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Abstract The purpose of the research was to investigate

and identify the demographic risk factors behind the

transmission of COVID-19 in Bangladesh based on spatial

and statistical modeling. Number of COVID-19 confirmed

cases per thousand population as the dependent variable

and nine demographic explanatory variables were consid-

ered. Different spatial (i.e., Spatial Lag and Spatial Error

Model) and non-spatial (Classic Model) regression tech-

niques were employed in the research to detect the geo-

graphical relevance of potential risk factors affecting the

transmission of COVID-19. Results indicate that popula-

tion density was crucial for explaining the pattern of

COVID-19 transmission in Bangladesh. Spatial Auto-cor-

relation suggests that the spatial pattern of population

density were significantly clustered at a confidence interval

of 95%. Again, the regression analysis also shows that

population density is an influential determinant for the

propagation of COVID-19 in Bangladesh, with densely

populated districts like Dhaka and Narayanganj also being

among the worst affected areas. The findings of this

research will help the government agencies and commu-

nities for effective and well-informed decision making in

order to develop and implement strategies to contain the

further spread of COVID-19 in Bangladesh.

Keywords Novel coronavirus � Pandemic � GIS �
Demography � South-East Asia

1 Introduction

Novel coronavirus (COVID-19) is rapidly infecting people

around the globe [1]. As of June 11, 2020, 7,273,958

people were infected and 413,372 died throughout the

world [2]. COVID-19 has first emerged in Wuhan (Hubei,

China) in December 2019 [3, 4], and rapidly spread in the

European countries in early 2020 [5]. The World Health

Organization (WHO) declared the epidemic as a Public

Health Emergency of international concern on 30 January

2020 [6] and as a pandemic on 12 March 2020 [7]. In

recent times, like in the European countries, COVID-19 is

spreading rapidly in the South-East Asian countries (i.e.,

India, Bangladesh, and Indonesia, etc.) with 407,414 con-

firmed cases as of 11 June 2020 [2]. The World Health

Organization (WHO) confirmed community transmission

of COVID-19 in two countries of this region (on 1 June

2020 in Bangladesh [2] and on 13 April 2020 in Indonesia

[8]). Community transmission of such an infectious disease

(i.e., COVID-19) in a densely populated country like

Bangladesh might be severe for every citizen.

Bangladesh is already one of the world’s most vulner-

able country to climate change induced natural disasters

[9, 10]. In terms of the risk of transmission of COVID-19,

Haider et al. [11] have classified Bangladesh into the 4th

quantile (highest risk) based on the destinations of the

passengers travelling from four major cities of China from

January onwards. The first COVID-19 patient was con-

firmed on 8 March 2020 [12] and total confirmed cases

were 74,865 as of 11 June 2020. In early March 2020,

immigrants (mostly from China, Italy, USA, UK, etc.)
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returned to Bangladesh, allegedly carrying the coronavirus

and eventually infecting more people. The unwillingness of

immigrants with regards to following quarantine and social

distancing rules could be one of the major causes of

community transmission of COVID-19 [13]. The prevail-

ing demographic (i.e., high population density) and socio-

economic (i.e., extreme poverty) structure of the country

meant that lockdown measures imposed by the government

was not effective enough in containing the spread of

COVID-19 countrywide [14]. The government of Bangla-

desh has taken several measures including the declaration

of public holidays, nation-wide lockdown and massive

awareness-raising campaigns, but with an increasing

number of people being affected and a rising death toll, the

overall COVID-19 scenario has shown little signs of

improvement till date. It is not obvious which factors are

actually aggravating the transmission of COVID-19 in

Bangladesh as the causal factors for its spread have not yet

been clearly identified.

Spatial modeling might be a useful tool for investigating

COVID-19 transmission [15–18]. Sarkar [19] has measured

the district-level susceptibility of Bangladesh to COVID-19

using multi-criteria evaluation technique. In this situation,

spatial modeling based on demographic features might be a

useful tool for investigating and explaining the pattern of

COVID-19 transmission. This research investigates the

relation of COVID-19 transmission with different demo-

graphic factors. Nine causal factors regarding demography

(for e.g., population, population density, number of poor

people, etc.) were selected based on literature review for

generating spatial models.

Based on spatial correlation and model results, the most

crucial causal factors behind COVID-19 transmission in

Bangladesh were identified. Finally, the spatial and non-

spatial impact of the identified causal factors on COVID-19

transmission were explained based on mapping and sta-

tistical analysis. The findings of the research might help

Government agencies in effective decision-making for

reducing the risk of COVID-19. The specific objective of

this study was to investigate and identify the demographic

risk factors behind the transmission of COVID-19 in

Bangladesh based on spatial and statistical modeling.

2 Data and methods

2.1 Description of the study area

Bangladesh (containing 64 districts) was selected as the

study area for the research (Fig. 1). The South Asian

country lies in the Ganges–Brahmaputra–Meghna Delta

connected with the Bay of Bengal. Bangladesh shares a

land border with two countries (India and Myanmar) and is

also surrounded by neighboring Nepal, Bhutan, and China.

The country is ranked 8th based on population (161 mil-

lion) [20] and 7th based on population density (1,107

people per square kilometer) [21]. It is one of the fastest-

growing middle-income countries in the world [22].

2.2 Description of materials

Demographic and socio-economic data from Bangladesh

Bureau of Statistics (BBS), COVID-19 data from the

Institute of Epidemiology Disease Control and Research

(IEDCR) and physical features such as boundary, river, etc.

of Bangladesh from Geological Survey of Bangladesh

(GSB) were collected as secondary data for the research

(Table 1). The findings of the research were validated

through online based stakeholder interviews including 30

key persons of government agencies.

2.3 Spatial autocorrelation and spatial modeling

Nine causal factors (i.e., population, population density,

people aged C 60, number of urban people, number of

working-age people, number of industrial workers, number

of poor people, access to television, and literacy rate) were

selected for the research. The count data were transformed

into scale data for better representation and further analy-

sis. Spatial autocorrelation is the basic component in the

field of spatial analysis [23]. Spatial autocorrelation helps

to know the presence of systematic spatial variation based

on both feature locations and feature values simultaneously

[24].Spatial autocorrelation evaluates spatial patterns (i.e.,

clustered, dispersed, or random) of individual entities [25].

The following binary pairing spatial weight matrix was

used to demonstrate the spatial relationship of 64 districts:

W ¼
x1;1 � � � x1;64

..

. . .
. ..

.

x64;1 � � � x64;64

2
64

3
75

where xi;j represents the proximity relationship between

the ith and jth district, i, j = 1, 2, …, 64.

Either adjacency criterion or distance criterion can be

used to measure this relationship [26]. This study used

Rook neighborhood to calculate statistics for local indica-

tors of the number of COVID-19 confirmed cases in the

study area. The adjacency binary matrix for this study is:

xi;j ¼
1; i is adjacent to j:
0; otherwise:

�
i,j ¼ 1; 2; 3; . . .; 64; i 6¼ j

The ith district has no adjacency relationship with itself,

which means xi;i = 0. [27]

The research used local univariate and bivariate Moran’s

I statistics for spatial pattern analysis (i.e., spatial
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autocorrelation). The univariate Moran’s I was calculated

(Eq. 1) according to Moran [28].

I ¼ n

S0

Pn
i¼1

Pn
j¼1 wijzizjPn

i¼1 z
2
i

ð1Þ

where n = the number of spatial entities indexed by i and j;

wij = their spatial weight; and S0 = aggregation of all the

spatial weights.

The bivariate Moran’s I is a generalized format of uni-

variate Moran’s I used to measure the spatial correlation of

two variables (Eq. 2) [29].

I ¼ n

S0

Pn
i¼1

Pn
j¼1 wij z

A
i

� �
zBj

� �

Pn
i¼1 zAið Þ2

ð2Þ

where, zA and zB = the deviations from the mean for

variable A and B.

Fig. 1 The study area

(Bangladesh, highlighting the

location of districts)
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Bivariate Moran’s I was used for investigating spatial

autocorrelation among causal factors with COVID-19

confirmed cases and univariate Moran’s I COVID-19

confirmed cases.

Again, this research used local G coefficient which can

identify the aggregated area more accurately [26]. More-

over, the spatial distribution pattern of G coefficient can

detect if a regional unit is in a high-value cluster or a low-

value cluster compared with the Moran index [27]. So, to

detect spatial dependence in a small area local G statistic

Gi for the COVID-19 confirmed cases was calculated. The

formula to calculate Gi for the ith district is as follows

(Eq. 3).

Gi ¼
Pn

j¼1 xi;jxjPn
j¼1 xj

i,j ¼ 1; 2; 3; . . .; n ð3Þ

where n = 64, xj denotes the number of confirmed COVID-

19 cases in jth district, i = j, xi;j represents the neigh-

boring relationship between the ith and the jth districts.

The formula to calculate the local G coefficient Gi

normalized statistic Z (Gi) is in Eq. 4.

Z Gið Þ ¼ Gi � EðGÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðGÞ

p ð4Þ

In this formula, E(G) indicates the mean of G and

Var(G) indicates the variance of G.

Spatial regression analysis was employed in order to

further explore the governing factors of the COVID-19

cases of the study unit. Spatial regression analysis is nor-

mally accompanied by three models: Classical Regression

Model, Spatial Error Model and Spatial Lag Model [27].

Classical Regression Model is expressed in Eq. 5 [30, 31].

Y ¼ aþ bXþ e; e� iid Nð0;r2Þ ð5Þ

where a is the intercept term, b represents the regression

coefficients, e denotes the error term (independent identical

distribution (iid) is assumed), Y and X represent the

dependent and independent variables respectively.

From the Classical Regression test diagnostic Lagrange

multiplier test (LM test) was used to test the spatial

dependence [32]. Moreover, this study incorporated dif-

ferent spatial study variables into a Spatial Lag Model

(SLM) and a Spatial Error Model (SEM) to compensate/

account for further spatial variation and establish the ideal

spatial regression model.

SLM includes spatial lag variables to justify the spatial

dependence triggered by externalities and spillover effects

[32]. The formula used for SLM in this study is expressed

in Eq. 6 [33].

Y ¼/ þqWY þ bX þ e; e� iidN 0; r2I
� �

ð6Þ

where a denotes the intercept term, q represents spatial

autoregressive coefficient, WY represents the spatial lag

variable, b is the regression coefficient, X denotes the

explanatory regression variable and e is the error term

vector.

An additional spatial lag variable is considered in the

SLM process. A relationship matrix of the research and

neighboring samples are incorporated into the regression

model as well, where q stands as the spatial autoregressive

coefficient. Finally, whether or not the variable equals 0

(q = 0) is assessed to find out if SLM is affected by any

form of spatial autocorrelation [34].

Again, to remove the interference of spatial autocorre-

lation and get accurate estimation SEM is used. In Spatial

Table 1 Description of data used in the research

Data with units Mean Minimum Maximum Standard deviation Source with year

COVID-19 confirmed cases (1/100,000) 12.32 1.29 151.30 21.20 Institute of Epidemiology Disease

Control and Research (2020)

Population (1/100,000) 22.51 3.88 120.44 17.29 Bangladesh Bureau of Statistics (2011

Census)

Population density (person/km2) 1107.69 86.00 8111.00 1030.07

People age C 60 (1/10,000) 499.03 270.04 656.81 81.45

No. of urban people (1/10,000) 1784.38 880.00 7710.00 1015.40

No. of working-age people (1/10,000) 5996.13 5281.12 7069.64 385.97

No. of industrial workers (1/10,000) 312.21 64.39 2278.14 346.40

No. of poor people (1/10,000) 3225.15 358.67 6372.18 1194.75

Access to television (1/10,000) 3891.55 427.46 7074.08 1305.79

Literacy rate (percentage) 54.67 37.50 73.70 7.70

District boundary (shapefile) – – – – Geological Survey of Bangladesh (2020)
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Error Model (SEM), the spatial weight matrix is multiplied

by the spatial error coefficient k to calculate the error term.

Then, whether or not the spatial error coefficient k is sig-

nificant and equals 0 (k, 0) are assessed to find out if there

is any spatial autocorrelation in the SEM. The model is

expressed in Eq. 7 [35].

Y ¼ aþ bX þ e; withe ¼ kWeþ n; n� iidN 0; r2
� �

ð7Þ

where a represents the intercept term, b denotes the

regression coefficient, X is the explanatory regression

variable, e represents the error term vector, k represents the

spatial error coefficient, W is the spatial weight matrix and

n is the modified error term.

Significant causal factors of COVID-19 transmission

were selected based on a best fit model and spatial auto-

correlation of causal variables. Finally, spatial relations of

causal factors and COVID-19 confirmed cases were

investigated by mapping.

3 Results and discussion

Data cleaning, data transformation, and necessary treat-

ment for missing values were conducted before performing

the aforementioned analyses. Spatial autocorrelation using

Local Moran’s I (univariate and bivariate) was assessed to

determine the distribution pattern of COVID-19 and the

aforementioned spatial regression models were formulated

to ascertain the spatial relationship of the demographic risk

factors of COVID-19 based on the data of all 64 admin-

istrative districts of Bangladesh.

Table 1 provides a statistical description of the param-

eters considered in this study. The maximum number of

COVID-19 confirmed cases was found in Dhaka and the

minimum in Sirajganj. Dhaka might have been affected

more due to a higher population (1st rank with 12,043,977

population), population density (1st rank with 8,111 people

per square kilometer), and the fact that this district is the

center of national and international collaborations of

Bangladesh. Senior citizens (i.e., people age C 60) are

more vulnerable to COVID-19, but the Dhaka has the

minimum number of senior citizens per 10,000 population

(i.e., 270 approx.) while Pirojpur has the maximum (i.e.,

657 approx.). The number of urban people, the number of

working-age people, and the number of industrial workers

per 10,000 population are maximum in Dhaka and mini-

mum in Brahmanbaria. The minimum number of poor

people per 10,000 population (defined as those living

below the poverty line) is in the Kushtia (i.e., 359 approx.)

and the maximum is in Kurigram (i.e., 6372 approx.).

Pirojpur has the highest literacy rate (i.e., 73.7%) while

Bandarban has the lowest (i.e., 37.5%).

The result for univariate local Moran’s statistic of con-

firmed COVID-19 cases was found to be 0.261 which is

significant at a 5% level of significance, indicating a pos-

itive spatial autocorrelation across the country (Fig. 2j). So,

there is some sort of spatial relationship of a particular

district with the neighboring districts in terms of COVID-

19 confirmed cases.

Again, spatial Auto-correlation of the above-mentioned

parameters using bivariate local Moran’s I statistic is

illustrated in Fig. 2 to identify the parameters that have

significantly affected the number of COVID-19 confirmed

cases spatially. According to the p value, two parameters

(i.e., population density and number of industrial workers)

were found to be significant at a confidence interval of

95%. Spatial patterns of these two parameters were clus-

tered and the parameters are spatially auto-correlated with

COVID-19 cases of the neighboring districts (Fig. 1b, f).

The rest of the parameters were random in spatial patterns

and not significant at a confidence interval of 95%.

Figure 3 exhibits that there are four districts in HH

(High High) region which are statistically significant

(p\ 0.05), including Dhaka, Munshiganj, Narayanganj

and Gazipur. It indicates that the number of COVID-19

confirmed cases in these districts is high and this number in

neighboring districts is still high. In LL (Low Low) region,

there are six districts with statistical significance

(p\ 0.05), including Khulna, Jessore, Barguna, Kushtia,

Natore and Jamalpur. It represents that the number of

confirmed COVID-19 cases in these districts is low and the

same holds true for the neighboring districts as well.

There are two districts with statistical significance

(p\ 0.05) in LH (Low High) region, including Tangail and

Faridpur. It indicates that the number of COVID-19 cases

in these districts is low, but this number in the neighboring

districts is high. There is only one statistically significant

(p\ 0.05) district in HL (High Low) region named

Rangpur, indicating that the number of COVID-19 cases in

this district is high surrounded by the neighboring districts

with a low COVID-19 cases. Among these regions, High–

High and Low–Low regions represent positive spatial

autocorrelation and Low–High and High–Low regions

represent negative spatial autocorrelation.

Again, in Fig. 4, Dhaka, Munshiganj, Narayanganj,

Gazipur, Tangail and Faridpur are clustered areas with high

number of COVID-19 cases. Khulna, Jessore, Barguna,

Kushtia, Natore, Rangpur and Jamalpur are clustered areas

with a low number of COVID-19 cases.

The High-Low clusters and Low–High clusters in LISA

map became Low cluster and High clusters respectively in

the Local G Coefficient map. It is because unlike Local

Moran’s I, local G coefficient does not consider spatial
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outlier. Again, Gi index works on the principle of spatial

aggregation to identify hot spots where concentrations of

high and low values result in high and low Gi values

respectively. That is why instead of spatial variation in

cluster (High–High, Low–Low, Low–High and High–Low)

spatial aggregation of High and Low areas are displayed in

Gi cluster map [36].

Bangladesh is the world’s eighth-most densely popu-

lated country (population density is 1,108 people per

square kilometer) [37]. Sarkar [19] identified that popula-

tion density has an impact on COVID-19 transmission in

Fig. 2 Local Moran’s I scatter

plots. Bivariate local Moran’s I

of COVID-19 confirmed cases

with (a population, b population

density, c people age C 60,

d number of urban people,

e number of working-age

people, f number of industrial

workers, g number of poor

people, h access to television,

i literacy rate) j univariate local

Moran’s I of COVID-19

confirmed cases
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Bangladesh. Difficulty in maintaining social distance in

densely populated areas like Dhaka might have fostered

transmission. On the other hand, community transmissions

in densely populated areas might force the rapid spreading

of COVID-19. Based on Figs. 3 and 4 and results associ-

ated with them, it can be claimed that the central zone of

Bangladesh (Dhaka and adjacent districts) is more vul-

nerable to COVID-19 due to its higher population density.

Dhaka being the center of majority of the economic

activities in Bangladesh has always attracted a huge pop-

ulation to it and its neighboring districts. The sheer number

of people that work together in various industries in and

around Dhaka, and failure to maintain proper hygiene

there, might have been responsible for COVID-19 trans-

mission among them and consequently among other people

of these regions. On the other hand, most of the large and

medium industries (for e.g., the apparel industries) of this

region are located together in a cluster and as a result,

maintaining social distance is difficult in those areas.

Industrial workers working in Dhaka and Narayanganj

(most affected districts during early COVID-19 transmis-

sion) eventually left for their native homes following a

nation-wide lockdown. However, miscommunication

between Bangladesh Garment Manufacturers and Expor-

ters Association (BGMEA) and government bodies

throughout April regarding reopening the industries, only

worsened the situation. A vast number of workers had to

return to their workplace twice amidst a nationwide lock-

down, using local public transport and even on foot from

fear of being laid off and uncertainty over receiving their

due wages [38, 39]. These unwanted and avoidable

migrations might have influenced the spread of Covid-19 in

the Dhaka and its adjacent areas.

To add to the misery, the lack of awareness regarding

safety measures resulting from the low level of education,

unhealthy and unhygienic lifestyle owing to living in slums

and squatters, inability to effectively maintain social dis-

tancing due to denser and poorer living conditions and a

general lack of access and inability to afford basic hygiene

materials and Personal Protective Equipment (PPE) have

worsened the situation for the vulnerable poor population

living in Dhaka and its adjoining districts.

The p-value of Bartlett’s Test of Sphericity is greater

than 0.05 which indicates the absence of multicollinearity

among the explanatory variables. Hence, all of these

parameters were used to model the causal effects on the

number of COVID-19 confirmed cases. The modeling

results are illustrated in Table 2 and it is found that only

population density has significantly (p value less than 0.05)

influenced the number of COVID-19 confirmed cases when

a classic regression model is applied on the dataset.

Besides, the univariate local Moran’s I result shows a

positive spatial autocorrelation with a p value of less than

0.05 indicating rejection of the null hypothesis of spatial

independence of residuals of the classic method. Again, the

low probabilities (p\ 0.05) of Breusch–Pagan test,

Fig. 3 Results of local Moran index visualization analysis

Fig. 4 Results of local G coefficient visualization analysis
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Koenker–Bassett test and White test indicate presence of

heteroskedasticity in the residual of the used dataset. This

error variance might well be caused by the spatial depen-

dence in the data. So, it is obvious that the classic model is

not appropriate to explain the spatial relationship of the

problem under investigation. Again, as Moran’s I do not

necessarily give a precise impression of the spatial struc-

ture, it is indispensable to find out which one of the spatial

lag or spatial error process is responsible for the autocor-

relation existent in the residuals.

For further investigation, spatial lag and spatial error

models were employed on the dataset and two parameters

(i.e., population density, number of people aged C 60)

were found to be statistically significant at a confidence

interval of 95% (i.e., p value\ 0.05) in Spatial Lag Model.

Among them, population density and number of people

aged C 60 have positively and negatively influenced the

number of COVID-19 cases respectively. In the spatial lag

model, the lag coefficient for confirmed COVID-19 con-

firmed cases (Rho/q) was estimated as 0.284915 (p value

0.0060) which is significant at a 5% level of significance,

indicating that the number of COVID-19 confirmed cases

in one district depends on the cases of its neighboring

districts. A significant coefficient for the variables implies

that the number of COVID-19 confirmed cases in a given

district depends on the change in explanatory variables in

the same district controlling the spatial lag of the depen-

dent variable. This result supports the result obtained using

Moran’s I statistics where some sort of spatial relationship

was observed.

Again, the spatial error model comes in handy to justify

the spatial variation that the explanatory variables in this

study couldn’t explain due to the presence of error terms.

Population density was found to be positively significant at

a confidence interval of 95% (i.e., p value\ 0.05) in

Spatial Error Model. In the spatial error model, the spatial

autoregressive term (k) was estimated as 0.51956 with a p

value of 0.0001 (significant at 5% level of significance).

This suggests that the spatial dependence present in the

residuals of the classic model was due to a geographic

clustering of overleaped variables or variables which are

not considered in the modeling of the risk factors for the

number of COVID-19 confirmed cases using the classic

regression model.

Table 2 Variables and modeling results

Variables Classical regression model (CRM) Spatial lag model (SLM) Spatial error model (SEM)

Constant Coefficient 0.626072 - 18.3936 - 13.5801

Probability 0.9782 0.3751 0.5933

Population Coefficient - 0.0775117 - 0.0392796 - 0.0648459

Probability 0.4506 0.6582 0.4236

Population density Coefficient 0.016737 0.0159396 0.0171707

Probability 0.0000 0.0000 0.0000

People age C 60 Coefficient - 0.0356168 - 0.039213 - 0.0461551

Probability 0.0949 0.0303 0.0549

No. of urban people Coefficient 0.0029676 0.00264053 5.99E-05

Probability 0.1312 0.1159 0.9745

No. of working age people Coefficient 0.000895814 0.00406054 0.00481118

Probability 0.8330 0.2821 0.2972

No. of industrial workers Coefficient - 0.000259399 - 0.00575691 - 0.00254137

Probability 0.9538 0.1824 0.5808

No. of poor people Coefficient - 0.00103537 - 0.000795051 - 0.00125877

Probability 0.3094 0.3677 0.1914

Access to television Coefficient - 0.00215033 - 0.00246411 - 0.00112741

Probability 0.0930 0.0260 0.2994

Literacy rate Coefficient 0.252333 0.270138 0.209675

Probability 0.1788 0.0918 0.2793

Lag coeff. (Rho\q) Coefficient – 0.284915 –

Probability – 0.0060 –

Lambda (k) Coefficient – – 0.519562

Probability – – 0.0001
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Furthermore, to identify the best fit model regression

results for the above three models are shown in Table 3.

The values of Akaike Information Criterion (AIC) and

Schwarz Criterion (SC) of Spatial Error Model are all

smaller and the values of R2 and Log L are all bigger than

the Spatial Lag Model. Hence, Spatial Error Model is a

better fit to the study dataset. Again, spatial dependence

test was employed to find out the appropriate spatial pro-

cess to explain the spatial dependence of the modelled

residuals (Table 4).

Among Lagrange Multiplier (lag) and Lagrange Multi-

plier (error) test, Lagrange Multiplier (lag) test is found

significant (p\ 0.05). Here, Spatial Lag Model (SLM) is

found to be more appropriate to model the spatial rela-

tionship of the study dataset [40].

This means that these two models do explain the spatial

autocorrelation found in the residuals of the classic model.

In both of these spatial models, population density was

found positively significant at a confidence interval of 95%

(i.e., p value\ 0.05). Hence, population density is spa-

tially correlated (positively) with COVID-19 transmission,

meaning that, higher the values of this parameter, higher

the number of COVID-19 confirmed cases.

Bangladesh is the world’s eighth-most densely popu-

lated country [21]. Higher population density was found to

be responsible for higher COVID-19 transmission (Fig. 5).

The research classified the 64 districts of Bangladesh into 4

classes according to population density (Fig. 6). Dhaka has

8111 people per square kilometer and for Narayanganj, the

figure is 4139. On the other hand, COVID-19 confirmed

cases per 100,000 were higher in these two districts as well

(i.e., 151 for Dhaka district and 73 for Narayanganj dis-

trict). COVID-19 spread rapidly in these two districts and

community transmissions raised the severity. Gazipur,

Narsingdi, and Comilla districts have higher population

density (i.e., 1500–3000 people per square kilometer) and

consequently higher COVID-19 confirmed cases. The

Chittagong district (the port city and influential financial

center) has 33 COVID-19 confirmed cases per 100,000

with a population density of 1421 people per square kilo-

meter. The southern coastal districts (i.e., Satkhira, Khulna,

Bagerhat, Barguna, and Patuakhali) have a lesser number

of COVID-19 confirmed cases with less population density

(less than 1000 people per square kilometer). Population

density is relatively higher (1001–1500 less than 1000

people per square kilometer) in the northern region of

Bangladesh and COVID-19 confirmed cases were also

found to be higher in those districts. Spreading of COVID-

19 was lower in the hill tract districts (i.e., Khagrachhari,

Rangamati, and Bandarban) having lower population

density.

4 Conclusion

This research aimed at identifying the demographic factors

that were responsible for the transmission of COVID-19 in

Bangladesh. Three spatial and non-spatial models (i.e.,

Classic Model, Spatial Lag Model, and Spatial Error

Model) were employed to study the nature of the rela-

tionship of these factors with COVID-19 transmission. As

found by Spatial Auto-correlation, spatial patterns of factor

(population density) were significantly clustered at a con-

fidence interval of 95%. The regression models illustrate

that population density has influenced the propagation of

COVID-19 in Bangladesh. This study analyzed the demo-

graphic data pertaining to the factor for the 64 districts of

Bangladesh and showed that a higher value of each of the

factors was associated with a higher number of COVID-19

confirmed cases. For instance, results show that Dhaka and

Narayanganj, the two most densely populated districts of

Bangladesh are also placed 1st and 3rd respectively in

terms of COVID-19 confirmed cases. It can be claimed that

the central zone of Bangladesh (Dhaka and adjacent dis-

tricts) is more vulnerable to COVID-19 due to its higher

population density.

The findings of this research can be beneficial for poli-

cymakers as well as communities in order to effectively

design strategies to prevent the further spreading of

Table 3 Comparison of regression results of three models

Index CRMa SEMb SLMc

R2 0.839357 0.881285 0.878209

Log Ld - 222.812 - 220.335267 - 219.497

AICe 465.623 460.671 460.994

SCf 487.212 482.259 484.742

aClassical regression model
bSpatial error model
cSpatial lag model
dLog likelihood
eAkaike information criterion
fSchwarz criterion

Table 4 Results of the spatial dependence test of COVID-19 con-

firmed cases

TEST MI/DF Value Probability

Lagrange multiplier (lag) 1 6.5722 0.01036

Robust LM (lag) 1 4.5941 0.03208

Lagrange multiplier (error) 1 2.051 0.1521

Robust LM (error) 1 0.0728 0.78723
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COVID-19 in Bangladesh. The government of Bangladesh

has already withdrawn the country-wide shut down and is

now trying to contain the virus by imposing zone-wise

lockdown measures throughout the country. The spatial

models presented in this study can providing crucial

insights to the decision making and implementation pro-

cess, such as, making better-informed decisions in identi-

fying transmission hotspots based on population density
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and streamlining resources and efforts to implement pre-

vention measures in those areas for gradually abating and

eventually terminating the infection chain.

This study ignores if there are spillover effects in one

area to a certain extent. Besides; only nine explanatory

variables were considered in this study, although there are

a lot of influencing factors. Further research endeavors

should address the issues above to get a better idea about

the problem under study. The research, however, is limited

only to facts and figures obtainable contemporarily of this

global pandemic. Also, the number of suspected cases

wasn’t taken into consideration in this research, which

would have yielded more aggravating results, albeit with

limited reliability. Future research can examine a bigger

dataset and can also factor in such crucial variables as the

spatial prevalence of pre-existing health conditions like

diabetes, cardiovascular diseases, etc. in the population

under study.
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