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Abstract
Although usually taken as a symmetric measure, G is shown to be a directional 
coefficient of association. The direction in G is not related to rows or columns of 
the cross-table nor the identity of the variables to be a predictor or a criterion vari-
able but, instead, to the number of categories in the scales. Under the conditions 
where there are no tied pairs in the dataset, G equals Somers’ D so directed that the 
variable with a wider scale (X) explains the response pattern in the variable with a 
narrower scale (g), that is, D(g│X). Hence, G = G(g│X) = D(g│X) but G ≠ D(X│g) 
and G ≠ D(symmetric). If there are tied pairs, the estimates by G = G(g│X) are more 
liberal in comparison with those by D(g│X). Algebraic relation of G and D with 
Jonckheere–Terpstra test statistic (JT) is derived. Because of the connection to JT, 
G = G(g│X) and D = D(g│X) indicate the proportion of logically ordered test-takers 
in the item after they are ordered by the score. It is strongly recommendable that 
gamma should not be used as a symmetric measure, and it should be used direction-
ally only when willing to explain the behaviour of a variable with a narrower scale 
by the variable with a wider scale. This fits well with the measurement modelling 
settings.
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1  Introduction

1.1 � Family of gamma, delta, and tau

For estimating the association between two ordinal-scaled variables, two approaches 
are usually used: the one based on covariance and the one based on probabil-
ity. The approach using covariance includes such widely used estimators as prod-
uct–moment correlation coefficient (PMC; Pearson 1896 onwards) originally meant 
for two observed continuous variables and polychoric correlation (RPC; Pearson 
1900, 1913) for two unobservable latent variables. Within the approach using prob-
ability, the most commonly used measures of association come from the family that 
includes Kendall’s tau-a and tau-b (Kendall 1938, 1948), Goodman–Kruskal gamma 
(G; Goodman and Kruskal 1954), and Somers’ delta (D; Somers 1962). Also, such 
rarely used estimators as Kim’s dy.x (Kim 1971) and Wilson’s e (1974) are part of 
this family. As a family of coefficients, it is usually referred to either as tau family 
(e.g., Kendall 1948; Kendall and Gibbons 1990), gamma family (e.g., Van der Ark 
and Van Aert 2015; Woods 2007), or delta family (e.g., Newson 2006; Metsämuu-
ronen 2020a, b). Kendall’s tau-a can be taken as the mother of the other estimators 
because, when there are no tied pairs between the variables, they all equal with tau-a 
(see Kendall and Gibbons 1990; Newson 2006). This article studies, specifically, the 
characteristics of G and shows that, under certain conditions, G is a special case of 
D although sometimes the opposite is suggested (e.g., Kvålseth 2017).

1.2 � Some known characteristics of G within the measurement modelling settings

G and partial G (Goodman and Kruskal 1954; Davis 1967) are used, although 
rarely, it seems, in measurement modelling settings (see, e.g., Forthmann et al 2020; 
Kreiner and Christensen 2009; Nielsen and Santiago 2020). However, G has some 
favourable characteristics related to these settings. Namely, in comparison with 
the wider used estimator PMC, G appears to be robust against many sources of so 
called systematic mechanical error (SME) causing mechanical underestimation of 
association (Metsämuuronen 2021). SME is a new concept related to estimators of 
association referring to fact that the estimates of association include error that is 
mechanical in nature and it occurs in a systematic manner in certain estimators of 
association in varying quantity. For example, while PMC is notably affected by such 
sources of SME as restriction of range in general (see the literature in, e.g., Men-
doza and Mumford 1987; Sackett and Yang 2000; Sackett et al 2007 and simulations 
by Martin 1973, 1978; Olsson 1980), item difficulty, the number of categories in 
the item and in the score, and the distributions of the latent variables, G produces 
estimates that are SME-free in all of these conditions (see simulations in Metsämuu-
ronen 2021). In practical terms, while PMC always underestimates the true asso-
ciation because of mechanical reasons, G reflects the true association without loss 
of information caused by the mechanical reasons regardless of the sources of SME 
mentioned above. Hence, G appears to be a surprisingly interesting coefficient in 
resisting SME in the estimation of association. However, although G is accurate in 
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reflecting the true association between two variables, it has two opposite challenges: 
obvious underestimation when the number of categories in the variables gets high 
and possible inflation magnitude of the estimates. These are discussed below.

Because being based on probability, the embedded linear nature in G in compari-
son with the estimators with trigonometric nature such as PMC makes G underesti-
mate the association between an item and the score in an obvious manner (see 
Metsämuuronen 2021). The phenomenon is similar with Somers’ D (Metsämuu-
ronen 2020b; Göktaş and İşçi 2011), and it can be explained by Greiner’s relation 
(Greiner 1909) discussed by Kendall (1948), Newson (2002), and Metsämuuronen 
(2020b, 2021). Greiner’s relation states that, with continuous variables X and Y, tau-
a = G = D and, then, PMC between variables X and Y equals �XY = sin

(
1

2
� × taua

)

= sin

(
1

2
� × G

)
= sin

(
1

2
� × D

)
 . Consequently, with continuous variables, the val-

ues by �XY of 0, ±1
�√

2 , and ±1 as examples correspond with the values by G and 

D of 0, ±1∕2 , and ±1 , respectively. Then, except for the extreme values ±1 and 0, the 
magnitude of the estimates by �XY tends to be greater than those by G = D. While it 
is known that D underestimates association of an item and the score when the num-
ber of categories in the item exceeds three (Metsämuuronen 2020b), G seems to 
underestimate association when the number of categories exceeds four (Metsämuu-
ronen 2021).

Another discussed challenge in G is its possible inflation in the estimates. Kvål-
seth (2017) notes that the estimates by G “may be highly inflated making it incom-
parable with other measures such as the frequently used Kendall’s tau-b” (p. 10,582; 
see also Higham and Higham 2019; Masson and Rotello 2009). Other researchers 
(e.g., Freeman 1986; Gonzalez and Nelson 1996; Metsämuuronen 2021) propose 
that there is no inflation per se in G but, instead, a different logic of using tied pairs 
when computing probability. This matter is discussed later with formulae. Partly, the 
apparent inflation may be caused by the hidden directional nature of G discussed in 
this article.

Based on simulation results, Metsämuuronen (2021) has collected some advances 
of G in the measurement modelling settings in comparison with item–total correlation 
(Rit), item–rest correlation (Rir), polychoric correlation (RPC) and D. First, G reaches 
the extreme values − 1, 0, and + 1 accurately, while Rit and Rir cannot reach the 
extremes of correlation, and RPC can reach the extreme values only approximatively. 
Because of being based on ranks, G is also more robust for extreme observations, non-
linearity, and difficulty levels of the item than Rit and Rir. Hence, with binary items, 
G tends to produce estimates that underestimate item discrimination power less than 
the estimates by Rit and Rir. Also, G is applicable and accurate also with non-normal, 
sparse, or small datasets and crosstables, while the applicability and accuracy of the 
estimation result of the Rit and Rir depend on the number of categories in the vari-
ables. Second, G (as well as RPC) is accurate in reflecting the latent perfect associa-
tion between the item and the score unlike Rit, Rir, and D; the latter behave unpredict-
able and they underestimate the latent perfect association in an obvious manner. While 
both G and RPC reflect accurately the perfect latent association, the calculation of RPC 
requires complex procedures and specific software packages while G is reasonably 
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easy to calculate, even manually, in practical test settings. Also, while RPC refers to 
unknown, unreachable, and hypothetical variables that are difficult to use in further 
research, G utilizes the known composite of items and score. Many of these advances 
are related to SME; in comparison with PMC, both G and RPC appeared to be resist-
ant to many sources of SME (Metsämuuronen 2021). We may add here also the result 
from this article: G has a logical directional nature from the measurement modelling 
viewpoint; it indicates how well the latent trait (score) explains the responses in the test 
items. Newson (2002) also points that the interpretation of G is straightforward, and it 
may be easier to interpret in words than PMC.

1.3 � An empirical note on the identity of G and D

Traditionally, G is taken as a symmetric measure because it produces only one value 
(e.g., IBM 2017; Sheskin 2011; Sirkin 2006; Wholey et al. 2015) while D is unam-
biguously a directional measure producing three options: a symmetric estimate and 
two directional estimates where either of the variables is dependent and the other is 
independent. The latter directions are usually named as “row dependent” and “column 
dependent” related to the analysis of two-way contingency tables. Hence, G and D are, 
fundamentally, different estimators of association. However, it is easy to produce a pair 
of variables where the estimates by G and one of the directions of D are identical—the 
only requirement is that one of the variables do not have tied cases (see later Table 1).

An unpublished empirical note of the identity of G and D was made when reana-
lysing the published dataset by Metsämuuronen (2020a); the original analysis did not 
concern G. When reanalysing the dataset using G, with all variables, the estimates by G 
and a specific direction of D were identical. If the empirical dataset shows the identity, 
it can be derived also in an algebraic manner. This article shows this identity.

1.4 � Research question

When knowing that, under certain conditions, G = D ≤ 1, a relevant question is, which 
of the options of Somers’ D is G: “row-dependent” or “column-dependent” or “sym-
metric”? In what follows, the forms of G and D are presented first. By comparing the 
formulae, it is also shown that, under certain conditions, both G and D are related to 
Jonckheere–Terpstra test statistic. Then, algebraic reasons for the direction of G are dis-
cussed. Finally, numerical examples of G and different varieties of D are given using a 
simulation with real-world datasets.

2 � Forms of G and D

2.1 � Measurement model latent to gamma and delta

The basic results in the article are general and applicable to any two general vari-
ables with ordinal or interval scale and, then, g and X refer to the variable with the 
narrower and wider scale, respectively. However, the applications in the article are 
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discussed within the measurement modelling settings where the variables (item g 
and score or measurement scale X) are dependent because both are related to the 
common latent trait (θ).

Assume that the observed values in g with r = 1, …, R and X with c = 1, …, C 
distinctive ordinal or interval categories, and R << C, share the common latent trait 

Table 1   Example of the estimates by G and D under different conditions; X in column

Test-taker ID Rows (items) Column

A1 A2 A3 B1 B2 B3 X (score)

1 0 0 0 0 0 0 1
2 0 0 0 0 0 0 2
3 0 0 0 0 0 0 3
4 0 0 0 0 0 0 4
5 0 0 0 0 1 0 5
6 0 0 1 0 0 1 6
7 0 0 0 0 0 0 6
8 0 0 0 0 0 0 6
9 0 0 1 0 0 0 6
10 0 0 0 0 0 0 10
11 0 0 0 0 0 0 11
12 0 0 1 0 1 1 12
13 0 0 0 0 0 0 13
14 0 1 0 0 0 0 14
15 0 0 1 1 2 2 15
16 1 0 0 1 0 0 16
17 1 1 0 1 0 0 17
18 1 1 1 2 1 1 18
19 1 1 0 3 3 3 19
20 1 1 0 4 4 4 20
P 150 146 86 192 158 120
Q 0 4 56 0 34 64
DR 150 150 150 192 192 192
DC 368 368 368 368 368 368
2TR = DR‒P‒Q 0 0 8 0 0 8
2TC = DC‒P‒Q 218 218 226 176 176 184
D “column explains row” 1 0.947 0.200 1 0.646 0.292
D “symmetric” 0.579 0.548 0.116 0.686 0.443 0.479
D “row explains column” 0.408 0.386 0.082 0.522 0.337 0.152
G 1 0.947 0.211 1 0.646 0.304
tau-b 0.638 0.604 0.128 0.722 0.466 0.211
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(θ).1 Hence, the higher the latent trait is the more probable it is to reach higher score 
(X) and, simultaneously, more probably a higher value (or the correct answer) in a 
test item (g). The threshold values of θ for each category in g are denoted by �i and 
for each category in X by �j . Then, g and X are related to θ so that observed value 
of the item is g = xi, if �i−1 ≤ θ < �i , i = 1, 2,…, R and the observed value of the score 
X = yj, if �j−1 ≤ θ < �j , j = 1, 2, …, C, and  �0 = �0 = −∞ and �R = �C = +∞ . Figure 1 
illustrates the model with a binary g (R = 2); nij refers to the number of cases in in 
cell i, j.

2.2 � Population form of γ

G estimates the probability γ that two randomly chosen cases have the same order 
in two variables (e.g., Van der Ark and Van Aert 2015). Let variables g and X be 

Fig. 1   A latent variable � manifested in two ordinal variables g and X 

1  Notably, this is an obvious simplification of the situation. In the real-life settings, several factors and 
latent variables are related to the item responses such as general intelligence, reading ability, and perse-
verance. For the modelling purposes the one-factor model is, however, a widely used conceptualization 
(see e.g. Cheng et al. 2012; McDonald 1985).
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sampled jointly from a bivariate population with the joint distribution π. The joint 
probabilities are denoted by πrs. Let (x1, y1), (x2, y2), …, (xN, yN) be a set of obser-
vations of the joint random variables g and X. The pairs of observation (xl, yl) and 
(xh, yh), where l < h, are concordant if the order for both elements agree, that is, 
if xl < xh and yl < yh or xl > xh and yl > yh. Similarly, the pairs are discordant when 
xl < xh and yl > yh or xl > xh and yl < yh simultaneously. If xl = xh or yl = yh, the pairs 
are tied; those are neither discordant nor concordant.

The probability that two randomly chosen test-takers have the same order in 
both g and X is denoted by πP (from the traditional symbol for concordant pairs 
P) and the probability that two randomly chosen test-takers have a different order 
in g and X is denoted by πQ (from the traditional symbol for discordant pairs Q), 
and

and

(Van der Ark and Van Aert 2015). Using these symbols, the latent γ is defined 
as

2.3 � Sample forms of G, D, and tau‑b

The sample forms of G and D are usually expressed using the concepts of concord-
ance (P; the number of pairs of observations into the same direction) and discord-
ance (Q; the number of pairs into the opposite directions) observed in variables g 
and X. We define

(1)𝜋P =

g∑
r=1

X∑
c=1

𝜋rc

(∑
i>r

∑
j>c

𝜋ij +
∑
i<r

∑
j<c

𝜋ij

)

(2)𝜋Q =

g∑
r=1

X∑
c=1

𝜋rc

(∑
i>r

∑
j<c

𝜋ij +
∑
i<r

∑
j>c

𝜋ij

)

(3)� =
�P − �Q

�P + �Q
.

(4)

Cij =
∑
h<i

∑
k<j

nhk +
∑
h>i

∑
k>j

nhk,

Dij =
∑
h<i

∑
k>j

nhk +
∑
h>i

∑
k<j

nhk,

P =
∑
i,j

nijCij,

Q =
∑
i,j

nijDij,
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where nij is the number of cases in the cell ij of the two-way contingency table. 
Both P and Q include (the same) tied pairs; the number of these tied pairs is denoted 
respectively by Tg and TX when g and X are considered. The number of all combina-
tions of pairs related in the direction that “g given X”2 is

and for “X given g”,

The quantities of P and Q in Eq.  (4) are double of those we usually see in the 
textbooks (e.g., Metsämuuronen 2017; Siegel and Castellan 1988). Although cal-
culating P and Q in practical settings is easier when only half of the directions 
(and then doubling them) are considered (see later Table and related discussion), 
the notation in Eq. (4) makes it possible to estimate the asymptotic standard errors 
strictly (e.g. Agresti 2010; Goodman and Kruskal 1979; Metsämuuronen 2021; see 
also Appendix).

The sample form of G estimates the latent γ and proportions P–Q with those pairs 
for which we know the direction and hence, the tied pairs are excluded:

The asymptotic standard error (ASE) used when computing the confidence inter-
val is

and, under the hypotheses of independence used when computing the test 
statistics,

(5)Dr = Dg = N2 −

R∑
i=1

(
n2
i

)
=
(
P + Tg

)
+
(
Q + Tg

)
= P + Q + 2Tg

(6)Dc = DX = N2 −

C∑
i=1

(
n2
i

)
=
(
P + TX

)
+
(
Q + TX

)
= P + Q + 2TX .

(7)G =
P − Q

P + Q
.

(8)ASE1(G) =
4

(P + Q)2

√∑
i,j

nij
(
QCij − PDij

)2

2  See the discussion and examples of the possible confusion in naming the directions in Metsämuuronen 
(2020a). In the measurement modelling settings, the direction where the latent trait (score) explains the 
behaviour in the item is the meaningful direction (e.g., Byrne 2001). In the traditional settings of condi-
tions, this direction is verbalized as “g given X”, that is, “g is dependent on X”, that is, “g dependent”, 
and notated as (g|X) . However, within the traditional notation related to Somers’ D, when g is “depend-
ent,” it is notated as D(X|g) (e.g., Metsämuuronen 2017; Newson 2002, 2006, 2008; Siegel and Castellan 
1988) inherited from the logic familiar from the general linear modelling where g is thought as independ-
ent and X as dependent. Here, the former logic familiar also from the manual calculation of Mann–Whit-
ney U-test and Jonckheere–Terpstra test statistics is used where the dataset is first ordered by X after 
which the order in g is analysed, that is, the order in g depends on X. In this article, the specific notation 
D(g|X) refers to “g dependent” or “g given X” in the spirit of conditions which, in the outputs of some 
generally known software packages such as IBM SPSS, SAS, as well as R libraries, would be called “X 
dependent.” See also Table 1 and the related discussion.
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(e.g., IBM 2017; Agresti 2010) where P, Q, Cij, and Dij are as defined in Eq. (4).
The sample form of D proportions P–Q with all possible pairs including also the 

tied pairs related to g or X, depending on the direction. In the case that X explains 
the order in g, that is, “g given X”

and in the case that g explains the order in X, that is, “X given g”,

and generally, Tg ≠ TX. The sample form of the symmetric form of D is

When computing the confidence intervals, the ASEs for D(g|X ) and D(X|g ) are

 and

The corresponding ASEs under the hypotheses of independence are

 and

The form of the standard error of D(sym) is notably more complicated (see, e.g., 
IBM 2017) and it is not relevant for the latter part of the article. Hence, it is omitted 
here.

As a benchmark for G and D, the sample form of tau-b is

(9)ASE0(G) =
2

(P + Q)

√∑
i,j

nij
(
Cij − Dij

)2
−

1

N
(P − Q)2

(10)D(g|X ) =
P − Q

Dg

=
P − Q

P + Q + 2Tg
,

(11)D(X|g ) = P − Q

DX

=
P − Q

P + Q + 2TX
,

(12)D(sym) =
P − Q

1

2

(
Dg + DX

) =
P − Q

P + Q + Tg + TX
.

(13)ASE1(D(g|X )) =
2

D2
g

√∑
i,j

nij
(
Dg

(
Cij − Dij

)
− (P − Q)

(
N − ni

))2

(14)
ASE1(D(X|g )) = 2

D2

X

√∑
i,j

nij
(
DX

(
Cij − Dij

)
− (P − Q)

(
N − nj

))2
.

(15)ASE0(D(g|X )) =
2

Dg

√∑
i,j

nij
(
Cij − Dij

)2
−

1

N
(P − Q)2

(16)ASE0(D(X|g )) = 2

DX

√∑
i,j

nij
(
Cij − Dij

)2
−

1

N
(P − Q)2.
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where we see that the lower magnitudes of the estimates by tau-b as well as D(sym) 
in comparison with G and directional Ds are expected because tau-b and D(sym) use 
the number of tied pairs in a rather extensive manner.

By comparing Eqs. (7), (10), (11), and (12) it is obvious that G gives us a more 
liberal approximation of the probability in comparison with D. Both ways of thinking 
the probability make sense. On the one hand, the logic in D is solid when we think it 
from the viewpoint of classic probability: the favourable cases are portioned with all 
cases (of pairs). On the other hand, the logic in G is the same as in the sign test (traced 
to Arbuthnott 1710; see Metsämuuronen 2017), and Wilcoxon signed-rank test (Wil-
coxon 1945) where the sample size (related to the pairs) is adjusted by omitting the 
pairs where we do not know the direction. Hence, “this property [to restrict the calcula-
tion only to untied pairs in G] is neither a flaw nor a weakness” as pointed by Freeman 
(1986, p. 63; see also Gonzalez and Nelson 1996; Metsämuuronen 2021).

Notably, the discussion of the tied pairs can be more elaborated than above. Gon-
zalez and Nelson (1996), for example, separate the variables A and B as a predictor 
(p) and criterion (c) variables and, consequently, the tied pairs may be related to either 
on the predictor variable (Ap or Bp) with the number of paired cases designated as Tp, 
on the criterion variable (Ac or Bc) designated as Tc, or on both the predictor and the 
criterion variable designated as Tpc. Using these symbols, according to Gonzalez and 
Nelson (see also Freeman 1986), Somers’ D = (P − Q)

/(
P + Q + Tc

)
 , Kim’s DX.g 

= (P − Q)
/(

P + Q + Tp
)
 , and Wilson’s e = (P − Q)

/(
P + Q + Tc + Tp

)
 (see more 

estimators in Freeman 1986). Notably, Gonzalez and Nelson as well as Freeman sim-
plify the set of estimators remarkably; factually, (P − Q)

/(
P + Q + Tc

)
 = D(X|g ) , 

Kim’s DX.g = D(g|X ) , and Wilson’s e = D(sym) . The factual directionality in G shown 
below is not related to the position of the variables as a predictor or criterion variable 
but to the widths of the scales. Hence, this logic of notation by Freeman (1986) and 
Gonzalez and Nelson (1996) is not used in this article.

In what follows, the sample forms and the interpretation of G and D are discussed 
within the measurement modelling settings and their connection to Jonckheere–Terp-
stra test statistic and identity under certain conditions is noted.

3 � Identity of G and D and their connection to Jonckheere–Terpstra 
test statistic

3.1 � Jonckheere–Terpstra test statistic and rank‒polyserial correlation

Cureton’s rank‒biserial correlation coefficient ( �RB ; Cureton 1956; Wendt 1972) for 
the association between a binary item and ordinal score can be expressed using the 
Mann–Whitney U test statistic (Mann and Whitney 1947):

(17)

tau − b =
P − Q√
Dg × DX

=
P − Q�

(P + Q)2 + 2(P + Q)
�
Tg + TX

�
+ 4

�
Tg × TX

� ,
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where UObs

gX
 is the observed U test value related to the higher3 of the subsamples 

(l = 0 and h = 1) in g, UMax

gX
 is the theoretical maximum value of U test, and n0 and n1 

are the numbers of cases in the subsamples in g. UMax
gX

= n0n1 implies the condition 
that all test-takers in the higher subsample h = 1 are ranked higher in X than the test-
takers in the lower subsample l = 0.

Jonckheere–Terpstra test statistic (JT; Jonckheere 1954; Terpstra 1952) extends 
the directional U and its calculation procedure to polytomous cases (e.g., Metsämuu-
ronen 2017; Siegel and Castellan 1988). Hence, logically, the following measure 
may be called rank–polyserial correlation ( �RP):

where JTObs
gX

 and JTMax
gX

 are the observed and maximal JT statistic. The character-
istics of the measure are not discussed here although we note that JT statistic is 
embedded in the core of the measure. The core in �RP is the probability measure 

JT

�
R∑
l<h

nlnh ranging 0–1 and indicating the proportion of logically ordered obser-

vations in g after they are ordered by X. In Eq.  (19), this measure is transformed, 
using a linear transformation of doubling and centring, to the same scale as the cor-
relation ranging ‒1 to  + 1. With a binary g, �RB is a special case of �RP.

3.2 � Relation of D and JT

Consider the direction of conditions where “g given X”. Because of Eq. (5)

The number of cases in the subsamples related to g and X are ni and nj , respec-
tively, and, then

Because of (21), the element N2 −
R∑
i=1

�
n2
i

�
 can be manipulated as follows:

(18)�RB = 2 ×
UObs

gX

UMax

gX

− 1 = 2 ×
U1

n0n1
− 1,

(19)
𝜌RP = 2 ×

JTObs

gX

JTMax

gX

− 1 = 2 ×
JT

R∑
l<h

nlnh

− 1,

(20)P + Q =

(
N2 −

R∑
i=1

(
n2
i

))
− 2Tg,

(21)N =

R∑
i=1

ni =

C∑
j=1

nj.

3  Cf. Wendt’s (1972) modification where U is based on the lower of subsamples l = 0.
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Hence, because of (10) and (22), D(g|X) can be rewritten as

Because of Eqs. (20) and (22)

Then, D(g|X) can be rewritten as

Because of the definition in Eq.  (5), including both positive and negative 
direction, the element 

(
P + Tg

)
 is two times the number of pairs in one direction. 

Remembering that JT equals the number of pairs in the same order including only 
the positive elements,

Then, because of Eqs. (23), (26), and (19), we note the identity of �RP and D:

that is,�RP is a special case of Somers’ D so directed that “g given X”. Hence, in 
measurement modelling settings, Somers’ D(g|X) strictly indicates the proportion of 
logically ordered tests-takers in the item after they are ordered by the score.

(22)

N2 −

R∑
i=1

(
n2
i

)
=

(
R∑
i=1

ni

)2

−

R∑
i=1

(
n2
i

)
=

R∑
i=1

(
n2
i

)
+ 2 ×

R∑
l<h

nlnh −

R∑
i=1

(
n2
i

)
= 2

R∑
l<h

nlnh.

(23)
D(g�X ) =

P − Q

N2 −
R∑
i=1

�
n2
i

� =
P − Q

2

R∑
l<h

nlnh

.

(24)Q = 2

R∑
l<h

nlnh −
(
P + 2Tg

)
.

(25)

D(g�X) = P − Q

2

R∑
l<h

nlnh

=

P −

�
2

R∑
l<h

nlnh −
�
P + 2Tg

��

2

R∑
l<h

nlnh

=

2
�
P + Tg

�
− 2

R∑
l<h

nlnh

2

R∑
l<h

nlnh

=

�
P + Tg

�
R∑
l<h

nlnh

− 1.

(26)P + Tg = 2 × JT .

(27)
D(g�X) = P − Q

R∑
l<h

nlnh

= 2 ×
JT

R∑
l<h

nlnh

− 1 = 𝜌RP,



295

1 3

Behaviormetrika (2021) 48:283–307	

3.3 � Relation of G and JT

Because of Eqs. (7) and (20)

Because of Eqs. (28) and (24), parallel to Eq. (25), we can write

and because of Eq. (26)

This indicates that, in the measurement modelling settings, Goodman–Kruskal 
gamma can be interpreted as a slightly modified proportion of the logically ordered 
tests-takers in the item after they are ordered by the score while taking into account 
only those cases for which we know the order, that is, considering only the pairs 
without ties.

While the coefficient in Eq.  (19) is called the rank–polyserial correlation coef-
ficient, also the latter part in Eq.  (30) could be used as �RP . However, the former 
estimator related to D (Eq. 27) gives a more conservative estimate while the latter 
related to G (Eq. 30) gives a more liberal estimate of the association between two 
ordinal-scaled variables.

3.4 � Identity of G and D

Strictly from Eqs. (7), (10), (11), and (12) it is known that G = D when there are no 
tied pairs. Then, G has the identity of D under three general conditions irrespective 
of the distributions in the variables, difficulty level in variables, number of cases, 
number of categories in the variables, and number of ties in the single variables: 
(1) when either of the variables is or both are continuous, implying no tied pairs; 
(2) if X is not continuous but there are no ties in X, that is, when each test-taker gets 
unique score regardless the distribution in the item, and (3) when there are ties in 
X but there are no crossing observations between g and X, that is, when all the tied 
values in the score are related to the identical value in item. The last of the options 
appears to be important in understanding the direction in G.

(28)
G =

P − Q

P + Q
=

P − Q�
N2 −

R∑
i=1

�
n2
i

��
− 2Tg

=
P − Q

2

R∑
l<h

nlnh − 2Tg

.

(29)G =
P − Q

2

R∑
l<h

nlnh − 2Tg

=

P − 2

R∑
l<h

nlnh + P + 2Tg

2

R∑
l<h

nlnh − 2Tg

=
P + Tg

R∑
l<h

nlnh − Tg

− 1

(30)
G =

P − Q

P + Q
= 2 ×

JT

R∑
l<h

nlnh − Tg

− 1.
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From the direction of “g given X”, when Tg = 0, because Tg ≠ TX, and because of 
Eqs. (7) and (10),

Similarly, from the direction of “X given g”, when TX = 0, because of Eqs. (7) and 
(11)

However, the condition of TX = 0 is possible only in the case of continuous vari-
ables causing Tg = TX = 0 and, then G = D(X|g ) = D(g|X ) = D(sym) . The reason is 
that, excluding the continuous case, the condition of Tg = 0 or TX = 0 is true only when 
there are ties in the variables but there are no crossing observations between the two 
variables, that is, when all the tied values in one variable are related to an identical 
value in the other variable (see variables A2 and B2 in Table 1). This can happen only 
with the variable that has a wider scale because, in the variable with a shorter scale, 
there will always be at least two pairs that are tied with the variable with a wider scale. 
Hence, only the variable with the wider scale can be the one causing the condition of 
no ties (Tg = 0) irrespective of whether the variable is in row or in column or whether it 
is a predictor or criterion variable (see Gonzalez and Nelson 1996). Therefore, except 
the case of continuous variables implying Tg = TX = 0, when Tg = 0 and TX ≠ 0,

Equation (33) means that, although usually taken as a symmetric measure, Good-
man–Kruskal gamma is, in fact, a directional measure the same manner as is Somers 
D; G is directed so that the order in the variable with the wider scale explains the 
order in the variable with the narrower scale without the relation to rows and col-
umns in the cross-tables. Numerical examples will clarify the phenomenon.

Notably, also, except the case of continuous variables when TX = Tg = 0, 
the ASEs of G and D are equal only in one direction. This is easy to show for 
the ASEs under the hypotheses of independency. Because of Eq.  (5) and (6), 
Dg = P + Q + 2Tg ≠ P + Q + 2TX = DX . Because of Eqs. (9) and (15), knowing 
that TX = 0 can be obtained only with continuous variables without tied pairs, under 
any other condition when Tg = 0 ≠ TX,

(31)D(g|X ) =
P − Q

P + Q + 2Tg
=

P − Q

P + Q
= G.

(32)D(X|g ) = P − Q

P + Q + 2TX
=

P − Q

P + Q
= G.

(33)
G =

P − Q

P + Q
=

P − Q

P + Q + Tg

= D(g|X ) = G(g|X ) ≠ D(X|g ).
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Also, the empirical findings (see discussion with Table  2 below) suggest that 
under the same conditions as above, ASE1(G) = ASE1(D(g|X )) ≠ ASE1(D(X|g )) 
although showing this algebraically is not obvious; the formulae (8), (13), and (14) 
use different sources of information.

4 � Numerical examples

4.1 � A simple comparison

The estimates by G and D are compared first using a simple dataset with two sets of 
variables with a narrower scale (Table 1): a binary set (items A1, A2, A3) and a poly-
tomous set (items B1, B2, B3). In both sets, one item follows a deterministic pattern 
without tied pairs and without stochastic error (A1 and B1)—here we expect to see 
perfect item discrimination and D = G = 1; one item without tied pairs and including 
stochastic error (A2 and B2)—here we expect to see G = D ≤ 1; and one item with 
tied pairs and including stochastic error (A3 and B3)—here we expect to see G > D. 
In all cases, the score with the wider scale includes a small number of tied cases, 
just to show their effect in the estimates. As an example, the estimates and statistics 
by variable g = A2 and X are illustrated in its form of two-ways contingency table 
(Table 2).

Given Table  2, the number of pairs in the same direction is 
P = 2 × (13 × 5 + 2 × 4) = 146 and the number of pairs in the opposite directions is 
Q = 2 × (13 × 0 + 2 × 1) = 4 , and consequently, P−Q = 142 and P + Q = 150 . The 
number of all pairs in the direction of “g given X” is Dg = 202 − (225 + 25) = 150 
and the number of pairs in the direction of “X given g” is 
DX = 202 − (1 + 1 + ... + 1) = 400 − 32 = 368 . Then G = 142∕150 = 0.947 , 

(34)

ASE0(G) =
2

(P + Q)

√∑
i,j

nij
(
Cij − Dij

)2
−

1

N
(P − Q)2,

=
2

(P + Q + 0)

√∑
i,j

nij
(
Cij − Dij

)2
−

1

N
(P − Q)2,

= ASE0(D(g|X )) ≠ ASE0(D(X|g ))

Table 2   Two-way contingency table for variables A2 and X related to Table 1

X

1 2 3 4 5 6 10 11 12 13 14 15 16 17 18 19 20 Total n2
i

A2 0 1 1 1 1 1 4 1 1 1 1 0 1 1 0 0 0 0 15 225
1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 5 25

Total 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 20
n2
j

1 1 1 1 1 16 1 1 1 1 1 1 1 1 1 1 1
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D(g|X ) = 142∕150 = 0.947 , D(X|g ) = 142∕368 = 0.386 , D(sym) = 142

/
1

2
(150 + 368) = 0.548 , 

and tau − b = 142

�√
(150 × 368) = 0.604.

The calculation of the ASEs and confidence intervals of G and D are pre-
sented in Appendix. Given Table  2, ASE1(G) = 0.0592 and ASE0(G) = 0.2515 . 
Then, the traditional asymptotic 95% confidence interval for the true γ is 
� = 0.947 ± 2.101 × 0.0592 = [0.822, 1]4 and the asymptotic significance, when 
testing the hypothesis γ = 0, is Z = 0.947∕0.2515 = 3.764 leading to p < 0.001. 
The corresponding ASEs of the directed Ds are ASE1(D(g|X )) = 0.0592 , 
ASE0(D(g|X )) = 0.2515 , ASE1(D(X|g )) = 0.1003 , and ASE0(D(g|X )) = 0.1025 (see 
Appendix). Somers’ D estimates the true probability δ. Then, the traditional asymptotic 
95% confidence intervals for δ are �(g|X ) = 0.947 ± 2.101 × 0.0592 = [0.822, 1] , 
and �(X|g ) = 0.386 ± 2.101 × 0.1003= [0.261, 0.597] . When testing the hypoth-
esis �(g|X ) = 0, Z = 0.947∕0.2515 = 3.764 with p < 0.001 and for �(X|g ) = 0, 
Z = 0.3859∕0.1025 = 3.764 with p < 0.001. We note the identical test statistics and 
identical statistical inference by D as with G.

Some lifts from Tables 1 and 2 are highlighted. First, we note the relevant direc-
tion of association discussed in Footnote 2. G (“g given X”) and D (“g given X”) are 
the estimators that detect the deterministic pattern of item discrimination in items 
A1 and B1. This was expected because of Eqs. (19), (27) and (30) related to JT sta-
tistic; in the deterministic patterns as in A1 and B1, JTObs

gX
 = JTMax

gX
 and, consequently, 

G = D = 1. Second, with items A1 and A2 as well as B1 and B2, 
G = D(g|X ) ≠ D(X|g ) ≠ D(Sym) because there are no tied pairs related to X and, 

then, (P + Q) = N2 −
R∑
i=1

�
n2
i

�
≠ N2 −

C∑
j=1

�
n2
j

�
 . This was expected because of 

Eq.  (33). Third, when there are tied pairs (A3 and B3), G > D(g|X ) because 
P + Q < P + Q + 2Tg . This is expected because of Eqs. (7) and (10). Fourth, in the 
case that there are no tied pairs (A1, A2, B1, B2), ASE1(G) =

ASE1(D(g|X )) ≠ ASE1(D(X|g )) and ASE0(G) =ASE0(D(g|X )) ≠ ASE0(D(X|g )) . 
This is expected because of Eq. (34).

To verify the result, we could restudy the dataset by pivoting the cross-tables 
such that X is the row factor and the g is column factor. We would see that, in items 
A1, A2, B1, and B2, G(g|X ) = D(g|X ) ≠ D(X|g ).

4.2 � A comparison of G and D with a larger dataset

In the second comparison of the estimates by G and D, a wider survey of the behav-
iour of G and the difference variants of D was conducted. In the comparison, 13,392 
test items from 1,292 tests were formed by different combinations of single items 
and sub-scores constructed by different item compilations based on randomly 

4  Notably, the upper limit is truncated to 1 because γ, as being probability, cannot exceed 1. This logic 
corresponds with the logic traditionally used with corrected coefficients for eta squared (i.e., epsilon 
squared and omega squared); when the squared values get out-of-range values below zero, these are tra-
ditionally truncated to be 0 (see, e.g., Cohen 1973; Okada 2017). Another option with G, pointed by an 
anonymous reader, would be a variable transformation.



299

1 3

Behaviormetrika (2021) 48:283–307	

selected test-takers from a national-level dataset of 4,000 test-takers of a mathemat-
ics test for grade 9 with 30 binary items (FINEEC 2018). In the original dataset, 
the item discrimination ranged 0.332 < PMC = 𝜌gX = Rit < 0.627 with the average 

Table 3   Average estimates of G and D based on the real-world datasets

df(g) Mean Std. deviation N

G D(g|X) D(sym) D(X|g) G D(g|X) D(sym) D(X|g)

1 0.650 0.628 0.388 0.284 0.144 0.144 0.104 0.084 7131
2 0.694 0.670 0.522 0.428 0.103 0.104 0.090 0.082 2715
3 0.729 0.704 0.596 0.518 0.085 0.086 0.080 0.077 1233
4 0.765 0.737 0.655 0.590 0.070 0.072 0.071 0.071 656
5 0.782 0.753 0.690 0.636 0.063 0.064 0.064 0.063 413
6 0.806 0.778 0.724 0.677 0.050 0.051 0.054 0.056 336
7 0.830 0.799 0.756 0.717 0.046 0.048 0.050 0.052 231
8 0.844 0.812 0.775 0.741 0.041 0.044 0.046 0.048 118
9 0.865 0.835 0.805 0.778 0.043 0.045 0.047 0.049 161
10 0.880 0.847 0.823 0.800 0.034 0.036 0.037 0.039 140
11 0.894 0.861 0.840 0.820 0.025 0.030 0.031 0.033 98
12 0.898 0.869 0.850 0.832 0.026 0.032 0.034 0.036 82
13–15 0.893 0.864 0.847 0.830 0.021 0.026 0.028 0.029 78
Total 0.694 0.670 0.493 0.404 0.135 0.134 0.161 0.173 13,392
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G = Goodman–Kruskal gamma
D(g│X) = Somers' D ("g given X") = "X dependent"
D(sym) = Somers' D ("symmetric")
D(X│g) = Somers' D ("X given g") = "g dependent"

−

Fig. 2   Comparison of G and D by the degrees of freedom of the item; df(g) = R‒1; df(g) = 13 is com-
bined 13–15; k = 13,392 items
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Rit = 0.481 , the difficulty levels of the items ranged 0.24 < p < 0.95 with the average 
difficulty level of p = 0.63, and with the lower bound of reliability of α = 0.885. A 
small number of artificial datasets (13% of tests) were constructed to cover the very 
difficult and extremely difficult tests. Finally, a set of 1,292, mostly real-world data-
sets with different number of test-takers (N = 50–100–200), test lengths (k = 2–30), 
difficulty levels ( p = 0.08–0.96), reliabilities ( � = 0.74–0.98), and degrees of free-
dom in the item df(g) = 1–15, and in the score df(X) = 12–27) with 13,392 partly 
related test items was formed to compare the estimates by G and D. The average 
estimates are collected in Table 3 and Fig. 2. The main outcome of the survey is that 
G really follows the trend of D(g│X) and not D(X│g) nor the symmetric D (Fig. 2). 
Using the same logic of naming as with D, G is, factually, G(g│X).

5 � Conclusions and possibilities of G in the measurement modelling 
settings

5.1 � General notes on the results

The main result is that, although Goodman–Kruskal gamma is usually taken as a 
symmetric measure, it is, in fact, a directional measure the same manner as is Som-
ers’ D. The direction in G is not determined by rows and columns but, instead, G is 
directed to the way where the order in the variable with a narrower scale depends 
on the order in the variable with a wider scale in the analysis. This direction makes 
sense in the measurement modelling settings where it is assumed that the latent 
trait manifested as the score or the measurement scale with wider scale explains the 
response pattern in the item with the narrower scale (see, e.g., Kim 1971; Byrne 
2001; Metsämuuronen 2017). This directional nature of G may explain partly the 
potential “inflation” discussed by, for example, Higham and Higham (2019), Kvål-
seth (2017), and Masson and Rotello (2009).

That G is a directional measure is somewhat alarming from the viewpoint of 
using it in general settings; it is strongly recommendable that gamma should not be 
used as a symmetric measure, and it should be used directionally only when willing 
to explain the response pattern in a variable with a narrower scale by the variable 
with a wider scale.

5.2 � Possibilities of G in the measurement modelling settings

That G is not related to rows and columns but to the widths of the scales is a positive 
matter within measurement modelling settings: G leads strictly to the logical direc-
tion from the theory viewpoint where the latent trait manifested as the score or the 
measurement scale drives the responses in the test item. Hence, G could be an asset 
in measurement modelling settings. While D(g|X ) is raised as one of the “superior 
alternatives” to PMC in the binary case (Metsämuuronen 2020a), G would be even 
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“more superior alternative” than D (Metsämuuronen 2021). After all, while D tends 
to underestimate association of an item and the score in an obvious manner when 
the item has three categories or more (see Göktaş and İşçi 2011; Metsämuuronen 
2020a), G does not underestimate IDP to that extent (Metsämuuronen 2021).

As being a directional measure and one of the “superior alternatives” to PMC, G 
have strict relevance in a new concept of “SME-corrected” estimates of reliability 
proposed by Metsämuuronen (2021). Namely, it is known that coefficient alpha, as 
an example, a classical estimator of the lower bound of reliability, can be expressed 
using item–total correlation (PMC = �gX):

(Lord and Novick 1968). It is also known that the element �gX = PMC in Eq. (35) 
always underestimates the true association between the item and the score because 
of RR and several other sources of SME (Metsämuuronen 2021) and, hence, the 
magnitude of the estimate of reliability is reduced because of mechanical reasons. If 
we use G instead of PMC in the form, we will get one option for a “SME-corrected” 
estimate of reliability:

(Metsämuuronen 2021), which suffer remarkable less loss of information related 
to SME than the original estimator because G is less affected on SME (Metsämuu-
ronen 2020c, 2021). The matter is not elaborated further here; more “SME-cor-
rected” formulae of reliability can be found in Metsämuuronen (2021) and, spe-
cifically, in Metsämuuronen (2020c). More studies in this area would enrich our 
knowledge of the matter.

Another possibility in the directionality of G is its potential use as an indicator of 
explaining power in the form of G2 in the same manner as we use �2

XY
 for two metric 

variables and �2 for a categorical and a metric variable. The advance of G2 is that, 
in the case that the scales of the variables differ from each other, unlike �2

XY
 and �2 , 

G2 can reach correctly also the extreme value + 1. Assumingly, using G2 would give 
us a kind of “SME-corrected” estimate of the explaining power indicating how well 
the variable with a wider scale explains the response pattern in the variable with a 
narrower scale. This would be useful, specifically, in the measurement modelling 

(35)� =
k

k − 1

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −

k∑
g=1

�2
g

�
k∑

g=1

�g�gX
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⎟⎟⎟⎟⎟⎟⎠
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settings with binary items where �2
XY

 and �2 may underestimate the association 
remarkably. This area would be worth studying more.

General advances of G in the measurement modelling settings were already dis-
cussed Introduction (see also Metsämuuronen 2021).

5.3 � Limitations

An obvious limitation of the study is that the survey with real-world items that was 
used to illustrate the connection between G and the variations of D carries its own 
limitations. Although the numbers of subtests (n = 1296) and items (k = 13,392) used 
in the survey are rather convincing, those are based on one basic dataset. Results 
may have been somewhat different if truly polytomous test items were used in the 
simulation. Replications of the design or another approach with a more independ-
ent estimates may increase our knowledge of the relation between the estimators. 
Another obvious limitation is that the algebraic connection of the obviously different 
forms of ASE1(G) and ASE1(D(g|X )) was noted in the empirical dataset but it was 
not shown in an algebraic manner.

When it comes to G itself, because of carrying, largely, the same characteristics 
as D, G also has some of the known disadvantages noticed in D. In item analysis 
settings, one of these is that G tends to underestimate the association of g and X 
in an obvious manner, when the number of categories in g is large, more than four 
(Metsämuuronen 2021). Because G gives obvious underestimates of association in 
comparison with PMC, some correction may be proper to propose to enhance G 
against this deficiency. The possible correction needed in G in item analysis set-
tings, where the score and the items are manifestations of the same latent variable 
and when we have a mechanical correction between these variables, is, undoubtedly, 
different than in the case of two independent variables. One option, suggested by 
Metsämuuronen (2021), a “dimension-corrected gamma” (G2), specific to the meas-
urement modelling settings, transforms the linear nature in G toward the trigonomet-
ric nature. G2 seems to overcome the problem of obvious underestimation in item 
analysis settings without producing obvious overestimates (Metsämuuronen 2021). 
Studying these kinds of coefficients may enrich the discussion related to “SME-cor-
rected” reliability (see above).

5.4 � Further suggestions

Because G appears to be a directional measure, the developers of the enhanced or 
corrected G (e.g., Bai and Wei 2009; Highan and Higham 2019; Hryniewicz 2006; 
Kvålseth 2017; Masson and Rotello 2009; Rousson 2007) or enhanced procedures 
to estimate the confidence intervals for G (e.g., Van der Ark and Van Aert 2015; 
Woods 2007) may be willing to consider, if needed, their correction factors or 
estimators from this viewpoint also. Maybe the researcher working with D in con-
nection with Harrell’s C and the related AUC and ROC (see Harrell 2001; Harrell 
et al. 1982; Heagerty and Zheng 2005), would be interesting in considering to study 
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further the possibilities of G in relation with those tools (see Heagerty and Zheng 
2005; Higham and Higham 2019) from the directionality viewpoint. Obviously, it 
would be suggested to reconsider the texts also in the textbooks and manuals con-
sidering G as a symmetric measure (e.g., IBM 2017; Metsämuuronen 2017; Sheskin 
2011; Sirkin 2006; Wholey et al. 2015).

All in all, the directional nature in G and D may be worth considering within the 
measurement modelling settings. A relevant question arising from the directionality 
embedded to G and D is why are we would use, in the first place, the nondirectional 
correlation coefficients while the philosophy of measurement modelling is based on 
the idea of directionality that the latent trait manifested as the score drives to the 
observed behaviour in the item and not the other way round. Then, studying the fam-
ily of the directional coefficients of correlation could enrich the discussions related 
to such areas as the estimators of reliability or item discrimination power, or cal-
culating the factor loadings used in estimating maximal reliability. G and D with a 
directional nature could be worth considering in these areas.

Appendix: Calculation of the ASEs based on Table 2

Given Table 2, the sub-components for the ASEs of G are:∑
i,j

nij
�
QCij − PDij

�2
= 111, 000 , 

∑
i,j

nij
�
Cij − Dij

�2
= 1, 364 , 1

N
(P − Q)2 = 1008.2,

4

(P+Q)2
= 1.778 × 10−4 and 2

P+Q
= 0.0133333.

Because of Eqs. (8) and (9),  
ASE1(G) = 1.778 × 10−4

√
111, 000 = 0.0592

and

The traditional asymptotic 95% confidence interval for the true γ is 
� = G ± t�0.975(19) × ASE1(G) = 0.947 ± 2.101 × 0.0592 = [0.822, 1] and the 
asymptotic significance, when testing the hypothesis γ = 0, is 
Z =

G

ASE0(G)
=

0.947

0.2515
= 3.764 leading to p < 0.001.

For the ASEs of D,

ASE0(G) = 0.0133333
√
1, 364 − 1, 008.2 = 0.2515.

∑
i,j

nij
(
Dg

(
Cij − Dij

)
− (P − Q)

(
N − ni

))2
= 444, 000,

∑
i,j

nij
(
DX

(
Cij − Dij

)
− (P − Q)

(
N − nj

))2
= 46, 130, 880,

∑
i,j

nij
(
Cij − Dij

)2
−

1

N
(P − Q)2 = 1, 364 − 1, 008.2 = 355.8,
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2

D2
g

= 8.8888 × 10−5 , and 2

D2

X

= 1.4768 × 10−5,

Then, because of Eqs. (13), (14), (15), and (6),

ASE0(D(g�X )) = 0.013333 ×
√
355.8 = 0.2515, and

The traditional asymptotic 95% confidence intervals for δ are.
�(g|X ) = D(g|X ) ± t�0.975(19) × ASE

1
(D(g|X )) = 0.947 ± 2.101 × 0.0592 = [0.822, 1] , and

�(X|g ) = 0.386 ± 2.101 × 0.1003 = [0.261, 0.597] . When testing the hypothesis 
�(g|X ) = 0, Z =

0.947

0.2515
= 3.764 with p < 0.001 and for �(X|g ) = 0, Z =

0.3859

0.1025
= 3.764 

with p < 0.001.
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