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Abstract
Constrained adaptive testing is reviewed as an instance of discrete maximization 
with the shadow-test approach delivering its solution. The approach may look coun-
terintuitive in that it assumes sequential assembly of full test forms as its basic oper-
ation. But it always produces real-time solutions that are optimal and satisfy the set 
of specifications in effect for the test. Equally importantly, it can be used to run test-
ing programs with different degrees of adaptation for the same set of specifications 
and/or as a tool to manage programs with simultaneous processes as adaptive item 
calibration, time management, and/or item-security monitoring.

Keywords Adaptive item calibration · Adaptive testing · Automated test assembly · 
Discrete optimization · Item response theory · Item and test security · Mixed integer 
programming

1 Introduction

The distinctive feature of adaptive testing is sequential optimization of item selec-
tion. After each new response, the test taker’s ability estimate is updated and the next 
item is selected to be optimal at the new estimate. Unlike fixed-form testing with its 
traditional paper-and-pencil format, adaptive testing assumes electronic delivery of 
the items with access to enough computational power to update the estimate and 
select the items. Thanks to the arrival of the personal computer as well as the recent 
introduction of cloud-hosted services, adaptive testing is now widely practiced in 
programs of psychological, educational, certification, and admission testing but also 
in such areas as marketing research and patient-reported outcome measurement.

A necessary condition for successful adaptive testing is a psychometric model 
with separate parameters for the properties of the items and the abilities of the test 
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takers. Item response theory (IRT) offers a multitude of such models along with 
well-developed methods for their statistical treatment. Under each of these mod-
els, given a well-designed item pool, the process of adaptive testing reduces to the 
mathematical optimization problem of finding the sequence of items with combina-
tions of parameter values optimally matching the sequence of the ability parameter 
updates. Criteria of optimization popular among the current adaptive testing pro-
grams are variations of Fisher’s classical information measure. The measure, defined 
in (4) below, represents the statistical information about the ability parameter in the 
responses to the items as a mathematical function of the values of their parameters.

As the function is continuous in the item parameters, it may be tempting to think 
of the general problem of test assembly as an instance of the type of function opti-
mization taught in the typical calculus class. This is not correct though. The optimi-
zation is not over the continuous space of the possible item parameter values but the 
discrete set of function values at the test taker’s ability parameter across the items 
in the pool. More specifically, if the pool has I items, any test, no matter its format, 
needs to be assembled making acceptance–rejection decisions about the value of 
each of the items. In total, I binary variables are required to represent the decisions, 
which together imply optimization over a space of 2I possible outcomes.

The general distinction between function optimization in calculus and discrete 
optimization is illustrated using the two plots in Fig. 1. The method of finding the 
global maximum of an arbitrary real-valued function f(x) over the interval in the 
left-hand plot is to check all local maxima using first- and second-order deriva-
tives and take the one with the greatest function value. If the interval is not open, 
the solution should be checked against the values of the function at its endpoints. 
Optimization over the discrete set of function values in the right-hand plot does not 
require any calculus but an enumerative algorithm that checks the function at each 
of the discrete points in its domain and retains the one with the largest value. For a 
function of a single variable, the time required for a direct check of all points may 
be manageable. But the computational complexity quickly increases with the num-
ber of variables defining the domain. In fact, the number of points that need to be 
checked grows exponentially with the number of variables. This is exactly the reason 
why test assembly with the Fisher information as objective function is an extremely 

Fig. 1  Example of real-valued function versus discrete maximization
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complicated problem. As just noted, the maximization is then over a space of 2I 
points, a number that quickly increases with the number of items (for example, for 
an item pool with the modest size of 90 items, the number of points that needs to be 
checked is already larger than the size of the current world population).

For the problem of test assembly, the optimization problem is even more com-
plicated than just the size of its solution space. The solution always has to satisfy a 
set of specifications in effect for the test. Examples of these specifications include 
the length of the test, tables of content specifications, desired distributions of item 
formats, numbers of items per set with the same stimulus, word counts, answer key 
distributions, etc. Each of these specifications needs to be imposed as a constraint 
on the selection of the items. The consequences for the optimization algorithm are 
enormous: rather than just enumerating all possible solutions until the one with 
the largest value for the information measure is found, it now also needs to check 
each of the possible solutions for its feasibility with respect to the constraint set. 
The checks need to be performed at the level of the complete test against the com-
plete set of constraints. If an incomplete test would be checked, there is no guarantee 
whatsoever that a complete version of it would still satisfy the required set of con-
straints. Likewise, leaving out any constraints during earlier checks is bound to lead 
to failures at later checks.

It is exactly at this point that the switch to adaptive testing seems to run into 
unsurmountable complications. As each item already administered is automatically 
fixed, there is no guarantee whatsoever that the test could be continued without vio-
lation of some of the constraints and/or the selection of less favorable items. As an 
example, consider the case of a simple mathematics tests with algebra and geom-
etry items and constraints in the form of lower and upper bounds on the numbers 
of items from each of the two content categories. Initially, items from both catego-
ries could be chosen. But if, for instance, the number of algebra items reaches its 
upper bound, the testing algorithm may be forced to pick items from the other cat-
egory less than optimal at the current ability update. Now, image a more realistic 
mathematics test which requires control of its composition with respect to a more 
detailed set of content categories, different item formats, cognitive levels, word 
counts, answer key sequences, expected response times, and the presence of sets of 
items with a common stimulus or items that exclude each other. The combinatorial 
complexity of the problem quickly increases with each additional constraint neces-
sary to deal with these specifications. All modern algorithms of constrained com-
binatorial optimization have a feature known as backtracking. If they get stuck, as 
in the examples of this fictitious mathematics test, they return to an earlier point to 
pursue an alternative route. But, unlike the assembly of fixed forms of a test prior 
to their administration, for adaptive testing this type backtracking is impossible. We 
just cannot apologize to a test taker and replace some of his/her earlier items when 
the algorithm gets stuck.

The mathematical optimization problem met in adaptive testing is, thus, an 
instance of constrained discrete optimization with a solution that has to be found 
sequentially without any backtracking to earlier items. On top of that, the algorithm 
needs to produce each next item without any latency noticeable to the test taker. In 
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spite of these challenges, the solution can be found by a simple twist of the problem 
of assembling fixed test forms, for which the methodology of mixed integer pro-
gramming (MIP) already has proven to be a powerful resource. In the following, 
we first introduce the response model and optimization criterion used in our treat-
ment of adaptive testing, briefly review the application of the MIP methodology to 
the problem of optimal fixed-form assembly, introduce the notion of a shadow test 
as the twist necessary to optimize constrained adaptive testing, and show how the 
result can be generalized to run testing programs with different degrees of adapta-
tion for the same set of specifications and/or as a tool to manage programs with 
additional, simultaneously running processes such as adaptive item calibration, time 
management, and/or item-security monitoring.

2  Choice of model and item‑selection criterion

The following notation is used. The items in the pool are denoted as i = 1, ..., I while 
k = 1, ..., n is the index for the positions for the items available in an adaptive test of 
length n. The event of item i assigned to position k is notated as ik . Suppose k − 1 
items have already been administered to the examinee and Sk−1 is the set of indices 
of these items. The next item in the test has to be selected from Rk = {1, ..., I} ⧵ Sk−1 . 
As the case of arbitrary test takers is assumed, it is not necessary to introduce a sep-
arate index for them.

For dichotomous items, the distribution of response Ui for a test taker on item i is 
Bernoulli with probability mass function (pmf)

where �i is the probability of a correct response for the test taker. The probabilities 
are assumed to follow the well-known three-parameter logistic (3PL) model

where � ∈ ℝ is the ability parameter of the test taker, bi ∈ ℝ and ai ∈ ℝ
+ are param-

eters for the difficulty and discriminating power of the item, and ci ∈ (0, 1) is the 
height of a lower asymptote to the response probability adopted to represent the 
effects of guessing. For notational convenience, we will use �i ≡ (ai, bi, ci) and rep-
resent �i alternatively as �(�, �i). The adoption of the 3PL model is for presenta-
tion purposes only. As already noted, any model with separate item and test taker 
parameters explaining the response distributions on the items can be used to run an 
adaptive test. All items in the pool are assumed to be calibrated prior to operational 
testing. The only parameter with estimates that needs to be updated during testing is 
the test taker’s ability parameter �.

The common item-selection criterion in adaptive testing is maximization of the 
information about � in the test taker’s responses taken as a mathematical function 
of the item parameters. A measure known as the observed information is defined as 

(1)f (ui;�i) = �
ui
i
(1 − �i)

1−ui ,

(2)�i ≡ ci + (1 − ci)
[
1 + exp(−ai(� − bi))

]−1
,
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the negative of the curvature of the loglikelihood at � given response Ui = ui on the 
item,

Fisher’s information is the expected value of (3) across random responses

For the 3PL model, the measure can be shown to have the closed-form expression

As both the ability and the item parameters are unknown, the typical frequentist 
approach is to evaluate (5) at point estimates substituted for each of the parameters, 
using

as criterion for the selection of the next item in the test.
A more honest approach is to select the items accounting for the remaining uncer-

tainty about each of the parameters. A natural way of doing so is through sequential 
application of Bayes theorem. Let f (�|uk−1) be the probability density function (pdf) 
for the posterior distribution of � after k − 1 items have already been administered. As 
the items are assumed to have been calibrated before operational testing, the joint pos-
terior pdf of each item is notated ignoring the calibration data, as f(�i ). Since the two 
posterior distributions are independent, the update of the posterior pdf of � after admin-
istration of candidate item i ∈ Rk would be

where f(ui |�, �i ) is the model probability of observing Ui = ui for the test taker and 
item. The posterior expected version of the criterion of maximum Fisher informa-
tion in (5) now follows as

Calculation of (7) and (8) requires integration over the four unknown parameters 
driving the test taker’s response to the item. A convenient way of doing so is through 
Monte Carlo integration using a special implementation of the Gibbs sampler. The 
sampler cycles between (1) resampling of a sample from the posterior distributions 
of the item parameters permanently stored in the system and (2) a Metropolis–Hast-
ings (MH) step for the ability parameter using prior and proposal distributions con-
veniently calculated from the previous posterior distribution. Let (�(1)

i
, ..., �

(S)

i
) be a 

(3)Jui (�; �i) ≡ −
�
2

��2
ln f (ui; �, �i).

(4)I(�; �i) ≡ EJUi
(�; �i).

(5)I(�; �i) = a2
i

1 − �(�; �i)

�(�; �i)

(
�(�; �i) − ci

1 − ci

)2

.

(6)ik ≡ argmax
i∈Rk

{
I(�̂�k−1; �̂i)

}

(7)f (�|uk) =
∫ f (ui|�, �i)f (�|uk−1)f (�i)d�i

∫ ∫ f (ui|�, �i)f (�|uk−1)f (�i)d�d�i
,

(8)ik = argmax
i∈Rk

{

∫ ∫ I(�; �i)f (� ∣ uk)f (�i)d�d�i

}
.
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vector of draws for the parameters of item i sampled from the vector stored in the 
system and ( �(1), ..., �(S) ) a vector of draws of the test taker’s ability parameter � pro-
duced by the MH step (the assumption of equal vector length is for notational con-
venience only). The next item is then selected calculating the criterion of the maxi-
mum posterior expected information in (8) as

that is, simply as the average of the Fisher information in (5) across the last pos-
terior draws of each of the parameters currently present in the system. For further 
details of this extremely fast sampler, the reader is referred to van der Linden and 
Ren (2020).

3  Fixed‑form assembly

We discontinue our treatment of adaptive testing temporarily to focus on the simpler 
problem of assembling an optimal fixed test form prior to its administration.

It is tempting to think of test assembly as a unique problem that requires its own 
special algorithm to produce the solution, but this is incorrect. Since a seminal paper 
by Theunissen (1985), we are aware of the fact that it can be conducted with optimal 
results as an application of the methodology of mixed integer programming (MIP) 
(e.g., Chen et al. 2010; Williams 1999). The application involves four distinct steps: 
(1) choice of decision variables; (2) use of the variables to model both the objective 
function that needs to be optimized and the constraint set; (3) a call to a MIP solver; 
and (4) the evaluation of the solution returned by the solver. Use of the MIP methodol-
ogy thus separates the formulation of the test specifications from the algorithm that 
searches for the best collection of items for the test. The basic solution produced by 
a solver is a string of values for the decision variables indicating which items should 
be selected and which should not. Powerful MIP solvers are readily available in the 
form of standard software packages. When, for some reason, inspection of the solution 
reveals that an extra constraint should be added to the model or some of the bounds 
should be changed, it is simple to edit the model and resubmit it to the solver.

The basic decision variables are binary variables representing the acceptance–rejec-
tion decision for each of the items in the pool:

i = 1, ..., I . For technical reasons, an occasional real-valued variable may be needed, 
hence the name of mixed integer programming. Figure 2 shows the setup for an item 
pool of 100 items. Each of the rows identifies a different possible form in case no 
test specifications would have to be satisfied. The total number of forms for this 
modest size item pool is, thus, already 2100.

(9)ik ≡ argmax
i∈Rk

{
S−1

S∑

s=1

I(�(s); �
(s)

i
)

}
,

xi =

{
1, item i is accepted,

0, item i is rejected,
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The variables are easily used to model the test specifications. Following is an 
example of a model for the assembly of a selection or admission test with a cutoff 
score of �c . The test is required to satisfy the following specifications: 

1. Maximum information at the cutoff score;
2. Test length equal to n;
3. Upper and/or lower bounds nc on the numbers of items in content categories with 

indices Vc, c = 1, ...,C ;
4. Upper and/or lower bounds bq on the sum of quantitative attributes qi of the items;
5. No items in the test that contain clues to each other (“enemy items”);
6. Items with indices in subset V0 in the pool excluded from the test;
7. Items with indices in subset V1 in the pool included in the test.

A model that delivers the desired form is

subject to

(10)maximize

I∑

i=1

(
S−1

S∑

s=1

I(�c; �
(s)

i
)

)
xi

(11)
I∑

i=1

xi = n;

(12)
∑

i∈Vc

xi ⋚ nc, c = 1, ...,C;

(13)
I∑

i=1

qixi ⋚ bq, q = 1, ...,Q;

Fig. 2  Decision variable for the selection of an unspecified test from a pool of 100 items
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The objective function guarantees maximum posterior expected Fisher informa-
tion at �c (now with averaging over the posterior distribution of the item parameters 
only). The first constraint fixes the length of the test. In (12) and (13), ⋚ should be 
taken to be the (strict) (in)equality necessary to represent the intended specification. 
The constraints in (12) can also be used to model specifications with other categori-
cal item attributes as their format, presence of graphical material, answer key, etc. 
The constraints in (13) restrict the sum of quantitative item attributes across the test. 
Examples of such attributes include word counts, expected response times, and sta-
tistical item parameters. Constraints as in (14) prevent the selection of more than 
one item from enemy sets with their indices in subsets Ve, e = 1, ...,E in the pool. 
If certain items are rejected in advance, their indices are assumed to be collected in 
subset V0 in (15). On the other hand, when the choice of a subset of items (e.g., a set 
of anchor items) must be fixed in advance, (16) should be used. Finally, (17) con-
strains the decision variables to be binary.

The model in (10)–(17) represents just the core of a typical real-world test-
assembly model. Additional constraints are likely to be necessary, for instance, to 
represent targets for test information functions stretching over multiple � values, 
logical structures such as items nested in sets with common stimuli, to match an 
existing form item by item, assemble a set of parallel forms, deal with different 
sections in the test, or format the form to prepare for administration. Also, the 
objective function and one of the constraints can be reformulated to exchange 
roles. For a comprehensive introduction to modeling test assembly, refer to van 
der Linden (2005, 2018a)).

Observe that each of the mathematical expressions in (10)–(17) is linear in the 
decision variables. In fact, they take only two different forms, as a simple sum 
of the decision variables over a set of items in the pool or a weighted sum with 
quantitative attributes as coefficients. As other types of expressions have never 
appeared necessary to represent any test specification, it seems safe to conclude 
that linear MIP is enough to deal with all of real-world test assembly. Solvers for 
this linear type of optimization are available in commercial packages or as open 
source. Examples of the former are CPLEX Optimizer (IBM 2021), FICO Xpress 
Solver (FICO 2021), and Gurobi (Gurobi Optimization LLC 2021), whereas the 
latter include GLPK (GNU Linear Programming Kit 2021) and lp_Solve (Berke-
laar et  al. 2021). Commercial solvers are generally expensive but usually offer 

(14)
∑

i∈Ve

xi ≤ 1, e=1,...,E;

(15)
∑

i∈V0

xi = 0;

(16)
∑

i∈V1

xi = n1;

(17)xi ∈ {0, 1}, i = 1, ..., I.
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academic licenses at nominal costs while, of course, open source solvers are for 
free. The R package TestDesign offers a convenient interface to several of these 
solvers, supports model formulation in the form of simple menu choices, and con-
tains tools to visualize results (for an introduction, see Choi et al. (2021)).

In some circles, there still exists a preference for self-programmed heuristic 
algorithms because of an assumed advantage of their speed (van der Linden and 
Li 2016). But though MIP problems still should be considered as NP-complete, 
as a result of smart preprocessing of the problem, capitalization on special prob-
lem structures, efficient implementation of branch-and-cut methods, and options 
to stop with negligible loss of optimality, the development in the performances of 
their solvers over the last three decades or so have been more than dramatic. For 
example, Bixby (2012) demonstrated a machine-independent increase in perfor-
mance on a set of 1,982 benchmark problems between the first release of CPLEX 
(1991) and Gurobi (2009) to be greater than a factor of 5,000,000. Similar con-
clusions have been reached by Koch (2011). Note that the time of these studies 
is more than a decade behind us while improvements have continued unabatedly.

It is natural to assume that, though now indispensable for fixed-form test 
assembly, use of these solvers for the more difficult problem of adaptive assembly 
still is beyond reach. However, the contrary is true. As shown in the next section, 
the sequential nature of the application actually allows for much faster running 
times for a well-tuned solver resulting in item selection without any noticeable 
latency to the test taker.

4  Adaptive test assembly

The main obstacle that seems to block the application of MIP to adaptive testing 
is its inherent dilemma between sequential and simultaneous test assembly: In 
adaptive testing, the items are necessarily selected sequentially to allow for the 
ability updates whereas they must be selected simultaneously to check on their 
feasibility with respect to the constraint set. As backtracking to correct for earlier 
errors is impossible, the only solution left is to look forward, treating adaptive 
testing as selection from a sequence of fixed forms with an update of the ability 
estimate after each form. The test taker will never see any of these forms, hence 
their name of shadow test (van der Linden and Reese 1998; van der Linden 2005).

Figure 3 illustrates the setup of the shadow-test approach (STA), which cycles 
through the following steps: 

1. The first shadow test is assembled to have maximum information at the initial 
ability estimate �̂�0 while satisfying the complete set of constraints.

2. The item from the shadow test with maximum information at �̂�0 is administered 
to the test taker; all items not administered are returned to the pool.
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3. The two previous steps are repeated for subsequent items k = 2, ..., n each time 
using the previous responses �k−1 = (u1, ..., uk−1) to update �̂�k−1 and, as the objec-
tive function has changed, with the constraint 

 added to the model to include all items in the set Sk−1 already administered in 
the next shadow test.

The final shadow test is the actual adaptive test. As each of the earlier shadow tests 
meets each of the constraints, the adaptive test automatically meets each of them. 
Likewise, as each shadow test is optimal at the ability update and only its opti-
mal free item is administered, the adaptive test is always optimal given the set of 
constraints. (Of course, the best possible test is the one with all items maximally 
informative at the true value of the test taker’s ability parameter. It may still be pos-
sible to get closer to it, for instance, by using collateral information about the param-
eter to improve both on the initial estimate and its subsequent updates.)

The STA thus requires the assembly of as many fixed forms as items adminis-
tered. It is possible to realize this without noticeable latency capitalizing on the spe-
cific sequential nature of adaptive testing. First of all, assuming the problem has 
been modeled efficiently and appropriate solver settings are used, the option exists 
to run the model prior to the start of the test and use the solution as the first shadow 
test. Secondly, once the test has started, subsequent shadow tests can be found using 
hot starts of the solver, that is, with the previous shadow test as initial solution for 
the next. The start forces the solver to begin the search for the optimum directly 
in the subspace of feasible solutions, generally an enormous time-saving step. [The 
extra constraint in (18) does not hurt in any way as a hot start implies decision vari-
ables of all items in the pool fixed at their value in the previous solution.] Thirdly, 
due to convergence of the ability estimates, the change in the value of the objec-
tive function quickly becomes minor. As a result, the shadow test typically does not 

(18)
∑

i∈Sk−1

xi = k − 1

Fig. 3  Diagram of the shadow-test approach to adaptive testing. Vertical axis represents the ability scale, 
horizontal axis the order of the items selected for administration. Red parts of the shadow tests represent 
the items already administered; gray parts remain hidden from the test taker
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change at all for extended periods during the later part of the test; for options to 
capitalize on this observation, see Choi et al. (2016). Finally, unlike adaptive testing 
with heuristic algorithms, the STA selects the next item for administration directly 
from the free part of the shadow test rather than the entire pool, without any need to 
bother about constraint satisfaction. An empirical example of the STA with running 
times for the solver in milliseconds is presented below.

Because of its setup, the STA enables us to deal with any type of constraint met 
in fixed-form assembly. It can be used for much more though. Examples include 
item-exposure control during testing using random item-ineligibility constraints 
(van der Linden and Choi 2020), control of the differential speededness inherent in 
any type of adaptive testing (van der Linden and Xiong 2013), equating number-
correct scores on adaptive tests to a fixed form for the same test (van der Linden, 
2001), efficient assembly of item pools for adaptive testing (van der Linden et  al. 
2006), implementation of �-stratification in adaptive testing (Chang and van der 
Linden 2003; van der Linden and Chang 2003), improved sequencing of an adaptive 
test battery (van der Linden 2010), running adaptive tests with items generated on 
the fly rather than selected from a fixed pool (Geerlings et al. 2013). In addition, it 
can be generalized to run tests with different adaptive formats for the same set of test 
specifications or manage testing programs with multiple adaptive processes. The last 
two applications are the subject of the next two sections.

5  Generalizing the STA

Once we have a shadow-test assembler in place, its functionality is easily extended 
to serve as a general tool for optimal test assembly. The options that exists are alter-
native objectives for the assembly of the shadow tests, alternative objectives for 
the selection of items from the shadow tests, as well as the options of varying the 
number of shadow tests per test taker or the number of test takers per shadow test. 
Choosing the right combination, tests can be assembled with nearly every format or 
degree of adaptation. The following review of options is derived from van der Lin-
den and Diao (2014).

Alternative objectives for the shadow tests are: 

1. maximization of Fisher’s information at predetermined � values rather than ability 
estimates;

2. approaching a target for the test-information function at multiple � values, as in 
fixed-form assembly;

3. objective functions based on other item or test attributes than Fisher’s informa-
tion;

4. combinations of multiple objectives in a single function;
5. different choices of objectives at different moments during the test.

As demonstrated below, the combination of the first and last option allows us to 
implement multistage testing (MST) without the necessity to assemble different 
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subtests for the different stages in advance. A similar combination of objectives can 
also be used for adaptive testing for selection or admission decisions with a different 
cutoff score for the different treatments or receiving institutions. The adaptive test 
could then begin using maximum Fisher information in (9) at the ability updates 
as objective function but move to the function in (10) with the cutoff score for the 
treatment or institution closest to the current estimate later in the test. Combinations 
of different objectives in a single function belong to the domain of multi-objective 
test assembly for which several standard options are available (Veldkamp 1999). An 
example of an alternative attribute as objective is a test that minimizes the difference 
between the time limit and the predicted actual time. The objective requires simul-
taneous updating of the test takers’ speed and ability parameters and could be intro-
duced replacing the objective of maximum information toward the end of the test. 
Choi et al. (2021) show an example of adaptive testing with the same fixed target for 
the test-information function over a range of � s for each test taker.

It seems natural to assume the same objective of maximum information for the 
shadow tests as for the item selected from them, but this is not necessary either. 
Alternative item-selection objectives include: 

1. objectives with respect to another item or test attribute;
2. objectives based on combinations of attributes;
3. different choices of attributes at different moments during the test.

The choice of a different attribute can be motivated by the fact that the shadow test 
already contains the currently best local selection of free items in the pool. If the 
pool is well designed, the possibility to optimize the test with respect to a second 
attribute may then be worth the loss involved in selecting a somewhat less inform-
ative item, especially toward the end of the test. The option could be used, for 
instance, to choose some of the relatively underexposed items for security reasons. 
In fact, alternating between different objectives for shadow-test assembly and item 
selection opens up an entirely new possibility of multi-objective test assembly not 
available for fixed-form assembly.

The standard approach has been to assemble a new shadow test prior to each 
item. However, the following alternatives exist: 

1. assembling multiple shadow tests prior to each item;
2. keeping the same shadow test for sequences of items;
3. combinations of the two options or alternation between them at different moments 

during the test.

Assembling a set of test forms simultaneously requires only minor changes in the 
test-assembly model (van der Linden 2005, sect. 6.2). The option was used by Veld-
kamp and van der Linden (2008) to assemble sets of parallel shadow tests prior to 
the selection of each item with the goal to create larger sets of free items to pick 
from for the next item to administer, a condition know to improve the earlier Symp-
son and Hetter (1985) method of random item-exposure control for adaptive testing. 
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The second option allows us to “freeze and thaw” shadow tests at different moments 
during the test. Different versions of the option have been used to study their effect 
on item-selection latency in adaptive testing (Choi et al. 2016). The option will also 
be used in our empirical example below to evaluate testing formats with different 
degrees of adaptation.

The last options vary the number of shadow test relative to the number of test tak-
ers. They include: 

1. different shadow tests for each test taker;
2. the same shadow tests for multiple test takers;
3. combinations of both options.

The first option is used in the standard STA with updates of the ability estimates 
after each item but can also be used to adopt different strategies for different groups 
of test takers. The second option can be used to assembly a first shadow tests match-
ing the information on the test taker’s ability available prior to the test which is then 
administered in its entirety (linear-on-the-fly testing).

Observe that each previous option is available no matter the constraint set for 
the test. van der Linden and Diao (2016) used the feature to determine the relative 
efficiencies of testing formats with different degrees of adaptation while maintaining 
exactly the same content for the test. To the best of the author’s knowledge, this type 
of comparison has never been conducted elsewhere, which is not surprising given 
the heuristic nature of several of the alternative algorithms still in use for adaptive 
testing.

The four formats with a decreasing degrees of adaptation were: 

1. adaptive test;
2. on-the-fly MST with an adaptive routing test;
3. standard MST with fixed subtests per stage;
4. linear test.

The study was conducted simulating 30-item tests from a pool of 300 items ran-
domly taken from an inventory for a real-world testing program. All items had been 
calibrated under the 3PL model. A total of 53 constraints was necessary to model 
the content specifications in use for the test. The objective both for the shadow tests 
and the selection of items from them was maximum Fisher information. The simula-
tions were replicated for 250 test takers at � = −2.0,−1.5, ..., 2.0 each. The initial 
ability estimate for each testing format and simulated test taker was �̂�0 = 0.

The fully adaptive version of the test was implemented using the standard STA 
with re-assembly of the shadow test after each next item. The linear test was pre-
assembled using one run of the shadow-test assembler with a uniform target at 
maximum height for the test information function across � = −1.5, 0, and 1.5. 
The target was realized applying the maximin criterion across the three ability 
levels (van der Linden 2005, p. 69–71). Both MSTs had a 1-3-3 format created 
using the earlier “freeze and thaw” mechanism with the shadow test re-assembled 
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at different choices of objective function. The subtests for the fixed MST were 
pre-assembled using seven runs of the shadow-test assembler, one for each of its 
possible routes. Each of the runs began with the assembly of the initial shadow 
test using the same maximin criterion across the same three ability levels as for 
the linear test. The shadow test was then re-assembled after 10 and 20 items at 
each of the combinations of the three ability levels for the seven routes. During 
the simulated test administrations the test takers were assigned to the subtests 
comparing their ability estimates with the midpoints between � = −1.5, 0, and 1.5 
as cutoffs. The on-the-fly version of the MST was simulated freezing the shadow 
test for 10 items and then re-assembling it at the test taker’s ability update.

In spite of their identical set of content constraints, the testing formats resulted 
in quite different root-mean-square-error (RMSE) and bias functions for the final 
ability estimates. As Figs.  4 and 5 show, not unexpectedly of course, the func-
tions for the linear format were worst, while those for adaptive testing and MST 
on the fly were best. The minor differences between the latter confirm our earlier 
observation that, due to quick convergence of the ability estimates, the shadow 
test may not change much for extended periods, especially toward the end of the 
test. In spite of its broad-range routing test, the 1-3-3 MST format with fixed sub-
tests with maximum information at three predetermined design points clearly led 
to considerable loss of quality of the final ability estimates. The RMSEs for the 
ability estimates at the high end of the scale were even closer to the linear version 
than the two adaptive versions of the test.

Fig. 4  RMSE function for the final ability estimates after 30 items (solid curve: adaptive test; dashed 
curve: MST on the fly; dotted curve: standard MST; dotted-dashed curve: linear test)
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6  STA as a management tool

Group-based, paper-and-pencil testing has its origin in the time about World War 
I. Its success has led to a testing industry with a well-established technology that 
has been dominant until today. One of its key characteristics is a cycle of test devel-
opment consisting of the typical stages of item writing, field testing of the items, 
test-form assembly, test administration, data cleaning, item calibration, model fit 
analyses, linking of the items to a standard scale, forensic analyses, and test scor-
ing. Each of these stages relies on output from the preceding stages and serves as 
input to the next. The process is known to create time pressure for testing programs 
with annual administration plans, tends to result in long waiting times for the scores 
to be released, and has high levels of vulnerability. A defective item not detected 
right away, a test form compromised during pretesting, or a statistical error made 
during parameter linking is bound to lead to patch work later on in the process or 
even to stages that must be redone completely. Needless to say that managing such 
processes can be a challenge, especially if the stakes for the participants are high.

The first testing programs that became adaptive were basically developed along 
the same lines. Though the items were written to fill a complete pool, they were field 
tested using paper forms, the item parameters were estimated and linked through 
complicated setups, and analyses to check on possible security breaches were per-
formed post hoc. The only direct change was replacement of group-based sessions 
by individually scheduled tests with immediately available scores, for several testing 
program one of the main drivers to go adaptive.

Now that we have more experience with adaptive testing, the computational 
power of its infrastructure has increased, and the arrival of cloud-hosted services has 

Fig. 5  Bias function for the final ability estimates after 30 items (solid curve: adaptive test; dashed curve: 
MST on the fly; dotted curve: standard MST; dotted-dashed curve: linear test)
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made test delivery possible across geographical borders, it has become clear that the 
traditional work flow might have become obsolete. In fact, we are already witness-
ing an emerging transition from the cyclical process of test development with its 
sequence of stages, analyses of massive data files, and use of stand-alone software 
programs to real-time operations that run each of the old stages simultaneously pro-
cessing the test takers’ responses one at a time.

The first sign of the transition was the addition of item-exposure control proce-
dures to the process of adaptive testing, the reason being that, though no longer vul-
nerable to the threat of stolen test forms that had plagued paper-and-pencil testing, 
an extended use of the same item pool, in combination with its inherent tendency 
to capitalize on a small subset of highly informative items, had created the oppor-
tunity for test takers to memorize items and share them with future colleagues. The 
process of randomized item-exposure control discussed below runs simultaneously 
with the one of selecting the items for administration and has separate item parame-
ters that require real-time updating. Another example is online item calibration with 
the embedding of a few newly written items in the adaptive test for each test taker 
and a real-time update of their parameters. Examples of other candidate processes 
include continuous item-fit monitoring, cheating detection, checks on item security, 
item-pool maintenance, time-on-test management and, ultimately, on-the-fly item 
generation.

Fortunately, four different tool kits are available to support the transitions: 

1. Psychometric modeling of the interaction between the test takers and the items. 
An obvious example is the choice of the response model with its parameters for 
the test taker and the items. A model with a similar type of parameterization for 
the response times (RTs) on the items is necessary to monitor and control all time 
aspects of the test (for a candidate not reviewed in this article, see van der Linden 
2016). Other probabilistic models may be needed to address specific processes, 
for example, the model that performs item-exposure control with random item-
ineligibility constraints reviewed below

2. Statistical methods for sequential parameter updating. An important distinction is 
the one between intentional and nuisance parameters in each of the models. Both 
types of parameters are necessary to make the models realistic. In plain adap-
tive testing, the ability parameters are intentional and consequently require an 
update after each new item. The item parameters, on the other hand, are nuisance 
parameters; they are required to select the items and score the test takers but, 
other than that, are not of interest. For the process of adaptive calibration of new 
items, their roles are reversed. The focus then is entirely on the item parameters. 
The natural update of the intentional parameters is through sequential application 
of Bayes theorem with the type of Gibbs sampler already used to calculate the 
item-selection criterion in (9). The basic trick underlying its implementation is 
to resample the posterior samples for the nuisance parameters currently present 
in the system while performing an MH step for the intentional parameters.

3. Sequential updating of the parameter estimates is necessary but not sufficient to 
make each of the processes adaptive. To achieve adaptation, each update should 
be followed by an improved choice of the next datum to be collected. The field 
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of statistics that helps us to optimize the data collection is optimal design theory. 
One of its best criteria of optimality is the criterion of D-optimality, of which 
the Fisher information in (4) is an example for the case of a model with a single 
intentional but multiple nuisance parameters.

4. The shadow-test approach is available to manage all processes simultaneously. It 
was mainly introduced to update the ability parameters sequentially while keeping 
all non-statistical parameters of the test between their bounds, but its foundation 
in MIP as well as the generalizations discussed in the previous section make it 
perfectly suitable to manage multiple adaptive processes simultaneously. The 
next two examples are to illustrate the claim; a more in-depth introduction to this 
extended role of the STA, is available in van der Linden (2018b).

The basic idea underlying the item-exposure control method is to exclude items with 
a tendency of overexposure randomly from administration with probabilities that 
adapt themselves to the desired level of exposure. The random nature of the con-
trol is to prevent predictability of the items being seen by the test takers while the 
adaptation allows us to run the method without any need to supervise its operation. 
Though it is common to control the exposure rates conditional on the ability param-
eter, for notational simplicity, the version with the marginal rates introduced van 
der Linden and Veldkamp (2014) is reviewed (for an application of the conditional 
method, see Choi and Lim 2021).

Prior to the administration of the test to a new test taker, Bernoulli experiments 
are conducted for each item in the pool to determine its eligibility. Items that are 
ineligible are constrained out of the shadow tests for the test taker. When the test is 
completed, the probabilities controlling the experiments are updated to prepare for 
the next test taker. We use Ei to denote the event of item i being eligible for the test 
taker and Ai for its administration. Pr{Ei} is the probability of eligibility used in the 
Bernoulli experiments for the items, while Pr{Ai} is their exposure rate. The expo-
sure rate is required to be below an upper bound rmax.

The administration of an item implies its eligibility. It thus holds that

Consequently, Pr{Ai} = Pr{Ai ∣ Ei}Pr{Ei} and the maximum exposure rate, thus, 
requires

Alternatively, as Pr{Ai ∣ Ei} = Pr{Ai}∕Pr{Ei} , (19) can be rewritten as

Let l = 1, 2, ... denote the test takers in the order in which they arrive. The inequality 
in (20) can be conceived of as a recurrence relation giving us the necessary update 
of the eligibility probabilities from test taker l − 1 to l as

Ai ⊂ Ei, for each i.

(19)Pr{Ai ∣ Ei}Pr{Ei} ≤ rmax.

(20)Pr{Ei} ≤ rmaxPr{Ei}

Pr{Ai}
, Pr{Ai} > 0.
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The probabilities in the right-hand side of (21) are updated using the counts of item 
eligibility and administration adjusted after each test taker. Observe that the update 
is adaptive. As soon as Pr(l−1){Ai} happens to be greater than rmax , the eligibility 
probability is adjusted downwardly whereas the upper bound on it is relaxed when it 
is smaller than rmax.

An obvious way to constrain ineligible items out of the test is by collecting 
their indices in a set V0 and adding the constraint in (15) to the shadow-test model. 
However, in principle, if the set of ineligible items is too large for a test taker, the 
shadow-test model may become infeasible. Though this happens rarely for the case 
of a well-designed item pool with realistic target values for the exposure rates, the 
possibility does require attention. An effective solution is to extend the objective 
function in (10) with a penalty term:

with M an arbitrary value chosen to be greater than the maximum Fisher informa-
tion for every item in the pool. The penalty term replaces the ineligibility constraint 
in (15). Because of the large size of M, none of the ineligible items in V0 is ever 
selected unless necessary to guarantee model feasibility. When this appears to be 
necessary though, a minimum number of them is selected and the adaptive update 
of the eligibility probabilities in (21) automatically compensates for their selection 
during the next examinees.

Further refinements of the method have been presented in van der Linden and 
Choi 2020 whereas Choi and Lim (2021) should be consulted for an empirical 
demonstration of its effectiveness. The current brief review of the method is only 
to highlight its nature as a separate simultaneous process of data collection with 
continuous updating of its two item parameters. The process is managed through a 
simple adjustment of the objective function presented in (22), which now simultane-
ously serves the two objectives of maximum information in the items about the abil-
ity parameters and a minimum number of ineligible items to realize the target values 
for their exposure rates.

Similar adjustments of the shadow-test model allow us to extend an adaptive 
testing program with continuous field testing of new items. Suppose a set of new 
items has been added to the item pool with the purpose of field testing them. 
The advantages of embedding the items in the adaptive test rather than following 
the traditional approach with the items administered in a set of separate forms 
are numerous. The most valuable advantage may be the collection of calibration 
data under operational conditions, with motivated test takers working under the 
intended degree of speededness for the test. Add to this the possibility to assign 
the items adaptively to the test takers, a feature expected to result in a decrease 
of the calibration sample size comparable to the reduction of test length obtained 

(21)Pr(l){Ei} ≤ min

{
rmaxPr(l−1){Ei}

Pr(l−1){Ai}
, 1

}

(22)maximize

I∑

i=1

(
S−1

S∑

s=1

I(�(s); �
(s)

i
)

)
xi −M

∑

i∈V0

xi,
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when transitioning from a fixed form to an adaptive version of a test. A further 
increase in efficiency is realized by monitoring the behavior of the items in real 
time retracting them from the calibration process as soon as any aberrances are 
observed. (In the traditional approach, the full sample is used before any checks 
on such aberrances can be conducted.) Another major benefit is automatic link-
ing of the item parameters to the scale already in use for the adaptive test, an 
advantage due to the cycling of the Gibbs sampler along the ability parameter of 
each test taker who saw the item during the update of its parameters. Also, unlike 
fixed-form calibration, the exposure of the field-test items is already controlled 
during field testing and since they are fully embedded in the content of the adap-
tive test, it is no longer possible for the test takers to identify their different status.

The setup of choice is to randomly reserve a few positions for the assignment 
of field-test items near the end of the test prior to each administration of the test, 
for instance, three positions randomly picked from the last five. Statistically, the 
best positions would be the very last because they allow for maximal profit from 
the posterior distribution of the ability parameter. But if this fixed choice would 
be discovered, less motivation and attempts to memorize the items could follow. 
Another key part of the setup is permanent presence of the required number of 
field-test items as a subset in the shadow tests. The presence is necessary to keep 
the selection of the full test feasible with respect to the complete constraint set in 
the model.

We use xf  , f = 1, ...,F , as variables for the set of field-test items in the pool 
and no and nf  to denote the required number of operational items and field-test 
items in the adaptive test. The core of the adjusted model for the selection of the 
kth shadow test is

subject to

where Rk−1 is the joint set of the operational and field-test items already adminis-
tered and

(23)maximize

I∑

i=1

(
S−1

S∑

s=1

I(�(s); �
(s)

i
)

)
xi +

F∑

f=1

(
S−1

s∑

s=1

D(�
(s)

f
; �(s))

)
xf

(24)
I∑

i=1

xi = no;

(25)
F∑

f=1

xf = nf ;

(26)
∑

i,f∈Rk−1

= k − 1,
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is the posterior expected increase of the criterion of D-optimality for the case of 
multiple intentional parameters and a single nuisance parameter (van der Linden 
2018a, b, sect. 10.4.1). If the kth position in the test is for an operational item, the 
best free operational item in the shadow test according the first criterion in (23) 
is administered. If it has been reserved for a field-test item, it is the best free item 
according to the second criterion.

A feature of the adjusted shadow-test model deserving special attention is com-
plete separability of the two problems of optimal selection of the operational and 
field-test items. The separability is due to the fact that both the two terms of the 
objective function in (23) and the constraints in (24)–(26) ) are formulated across 
separate subsets of items in the pool. The feature is easily maintained by formulating 
the content constraints to be imposed on the test separately for both types of items. It 
is also maintained when the penalty term in (22) is added to the objective function. 
Thanks to the feature, optimal selection of the field-test items does not restrict opti-
mization of the selection of the operational items in any way, or vice versa.

The efficiency of the model was demonstrated for an adaptive test of 25 items 
from a pool of 250 items for a real-world adaptive test by van der Linden and Jiang 
(2020). Each simulated administration contained three field-test items among the 
last five items in the test. In addition to (23)–(26), the shadow-test model had the 
usual constraints on the content of the items for the test but did not include the ear-
lier option of item-exposure control. After 250 test takers, the final estimates of the 
difficulty and guessing parameters of the field-test items already showed statistical 
accuracy fully comparable to what is seen for the typical sample sizes in fixed-form 
operational testing. For the discrimination parameters, an increase to 1,000 test tak-
ers was necessary to reach the same comparability. The setup of the simulation study 
was written in R, the Gibbs sampler in Java, and the shadow tests were assembled 
making calls to a commercial cloud-hosted MIP solver. The average running times 
was 12 msec for the sampler to update the ability parameters, 25 msec for the update 
of the field-test parameters, and 53 msec for the calls to the solver.

7  Conclusion

The mathematical problem underlying adaptive testing is a constrained discrete 
optimization problem with a solution that has to be found sequentially without any 
backtracking to earlier items. The shadow-test approach to adaptive testing was 
introduced to resolve the problem. Though counterintuitive, it guarantees optimal 
selection of each of the items without violation of any of the constraints for any of 
the test takers. Also, rather than slowing down the delivery of the test items, it can 
be implemented to select the items without any noticeable latency. Later develop-
ments include its generalization to real-time sequential test assembly with any test-
ing format for any combination of objectives and set of content specifications. It can 

(27)Ds(�f ) ≡ S−1
S∑

s=1

[
det

(
Cov−1(�f ) + I(�

(s)

f
;�(s))

)
− det(Cov−1(�f ))

]
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also be used to manage simultaneous testing processes adaptively without sacrific-
ing the efficiency of any of them.
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