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Abstract
The prospect of improving or maintaining cognitive functioning has provoked a steadily increasing number of cognitive training
interventions over the last years, especially for clinical and elderly populations. However, there are discrepancies between the
findings of the studies. One of the reasons behind these heterogeneous findings is that there are vast inter-individual differences in
how people benefit from the training and in the extent that training-related gains are transferred to other untrained tasks and
domains. In this paper, we address the value of incorporating neural measures to cognitive training studies in order to fully
understand the mechanisms leading to inter-individual differences in training gains and their generalizability to other tasks. Our
perspective is that it is necessary to collect multimodal neural measures in the pre- and post-training phase, which can enable us to
understand the factors contributing to successful training outcomes.More importantly, this understanding can enable us to predict
who will benefit from different types of interventions, thereby allowing the development of individually tailored intervention
programs.
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Introduction

Cognitive training has become increasingly popular (see
Strobach and Karbach 2020, for a review) as the elderly pop-
ulation has rising life expectancy and therefore growing risk
of cognitive and functional decline. Moreover, the cognitive
demands for academic and occupational success are increas-
ing with each generation. The main promise of cognitive train-
ing interventions is to induce lasting performance gains in
cognitive domains that go beyond the practiced task and are
relevant for daily functioning. Training-induced changes are
thought to be triggered by a prolonged mismatch between
situational demands and range of functions and performance
an individual’s cognitive system is able to support (Lövdén
et al. 2010). This mismatch fosters adaptive structural brain
changes (e.g., neurogenesis, synaptogenesis, long-term poten-
tiation) that effectively increase the possible range of

cognitive performance to meet the altered environmental de-
mands. Although the results of many training studies are
promising, there is high variability across studies and individ-
uals in such training-induced plastic changes (e.g., Katz et al.
2016, for a review), and even meta-analyses on the topic re-
veal conflicting conclusions (e.g., Kassai et al. 2019; Melby-
Lervåg and Hulme 2016 vs. Au et al. 2016; Karbach and
Verhaeghen 2014; Nguyen et al. 2019). On the one hand, this
reflects large differences between studies in terms of training
type, training features, and target population (see Fig. 1, panel
3), but it also highlights large inter-individual differences in
performance gains.

In recent years, these individual differences in training-
induced cognitive performance gains have attracted consider-
able scientific interest (e.g., Bürki et al. 2014; Karbach et al.
2017; Lövdén et al. 2012). According to the supply-demand
mismatch model (Lövdén et al. 2010), the extent to which
mismatch drives plastic changes depends on the current state
of flexibility of the cognitive system. For instance, if environ-
mental demands greatly exceed the existing functional
capacity—as would be the case when asking a 4-year-old to
maintain 7 digits in working memory—the impetus for
change will be reduced. When the inter-individual variation
is high, averaging across participants can be misleading (e.g.,
Moreau and Corballis 2018). It is now clear that the “one-fits-
all” solutions are not working for cognitive training, and it is
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time to move towards individualized training programs
(Colzato and Hommel 2016; Karbach and Unger 2014;
Kliegel and Bürki 2012). In order to do that, we need to (1)
determine which inter-individual differences lead to the vari-
ation in training-related outcomes and (2) understand the
mechanisms leading to training gain and transfer.

In an attempt to identify individual characteristics that
might influence the success of a training regimen, previous
studies focused on age, sex, education, baseline cognitive per-
formance, intelligence, personality, and motivation (e.g., Katz
et al. 2016, for a review; see Fig. 1, panel 2). The results of
these studies remain inconclusive. For instance, most studies
agree that baseline cognitive performance is associated with
training-related changes, but there is no agreement on the
direction of this relation. Some reports found greater
training-induced gains in individuals with higher baseline per-
formance (Foster et al. 2017; Wiemers et al. 2019), whereas
others concluded that individuals with low baseline perfor-
mance benefit more because they have more room to improve
(Jaeggi et al. 2011; Zinke et al. 2014). There is an increasing
trend to combine basic demographic, psychometric, and be-
havioral measures with magnetic resonance imaging (MRI)–
based measures of brain morphological and functional char-
acteristics to resolve these inconsistencies. The rationale is
that brain markers are reliable indicators of the current func-
tional organismic capacity, i.e., the possible range of cognitive
performance. Neural predictors can be rather specific (e.g.,
hippocampal subfield volume) or more general (e.g., whole-
brain functional connectivity patterns), depending on the com-
plexity of the cognitive functions they are believed to support.

Moreover, direct assessment of training-induced change in
brain structure and function has advanced the understanding
of the mechanisms underlying cognitive performance incre-
ments. In this article, we give an overview of findings on brain
structural and functional predictors of cognitive improvement
as well as training-related brain changes. We discuss implica-
tions for future training research and address existing practical
challenges.

Brain Structural Factors Predicting
Training-Induced Gain

Regional Volumes

There are several studies showing that the volume of certain
brain regions is associated with learning complex skills. The
study of Erickson et al. (2010) with young adults revealed that
the volume of striatum, but not hippocampus, predicted suc-
cessful learning of a complex video game, which required
coordination of various cognitive, motor, and perceptual sys-
tems. Similarly, another study (Basak et al. 2011) demonstrat-
ed in older adults that larger regional gray matter volumes (of
the cerebellum, the dorsolateral prefrontal cortex, and the an-
terior cingulate cortex) predicted better learning rates in a real-
time strategy video game. Using a standard dual-task para-
digm, Verghese et al. (2016) found a correlation between the
volume of the left dorsolateral prefrontal cortex (DLPFC) and
multitasking training outcomes; however, the reported relation
was negative, i.e. smaller volumes were associated with
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Fig. 1 Tentative model of a study design. We suggest including neuroimaging pre- and post-training as well as in the follow-up to be able to understand
the mechanisms leading to cognitive training gain, generalization to unrelated tasks, and maintenance of these effects over longer periods of time
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higher gains. Due to the diversity of methods used in these
studies, a direct comparison is not possible and independent
replications of the nature and direction of effects are needed.

According to the findings of Engvig et al. (2012b), pre-
training hippocampal volumes were positively associated with
memory improvements after a strategy-based cognitive train-
ing program in adults with memory complaints. Baseline hip-
pocampal volumes were also found to predict improvements
in mathematical skills after tutoring in primary-grade school
children (Supekar et al. 2013). The researchers also investi-
gated the effects of individual differences in behavioral mea-
sures on skill acquisition, and interestingly, they showed that
neither pre-training IQ, working-memory performance, nor
mathematical abilities predicted the performance gains.
Findings of another study (Strangman et al. 2010) using mem-
ory strategy training and fully automated morphometric brain
parcellation technique with traumatic brain injury patients re-
vealed that the volumes of the hippocampus, the DLPFC, and
the posterior parietal cortex were positively correlated with
training-related memory improvement. However, another
study (Peter et al. 2018) using memory strategy training found
that the volume of entorhinal cortex rather than of the hippo-
campus was predictive of episodic memory improvement in
patients with mild cognitive improvement. They also showed
that baseline cognitive performance was not associated with
memory improvement. Different segmentation and
parcellation algorithms, different regions of interests, and dif-
ferent target populations may have contributed to these dispa-
rate findings.

Notably, not only regional volumes but also individual dif-
ferences in cortical thickness can predict cognitive gains in
older adults following a metamemory training program
(Park et al. 2018). The authors investigated which brain char-
acteristics can predict post-training cognitive improvement
and showed the lower cortical thickness in parietal and occip-
ital regions (cuneus, precuneus, posterior cingulate) was cor-
related with higher cognitive gains. Importantly, training-
related cognitive performance improvements in this study
were measured using a battery of tests assessing verbal and
non-verbal memory, language skills, short-term memory, and
verbal fluency. Unfortunately, the use of a composite score
did not allow conclusions as to whether the training improved
all or only a subset of the above skills.

Taken together, the results demonstrate that brain morphol-
ogy before cognitive training can predict how the trainees
benefit from the training program (see Fig. 1, panel 1).
Unfortunately, due to vast differences between the study pro-
tocols, analysis methods, and study populations, the studies do
not tell a completely coherent story yet. Currently, most find-
ings should be interpreted in the context of the given study and
sample characteristics to avoid over-generalization. We can
summarize that hippocampal volume has been associated with
learning and memory improvement, and striatal volume was

found to play a role when acquiring complex new skills such
as the skills needed in video game playing (e.g., cognitive
flexibility, integration and coordination of motor and percep-
tual information).

Structural Connectivity

Studies show that structural connectivity of the brain is related
to cognitive function in healthy (Deary et al. 2006) and clin-
ical populations (e.g., Baykara et al. 2016; Damoiseaux et al.
2009). Based on the following studies, it can be argued that
the integrity of white matter tracts can be used to predict cog-
nitive training outcomes.

Ray et al. (2017) investigated the relevance of microstruc-
tural integrity of several white matter regions for video game
learning in younger and older adults. They found that white
matter integrity in the fornix/stria terminalis was related to
action game learning while white matter integrity in the
cingulum/hippocampus was related to strategy game learning.
Furthermore, they showed that although the participants’
baseline cognitive abilities predicted general learning ability,
they did not differentiate between different types of learning
gains, whereas white matter integrity was sensitive to these
differences. This demonstrates a differential predictive valid-
ity of brain measures vs. behavioral measures.

In their study, de Lange et al. (2016) demonstrated that in
older participants as compared with younger participants,
white matter structural integrity declined, especially in the
anterior brain regions. More importantly, they showed that
the baseline white matter integrity of the brain regions affected
by aging, including the anterior corpus callosum, the left an-
terior thalamic radiation, and the right inferior fronto-occipital
fasciculus, predicted the effects of memory training on mem-
ory performance in older adults.

In the above-mentioned multi-strategic metamemory train-
ing study, Park et al. (2018) investigated the structural con-
nectivity in older adults and its association with cognitive
improvements following training. They showed that white
matter integrity in the right splenium of the corpus callosum
predicted changes in a composite cognitive test score in the
training group.Moreover, white matter anisotropy of right and
left crura of fornix predicted memory enhancement
specifically. Importantly, none of the baseline cognitive
abilities predicted cognitive improvement, which shows the
value of incorporating brain measures into cognitive training
research. Similarly, Wolf et al. (2014) studied the association
between structural integrity and transfer of training gains.
They trained participants in logical reasoning and tested
short-term and long-term transfer to fluid intelligence scores.
The results of this study revealed that maintenance of transfer
effects was associated with the integrity of the corpus
callosum, and not with age or general intelligence. To be able
to predict who will maintain training and transfer effects gives

247J Cogn Enhanc (2021) 5:245–258



us the opportunity to properly select the target population and,
for example, to adapt the intensity or duration of the training
for those who have declined structural integrity.

The aforementioned studies show that structural integrity
of the brain can provide valuable information onwho can have
a faster learning rate, who can benefit from different types of
learning tasks, and who can show higher cognitive gains and
transfer effects (see Fig. 1, panel 1). A higher integrity of
white matter means more efficient neuronal conduction in
the brain, which allows for effective information transfer
(Kanai and Rees 2011). As several studies already showed,
higher structural integrity also translates to better learning and
better training outcomes.

Brain Functional Factors Predicting Cognitive
Gain

Not only the structure but also the functional organization and
connectivity can inform us about trainability potential. In this
section, we review studies showing an association between
baseline brain function and training-related gains.

Resting-State Functional Connectivity

MRI studies demonstrated a relation between the neural acti-
vation of brain networks and task performance, as well as
learning performance (Baldassarre et al. 2012; Ventura-
Campos et al. 2013). Based on the assumption that learning
performance is influenced by the connectivity patterns of in-
trinsic whole-brain networks, a study (Yamashita et al. 2015)
investigated the relation between functional connections in the
brain and subsequent learning. They showed that functional
connections within the task-relevant networks predicted par-
ticipants’ learning ability of working memory tasks.

The following studies also focused on functional connec-
tivity of whole-brain networks, since complex behavior is ac-
cepted to be a result of an interplay between different net-
works in the brain. Additionally, these studies used graph
theory to quantify the brain’s network organization and con-
nectivity patterns. Graph theory is a mathematical model to
quantify, illustrate, and analyze complex brain networks
(structural and functional) and is widely used in neuroimaging
research (for more information, see Bullmore and Sporns
2009; Sporns 2018). It has to be noted, however, that different
types of connectivity analyses render differential results.
While whole-brain connectivity is reasonably reliable, the re-
liability of individual resting-state connections is relatively
low, though the application of multivariate prediction models
can improve the reliability (cf. Sripada et al. 2020).

Several studies found that whole-brain modularity—a mea-
sure of balance between integration and segregation of brain
networks—as calculated from resting-state functional MRI

can predict gains related to cognitive interventions. The main
finding is that higher brain network modularity is associated
with better learning, higher training–related gains, and transfer
(see Fig. 1, panel 1). These results have been established with
patients with brain injury (Arnemann et al. 2015), older
(Gallen et al. 2016), and younger adults (Baniqued et al.
2019), and following cognitive or physical training
(Baniqued et al. 2018). The same principle is also valid in
other types of learning such as motor learning: in their study,
Mattar et al. (2018) found that a lower correlation between
baseline motor and visual regions, in other words, more mod-
ular visual and motor networks, was predictive of faster
learning.

The explanation of these findings is that modular networks
at rest have overall high performance because they can adapt
to the external demands faster (learn), and this reduces the
brain’s general wiring cost. It means modularity enables suc-
cessful learning as it enables the brain to process information
faster and adapt faster to changing environments (Ellefsen
et al. 2015; Wig 2017; for a review of modularity as a marker
of intervention-related plasticity, see Gallen and D’Esposito
2019).

Task-Based fMRI

Additionally, there are studies investigating task-based MRI
to predict training gains. One example is a study with older
adults (Heinzel et al. 2014) that examined the brain responses
under different working memory (WM) loads (pre-training)
and their correlation with cognitive gains resulting from
WM training. Their conclusion was that older adults with
activation patterns similar to young adults (lower activation
at low WM load, and higher activation at high WM load)
gained more from cognitive training. Furthermore, the pre-
training activity of motor network has been also associated
with training-related improvements in WM ability
(Simmonite and Polk 2019). The authors discuss the relevance
of motor network in terms of its relation to the ability of
manipulating internal information.

In line with video game training studies (e.g., Erickson
et al. 2010), Vo et al. (2011) showed that not only the volume
but also the activity of striatum predicts learning success in a
complex video game training. It is important to note, however,
that not all studies found brain measures to be predictive of
performance gains. In the abovementioned study, Heinzel
et al. (2014) also investigated the predictive power of WM-
load–dependent functional connectivity and reported that
there was no association between baseline connectivity and
training outcome in the older sample. Considering the reliabil-
ity issues related to task-based fMRI (Elliott et al. 2020; see
“Practical challenges”), researchers should be cautious when
interpreting their results (especially for prediction purposes)
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and not solely rely on task-based fMRI results for investigat-
ing individual differences.

The studies mentioned so far address the possibility of
using neuroimaging methods to predict cognitive training
gains (see Fig. 1, panel 1). The idea is that the baseline brain
state of trainees (either the volume of relevant brain structures,
the structural integrity of white matter or resting-state func-
tional connectivity) has an influence on how they process
information, i.e., how they learn and benefit from
training (for an overview of the prediction studies please see
Table 1).

Training-Induced Neural Changes

Brain Structural Changes Following Cognitive
Training

There are different types of structural changes as reported in
cognitive training studies: volume changes in cortical or sub-
cortical structures, changes in cortical thickness, and in
structural connectivity. Engvig et al. (2010) applied an inten-
sive memory training program and found increases in cortical
thickness in older adults. Furthermore, these cortical changes
were correlated positively with the memory improvements
observed after the training. The same group also revealed that
the training had positive influence on white matter integrity in
older adults (Engvig et al. 2012a). Lövdén et al. (2010) also
reported increased white matter integrity in older adults after a
multidomain (working memory, episodic memory, and per-
ceptual speed) training program. Similarly, Takeuchi et al.
(2010) investigated the effect of working memory training
on structural connectivity and showed training-related posi-
tive changes in white matter integrity in regions that are in-
volved in workingmemory processes. Additionally, this study
also disclosed a positive correlation between changes in struc-
tural connectivity and the amount of working memory train-
ing, indicating a direct relation between the training and struc-
tural change. Furthermore, another study (Caeyenberghs et al.
2016) reported an increased structural (white matter) network
connectivity, indicating greater global integration within a
frontoparietal network following a working memory training.
Accordingly, training-related improvements were associated
with increased global efficiency, which provides an indication
of how effectively information is integrated across the entire
network.

On the other hand, despite these promising findings, some
studies found no structural volume changes after an attention
training (Mozolic et al. 2010) or multidomain training pro-
gram (Adcock et al. 2020; Suo et al. 2016). Furthermore, some
studies did not find changes in white matter integrity follow-
ing a working memory (Fissler et al. 2017) or multidomain
training program (Lampit et al. 2015). It is also important to

keep in mind that not all studies directly investigated or re-
ported the relation between the structural and cognitive chang-
es. Some studies reported a positive association between neu-
ral and cognitive changes in gray matter (Engvig et al. 2010;
Lampit et al. 2015) and in white matter (Engvig et al. 2012a;
de Lange et al. 2017), whereas others did not (WM; Lövdén
et al. 2010; Román et al. 2017). These inconsistent findings
might be the results of the diversity of training programs and
dosage, and further research is needed to clarify the factors
leading to structural changes.

To conclude, a majority of the studies indicate that struc-
tural changes are relevant for measuring cognitive changes as
a result of cognitive training (see Fig. 1, panel 4 and 5), and
these brain changes could be used as biomarkers of
neuroplasticity. Here, one cautionary note is needed. Single
pre-post measures of brain volume can be associated with
misleading results in cognitive training research. According
to the expansion-renormalization model (Wenger et al.
2017), learning and skill acquisition can lead to a brain vol-
ume expansion in task-relevant areas due to an increase of, for
example, neurons and synapses. However, this increase is
usually followed by a selection process leading to a partial
or even complete return to baseline volume (cf. Wenger
et al. 2017). Thus, training-induced structural changes should
be tracked acrossmultiple time points during and after training
and need to be complemented by functional assessments of
cognitive performance to reveal a complete picture of their
plasticity. As cognitive training involves skill acquisition
(Gathercole et al. 2019), this model could apply to cognitive
training–related structural plasticity. Empirical evidence for
the model in this specific context is still needed, but it needs
to be considered when interpreting changes in brain volume.

Functional Brain Changes Following Cognitive
Training

In addition to the structural changes, several studies to date
also revealed significant training-induced functional brain
changes. Brehmer et al. (2011) investigated functional chang-
es following an intense working memory training in older
adults. Their results suggested an intervention-related increase
in the neural efficiency in frontoparietal regions: participants
receiving adaptive working memory training showed de-
creased brain activation while performing a difficult task as
compared with the control group. Importantly, these changes
were functionally relevant for the behavioral outcome, since
the magnitude of the functional changes was correlated with
the amount of cognitive improvement. In their study,
Kirchhoff et al. (2012) trained older adults with semantic
encoding strategies and showed that trained participants had
increased encoding-related brain activity in regions associated
with semantic memory (prefrontal and left temporal regions).
Furthermore, training gains were correlated with the activity
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increases. Both of these studies revealed task-related activity
changes in the brain following cognitive training, but the di-
rection of the effects differed. Studies investigating training-
related changes in cortical activity report both increases (e.g.,
Kirchhoff et al. 2012; Nyberg et al. 2003; Olesen et al. 2004)
and decreases (e.g., Brehmer et al. 2011; Miró-Padilla et al.
2019). On the other hand, other studies reveal a u-shaped
pattern of changes following cognitive training in cortical
(e.g., Hempel et al. 2004) and subcortical activation (e.g.,
Kühn et al. 2013). Accordingly, training can at first stimulate
increases in activity, which are then followed by activity de-
creases suggesting more automatized processing or increased
neural efficiency. These studies further highlight the impor-
tance of multiple measurements during and after cognitive
training to yield a better understanding of the temporal dy-
namics of training-related neural changes.

In addition to task-based fMRI, some studies employed
resting-state fMRI to reveal training-induced changes in func-
tional connectivity. One study showed that working memory
training with young adults resulted in increased functional
connectivity between the key nodes of default mode network
(DMN) (Takeuchi et al. 2013). A similar pattern of results was
observed in older adults following a multidomain intervention
(cognitive training and exercise): functional connectivity be-
tween parts of the DMN increased, and this increase was as-
sociated with improvements in cognitive performance (Li
et al. 2014). Chapman et al. (2015) demonstrated increases
in functional connectivity within the DMN and central exec-
utive network (CEN) after a strategy-based training in older
adults. Moreover, similar functional changes in brain net-
works were also reported in participants with mild cognitive
impairment (MCI) and Alzheimer’s disease (AD) (Barban
et al. 2017).

Besides changes in functional connectivity within net-
works (e.g., DMN), there are also training-induced changes
in connectivity patterns between networks. One example is the
maintained segregation between DMN and CEN after a
multidomain cognitive training in older adults, whereas the
control group showed reduced segregation between these net-
works (Cao et al. 2016). Takeuchi et al. (2013) also showed
decreases in the connectivity between a key DMN node and
nodes of an external attention system following a working
memory training in young adults. Taken together, there are
conflicting results regarding the activity changes following
cognitive training. One possibility is that these changes are
dynamic and the studies failed to reveal the full temporal
dynamics of those changes. Alternatively, the type of training
is critical for the pattern of activity changes (Belleville et al.
2014) and the large methodological variability between stud-
ies results in conflicting conclusions. For the functional con-
nectivity, the findings are more consistent: training results in
increased connectivity within relevant networks, and de-
creased connectivity between networks, leading to increased

segregation and increased modularity in the brain, which en-
ables higher overall performance (Ellefsen et al. 2015).

There are a variety of structural and functional brain mea-
sures that can predict cognitive training–related gains, and
cognitive training further induces structural and functional
changes in the brain. In order to establish the clinical impor-
tance of these brain changes, studies should systematically
investigate how baseline measures or post-training changes
are linked to the observed behavioral changes.

Furthermore, studies also showed that structural, function-
al, and behavioral changes occur on different time scales.
Neural changes can occur in the absence of behavioral chang-
es (Beauchamp et al. 2016), and functional changes can occur
in the absence of structural changes (Lampit et al. 2015;
Mozolic et al. 2010). Therefore, it is important to have multi-
ple multimodal measurements to reveal and to understand the
dynamic structural, functional, and behavioral changes and
determine whether the training-related gains reflect plasticity,
i.e., changes in functional capacity, rather than mere
flexibility.

Prediction of Transfer and Maintenance
of Training Gains

An important aim in cognitive training research is to predict
generalization and long-term maintenance of training gains.
Here, we suggest that investigating not only pre-training brain
measures but also training-induced differences in brain struc-
ture, function, and connectivity can shed some light onto the
underlying neural mechanisms of training-related changes,
their transfer and maintenance (see Fig. 1, panels 4–7).

There are very few studies that investigated this particular
relationship. In a study by Nikolaidis et al. (2014), participants
played a video game that trained working memory, attention,
and motor control skills. The findings revealed that functional
activity changes in regions related to working memory (supe-
rior parietal lobe, precuneus and postcentral gyrus) predicted
transfer to an untrained working memory task. Their results
support the hypothesis that transfer is more likely to occur if
training and transfer tasks share the same underlying neural
mechanisms (Jonides 2004). This notion is also supported by
the study of Dahlin et al. (2008). In their study, they showed
that working memory training gains transferred only to an
untrained task that activated the same brain region (striatum)
as the training task.

The research into maintenance effects is even scarcer, since
many studies do not include a follow-up measurement. One
study (Parisi et al. 2014) investigated the effects of a cognitive
training program (including attention, information processing,
and executive function training modules) in multiple sclerosis
patients. The results revealed that changes in the resting-state
functional connectivity (from pre- to post-training) in the

250 J Cogn Enhanc (2021) 5:245–258



default mode network and of the anterior cingulum were as-
sociated with cognitive performance (attention and executive
functions) measured 6 months after the training.

These findings support the idea that cognitive training–
related neural changes can indeed predict transfer to untrained
tasks and even maintenance of training gains. Thus, cognitive
neuroscience approach can offer an understanding of patterns
of brain activity, brain networks, and anatomical structures
that modulate transfer and maintenance. It is particularly de-
sirable to have a marker that can tell before the training who is
going to show sustained benefits.

Practical Challenges

Systematically incorporating neuroimaging into cognitive
training research makes sense on a theoretical level; however,
there are practical challenges. One of the biggest challenges is
the time and financial cost of using neuroimaging. However,
progress in understanding cognitive training–related gains and
what makes a successful intervention has been relatively slow.
This mainly relates to the lack of understanding of neural
changes underlying cognitive plasticity. Therefore, many re-
search teams working on cognitive interventions are already
emphasizing the importance of neuroimaging in the cognitive
training field (e.g., Belleville and Bherer 2012; Brehmer et al.
2014; Taya et al. 2015).

Additionally, there are technical challenges to over-
come: using different neuroimaging protocols and modal-
ities might make it difficult to compare findings from
different studies with small sample sizes (and practically,
due to the cost of neuroimaging, studies are very often
severely underpowered even though large samples would
be necessary particularly to analyze individual differences
in performance gains and brain changes). As mentioned
before, an important issue in training research is the retest
reliability of MRI-based measures. While it is beyond the
scope of this review to discuss the details of the reliability
problem, there are methodological papers addressing this
issue for different modalities and data analysis methods
(e.g., brain volumes, Schnack et al. 2004; fMRI and func-
tional connectivity, Dubois and Adolphs 2016; Noble
et al. 2019; Shah et al. 2016; network neuroscience,
Bassett and Sporns 2017; resting-state fMRI, Zuo and
Xing 2014; structural connectivity; Buchanan et al.
2014; Roine et al. 2019). Although most of the methods
used in the studies mentioned here have sufficient reliabil-
ity, a recent meta-analysis reported that task-fMRI mea-
sures have poor reliability and therefore are unsuitable for
investigating individual differences (Elliott et al. 2020).
The authors recommend using multivariate methods, val-
idating results in independent samples, and combining

task-based data with resting-state fMRI to increase the
value and reliability of existing datasets.

Concluding Remarks and Future Directions

This review presents preliminary but promising evidence
suggesting that baseline brain characteristics can be
employed to pred ic t cogn i t ive t r a in ing ga ins .
Furthermore, inter-individual neural differences at base-
line and change induced by the training could be associ-
ated with transfer and maintenance of these gains. Most of
the studies incorporating neuroimaging methods into cog-
nitive training research investigated training-induced
changes and not the predictive value for training gains,
transfer, and maintenance. With this review, we want to
encourage researchers to look at the brain from this
perspective—as is already done in clinical research—and
approach their data with new questions.

Tools from graph theory have been widely used to
analyze the brain as a complex network and to explore
and quantify brain-behavior relations (Sporns 2014). It is
now possible to quantitatively synthesize data from differ-
ent studies (e.g., Duda and Sweet 2019) and to build bet-
ter neuromarkers by using multivariate, predictive models
and by integrating multimodal data (Scheinost et al. 2019;
Woo et al. 2017). These methods are already applied in
various studies to predict behavior (e.g., disease state,
cognitive status, response to treatment) with promising
results (see Sui et al. 2020). It is time that the cognitive
training field takes advantage of the new era, too. Ideally,
we would invest in establishing more multi-centered col-
laborations and in designing projects with standardized
multimodal imaging (structural and functional MRI) and
standardized training protocols. It makes sense to have
multiple measurement points (pre, during, post training
and several follow-ups), and it is particularly important
to assess the relation between brain alterations and behav-
ior changes to emphasize the meaningfulness and rele-
vance of neural changes. This can be the next step to
increase our understanding of how the brain responds to
training, how different measures (e.g., structure and func-
tion) interact with each other influencing training out-
comes, and it may provide the basis for designing in-
formed interventions.

Incorporating neural measures systematically into cogni-
tive training research can help us to understand the brain
mechanisms facilitating learning and to determine brain char-
acteristics that enable transfer and long-term maintenance of
changes induced by cognitive training (see Fig. 1). Identifying
the brain characteristics predicting how individuals benefit
from different types of cognitive training would allow
selecting the right training program, tailoring training
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parameters (e.g., the type, duration, and intensity) to individ-
ual needs and ultimately to enhance the benefits of cognitive
interventions.
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