
Vol.:(0123456789)

European Journal for Security Research (2021) 6:189–209
https://doi.org/10.1007/s41125-021-00075-3

1 3

ORIGINAL ARTICLE

Representing Uncertainty in Physical Security Risk 
Assessment

Considering Uncertainty in Security System Design by Quantitative 
Analysis and the Security Margin Concept

Daniel Lichte1  · Dustin Witte2 · Thomas Termin2 · Kai‑Dietrich Wolf2

Received: 20 June 2021 / Accepted: 12 November 2021 / Published online: 28 November 2021 
© The Author(s) 2021

Abstract
The importance of (physical) security is increasingly acknowledged by society 
and the scientific community. In light of increasing terrorist threat levels, numer-
ous security assessments of critical infrastructures are conducted in practice and 
researchers propose new approaches continuously. While practical security risk 
assessments (SRA) use mostly qualitative methods, most of the lately proposed 
approaches are based on quantitative metrics. Due to little evidence of actual attacks, 
both qualitative and quantitative approaches suffer from the fundamental problem of 
inherent uncertainties regarding threats and capabilities of security measures as a 
result from vague data or the usage of expert knowledge. In quantitative analysis, 
such uncertainties may be represented by, e.g., probability distributions to reflect 
the knowledge on security measure performance available. This paper focuses on 
the impact of these uncertainties in security assessment and their consideration in 
system design. We show this influence by comparing the results of a scalar evalu-
ation that does not take into account uncertainties and another evaluation based on 
distributed input values. In addition, we show that the influence is concentrated on 
certain barriers of the security system. Specifically, we discuss the robustness of the 
system by conducting quantitative vulnerability assessment as part of the SRA pro-
cess of an airport structure example. Based on these results, we propose the concept 
of a security margin. This concept accounts for the uncertain knowledge of the input 
parameters in the design of the security system and minimizes the influence of these 
uncertainties on the actual system performance. We show how this approach can be 
used for vulnerability assessment by applying it to the initially assessed configura-
tion of the airport structure. The results of this case study support our assumptions 
that the security margin can help in targeted uncertainty consideration leading to 
reduced system vulnerability.
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1 Introduction

Physical security risk assessment (SRA) has gained importance in recent years; in 
particular, the vulnerability of critical infrastructures against terrorist threats is regu-
larly assessed. For this purpose, new approaches emerged aiming at the introduction 
of quantitative metrics, e.g., by Flammini et al. (2013) and Landucci et al. (2017). In 
practice, however, qualitative SRA is still very common. Yet, a lack of evidence of 
actual attacks with a terrorist background leads to inherent uncertainties regarding 
threat scenarios as well as the capabilities of security systems (Abrahamsen et  al. 
2015). As a result, SRA is often backed by only vague data or elicited expert knowl-
edge that may represent a rather subjective perspective.

The occurrence of inherent uncertainties in risk assessment and decision-making 
is well known in the general fields of risk science and resilience, e.g., in Flage et al. 
(2014) and Aven and Zio (2021). In this context, especially the role of these uncer-
tainties is discussed when considering decision-making for risk-reducing measures 
(Aven and Zio 2011; Yoe 2019). An earlier published study by Lichte and Wolf 
(2018) outlines consequences of considering uncertainties for qualitative methods in 
SRA that rely on expert knowledge.

Especially in SRA, the described inherent uncertainties have a potentially sig-
nificant influence on the results and thus the possible outcome of occurring attacks. 
Here, the mere determination of qualitative or scalar values without considering the 
uncertain database or subjective expert knowledge for the characterization of secu-
rity measures can lead to a fatal overestimation of the actual security level. Thus, 
the presented paper focuses on the impact of considering uncertainties in quantita-
tive SRA, especially regarding the robustness of the system against resulting input 
parameter variance. Therefore, two levels of uncertainty can be distinguished: 
Firstly, the small basis of evidence, which increases uncertainty in the prediction 
of future attacks. Secondly, the performance of security measures against uncertain 
attackers, which can only be estimated at best. According to Milliken (1987), the 
aforementioned levels can be referred to as effect uncertainty (level 2) and response 
uncertainty (level 3), respectively. The impact of both levels is analyzed by apply-
ing an earlier approach to quantitative vulnerability assessment introduced by Lichte 
and Wolf (2017) as part of the SRA process to a notional airport structure.

Initially, we introduce a security measure configuration represented by probability 
density functions (pdfs) characterizing the performance of comprised components 
based on the subjective perspective of experts. Herein, the variance is a metric to 
describe uncertainties regarding measure efficiency in deterring potential attacks as 
a result from differing or vague expert opinions or scattered data. A first assessment 
only takes into account the mean values of normal probability density functions 
(npdfs), and thus uncertainties are not considered. Additionally, we assess the con-
figuration incorporating given variances of the npdfs resulting from expert knowl-
edge elicitation for uncertainty consideration. A comparison shows the influence on 
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the resulting vulnerability on system level. In a further step, we conduct a Variance 
Based Sensitivity Analysis (VBSA) as demonstrated by Saltelli et al. (2004) to quan-
tify the influence of the introduced uncertainties on barrier level. Here, we analyze 
the influence of protection, observation and intervention measures on system vulner-
ability to reveal their potential impact on the effectiveness of the security system.

Based on this analysis, we propose and formalize a security margin. The concept 
of the security margin aims at the consideration of uncertainties introduced by either 
vague data or expert knowledge elicitation in SRA. By considering the systemic and 
barrier specific impact on security system effectiveness it is introduced to support 
optimized security system design. The security margin is derived in two steps. In 
a first step, the influencing security measures are identified by conducting a VBSA 
of the initial configuration of a security system. Then, the actual security margin 
is derived, only depending on the introduced uncertainty resulting from measure 
characterization and a reasonable target effectiveness based on efficiency considera-
tions. Finally, we demonstrate the benefits of the approach for decision-making by 
optimizing the vulnerability of the initial configuration using the security margin 
concept.

2  Background

The issue of uncertainties in risk assessment is widely discussed within the general 
field of risk assessment, especially in the field of safety, e.g., by Fjaeran (2021) and 
Aven and Zio (2021). In recent years, risk science extended its scope further on risk 
management of complex systems facing greater hazards, i.e., natural extremes or 
man-made disasters, e.g., in Aven (2018). The consideration of uncertainty is even 
more important for these high impact low probability events, as their assessment 
often relies on vague data and information regarding likelihood of occurrence and 
temporal development.

This lack of knowledge, mostly referred to as epistemic uncertainty, may be con-
sidered critical for decision-making, as the development of a hazard scenario is deci-
sive for its outcome. Thus, suited measures rely on little available information (Aven 
and Zio 2021). Within such scenarios, the rising number of attacks on critical infra-
structures led to an increasing focus on security-related questions in business and 
sociopolitical decision-making, e.g., in Alcaraz and Zeadally (2015), Zsifkovits and 
Pickl (2016) and Guerra et al. (2008).

In actual security threat scenarios, faultily designed measures and miscalculated 
forecasts will, at least, lead to substantially larger damages at the asset under con-
sideration. Threat scenarios missed out in system layout and deficient estimation of 
influence parameters result in misrepresentation of real situations (Campbell and 
Stamp 2004). This might lead to poor decisions in security investments. While in 
practice, qualitative methods are commonly used for the assessment, quantitative 
methods are developed in science and gain more advantages (Queirós et al. 2017). 
Such methods allow a better understanding of the interdependencies in security sys-
tems. Consequently, modeling of the behavior of entire security systems is feasible 
today, enabling analysis, optimization and simulation of the system (Meritt 1999). 
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Although quantitative methods may depend on the same vague data or expert knowl-
edge as qualitative methods, they allow, however, to consider the resulting uncer-
tainties explicitly, which may lead to a significantly different outcome of the analy-
sis. Thus, quantitative methods can therefore bring decisive advantages in SRA. An 
improvement in security performance can be achieved by considering the uncertain-
ties in analysis and design. Additionally, it potentially reveals to which extent large 
uncertainties, when taken into account, lead to cost-intensive over-optimization.

Despite potential problems in quantification, it is obviously important to con-
sider uncertainties in SRA since they are likely to influence its results significantly, 
especially because the reliance on vague data or expert knowledge in SRA induces 
such uncertainties. Yet, it is reasonable to consider the input parameters by degree-
of-belief-densities based on subjective probabilities, where probability distributions 
can be obtained by eliciting expert knowledge (EFSA 2014; Meyer and Booker 
2001). In this way, representation of uncertainties is made possible while formally 
complying with probability theory (Beyerer and Geisler 2016).

Unfortunately, there are only few quantitative models considering uncertainties 
in security-related systems, e.g., the vulnerability assessment introduced by Lichte 
and Wolf (2017) or the approach introduced by McGill et al. (2007). The influence 
of these uncertainties on the SRA process is not yet analyzed. A first approach to 
analyze its impact on the output of a quantitative model was introduced by Lichte 
and Wolf (2018).

A framework proposed by Abrahamsen et  al. (2015) considers uncertainties by 
including them into decision-making in security strategies. Depending on the grade 
of expected uncertainties and consequences, different strategies for decision-making 
are proposed. These strategies vary from extensive SRA at lower levels of uncer-
tainty, precautionary approaches at medium levels of uncertainty to discursive style 
decisions. The last strategy should especially be adopted at high levels of uncer-
tainty, e.g., when considering measures of counterterrorism, where cause-effect 
relationships are broadly discussed (van Dongen 2011).

For more complex quantitative models, uncertainty consideration can also be 
achieved by sensitivity analysis, which is used for assessing the influence of the 
input on the output of a system (Henkel et al. 2012). Within sensitivity analysis, the 
variability of the model inputs is related to the outputs with regard to their cause-
and-effect chain. Thus, uncertainties of an output parameter are tracked back to the 
input. Especially if non-linear models are considered, the scattering of input and 
output factors is very challenging (Saltelli et al. 2004).

3  Methods and Exemplary Infrastructure

3.1  Variance Based Sensitivity Analysis

A procuring approach to analyze the influence of uncertainties is the conduction of 
Variance Based Sensitivity Analysis (VBSA) on the model under study. The VBSA 
was introduced by Saltelli et  al. (2004) and is a numerical method to assess the 
relative importance of model input factors by measuring the sensitivity across the 
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complete input space. For this purpose, the effect of uncertainty in the output of a 
model is analyzed regarding different sources of uncertainty inputs (Henkel et  al. 
2012). The objective of this method is to find the parameters that have the largest 
impact on a predefined target function, e.g., the model output.

Within the scope of the presented approach, the numerical scenario analysis 
tool Monte Carlo Simulation (MCS), based on probability theory and statistics, is 
used with sampling based on Sobol sequences for realizing the VBSA (Saltelli et al. 
2010). Within VBSA, total effect sensitivity indices STi are used to analyze linear 
and nonlinear effects of the input parameters X1,X2,… ,Xk on the model output 
Y = f (X1,X2,… ,Xk) . For the i-th parameter, STi is defined as follows:

�∼i refers to the sample matrix of all input parameters excluding the i-th parameter, 
EXi

 refers to the mean value taken over Xi and V
�∼i

 refers to the variance taken over 
all parameters but Xi.

In a combined risk assessment, e.g., for security-related investments, the interac-
tion of the design parameters of the security system with regard to the interoperated 
risk might be very important for decision-making.

3.2  Applied Vulnerability Model

The vulnerability model applied in this paper is based on four basic assumptions, 
which characterize the most relevant behavior of a security system in an infra-
structure (Lichte and Wolf 2017). These assumptions are used in the probabilistic 
description of the system’s relations. 

1. The weakest path of the security system determines the system’s vulnerability as 
the chosen path of the attacker is uncertain.

2. The combination of protection and observation at barriers is necessary as an 
attacker is always able to break through a barrier given infinite time without being 
detected.

3. The detection of an attack is possible only if the protection is sufficient to prevent 
a break-through under observation until detection.

4. After detection, an attack can be stopped only if the residual protection along the 
remaining attack path lasts long enough to prevent the attacker from reaching the 
asset until intervention is completed (see Fig. 1 (bottom)).

Considering the four stated principles, the model consists of three main input 
parameters that characterize the system capabilities provided by the installed secu-
rity measures on barrier level: protection (P), observation (O) and intervention (I). 
Each of these parameters is described as a time-based probability density function 
(pdf). Capabilities are described as relations between these parameters. Figure  1 
(top) shows the configuration of barriers along attack paths.

(1)STi = 1 −
V
�∼i

(

EXi

(

Y ∣ �∼i

))

V(Y)
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A detection of an attacker is triggered if the protection measure at a barrier prevents 
an attacker from a break-through until an observation is completed with detection. This 
is described by the conditional probability D:

Herein tP and tO denote the distributed time for protection and observation.
Timely intervention is the second key relation in the vulnerability model. It is based 

on the time needed for intervention tI and the residual protection tRP . The residual pro-
tection tRP is the sum of all protection measures along the residual barriers of the sys-
tem on an attack path.

The conditional probability for timely intervention T is thus defined by:

Both main principles and the resulting relations between the pdfs of the incorpo-
rated parameters are shown in Fig. 2.

The vulnerability of a barrier VB is then represented by

The product of the barrier-specific vulnerabilities leads to the vulnerability of the 
whole attack path VP:

(2)D = P(tO < tP)

(3)tRP =

n
∑

j=i

tP,j − tOi

(4)T = P(tI < tRP)

(5)VB = 1 − D ⋅ T

Fig. 1  Principle of security measures based on Garcia (2008). Source: Lichte and Wolf (2017)
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Referring to the first assumption, the system vulnerability VS is determined by the 
weakest path:

In case of numerical sampling, e.g., Monte Carlo, we reformulate the definition of 
system vulnerability due to the binary characteristic of path vulnerability at each 
sample. At a sample, the system is defined to be vulnerable, when any path is vul-
nerable. The mean of all samples then describes the overall system vulnerability.

3.3  Exemplary Airport Structure and Security System

The airport system and the identified security barriers are depicted in Fig. 3. Addi-
tionally, the figure outlines feasible attack paths within this structure. The structure 
is based on a notional airport which was subject to a security risk assessment in 
Lichte and Wolf (2017).

4  The Impact of Uncertainties in Security Vulnerability Assessment

In this section, we show how uncertainties influence the results of vulnerability 
assessment. For this purpose, we analyze an initial configuration of the introduced 
notional airport structure regarding general model sensitivity to added variance on 
system parameters. The initial configuration is described in Table  1. The defined 
values are assumed to be the result of expert knowledge elicitation. Subsequently, 
we quantify the monitored impact on barrier level by applying a VBSA on all input 
parameters characterizing the capabilities of the security system.

(6)VP =

n
∏

j=1

VB,j

(7)VS = max(VP,1,… ,VP,m)

pdf protec�on pdf observa�on

poten�al area of detec�on

pdfdetec�on

pdf protec�on

pdf interven�on

area of increased probability for
successful a�ack

Fig. 2  Application of normal pdf (npdf) for t
P
 , t

O
 , t

I
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4.1  Impact of Uncertainties on System Vulnerability

In this analysis, we initially replace the pdfs with scalars to describe the perfor-
mance of security measures without changing the basic barrier-oriented structure. 
Thus, the parameters are fully described by the mean values: tPi = �Pi , tOi = �Oi 
and tIi = �Ii (compare Table 1).

Fig. 3  Notional airport structure with feasible attack path, based on: Lichte and Wolf (2017)

Table 1  Initial configuration of 
notional airport security system

Barrier t
P

t
O

t
I

�
P
 (s) �

P
(s) �

O
(s) �

O
(s) �

I
(s) �

I
(s)

2a 120 18 100 15 172 21
2b 120 18 100 15 115 18
2c 120 18 100 15 115 18
3 108 18 90 15 115 18
4 36 6 30 6 115 18
5a 144 24 120 18 115 18
5b 144 24 120 18 115 18
6 288 45 240 36 172 27
7 216 33 180 27 172 27
8 216 33 180 27 288 75
9 360 54 300 45 288 45
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In a second assessment, we additionally add the uncertainty regarding the secu-
rity measure performance at the single barriers represented by the variance �2 . 
Table 1 shows the npdf-based values for the respective system parameters. It should 
be noted that we assume that no security measures are associated with barrier 1. 
Hence, it is excluded from the assessment.

With the now established npdfs for tPi , tOi and tIi , we conduct a re-assessment of 
the vulnerability considering the added uncertainties. For this purpose, we compute 
the vulnerability by MCS. The obtained results for both assessments are listed in 
Table 2.

The weakest path determines the system vulnerability VS . We calculate the results 
for both cases: VS,nv for no variance consideration and VS,v using the npdfs.

The assessment of the vulnerabilities of the feasible attack paths, as well the system 
vulnerability for both versions, reveals highly variable results. The difference in VS,nv 
and VS,v on system level is solely caused by the introduced uncertainties, since the 
vulnerability model and the mean values of the input parameters remain unchanged. 
Thus, estimation and consideration of uncertainties is important, as system layout 
based on scalars can lead to misleading results, which can lead to fatal decisions. 
Additionally, a more detailed understanding of the uncertainty impact is needed for 
a rational and cost-efficient security system layout. For this reason, we carry out fur-
ther analyses on barrier and parameter level in the next section.

(8)VS,nv = 0

(9)VS,v = 0.811

Table 2  Path vulnerabilities 
with and without uncertainty 
consideration

Path V
P

No variance Variance

1 0 0.234
2 0 0.260
3 0 0.065
4 0 0.235
5 0 0.065
6 0 0.073
7 0 0.233
8 0 0.010
9 0 0.011
10 0 0.003
11 0 0.010
12 0 0.003
13 0 0.003
14 0 0.222
15 0 0.282
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4.2  Uncertainty Impact Assessment on Barrier Level

In this step, we analyze which uncertain parameters impact system vulnerability. By 
applying a VBSA, we reveal the influence of all parameters on barrier level. For 
this purpose, we investigate the total effect sensitivity indices STi of the model out-
put VS to the input parameters tPi , tOi and tIi . By generating samples based on Sobol 
sequences and calculating the sensitivity indices using the software SALib (Herman 
and Usher 2017), we obtain the results for all input parameters of the optimized con-
figuration shown in Table 3.

On the one hand, the results reveal that the uncertainty added to some of the input 
factors does not have an impact on the model output of system vulnerability, as the 
total effect sensitivity indices are zero or near zero, e.g., all input factors at bar-
rier 4. On the other hand, the uncertainty of some input factors seems to have an 
impact on the results, e.g., at the barriers 2a, 2b, 2c, 3, 6 and 8. However, it can be 
concluded that uncertain parameters for security measures only have an impact on 
certain points, i.e., barriers within a security system.

5  Approach Toward a System Layout Considering Uncertainty

In this section, we propose an approach that optimizes system security by consider-
ing the influence of uncertainties analyzed in Sect. 4. For this reason, we introduce a 
security margin concept that is set up in two consecutive steps. In a first step, we argue 
to use the VBSA-based total effect sensitivity indices STi to identify barriers and secu-
rity measures relevant for optimization. In a second step, we derive a security margin 
for the performance of the identified measures to account for associated uncertainties. 
The process is run successively for detection and intervention capabilities. As security 
margins applied to protection or observation measures change the residual protection 
on certain attack paths (see Eq. 3), the sequence enables optimized adjustment of the 
security margin for intervention measures. The security margins for all measures are 

Table 3  Total effect sensitivity 
indices S

Ti
 for all parameters

Barrier S
T,P

S
T,O

S
T,I

2a 0.199 0.168 0.032
2b 0.198 0.166 0.035
2c 0.209 0.171 0.035
3 0.219 0.180 0.035
4 0.001 0.001 0.001
5a 0.091 0.002 0.002
5b 0.057 0.001 0.000
6 0.204 0.161 0.018
7 0.063 0.002 0.002
8 0.217 0.177 0.107
9 0.079 0.001 0.001
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based only on the characteristics of the involved pdfs and a targeted level for detec-
tion and timely intervention capability. We additionally demonstrate the possible cor-
relation between effort needed to consider uncertainties and achievable security level 
which becomes visible through this approach. This can be used for further assessment 
of optimization efficiency.

5.1  Step 1: Variance Influence Assessment on Measure Performance at Barrier 
Level

A rational optimization of security systems should consider the boundary condi-
tions of feasibility, cost-benefit ratio and financial budget constraints. A sensitivity 
analysis, especially a VBSA for nonlinear systems, is a reasonable first step for cost-
benefit considerations, as it provides qualitative knowledge about the influence of 
system’s variables on its output. Hence, influencing variables can be identified and 
chosen for further optimization to concentrate resources and thus maximize their 
benefit.

Here, we use the VBSA as shown in Sect. 4.2 to find input parameters that influ-
ence the system vulnerability by comparing the calculated total effect sensitivity 
indices STi.

5.2  Step 2: Security Margin Definition

Identified influencing security measures are optimized to improve the overall secu-
rity system performance in the second step. This is reached by adding a security 
margin M considering the uncertainty, i.e., the variance of the characterizing pdfs. 
The new parameters for protection t∗

Pi
 and intervention t∗

Ii
 are then given as follows:

Herein, �2 marks the variance of the respective pdf at the i-th  barrier. D∗
i
 and T∗

i
 

describe a targeted level of probability for detection and timely intervention at bar-
rier i, respectively.

The definition of M depends on the underlying pdfs used to describe the perfor-
mance of the security measures. Based on the level of knowledge, different pdfs may 
be suitable, e.g., uniform, triangular or normal distributions. The derivation of M 
for normal distributions is described in the following based on mean and variance 
of measure performance as well as the targeted level of the dependent capability. 
Here, we restrict ourselves to normal distributions, since these are mathematically 
straightforward to handle.

For all distribution types, the starting point is derived from Eqs. 2, 4, 10 and 11, 
respectively:

(10)t∗
Pi
= tPi +MPi

(

�Pi, �Oi,D
∗
i

)

(11)t∗
Ii
= tIi −MIi

(

�Ii, �RPi, T
∗
i

)

(12)D∗ = P(tO < tP +MP)
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As shown in Lichte and Wolf (2017), D and T can be expressed by pdfs, here 
extended to include the security margin:

Herein, fRP is obtained by consecutively convoluting the pdfs for protection of the 
remaining barriers on the attack path. Additionally, we used the following definition 
to treat the distributed time for first observation at barrier i:

Hence, we obtain:

For npdfs parametrized by mean � and variance �2 , the security margin for protec-
tion MP follows from Eq. 14:

Herein, erf −1 refers to the inverse error function.
Analogously, MI follows from Eq. 15. Since the residual protection time tRP is the 

result of the convolution of npdfs (Eq. 17), tRP is normally distributed as well:

The distribution parameters for tRP are:

It should be noted that detailed optimization of the introduced security margins 
requires an enhanced cost-benefit assessment using cost functions. However, with-
out an underlying cost function, the ratio between effort and benefit regarding the 
capabilities of detection and timely intervention depends on the distribution used 
for description. Figure 4 shows this relation for the introduced npdf in the detection 

(13)T∗ = P(tI −MI < tRP)

(14)D∗ = ∫
∞

−∞

fO(t) ∫
∞

t

fP(� −MP) d� dt

(15)T∗ = ∫
∞

−∞

fI(t +MI) ∫
∞

t

fRP(�) d� dt

(16)(f ∗̄ g)(t) ∶= ∫
∞

−∞

f (𝜏) g(𝜏 − t) d𝜏

(17)fRP(t) =
(

fPi ∗ ⋯ ∗ fP,n ∗̄ fOi
)

(t)

(18)MP = �O − �P −

√

2
(

�2

O
+ �2

P

)

⋅ erf
−1(1 − 2D∗)

(19)MI = �I − �RP −

√

2
(

�2

I
+ �2

RP

)

⋅ erf
−1(1 − 2T∗)

(20)�RP =

n
∑

j=i

�P,j − �Oi

(21)�
2

RP
=

n
∑

j=i

�
2

P,j
+ �

2

Oi
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mechanism. It reveals that the needed security margin MP grows nearly linearly with 
rising target detection probability level D∗ where the influence of the inverse error 
function in Eq. 18 is limited. Congruent to the curve shape of npdf, the size of the 
security margin sharply rises, when D∗ > P(x < 𝜇 + 2𝜎) ≈ 97.72% is required. This 
implies a direct dependence of the security margin on the variance �2 of the respec-
tive npdfs that characterize security measure performance depending on the avail-
able level of data or knowledge. The shown dependency can be used for a first effi-
ciency estimation of efforts needed to consider existing uncertainties.

The graphs for higher variances in Fig. 4 underline that higher levels of variance, 
i.e., the uncertainty regarding measure performance, cannot efficiently be tackled by 
consideration in security margins when the required target level for detection probabil-
ity is high. This can also be seen in Eq. 18 since detection probability is a factor of the 
variances through the inverse error function. For this case, an upstream reduction of 
uncertainties appears necessary.

6  Exemplary Solution for Notional Airport Structure

In the following, we evaluate the introduced security margin approach by applying it to 
the notional airport infrastructure introduced in Sect. 4. For this purpose, we follow the 
process outlined in Sect. 5 and set up a new configuration of the security system using 
calculated security margins. Subsequently, we assess the vulnerability of the newly 
defined configuration.

Based on the relation between security margin and target level required for detection 
or timely intervention probability shown in Sect. 5.2, we choose the following values 
for probability of attacker detection D∗

i
 and timely intervention T∗

i
 , respectively:

(22)D∗
i
= 97.72%

(23)T∗
i
= 97.72%

Fig. 4  Security margin as a function of target detection level for barrier 3 and varying distribution 
parameters of observation time
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6.1  Security Margin for Measures of Detection

6.1.1  Step 1: Assessment of Influencing Variance

In a first next step, barriers with high total effect sensitivity index STi (see 
Table  3) are chosen from the results of the VBSA carried out in Sect.  4.2 
for security margin definition. The protection measures with the respec-
tive protection times tPi at the barriers shown in Table 4 are subject of further 
considerations.

6.1.2  Step 2: Derivation of Security Margin

In the second step, we calculate the security margin for the protection meas-
ures identified in the first step by applying the values of the initial configuration 
given in Table 1 to Eq. 18. For instance, for barrier 8 we get:

The results for all considered barriers are given in Table 5. Note that the values with 
added security margin �∗

Pi
 are further used for the definition of the security margin 

for timely intervention.

(24)
MP = 180 s − 216 s −

√

2 ⋅
(

272 s2 + 332 s2
)

⋅ erf
−1(1 − 2 ⋅ 0.9772) = 49.2 s

Table 4  Identified barriers and 
protection measures

Barrier �
P
 (s)

2a 120
2b 120
2c 120
3 108
6 288
8 216

Table 5  Security margins 
applied to protection measure 
parameters

Barrier �
P
 (s) M

P
(s) �∗

P
 (s)

2a 120 26.8 146.8
2b 120 26.8 146.8
2c 120 26.8 146.8
3 108 28.8 136.8
6 288 67.2 355.2
8 216 49.2 265.2
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6.2  Security Margin for Measures of Timely Intervention at Barrier Level

6.2.1  Step 1: Assessment of Influencing Variance

Based on the updated configuration incorporating the security margin for the pro-
tection measures defined in Table 5, we additionally revise the security system to 
incorporate the remaining influence of uncertainties on timely intervention. Thus, 
we conduct a new VBSA and revise the remaining total effect sensitivity indices 
for intervention measures ST,I . The results are given in Table 6.

Our results for ST,I show the influence of intervention measures at barrier 8. In 
order to identify the weakest path, where vulnerability is influenced by the uncer-
tainties at barrier 8, we additionally break down its influence on attack path level. 
Table 7 reveals attack path 14 is the only influenced path on which barrier 8 and 9 
shape the residual protection distribution (compare Fig. 3).

6.2.2  Step 2: Derivation of Security Margin

The security margin for the remaining influence of barrier 8 on timely interven-
tion is calculated by inserting the respective values from Tables  1 and  5 into 
Eq. 19. We then obtain:

The added security margin for the intervention measure at barrier 8 is listed in 
Table 8.

(25)

MI = 288 s − (265.2 s + 360 s − 180 s)

−

√

2 ⋅
(

752 s2 + 332 s2 + 542 s2 + 272 s2
)

⋅ erf
−1(1 − 2 ⋅ 0.9772) = 46.2 s

Table 6  Total effect sensitivity 
indices S

Ti
 for all parameters 

with applied M
P

Barrier S
T,P

S
T,O

S
T,I

2a 0.121 0.105 0.049
2b 0.124 0.107 0.050
2c 0.125 0.107 0.048
3 0.125 0.108 0.047
4 0.002 0.000 0.000
5a 0.118 0.001 0.000
5b 0.066 0.001 0.000
6 0.105 0.085 0.017
7 0.091 0.001 0.000
8 0.159 0.136 0.194
9 0.146 0.000 0.000
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6.3  Vulnerability Assessment

Finally, we assess the vulnerability of the new configuration according to the pro-
cedure given in Sect. 4.1 and compare it to the initially analyzed security system. 
Table 9 compares path vulnerability of the initial configuration with that resulting 
from the application of security margins, one time with MP only and one time with 
both MP and MI.

We calculate the system vulnerability V∗
S,v

 for the newly created system with secu-
rity margins and compare it to the initial configuration considering variance VS,v:

The results show that the vulnerability of the new configuration is at a low level. 
Additionally, the comparison to the initial configuration shows that system vulner-
ability is significantly minimized induced by the application of the security mar-
gins. As the total effect sensitivity indices STi reveal an impact of added variance or 
uncertainty, we can use this result to establish a new configuration subjecting only 
influencing factors to a security margin M. Non-influencing parameter values are 
kept from the initial configuration. The resulting configuration for our exemplary 
system containing the security margins is summarized in Table 10.

(26)VS,v = 0.811

(27)V∗
S,v

= 0.210

Table 7  Total effect sensitivity 
indices S

Ti
 for influence of 

intervention at barrier 8 on path 
vulnerability V

P

Path S
T,I8

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0
10 0
11 0
12 0
13 0
14 0
15 0.598

Table 8  Security margins 
applied to intervention measure 
parameters

Barrier �
I
 (s) M

I
 (s) �∗

I
 (s)

8 288 46.2 241.8
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7  Discussion

The analysis carried out in this paper demonstrates how the quantitative approach 
to SRA can be useful to take uncertainties into account, even if the data situation 
is vague or the assessment is based only on expert knowledge. Given this, we pre-
sent an approach that aims to minimize the influence of uncertainties, i.e., the lack 
of knowledge regarding the performance of security measures, in security system 
design by using quantitative methods in a targeted manner.

Table 9  Comparison of path 
vulnerabilities for configurations 
with and without security 
margins

Path V
P

Initial M
P

M
P
,M

I

1 0.235 0.040 0.040
2 0.260 0.040 0.040
3 0.065 0.008 0.008
4 0.235 0.040 0.040
5 0.065 0.008 0.008
6 0.073 0.008 0.008
7 0.232 0.042 0.042
8 0.009 0.000 0.000
9 0.011 0.000 0.000
10 0.003 0.000 0.000
11 0.009 0.000 0.000
12 0.003 0.000 0.000
13 0.003 0.000 0.000
14 0.221 0.029 0.029
15 0.282 0.078 0.042

Table 10  Configuration of 
notional airport security system 
containing security margin

Barrier t
P

t
O

t
I

�
P
 (s) �

P
 (s) �

O
 (s) �

O
 (s) �

I
 (s) �

I
 (s)

2a 146.8 18 100 15 172.0 21
2b 146.8 18 100 15 115.0 18
2c 146.8 18 100 15 115.0 18
3 136.8 18 90 15 115.0 18
4 36.0 6 30 6 115.0 18
5a 144.0 24 120 18 115.0 18
5b 144.0 24 120 18 115.0 18
6 355.2 45 240 36 172.0 27
7 216.0 33 180 27 172.0 27
8 265.2 33 180 27 241.8 75
9 360.0 54 300 45 288.0 45
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Our analysis shows that the difference between scalar and distribution based vul-
nerability assessment can be significant. In the example used, the introduced uncer-
tainties lead to a significant rise in vulnerability. Thus, we show that the uncertainty 
regarding the knowledge of security measure performance may severely influence 
the results of a SRA and, even more important, the outcome of possible attacks. By 
applying VBSA to the analyzed security system, we reveal that the influence of the 
uncertainties is limited to few security barriers and measures within the system in 
this case. As the underlying vulnerability model is nonlinear, a total effect sensitiv-
ity index STi gives insight about direct and indirect influence of the analyzed variable 
and the respective security measure.

The proposed security margin concept aims at tackling the aforementioned influ-
ences in security system (re-)configuration. The derivation of the security margin 
involves two steps that are consecutively conducted for the fundamental capabilities 
of detection and timely intervention. First, by applying a VBSA, influential secu-
rity measures are identified. In a second step, the security margin itself is calculated 
dependent on solely the size of the introduced uncertainty of the measure and target 
levels for detection and timely intervention. It should be noted that we establish the 
security margin concept for npdf-based description of security measure performance 
resulting from expert knowledge in this paper. The formalization for other reason-
able pdfs, e.g., equal or triangular distribution, is similar in principal but requires 
additional computational effort. However, the demonstrated relation of target meas-
ure effectiveness and distribution variance, i.e., the introduced uncertainties, can be 
used to support efficiency considerations.

In the case of npdf, we show that the effort needed to increase the target effect 
efficiency increases sharply at P(x < 𝜇 + 2𝜎) ≈ 97.72% . The efficiency estimate for 
higher variances shows that large uncertainties regarding the properties of security 
measures entail fundamental problems. On the one hand, taking these uncertainties 
into account in the system design does not appear to be efficient, since dispropor-
tionate effort must be expended to ensure a sufficient security margin. On the other 
hand, the result shows that poor quality of the input data used, be it a vague data 
base or expert knowledge, may limit the informational value of the evaluation as 
well as the proposed security margin concept to the extent that poor (vague) input 
data lead to questionable results —a valuable insight that is hardly obtained from 
qualitative methods.

This strongly suggests that the consideration of uncertainties by the security mar-
gin is not sufficient for this case. Here, a reduction of the corresponding variances 
seems necessary first. This could potentially be tackled by a further evaluation of 
the implemented security measures in real-world tests aiming to decrease the input 
uncertainty by enhancing the database.

The evaluation of the security margin concept using the airport example illus-
trates its usefulness in principle. By taking into account the uncertainties based on 
expert knowledge, only the barriers with influence are provided with a security mar-
gin in a modified configuration. A following vulnerability assessment supports the 
assumption regarding the differing influence of input parameters. The significant 
reduction of system vulnerability shows the effectiveness of the security margin in 
reducing the influence of uncertainties on system performance.
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8  Conclusion

In this paper, we show the usefulness of the quantitative approach in SRA. This is 
particularly evident in the use of a vague database or expert knowledge, which is 
common in security assessment. Unlike qualitative analysis, quantitative analysis 
allows for consideration of uncertainty.

The analysis carried out in the paper shows the potentially large impact of these 
uncertainties, represented by variances in pdfs, on the outcome of the SRA and the 
outcome of possible attacks on the system under consideration. A VBSA shows that 
this influence can be attributed to certain barriers for the selected configuration. 
Based on these results, we propose the concept of security margin, in which targeted 
changes to influential barriers that take into account the uncertainties resulting from, 
for example, vague data or expert knowledge.

Generally, in SRA sufficient attention should be paid to the level of effect uncer-
tainty and resulting consequences. According to Abrahamsen et al. (2015), poten-
tially severe consequences should lead to precautionary approaches. Here, the 
introduced security margin can be used for a corresponding security system lay-
out. The introduced formalization supports basic efficiency considerations as well 
as enhanced optimization methods. However, the results suggest that in the case of 
large uncertainties, their reduction should be sought first. For this purpose, addi-
tional investigation of the security margin concept and its limits is needed. Addition-
ally, the security margin concept should be formalized for different pdfs for carving 
out additional limitations. For enhanced applicability, the problems of non-continu-
ous change of performance between implementable security measures and depend-
ent financial efforts should be included, thus enabling enhanced cost-benefit analysis 
and optimization.

In summary, the understanding and consideration of the described inherent levels 
of uncertainty in effect and response in SRA is important, since their influence on 
the outcome of analysis and its validity is potentially significant. The proposed secu-
rity margin concept is a feasible way to cope with such uncertainties by methodical 
identification and targeted limitation of their influence on vulnerability of security 
systems.
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