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Abstract Coronavirus (Covid) is a severe acute respiratory

syndrome infectious disease, spreads primarily between

human beings during close contact, most often through the

coughing, sneezing, and speaking small droplets. A retro-

spective surveillance research is conducted in India during

30th January–21st March 2020 to gain insight into Covid’s

epidemiology and spatial distribution. Voronoi statistics is

used to draw attention of the affected states from a series of

polygons. Spatial patterns of disease clustering are ana-

lyzed using global spatial autocorrelation techniques. Local

spatial autocorrelation has also been observed using sta-

tistical methods from Getis-Ord Gi
*. The findings showed

that disease clusters existed in the area of research. Most of

the clusters are concentrated in the central and western

states of India, while the north-eastern countries are still

predominantly low-rate of clusters. This simulation tech-

nique helps public health professionals to identify risk

areas for disease and take decisions in real time to control

this viral disease.

Keywords Covid � Geostatistics � Spatial autocorrelation �
Areal interpolation � India

1 Introduction

A New Coronavirus-nCoV’ was identified in December

2019 and subsequently renamed SARSCoV-2 in Wuhan,

Hubei, China, resulting in extreme acute respiratory syn-

dromes [1]. Covid is a pandemic that is actively expanding

throughout the world and a unique challenge for the

community’s healthcare, economy and lifestyle. Countries

are grappling with many tactics in order to minimize the

spread of Covid: ban collection, close schools, stop trans-

portation, lock towns, enforce curfew, and seal places, but

unable to contain it effectively [2]. The time is required to

locate the risk assessment on a site basis to take prompt

preventive measures. Globally, there are 48,93,195 cases of

coronavirus, while the death toll is 3,22,861. Taking into

account the updates of the Ministry of Health on Wed-

nesday (May 20, 2020), India received a total of 1,06,750

COVID cases which include 61,149 active cases, 42,298

cure and 3303 deaths [3]. In the last 24 h, there have been

5611 new cases and 140 deaths. The rate of recovery is

39.62%.

A key element of epidemiologic research, the geo-

graphical distribution of the disease, is demonstrated by the

importance given to the ‘‘person, place and time’’

descriptor of health events in the classical epidemiology

textbooks [4]. Geographical information systems (GIS)

have today revolutionized these spaces-which, in simple

terms, give the ability to view spatial or geographic

information in a meaningful way, be it interactive maps or

other infographics. There are numerous uncertainties in the

Covid pandemic, many of them have a spatial component
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that contributes to the epidemic being interpreted as geo-

graphical and technically mappable [5]. In the battle

against Covid in India, there have been limited Covid risk

maps and application of Covid spatial epidemiology [6].

For these purposes, with the emergence of Covid as a

global pandemic, the use of geospatial and statistical

methods has become extremely important. Statistical

modelling and spatial epidemiology in small areas have

been developed in order to solve problems where disease

clusters and hotspots are located. Some of the principal

spatial techniques explored by Robertson [7] are spatial

autocorrelation, spatial time interactions, hotspots and

clusters, used throughout emerging infectious disease

research.

Advances in geostatistical methods have provided for

substantially improved efficiency in the processing and

analysis of complex georeferenced data with multiple

variables on different geographical scales, providing epi-

demiologists with new instruments to incorporate space

and place in their study [8, 9]. The public health authorities

use the disease prevalence maps as a guide to monitor and

prevention programs to classify areas of excess and their

possible causes (e.g. exposures to the environment or

socio-demographic factors). Three major hurdles lie in

interpreting and analyzing the choropleth maps: (2) visual

bias due to including health data within administrative

units of large varies sizes and types and (3) spatial support

mismatch for the occurrence of disease and explanatory

variable data that prevents direct use of correlational

research, (1) extremely unsafe rates which usually occur

for sparsely populated regions and/or less frequently

observed Covid.

Geostatistical algorithms have been developed to filter

local small-scale variations on cluster maps that enhance

regional trends on a larger scale [10, 11]. Their computer

requirements and the underlying assumptions about spatial

patterns and distribution of risk values differ greatly in

these methods. An important exploratory technique in

scientific inquiry continues to be cluster analysis [12].

Spatial cluster detection depends on the geography of the

activities which requires the correct and meaningful treat-

ment of space and spatial relations, combined with the

location and event attributes observed. It has to date

involved the use of specific structuring and accounting

methods and techniques for the distance, the outskirts, the

contiguity, geographical irregularity and so on. Under-

standing the distribution of Covid cases in India with the

use of geostatistical analysis approach, will help inform

Covid control programme at smaller scale. The specific

objectives are to use of spatial auto-correlation technique to

analyze Covid spatial pattern and identify clusters with

statistically significant hotspots of the disease. Present

study focused on basic geostatistical approaches to deal

with Covid clustering pattern in India.

2 Data collection and processing

The incorporated in this study includes all information

reported by Government of India up to the latest of 21st

May 2020 [3]. This report considers all states and Union

Territories as well (Fig. 1). In this report, the confirmed

Covid cases and death due to Covid along with the trans-

mission types is considered. The skewness of the Covid

incidence data is measured in terms of the third moment of

the mean of the distribution. If the distribution is sym-

metric, the skewness is zero. The kurtosis describes the

extent of peak of the distribution, measured by fourth

moment of the mean. The distributions with kurtosis lower

than 3 are known as platykurtic.

Voronoi polygons are created so that every location

within a state is closer to the affected state than any other

non-affected states. After the polygons are created, neigh-

bours of affected states are defined as any other sample

locations whose boundary shares a border with the chosen

affected states. The Voronoi map tool provides a number of

local statistics (mean, median, entropy, inter-quartile

range) in which polygons can be assigned or calculated

[13]. The status value is the average value that the states

and their neighbour’s states calculate which is used for

further processing and analysis.

3 Methods

3.1 Directional distribution of disease pattern

Directional distribution, namely the standard deviation

ellipse (SDE), was used each year to calculate the direc-

tional pattern and to provide compactness and orientation

information on the dispersion of the infected Covid. The

standard distance measurement in x- and y-directions is a

common way of measuring the pattern for a certain group

of areas [14]. Each of these measures describes an ellipse

axis that covers the distribution of characteristics [15]. The

SDE determines the default x-coordinates and y-coordi-

nates of the centre in order to determine the Ellipse’s axes.

The ellipse enables one to see if the distribution of features

is elongated and therefore has a particular orientation. For

both the infected Covid, we have used a standard deviation

which account for approximately 68% of all input variables

[16]. In order to compare the spatial patterns of the Covid

infected and local source, a series of additional measure-

ments and data including an axial ratio and coordinates of

each ellipse were collected for six days interval.
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3.2 Covid-2019 spatial pattern

The ArcGIS 10.0 statistical toolkit for global autocorrela-

tion (Moran’s I) and Getis-Ord Gi
* were used in the iden-

tification of statistically significant Covid clusters for the

various states in India. The statistical technique of the

Moran’s I evaluates the spatial autocorrelation of Covid

cases in geographical areas clusters where the value of

Moran’s I close to zero means that the illness is spatially

random; a good value suggests spatial clusters [17]. A

statistically significant estimation of Moran’s I (p\ 0.05, z

score * 1.96) suggests that neighbouring districts have

similar Covid cases under the null-hypothesis that Covid

distribution on a regional scale is absolutely spatially ran-

dom to determine whether the spatial trend is clustered,

dispersed or random. The optimized high-low cluster pro-

duces using the Getis-Ord Gi
* statistics of statistically rel-

evant cluster (e.g., states with high Covid cases). Spatial

outliers comprise high-low (a high value in a low-value

states) and low–high outliers (a low-value value in a high-

value states). Getis-Ord Gi
* value less than 1 demonstrates

positive space autocorrelation whereas it suggests a value

greater than 1 point to negative spatial autocorrelation [18].

To identify the spatial relationship, fixed distance band

is used in which each state boundary is analysed within the

context of neighbouring state boundary. Neighbouring state

boundary outside the specified critical distance receive the

number of cases and extent the influence on computation

for the affected/non-affected states. Neighbouring state

boundaries outside the critical distance receive a weight of

zero and have no influence on the affected state computa-

tion. This method measures a z-score and P-values that are

statistical tests to demonstrate whether a null hypothesis

can be rejected or not. For statistically significant positive

z-scores, the larger the z-score is, the more intense the

clustering of high Covid affected states (hotspot). For sta-

tistically significant negative z-scores, the smaller the

z-scores is, the more intense the clustering of low Covid

incidences (cold spot). Moreover, very high positive or

negative z-score are associated with the very small P-

Fig. 1 Location of the study region
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values which indicate it is unlikely that the observed spatial

pattern reflects the theoretical random pattern represented

by the null hypothesis. A confidence level of 99 percent we

have selected which indicated that we are unwilling to

reject the null hypothesis unless the probability that the

pattern was created by random chance is less than a 1

percent probability.

3.3 Risk zone identification using areal interpolation

Areal interpolation is a wide variety of methods that can

measure the cumulative attribute of a unit system (in this

case, newly created polygons), based on the attribute data

structure of another, spatially incongruous structure (in this

case, the original polygons). The initial units for which the

characteristic is defined are also called source units and for

which the characteristic has to be measured, target units are

called objective units [19, 20]. The proposed pycnophy-

lactic areal interpolation algorithms [21] are based on

different assumptions regarding the underlying distribution

of Covid-2019 cases, relies only on the databeing esti-

mated. The lattice spacing is defined to estimate the point

covariances of Covid incidence, each state is overlaid with

a square lattice, and a point is assigned to each intersection

in the lattice. The number of cases in the source units is

spatially redirected to the target units using as a weight the

area that each source unit contributes to the target area

[22]. It is an improvement over the area-weighting method

because it does not assume a homogeneous distribution of

cases, and the continuous surface eliminates sharp transi-

tions in Covid case estimates across state boundaries.

3.4 Predicting accuracy

The predictive accuracy is measured using the root mean

square error (RMSE) based on the interpolated value y ^
j

in 5-km distance as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

j

ðyj � ŷjÞ
2

J

v

u

u

t

Where, j represents the number of intersection units whose

number of units is J. In this case, the space autocorrelation

distance between two models represents an effect. Our

findings show that the spatial autocorrelation in the field is

necessary to take into account.

4 Results

4.1 Descriptive analysis of Covid distribution

All statistical data are processed using Microsoft Excel

version 11.0. Continuous variables are conveyed as the

mean, standard deviations or medians, skewness, kurtosis

and range as appropriate (Table 1). Results showed mean

value of Covid cases are dramatically increased from 30th

January, 2020 to 21st January, 2020. In January, the mean

incidence of Covid cases calculated as 0.03; whereas, on

21st May, 2020, the estimated average Covid incidence

was 836.84. High skewed of Covid distribution was

observed from 30th January, 2020 to 16th March, 2020.

The skewness of the dataset varies between 1.50 on 22nd

March, 2020 and 5.83 on 30th January, 2020. All data were

positively skewed, indicated that the size of the right tail is

larger than the left tail. Kurtosis is associated with the back,

shoulder and peakedness of the distribution. The value of

kurtosis ranged between 4.44 and 35.03. The positive value

indicated platykurtic distribution. Sample size-weighted

measures are beneficial since we expect a survey variable

to better represent that of the population as the sample size

increased. To account for this, measurements from large

samples are given a higher weight than those from smaller

samples.

4.2 Directional distribution pattern of Covid

The SDE method establishes a new pattern with an inter-

mediate centre elliptic polygon for all states. Such output

ellipse polygons have Covid incidence value of two normal

lengths (long and short axes); ellipse orientation (Table 2).

The direction is the rotation of the long clockwise axis

from noon. During the period between 10th March 2020

and 09th April 2020, 27th April 2020 and 09th May, 2020

two ellipses have been generated. Figure 2 shows the series

of directional distributions of the Covid infected patients in

each week (from 30th January, 2020 to 21st May, 2020).

Plotting ellipses for Covid outbreak during the study period

may provide insight of disease spread which may be useful

for in deploying mitigation strategies. The districts are

spatially regular (so they are the mostly concentrated in the

middle and become increasingly dense towards the

periphery).

Their shapes are dissimilar from one week to another;

the ellipse is generally oriented along the west–east

direction. From 30th January 2020 to 16th March 2020,

both the long and short axes became larger and oriented

towards west–east, indicated most of the cases are found in

west and eastern states of India and concentrated dispers-

edly within the states (Fig. 2). Since 10th March, 2020 a
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small ellipse are oriented towards north–south direction,

and both the long and short axes are smaller which means

that the standard deviations of the ellipses were decreasing

and Covid cases were distributed in some north and

southern states (Fig. 2c). On 16th March, 2020, the north–

south SDE were shifted towards eastern direction (Fig. 2d).

on 22nd March, 2020 three SDE were generated having an

orientation towards south-west to north-east direction with

large axes, north-east to south-west direction with small

axes and a very small axes of east–east-south to north–

north-west direction. This indicates that Covid cases were

distributed in most the states in India and mostly

Table 1 Descriptive

characteristics of Covid cases in

India during the period between

30th January, 2020 and 21st

May, 2020

Date Mean Standard deviation Skewness Kurtosis 3rd Quartile

30-01-20 0.03 0.16 5.83 35.03 0

04-03-20 0.73 2.56 4.34 21.77 0

10-03-20 0.92 2.51 4.14 21.36 1

16-03-20 2.22 7.61 5.07 28.66 1

22-03-20 7.51 10.71 1.50 4.44 14

28-03-20 16.97 27.64 2.41 8.71 26.75

03-04-20 56.11 96.27 2.11 6.59 62.5

09–04-20 97.92 172.99 2.83 12.34 125.75

15-04-20 152.51 314.49 2.92 12.20 127.5

21-04-20 208.38 457.06 3.24 14.04 192.25

27-04-20 253.43 608.23 3.99 20.13 229.25

03-05-20 360.00 810.49 3.67 17.84 441.75

09-05-20 542.89 1357.1 3.76 17.87 407.25

15-05-20 621.35 1592.6 4.12 20.98 394.25

21-05-20 836.84 2181.6 4.44 23.82 595.75

Table 2 Spatial statistics of

directional distribution Covid-

2019 in India

Date Area (sq m2) Centre X Centre Y XStd distance YStd distance Rotation

30-01-20 295.49 81.666091 23.325438 9.008944 10.441112 76.078083

04-03-20 315.59 82.355847 22.921761 9.13102 11.002099 68.890245

10-03-20 269.93 83.30453 22.680549 7.682742 11.184534 72.703715

55.89 75.665429 25.834157 12.94114 1.377153 171.317393

16-03-20 299.45 83.356007 23.25296 8.051176 11.83984 77.06027

105.82 80.3142 22.52859 12.02652 2.801881 174.0787

22-03-20 257.56 86.04504 21.2904 6.085296 13.47439 62.54785

32.79 80.4853 25.55759 10.89246 0.960581 148.9922

3.029 80.68945 29.2523 6.26864 0.158247 126.3349

28-03-20 289.08 84.58963 23.2518 6.924158 13.29041 60.22672

144.02 87.09901 25.11863 10.36705 4.422599 115.1992

03-04-20 185.53 84.60499 22.25259 4.116301 14.35014 66.41945

290.01 89.91282 24.56589 13.82115 6.679782 144.7983

09-04-20 345.32 84.03633 23.66979 8.179731 13.43883 64.91516

280.36 86.25247 16.77327 7.267561 12.2804 82.82546

15-04-20 319.011 84.9391 20.80841 6.830324 14.86827 67.2347

21-04-20 322.05 83.84777 22.23989 7.191153 14.25639 61.65435

27-04-20 170.57 85.40499 22.37745 3.683742 14.74369 64.94514

271.68 82.9972 22.88152 8.25953 10.47091 12.75001

03-05-20 354.59 84.826591 22.128665 8.079828 13.970662 69.326946

09-05-20 406.61 85.445209 22.21699 9.28449 13.941259 65.342158

224.71 81.40537 19.237345 6.090442 11.745259 60.10042

15-05-20 323.18 85.859397 21.502663 7.233996 14.22188 67.203789

21-05-20 351.44 85.181892 20.998554 7.620977 14.679946 68.290321
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concentrated in the north and north-west direction. Since

28th March to 04th April, 2020, two SDEs were generated

with south-west to north-east and south-east to north-west

direction. However, the size of south-east to north-west

orientation ellipse is comparative smaller which indicated

maximum concentration of the disease in this particular

state. From 6th April, 2020 to 15th April 2020, results

showed most of the cases were concentrated in the central

and southern states of India. Since 15th April 2020

(Fig. 2m–o), the SDE are shifted towards west and south

and oriented towards south-west to north-east, indicated

that the number maximum concentration of cases is higher

in this region.

4.3 Spatial autocorrelation of covid distribution

The Global Moran’s I method is an inferential statistic,

meaning that the study’ findings are often interpreted in

accordance with its null hypothesis. The null hypothesis of

the Global Moran’s I statistics suggests that the analyzed

attribute is randomly distributed between the states. Two

special cases of the general cross-product data measuring

spatial auto-correlation. Table 3 shows a description of the

findings of the spatial autocorrelation data calculated

through Moran’s I and Getis-Ord Gi* statistics on weekly

infected Covid. There were statistically relevant findings

from global Moran’s I test (z scores above 1.96) and

suggest spatial heterogeneity. Also, statistically important

were the global Covid autocorrelation figures between 30th

January 2020 and 21st May 2020. Results show that the

change in the Covid distribution’s spatial autocorrelation

with intervals between 0.326 and 0.662 was relatively

unstable. A positive value of Moran’s I suggests positive

spatial autocorrelation which means a combination of high

values and low values. The largest Moran’s I value indi-

cated the strongest spatial autocorrelation of Covid affected

states. In this study, the distance band was 10 km and the

spatial clusters were further studied. In the absence of the

norm of the data, an exponent for the transformation of the

data into a normal distribution was defined in the Box-Cox

transformation. The autocorrelation among the states were

lower from 30th January to 10th March, 2020. Since 16th

Fig. 2 Directional Distribution of weekly Covid incidence during the

period between 30th January 2020 and 21st May 2020. a January 30,

b March 04, c March 10, d March 16, e March 22, f March 28, g April

03, h April 09, i April 15, j April 21, k April 27, l May 03, m May 09,

n May 15, and o May 21
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March to 15th May, higher value of Moran’s I were cal-

culated with high Z-score value and significant P value at

99% confidence level; however, the estimated value of

Moran’s I is less on 21st May 2020. The transformed data

can also remove the effect on the spatial cluster analysis of

extreme values.

The Getis-Ord Gi* tool evaluates each Covid infected

state and compares the local situation with the global sit-

uation in the neighbouring states. The value derived

through Getis-Ord Gi* statistics, z-score and P-value are

represented in Table 3. These results indicate that there

was positive spatial auto-correlation. Results showed all

the z-score values were significant at a\ 0.01 level.

Hence, we could reject the null hypothesis. The spatial

distribution in the data set of high and/or low values of

Covid was spatially clustered more than expected if the

underlying spatial processes were changed. The higher

value of Getis-Ord Gi* and z-score was calculated for 16th

March, 2020 and from 15th April, 2020 to 05th May, 2020

(Table 3). The calculated values of Getis-Ord Gi* from

09th May to 21st May, 2020 represented in Table 3. The

lowest value of Getis-Ord Gi* observed from 30th January

to 04th March, 2020.

4.4 Covid risk zone identification

Our primary aim in this analysis was the detection of Covid

hotspots using statistical methods for potential interven-

tion. By considering number of Covid cases for each state

and the average measurement, a prediction surface was

produced for the value of the Gaussian variable at all states

in the data domain. In this interpolation the empirical co-

variances were adjusted within the 90% confidence inter-

val. Exponential model appears to be fit the data very well;

most of the covariances fall within the confidence intervals.

The searching neighbourhood of the predicted value of

0.0006119 was fixed for the fifth-grade obesity rates along

with the smoothing factor of 0.2. The details of the model

parameters (lattice spacing, lag size, mean, major range,

RMSE, and average standard error) were illustrated in

Table 4. The lattice spacing of the model was varied

between 1.6417 and 1.8808 during the study period. The

lattice spacing parameter specifies the horizontal and ver-

tical distance between each central location of the infected

states. The partial sill was increased with the change of

time. This indicated that the predicted Covid incidence

value of any state at that location had about 33 percent

change of being obese. The mean value of the study Covid

model was varied between - 0.0027 and 14.3895. The

negative mean value was calculated for 30th January, 2020,

10th March–28th March, 2020 and 21st April, 2020. The

estimated root mean square was varied between 0.7996 and

7.289 during the study period. This indicates that ideally

good prediction of surface as it was close to ‘1’. The value

of Root Mean Square Error (RMSE) was gradually

increased in the study period, except on 15th May, 2020

(7.289). The average standard error in the study area was

gradually increased, except on 09th April, 2020.

Figure 3 portrays the spatial distribution of areal inter-

polation of Covid cases during the period between 30th

January, 2020 and 21st May 2020 for the re-aggregation of

Covid cases to downscale or upscale within the state

boundary. The areal interpolation tool predicts the average

value of Gaussian distribution (with prediction standard

Table 3 Estimation of

geographical pattern of Covid in

India

Date Moran’s index Pattern Getis-Ord Gi
* index

Moran’s I Variance Z-score P-value Observed G Z-score P-value

30-01-20 0.326 0.004 5.43 0.0001 Clustered 0.215 3.501 0.0004

04-03-20 0.372 0.005 5.63 0.0001 Clustered 0.214 3.501 0.0004

10-03-20 0.495 0.005 7.13 0.0001 Clustered 0.322 2.978 0.0028

16-03-20 0.529 0.006 7.41 0.0001 Clustered 0.452 5.681 0.00000

22-03-20 0.662 0.006 8.91 0.0001 Clustered 0.303 4.555 0.00005

28-03-20 0.641 0.005 8.68 0.0001 Clustered 0.312 4.199 0.00002

03-04-20 0.518 0.006 7.05 0.0001 Clustered 0.316 4.503 0.00007

09-04-20 0.560 0.005 8.335 0.00001 Clustered 0.352 5.945 0.0000

15-04-20 0.594 0.006 8.127 0.00001 Clustered 0.395 6.721 0.0000

21-04-20 0.600 0.006 8.274 0.00001 Clustered 0.397 6.548 0.0000

27-04-20 0.569 0.006 7.886 0.00001 Clustered 0.396 6.488 0.0000

03-05-20 0.567 0.005 7.882 0.00001 Clustered 0.369 6.112 0.0000

09-05-20 0.537 00.005 7.418 0.0001 Clustered 0.353 5.218 0.000

15-05-20 0.534 0.005 7.412 0.00001 Clustered 0.368 5.499 0.000

21-05-20 0.494 0.005 7.542 0.0001 Clustered 0.376 5.688 0.000
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error) for the affected states. Results of the analysis showed

on or before 30th January, 2020 only southern states of

India are affected by Covid and on 04th March 2020, very

high risk (VHR) Covid zones were identified in the

extreme north and central north of India and small pockets

of high-riskzones are found in Telengana, Kerala state and

north-west of India. On 10th March, 2020, VHR zones

were identified central and south-west of India and small

pockets are observed in Uttar Pradesh and Delhi. The high-

risk (HR) Covid zones were identified in the entire north of

India and surrounding of very high-risk (VHR) zone. On

16th March, entire central, south and south-west of India

were identified as very risk Covid zone. Moreover, small

pockets of VHR areas were also identified in the west and

Uttar Pradesh state. The HR Covid zones were identified in

the north-west and northern part of India. On 22nd March,

most of the central and western states of India were falls

under the VHR zone; and the north and adjacent to VHR

zone. The entire north-east states are demarcated as low

risk for Covid. On 28th March, 2020, the VHR areas were

mostly concentrated in the central and southern states of

India. The west and northern states are recognized as HR

for Covid. On 3rd April, the south and central part of India

were identified as VHR and HR zone were demarcated in

the west and central north of India. From 09th April –15th

April, 2020, Covid VHR were mostly concentrated in the

central and west of the nation and HR areas were shifted

towards east and disseminated on the north and south of the

India. Since 21st April to 03rd May, 2020, the VHR zones

were identified in the central and south-west of India. HR

zone were extended towards the entire eastern zone of

India. Since 03rd May 2020, the pattern is almost similar;

however, low risk areas of Covid were identified in the

Chhattisgarh and Odisha states. Moreover, the HR zones

were extended towards entire south and extreme north-west

of India.

Table 4 Model output of areal interpolation

Date Lattice

spacing

Partial sill Lag

size

Major

range

Mean Root mean square

error

Average standard

error

Regression function

30-01-

20

1.8808 0.0061 2.6974 8.67169 - 0.0027 0.7996 0.0474 0.42755*X ? 0.00268

04-03-

20

1.6417 0.1171 2.72809 2.37267 0.3776 1.0707 2.8432 0.0719*X ? 0.76454

10-03-

20

1.6417 5.6506 2.72809 4.51312 - 0.3037 1.3824 0.8711 0.82576*X ? 0.03844

16-03-

20

1.6417 46.7031 2.72809 6.79476 - 0.1306 2.8666 1.8296 0.77983*

X ? 0.314705

22-03-

20

1.64176 75.777 2.72809 16.7150 - 0.18104 2.69088 1.77404 0.74016*

X ? 1.70837

28-03-

20

1.64176 528.865 2.72809 17.6179 - 0.42831 2.26210 4.41622 0.61477*

X ? 3.75233

03-04-

20

1.64176 7900.026 2.72809 7.90999 1.40584 1.71326 26.8105 0.8108* X ? 11.6262

09-04-

20

1.64176 20490.80 2.72809 32.7371 1.31047 4.86647 10.0768 0.749035*

X ? 17.10697

15-04-

20

1.64176 63700.49 2.72808 32.7371 1.44314 5.29663 18.7804 0.774302*

X ? 34.82788

21-04-

20

1.88087 143274.56 2.69742 11.5774 - 2.95753 1.01324 19.1585 0.738607*

X ? 45.88449

27-04-

20

1.64176 197,424.60 2.72809 32.7371 0.490713 6.45906 30.3747 0.69564*

X ? 76.35808

03-05-

20

1.64176 299,494.83 2.72808 32.7371 1.336782 6.70066 42.09871 0.546028*

X ? 129.57155

09-05-

20

1.64176 1,056,498.39 2.72808 32.7371 7.596719 6.56191 61.01303 0.49332*

X ? 237.255078

15-05-

20

1.64176 1,056,498.39 2.72809 32.7371 11.23787 7.28962 70.43897 0.548518*

X ? 194.13362

21-05-

20

1.64176 2,123,314.54 2.72809 32.7370 14.38951 6.96601 95.76832 0.572183*

X ? 244.412395
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Fig. 3 Identification of Covid risk zones during the period between 30th January, 2020 and 21st May 2020. a January 30, b March 04, c March

10, d March 16, e March 22, f March 28, g April 03, h April 09, i April 15, j April 21, k April 27, l May 03, m May 09, n May 15, and o May 21
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5 Discussion

India is now the fourth most confirmed in Asia and on 19th

May 2020, the number of cases exceeding the 100,000

mark is still in its fourth. The fatality rate of India is rel-

atively low by 3.09% compared to 6.63% on 20th May

2020, worldwide (https://ourworldindata.org/-coronavirus-

india?country=IND). In India, the number of persons who

were present from 16 February to 29 March dropped

sharply in retail and recreational areas compared with

traffic from 3rd January to 6th February. On 22nd March

the Government of India decided to lock 82 districts in 22

States, where confirmation of the cases had been reported

until 31st March, in 22 States and Union territories. With

the end of the lockdown approaching, some states proposed

that the lockdown be prolonged. On 14th April, the

national lockdown was extended until 3rd May, with Indian

Prime Minister, Mr. Narendra Modi being able to provide

relaxation from 20th April on the spacious regions. Testing

began on 15th March for community transmission. A ran-

dom monitoring of people with flu-like symptoms and

samples of patient without any travel or associations of

people infected 65 laboratories of the Health Research and

the Indian Medical Research Council (DHR-ICMR) has

been conducted. In 36 regions of 15 states with positive

SARI patients (Severe Acute Respiratory Illnesses) were

registered, the Indian Council of Medical Research (ICMR)

was recommended priority confinement in patients with

Severe Acute Respiratory Infection (SARI). As on 26 May,

3126,119 samples were tested and 145,380 people were

confirmed positive according to the ICMR [23].

Few previous ecological studies have been conducted in

India concerning Covid problems and their links to risk

factors. However, very limited number of studies was

conducted on Covidspatio-temporal pattern in India. The

present study of India’s leading health issues’ spatial

clustering could help to understand the spatial epidemiol-

ogy of Covid for the implementation of regional prevention

and control strategies by health departments. Traditional

statistical analyses with no displays or graphics restrict

their usefulness, particularly to advice policymakers on

priority issues. Data are encoded as graphics or images and

can be displayed more intuitively. Therefore, our study is

focused on the visualization of the Covid distribution cre-

ated by GIS and geostatistical technique. Spatial autocor-

relation analysis and spatial cluster analysis were carried

out to identify spatio-temporal pattern of Covid clusters.

The use of infectious disease of spatial analytics tech-

niques is not new [24–26]. For cluster analysis of regional

health issues, spatial autocorrelation measurement is useful

[27, 28]. The positive values of Moran’s I and Getis-Ord

Gi
* statistics indicate spatial autocorrelation as cluster

(clustering of similar neighbour states). A significant pos-

itive spatial autocorrelation was observed in our analysis

and it is corroborated with earlier results [29]. The neigh-

bours of each state boundary were established by the edge

contiguity, which gives weights to neighbours with edge

sharing, and to all the others. In view of the z scores: 5.43

and 8.33 for January and April respectively, suggest that

the observed clustered trend is likely to have a probability

of less than 1 percent. A complete randomness hypothesis

is rejected, as there are high Covid cases in neighbouring

places in an urban and peri-urban area. This indicates that

Covid cases are spatially clustered throughout metropolitan

area and peri-urban areas. Identifying these hotspot Covid

areas may be taken care and supervise regional Covid

prevention programmes. This will help policymakers

analyse spatial risk factors to figure out the way to move

forward of health care strategies for health services

preparation and implementation.

Areal interpolation has been demonstrated to be a

promising method for defining endemic disease clusters

[30–33].The projection of areal interpolation moves the

complicated structure from high dimensional regions into

lower dimensional clusters, which is essential to cluster

endemic disease areas based on the neighbourhood rela-

tions. The integration of local interpolation and GIS is

designed successfully to produce dynamic visualisation,

which in turn helps public health officials to decide Covid

management in a timely manner. Most of the infection are

concentrated in the central and southern states of India.

Spatial distribution pattern of Covid cases are significantly

clustered and identified in the north-central and extreme

north of India. Hotspot areas are mainly distributed in

Maharashtra, Telengana, Karnataka, Gujrat, Madhya Pra-

desh and Rajasthan and cold spots areas are distributed in

the north-east of India.In a future, spatial autocorrelation

analysis help to understand the temporal dependence.

There are still some limitations of this analysis. In the

present study, we do not include migratory population and

others socio-economic parameters. In order to assess the

associations between Covid and its potential factors in

India, further data collection at local level needs to be

undertaken. Second, this is a very short period of study

(i.e., three months). For evaluating spatial and temporal

patterns of the Covid pattern additional information is

needed for a longer duration or more comprehensive

chronological incidence.

6 Conclusion

In this study, GIS and spatial modelling have been used to

analyze and show the spatial patterns of Covid through

many epidemiological researches. The techniques Moran’s
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I and Getis-Ord Gi
* have been used spatial pattern and

distribution pattern. The research findings indicated that the

geographical distribution of Covid in India is heteroge-

neous, especially concentrated in the central and west of

India. The findings of Covid hot spots in India (Maha-

rashtra, Madhya Pradesh, Telangana and Rajasthan) with

areal-based interpolation will help the provincial health

officers to improve their remedial action and to establish

potential strategies for better management of disease. Such

spatial and temporal clusters can also try to empower and

endorse highly efficient, locally adapted procedures for the

highly spatially heterogeneous Covid disease. Similarly,

our study indicates, by focusing where and when available

public health resources should be focused, that spatial and

temporal analyzes of population-based surveillance data

for diseases will aid in manage viral diseases such as

Covid.
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