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Abstract
It is often said that correlation coefficients computed from categorical variables are 
biased and thus should not be used. However, practitioners often ignore this long-
standing caveat from statisticians. Although some studies have examined the bias, 
the true extent is still unknown. This study is an extensive attempt to determine the 
range and degree of the biases. In our simulation, continuous variables were catego-
rized according to various thresholds and used to compute Pearson’s r. The results 
indicated that there were more serious biases than highlighted in previous studies. 
The results also revealed that increasing data size did not reduce the biases. Possible 
ways to cope with the biases are discussed.

Keywords  Correlation coefficient · Categorization bias · Number of categories · 
Likert scale

1  Introduction

It is a common practice in social sciences to compute Pearson’s correlation coefficient 
r from ordered categories by assigning integers to the categories, as in a Likert scale. In 
fact, Karl Pearson, who defined the coefficient, computed r from categorized variables 
but he noticed that r is biased when the number of categories is small and, therefore, 
“broad”. He proposed some remedies to address this issue (Pearson 1913). Ritchie-Scott 
(1918) then proposed the polychoric correlation coefficient and Pearson and Pearson 
(1922) improved it. However, an executable version of the polychoric correlation coef-
ficient took a long time to appear (Olsson 1979). Despite the longstanding caveat by 
psychometricians, very few people attempt to use the polychoric correlation coefficient.

Communicated by Kohei Adachi.

 *	 Takahiro Onoshima 
	 onoshima.t@gmail.com

1	 Waseda University, 1‑6‑1 Nishiwaseda, Shinjuku‑ku, Tokyo 169‑8050, Japan
2	 Tokyo Women’s Medical University, 8‑1, Kawada‑cho, Shinjuku‑ku, Tokyo 162‑8666, Japan

http://crossmark.crossref.org/dialog/?doi=10.1007/s41237-019-00089-1&domain=pdf


390	 Behaviormetrika (2019) 46:389–399

1 3

Evidently, researchers do understand the importance of the categorization bias. In 
marketing science, simulations have been conducted to examine the extent of biases 
(Morrison 1972; Martin 1973, 1978). According to Martin (1978, p. 307), “the 
amount of lost information is substantial”. In sociology, Bollen and Barb (1981) also 
conducted simulation studies contrasting the correlation between two original con-
tinuous variables and their categorized versions. They concluded that the differences 
are generally small, but grow when there is high correlation between original con-
tinuous variables and the number of categories is small.

These studies seem to have correctly described the global tendency of the biases 
but have failed to incorporate two important points. First, few studies considered the 
situation in which the number of categories is different. Shiina et al. (2012) proved 
that when different numbers of ordered categories are used, Pearson’s r cannot be 
− 1 or 1 when: (1) variable X has m (≥ 2) ordered categories and variable Y has n 
(≥ 2) ordered categories, (2) n ≠ m, and (3) these categories are used at least once. A 
simpler new proof is as follows. If all the data are on an oblique line, then r = 1 and 
vice versa. If all the data are on the line, then the number of orthogonal images of 
the data on X and Y axes should be identical. Therefore, r = 1 implies that the num-
ber of such images should be identical. From the contrapositive of the proposition, 
we can conclude that if the numbers of orthogonal images on both axes (the number 
of categories) are not the same, r cannot be 1. In view of this proof, it is imperative 
to pay close attention to the situation in which the number of categories is different.

Second, past studies have not extensively examined the effect of the arrangement 
of thresholds at which original continuous variables are converted into categorized 
(or integer-valued) variables. This is important because a disorderly arrangement of 
thresholds can easily destroy the structure of the original continuous distribution.

This paper examines the effects of conversion of continuous variables into cat-
egorized ones on the decline of the correlation coefficient, using different numbers 
of categories and various thresholds. We will first demonstrate how categorized 
variables with different numbers of categories and disorderly thresholds yield large 
biases of r. Then, we will run a large-scale simulation and report the full extent of 
biases of r.

2 � Assumptions on the data generating process

Let x and y be two continuous latent variables obeying a bivariate normal distribu-
tion (BND):

It is assumed that the original variables are categorized and yield manifest vari-
ables X and Y. We should consider the number of categories (m for X and n for Y), as 
well as the arrangement of thresholds, because how we divide the original continu-
ous latent variables into categories will strongly affect the extent of biases. We can 
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set �x = �y = 0 and �x = �y = 1 without loss of generality and can define thresholds 
for x and y as

such that, if 𝜃i−1 < x < 𝜃i, then X = i;if 𝜏j−1 < y < 𝜏j then Y = j.
The true probability �ij of each cell in the contingency table (correlation table) 

corresponds to the rectangular region [�i−1, �1]×[�j−1, �j] in the x–y space and is 
given by

Figure 1 illustrates the original BND and an example of true probabilities of each 
cell in the contingency table.

3 � Expected r when computing from categorized variables

We can compute the expected values of r with categorized variables using true prob-
abilities of each cell. Expected r is given by

(2)
−∞ = 𝜃0 < 𝜃1 < 𝜃2 < ⋯ < 𝜃m = ∞
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X 

1 2 3 

Y

4 0.000 0.005 0.061 Computed r 
from the table

3 0.001 0.336 0.096

= 0.692
2 0.096 0.336 0.001

1 0.061 0.005 0.000

Fig. 1   Left: heatmap of the original continuous distribution ϕ (x, y| 0, 0, 1, 1, 0.9); right: true probabili-
ties of each cell �ij defined by Eq.  (3) for m = 3, n = 4, �1 = −1, �2 = 1, �1 = −1.5, �2 = 0 and �3 = 1.5 , 
and expected r computed from Eq. (4)
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Figure 2 depicts expected values of r where there are two to seven categories and 
thresholds almost equally divide the interval from − 3 to 3 and the interval from − 1 
to 1. More precisely, thresholds are defined as

in the left panel of Fig. 2, and

in the right panel of Fig. 2.
Figure 2 shows two general tendencies. One is that a smaller number of categories 

increase biases of r and the other is that biases of r become greater as ρ increases.
The computation of expected r in Fig.  2 used equalized categories and we did 

not fully consider the location of thresholds. While equalized categories are par-
titioned by “well-organized” thresholds, there is some type of the arrangement of 
thresholds that destroys the structure of original continuous distribution. Such 
“ill-organized” thresholds will induce more serious biases and Fig.  3 shows an 
example that categorizing continuous variables with ill-organized thresholds 
( �1 = −2, �2 = 0;�1 = −1, �2 = 1.5, �3 = 2 ) generates a severe decline of the corre-
lation coefficient compared to well-organized thresholds shown in Fig. 1.

By “well-organized thresholds,” we mean a set of thresholds that keeps the proper-
ties of the original BND, which includes symmetric and single-peaked shape, no void 
region in the center of the distribution, and no-overconcentration. By “ill-organized 
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Fig. 2   Expected values of r computed from categorized variables (in the left panel, thresholds are placed 
in [− 3, 3]; in the right panel, thresholds are placed in [− 1, 1])
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thresholds,” we mean the opposite, that is, a set of thresholds that yields asymmetry, 
multiple-peaks, voids, concentrations, monotone decreasing, or increasing.

Because these properties are qualitative and vague and thus are difficult to rep-
resent numerically, we present some examples for further understanding. Figure 4 
illustrates how some sets of ill-organized thresholds destroy the original structure 
of BND, which results in the decline of r. It is noted that asymmetry of the distribu-
tions of two categorized variables causes massive decline of r as in the left panel of 
Fig. 4 and overconcentration into one cell also decreases r considerably as in Fig. 4 
right panel.

4 � Simulation

In our simulation, four factors were manipulated: ρ of BND, ϕ (x, y | 0, 0, 1, 1, ρ), 
data size, the number of categories, and the thresholds.

X 

1 2 3 

Y

4 0.000 0.000 0.023 Computed r 
from the table

3 0.000 0.000 0.044

= 0.494
2 0.000 0.342 0.433

1 0.023 0.135 0.000

Fig. 3   An example of categorizing continuous variables with ill-organized thresholds: true probabili-
ties of each cell �ij defined by Eq. (3) for m = 3, n = 4, �1 = −2, �2 = 0, �1 = −1, �2 = 1.5 and �3 = 2 , and 
expected r under the same original continuous distribution in Fig. 1 (ϕ (x, y| 0, 0, 1, 1, 0.9))

Fig. 4   Some examples of categorical distributions with ill-organized thresholds (the value and the size of 
dot in each cell show the cell probability)
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We generated a pair of random numbers (x and y) from BND. We then catego-
rized the two continuous variables into two integer-valued (Likert) variables X and Y 
and computed the correlation between the categorized variables. Table 1 shows the 
factors and the levels in our simulation.

Because one of the aims of our simulation is to examine how various thresh-
old settings affect the bias of correlation, we set up two threshold settings. One 
setting used thresholds from continuous uniform distribution. This was because 
uniform distribution is ordinarily used when no reasonable prior information is 
available. More precisely, random numbers were generated from continuous uni-
form distribution U(− 1, 1) and then they were arranged in ascending order. We 
call this “the uniform setting” for short. According to a standard result from order 
statistics (David and Nagaraja 2003), kth threshold is beta-distributed with

where l denotes the number of thresholds. Therefore, the locations of thresholds tend 
to be systematic while the thresholds in middle position will have a large variance.

The other setting used thresholds with small “noise,” which is a random 
threshold version of the situation in the right panel of Fig. 2, which will be more 
familiar to psychometricians (the Law of Categorical Judgment, Torgerson 1958). 
We call this “the equal setting” for short. To avoid possible crossovers of the fluc-
tuated thresholds, truncated normal (TN) was used. The general form of TN prob-
ability density is given by

where �(⋅) is the standard normal distribution, �(⋅) is the cumulative stand-
ard normal distribution, and [a, b] is the domain. In the current situation, we set 
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2
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probability distribution of threshold �i . Therefore, we have
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same due to the positioning of � , a, b such that b − � = � − a = 1∕m . The restric-
tion on thresholds:

is always conserved in this sampling scheme. The probabilistic variable �j was deter-
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that generate different multidimensional distributions of thresholds. A uniform 
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setting. For example, a set of thresholds ( −∞, 0.81, 0, 82, 0.83,∞ ), when m = 4, 
is possible only for the uniform setting. All the sets of thresholds generated from 
equal setting can be generated (with different probability) from uniform setting 
but not vice versa.

In both threshold settings, we used a range [− 1, 1] for generating a set of thresh-
olds for the following reasons. First, since overconcentration causes considerable 
decline of r as in Fig. 4, it is fruitless to set too large of a range, [− 20, 20] for exam-
ple, that likely induces an overconcentration and voids in both sampling schema. 
Moreover, it might produce zero variance, which will induce division by zero in (4). 
Second, this study is a first attempt to examine the threshold effect on the decline of 
r; therefore, it is somewhat arbitrary because we should start from somewhere.

In each combination of four factors (ρ, data size, pairs of the number of cate-
gories, threshold  settings), we computed Pearson’s correlation coefficient 1000 
times. In this way, we utilized a total number of 16.38 billion (= 13 ρs × 3 data 
size × 21 pairs of the number of categories × 2 threshold settings × 10,000 threshold 
sets × 1000 times) correlation coefficients between two categorized variables.

5 � Results

The average values of r between categorized variables are depicted in Fig.  5. 
Regardless of data size, category size, and threshold location, average value of r 
showed robust underestimation of ρ, but the pushdown bias decreased as the number 
of categories increased. Not surprisingly, the extent of bias differed between two 
thresholds settings.

Comparing two threshold settings, the uniform setting caused more serious 
decline of r. For example, in the case where m = 3, n = 4, ρ = 0.9, and data size is 
1024, the average value of r in the uniform setting was 0.726 while the value was 
0.818 in the equal setting.

Compared with expected values of r with well-organized thresholds in the 
right panel of Fig.  2, while no marked discrepancies were observed in the equal 
setting except for special cases where ρ = 1.0, there were substantial declines 
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Fig. 5   Average values of r (left panel: the uniform setting; right panel: the equal setting; data size: 1024)
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in the average values of r in the uniform setting. For example, in the case 
where m = 4, n = 5, and ρ = 0.8, the expected r with well-organized thresholds 
( �1 = − 0.5, �2 = 0, �3 = 0.5;�1 = − 0.6, �2 = − 0.2, �3 = 0.2, �4 = 0.6 ) is 0.726, 
while the average value of r in the uniform setting, where data size is 1024, is 0.660. 
To provide another example, in the case where m = 5, n = 7, and ρ = 0.8, the expected 
r with well-organized thresholds ( �

1
= − 0.6, �

2
= − 0.2, �

3
= 0.2, �

4
= 0.6;

�
1
= − 0.71, �

2
= − 0.43, �

3
= − 0.14, �

4
= 0.14, �

5
= 0.43, �

6
= 0.71 ) is 0.688, 

whereas in the uniform setting, where data size is 1024, it is 0.635.
The cause of greater bias in the uniform setting could be that the simulation 

results include both well-organized and ill-organized thresholds. The uniform set-
ting allows a set of thresholds to be ill-organized. For example, when the distance 
of thresholds is very close, a resulting contingency table tends to include an empty 
or almost empty category. In addition, when all the values of thresholds approach to 
upper or lower limits, a resulting table tends to be asymmetric. It is reasonable that 
such transformation of the original distribution causes considerable decline of r as 
indicated in Fig. 4, though the uniform setting also allows well-organized thresholds. 
On the other hand, such destructive transformation of the distribution is not possible 
in the equal setting. Therefore, it is plausible that the difference between two settings 
is derived from whether the setting tends to allow ill-organized thresholds.

Figure  6 shows the effect of data size on variations (sampling distribution) of 
r where m = 6 and n = 7 in the uniform setting. It is revealed that larger data size 
decreases variations of r but does not shift the central position of distribution. This 
means that increasing data size does not reduce systematic biases of r, but it only 
accurately estimates biased r. This demonstrates a simple fact that, because a cat-
egorization is a non-linear transformation, as soon as we transform an original 

Fig. 6   Distributions of r where m = 6 and n = 7 (vertical line depicts ρ)
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continuous distribution into a categorized distribution, we have two different distri-
butions and parameters estimated from different distributions are not generally the 
same.

It is very difficult to know the true locations of thresholds in real research situa-
tions. At the same time, it seems very reasonable to postulate that the locations of 
thresholds are different from person to person or from situation to situation. There-
fore, an implication of the simulation results is that Pearson’s correlation coefficient 
between categorized variables will decrease more if we consider a variety of data 
acquisition procedures and variety of threshold locations.

6 � Conclusion

This study ran a large-scale simulation regarding biases of r when using categorized 
variables, carefully manipulating threshold locations. The results have shown that 
more serious biases of r occurred when thresholds are ill-organized. The findings 
suggest that previous simulation studies may have underestimated biases of r, and 
users of Likert-scales in social science should take the biases caused by categorized 
variables more seriously. Otherwise, biased values of r would result in incorrect 
interpretations of obtained data.

One of the possible ways to cope with the biases is the use of polychoric cor-
relation. Estimation procedures of polychoric correlation were proposed by Ols-
son (1979) using maximum likelihood procedures and by Shiina et al. (2018) using 
the EM algorithm, although the use of polychoric correlation is not common in 
psychology.

There may be some limitations in this study. First, we have paid attention only 
to Pearson’s r, not to other kinds of correlations (such as polychoric correlation or 
Spearman’s rank correlation). Therefore, further studies are needed to examine the 
extent of the biases of different types of correlations. Second, our simulation has not 
completely examined the possible arrangement of thresholds. Although we set upper 
and lower limits [− 1, 1] for generating a set of thresholds, other upper and lower 
limits should also be considered. Such considerations will provide insights into the 
nature of the bias.
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