n]( �I∨n(−)

) → �N[0,n](�∨nc) is related by homeomorphisms to the canonical
map

colim
a∈∂ Ch(�∨nc )

�N[0,n]( �I∨na)10 → �N[0,n]( �I∨nc)10, (10.4)

where ∂ Ch(�∨nc) is the full subcategory of Ch(�∨nc) with the identity cube chain
�∨nc =−→ �∨nc removed. In particular, the latching map of c depends only on the type
nc of c.

For n ∈ Seq(n) denote

∂ �N[0,n](�∨n)10 = {α ∈ �N[0,n](�∨n)10 | Vert(α)\Vert(n) �= ∅ }; (10.5)
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this is the space of all natural tame paths that admit an nt-presentation [c;β] such that
c is a non-identity cube chain, i.e., c �= id�∨n .

Proposition 10.2 For every n ∈ Seq(n) we have

im

(
colim

c∈∂ Ch(�∨n)

�N[0,n]( �I∨nc)10
�n−→ �N[0,n]( �I∨n)

)
= ∂ �N[0,n](�∨n)10

Furthermore, �n is a homeomorphism onto its image.

Proof Assume that α ∈ ∂ �N[0,n](�∨n)10 and let α = [c;β] be a minimal nt-
presentation, which exists due to Proposition 8.4. Since Vert(nc) = Vert(α) �=
Vert(n), c is not the identity cube chain. Therefore, �n(c, β) = α, which implies
that ∂ �N[0,n](�∨n)10 ⊆ im(�n).

If α ∈ im(�n), then there exists an nt-presentation α = [c, β] such that c �= id�∨n .
Thus, Vert(α) ⊇ Vert(nc) � Vert(n) and, therefore, α ∈ ∂ �N[0,n](�∨n)10.

There exists an embedding of �∨n in �n . Then Proposition 8.8 implies that all
nt-presentations of a d-path α ∈ ∂ �N[0,n](�∨n)10 are equivalent, since they are all
equivalent to a unique minimal nt-presentation. As a consequence, (�n)

−1(α) is a
one-point set and, therefore, �n is a bijection onto its image.

By Proposition 9.5, all the spaces appearing in the colimit are compact. Since the
indexing category ∂ Ch(�∨n) is finite, the colimit is compact and �n is a homeomor-
phism onto its image.

Proposition 10.3 For every n ∈ Seq(n), the inclusion ∂ �N[0,n]( �I∨n)10 ⊂ �N[0,n]( �I∨n)10
is a cofibration.

Proof Denote for short ∂ �N := ∂ �N[0,n](�∨n)10, �N := �N[0,n](�∨n)10, �P :=
�P[0,n](�∨n)10. We will prove that ∂ �N is a strong neighborhood deformation retract
in �N . If n = (1, . . . , 1), then Vert(n) = {0, 1, . . . , n} and hence ∂ �N = ∅. Assume
thatn �= (1, . . . , 1) andfix an embedding�∨n ⊆ �n . For any d-pathα ∈ �P[0,n]( �I∨n)10,
let α j ∈ �P[0,n]( �I )10 denote the j th coordinate of α, regarded as a d-path in �I n (via the
chosen embedding �I n = |�∨n| ⊆ |�n| = �I n).

Denote Free(n) = {1, . . . , n − 1}\Vert(n). The function

f : �N 	 α 
→ min
k∈Free(n)

max
j∈{1,...,n}min{α j (k), 1 − α j (k)} ∈ [0, 1]

is continuous, and f −1(0) = ∂ �N . Fix 0 < ε < 1
n and let U = f −1([0, ε)); we will

construct a strong deformation retraction of U into ∂ �N .
For a ∈ [0, ε] let g(a,−) : �I → �I be the function such that g(a, h) = 0 for

h ∈ [0, a], g(a, t) = 1 for h ∈ [1 − a, 1] and g(a,−) is linear on the interval
[a, 1 − a]. Note that |t − g(a, t)| ≤ a for all t ∈ �I .

For s ∈ [0, 1], α ∈ �N and t ∈ [0, n] let

G(s, α)(t) = (1 − s)α(t) + s(g( f (α), α1(t)), g( f (α), α2(t)), . . . , g( f (α), αn(t))).
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If α j (t) = η for η ∈ {0, 1}, then g( f (α), α j (t)) = η, which implies that G(s, α)(t) ∈
�I∨n for all s ∈ [0, 1]. Thus, this formula defines a continuousmapG : [0, 1]×U → �P .
Let us prove that the composition nat ◦G is a strong deformation retraction of U into
∂ �N . Indeed, for every α ∈ ∂ �N we have f (α) = 0 and, therefore, nat(G(s, α)) =
nat(α) = α for all s ∈ [0, 1]. If α ∈ U , then there exists k ∈ Free(n) such that

min{α j (k), 1 − α j (k)} ≤ f (α)

for all j ∈ {1, . . . , n}, i.e., α j (k) ∈ [0, f (α)] ∪ [1 − f (α), 1]. Thus,

G(1, α)(k) = (g( f (α), α1(k)), . . . , g( f (α), αn(k)))

is a vertex. Furthermore,

∣∣k − len(G(1, α)|[0,k])
∣∣ =

∣∣∣∣∣∣k −
n∑
j=1

g( f (α), α j (k))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑
j=1

α j (k) −
n∑
j=1

g( f (α), α j (k))

∣∣∣∣∣∣
≤

n∑
j=1

∣∣∣α j (k) − g( f (α), α j (k))
∣∣∣ ≤ n f (α) < 1.

Thus, len(G(1, α)|[0,k]) = k and hence nat(G(1, α))(k) = G(1, α)(k) is a vertex,
which shows that nat ◦G(1, α) ∈ ∂ �N .

Proposition 10.4 The map

QK
n : hocolim

c∈Ch(K ;n)

�N (�∨nc)10 → colim
c∈Ch(K ;n)

�N (�∨nc)10

is a weak homotopy equivalence.

Proof ByPropositions 10.2 and 10.3, the assumptions of Proposition 10.1 are satisfied.
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