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Abstract We review detection methods that are currently in use or have been pro-
posed to search for a stochastic background of gravitational radiation. We consider
both Bayesian and frequentist searches using ground-based and space-based laser
interferometers, spacecraft Doppler tracking, and pulsar timing arrays; and we allow
for anisotropy, non-Gaussianity, and non-standard polarization states. Our focus is on
relevant data analysis issues, and not on the particular astrophysical or early Universe
sources that might give rise to such backgrounds. We provide a unified treatment of
these searches at the level of detector response functions, detection sensitivity curves,
and, more generally, at the level of the likelihood function, since the choice of sig-
nal and noise models and prior probability distributions are actually what define the
search. Pedagogical examples are given whenever possible to compare and contrast
different approaches. We have tried to make the article as self-contained and compre-
hensive as possible, targeting graduate students and new researchers looking to enter
this field.
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1 Introduction

The real voyage of discovery consists not in seeking new landscapes, but in
having new eyes. Marcel Proust

It is an exciting time for the field of gravitational-wave astronomy. The observation,
on September 14th, 2015, of gravitational waves from the inspiral and merger of a pair
of black holes (Abbott et al. 2016e) has opened a radically new way of observing the
Universe. The event, denoted GW 150914, was observed simultaneously by the two
detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) (Aasi
et al. 2015). [LIGO consists of two 4 km-long laser interferometers, one located in
Hanford, Washington, the other in Livingston, LA.] The merger event that produced
the gravitational waves occured in a distant galaxy roughly 1.3 billion light years from
Earth. The initial masses of the two black holes were estimated to be 36fi Mg and

294 M, and that of the post-merger black hole as 623 Mg, (Abbott et al. 2016f). The

difference between the initial and final masses corresponds to 3.0J_r8:§ Mgc? of energy
radiated in gravitational waves, with a peak luminosity of more than ten times the
combined luminosity of all the stars in all the galaxies in the visible universe! The fact
that this event was observed only in gravitational waves—and not in electromagnetic
waves—illustrates the complementarity and potential for new discoveries that comes
with the opening of the gravitational-wave window onto the universe.

GW150914 is just the first of many gravitational-wave signals that we expect to
observe over the next several years. Indeed, roughly 3 months after the detection of
GW150914, a second event, GW 151226, was observed by the two LIGO detectors
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(Abbott et al. 2016d). This event also involved the inspiral and merger of a pair of
stellar mass black holes, with initial component masses 14.21‘?3 Mg and 7.51‘%% Mgp,

and a final black hole mass of 20.81’?:% Mg. The source was at a distance of roughly
1.4 billion light-years from Earth, comparable to that of GW150914. Advanced LIGO
will continue interleaving observation runs and commissioning activities to reach
design sensivity around 2020 (Aasi et al. 2015), which will allow detections of signals
like GW 150914 and GW 151226 with more than three times the signal-to-noise ratio
than was observed for GW150914 (which was 24). In addition, the Advanced Virgo
detector (Acernese et al. 2015) (a 3 km-long laser interferometer in Cascina, Italy) and
KAGRA (Aso et al. 2013) (a 3 km-long cryogenic laser interferometer in Kamioka
mine in Japan) should both be taking data by the end of 2016. There are also plans for
a third LIGO detector in India (Iyer et al. 2011). A global network of detectors such as
this will allow for much improved position reconstruction and parameter estimation
of the sources (Abbott et al. 20161).

1.1 Motivation and context

GW150914 and GW 151226 were single events—binary black hole mergers that were
observed with both template-based searches for compact binary inspirals and searches
for generic gravitational-wave transients in the two LIGO detectors (Abbott et al.
2016e,d). The network matched-filter signal-to-noise ratio (Owen and Sathyaprakash
1999) for these two events, using relativitistic waveform models for binary black holes,
was 24 and 13, respectively. The probability that these detections were due to noise
alone is <2 x 1077, corresponding to a significance greater than So—the standard
for so-called “gold-plated” detections. But for every loud event like GW 150914 or
GW151226, we expect many more quiet events that are too distant to be individually
detected, since the associated signal-to-noise ratios are too low.

The total rate of merger events from the population of stellar-mass binary black holes
of which GW 150914 and GW 151226 are members can be estimated! by multiplying
the local rate estimate of 9-240 Gpc™> year~! (Abbott et al. 2016g) by the comoving
volume out to some large redshift, e.g., z ~ 6. This yields a total rate of binary
black hole mergers between ~1 per minute and a few per hour. Since the duration
of each merger signal in the sensitive band of a LIGO-like detector is of order a few
tenths of a second to ~1 s, the duty cycle (the fraction of time that the signal is “on”
in the data) is «1. This means that the combined signal from such a population of
binary black holes will be “popcorn-like”, with the majority of the individual signals
being too weak to individually detect. Since the arrival times of the merger signals
are randomly-distributed, the combined signal from the population of binary black
holes is itself random—it is an example of a stochastic background of gravitational
radiation.

More generally, a stochastic background of gravitational radiation is any random
gravitational-wave signal produced by a large number of weak, independent, and

! The coalescence rate is expected to vary significantly with redshift z, so this simple calculation, which
assumes a constant coalescence rate, provides only a rough estimate.
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unresolved sources. The background doesn’t have to be popcorn-like, like the expected
signal from the population of binary black holes which gave rise to GW 150914 and
GW151226. It can be composed of individual deterministic signals that overlap in
time (or in frequency) producing a “confusion” noise analogous to conversations at
a cocktail party. Such a confusion noise is produced by the galactic population of
compact white dwarf binaries. (For this case, the stochastic signal is so strong that it
becomes a foreground, acting as an additional source of noise when trying to detect
other weak gravitational-wave signals in the same frequency band). Alternatively, the
signal can be intrinsically random, associated with stochastic processes in the early
Universe or with unmodeled sources, like supernovae, which produce signals that are
not described by deterministic waveforms.

The focus of this review article is on data analysis strategies (i.e., detection methods)
that can be used to detect and ultimately characterize a stochastic gravitational-wave
background. To introduce this topic and to set the stage for the more detailed discus-
sions to follow in later sections, we ask (and start to answer) the following questions:

1.1.1 Why do we care about detecting a stochastic background?

Detecting a stochastic background of gravitational radiation can provide information
about astrophysical source populations and processes in the very early Universe, which
are inaccessible by any other means. For example, electromagnetic radiation cannot
provide a picture of the Universe any earlier than the time of last of scattering (roughly
400,000 years after the Big Bang). Gravitational waves, on the other hand, can give
us information all the way back to the onset of inflation, a mere ~10732 s after the
Big Bang. (See Maggiore 2000 for a detailed discussion of both cosmological and
astrophysical sources of a stochastic gravitational-wave background).

1.1.2 Why is detection challenging?

Stochastic signals are effectively another source of noise in a single detector. So the
fundamental problem is how to distinguish between gravitational-wave “noise” and
instrumental noise. It turns out that there are several ways to do this, as we will discuss
in the later sections of this article.

1.1.3 What detection methods can one use?

Cross-correlation methods can be used whenever one has multiple detectors that
respond to the common gravitational-wave background. For single detector analyses
e.g., for the Laser Space Interferometer Antenna (LISA), one needs to take advan-
tage of null combinations of the data (which act as instrument noise monitors) or use
instrument noise modeling to try to distinguish the gravitational-wave signal from
instrumental noise. Over the past 15 years or so, the number of detection methods for
stochastic backgrounds has increased considerably. So now, in addition to the standard
cross-correlation search for a “vanilla” (Gaussian-stationary, unpolarized, isotropic)
background, one can search for non-Gaussian backgrounds, anisotropic backgrounds,
circularly-polarized backgrounds, and backgrounds with polarization components pre-
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Table 1 Overview of analysis methods for stochastic gravitational-wave backgrounds

Early analyses (before 2000) More recent analyses
Used frequentist statistics Use both frequentist and Bayesian inference
Used cross-correlation methods Use cross-correlation methods and stochastic templates;

use null channels or knowledge about instrumental
noise when cross-correlation is not available

Assumed Gaussian noise Have allowed non-Gaussian noise

Assumed stationary, Gaussian, Have allowed non-Gaussian, polarized, and anisotropic
unpolarized, and isotropic gravitational-wave backgrounds
gravitational-wave backgrounds

Were done primarily in the context of Have been done in the context of space-based detectors
ground-based detectors (e.g., (e.g., spacecraft tracking, LISA) and pulsar timing
resonant bars and LIGO-like arrays for which the small-antenna approximation is
interferometers) where the not valid

small-antenna (i.e.,
long-wavelength) approximation
was valid

The number and flexibility of the methods have increased considerably since the year 2000

dicted by alternative (non-general-relativity) theories of gravity. These searches are
discussed in Sects. 7 and 8.

Table 1 summarizes the basic properties of various analysis methods that have been
used (or proposed) for stochastic background searches. Despite apparent differences,
all analyses use a likelihood function, e.g., for defining frequentist statistics or for
calculating posterior distributions for Bayesian inference (as will be described in more
detail in Sect. 3), and take advantage of cross-correlations if multiple detectors are
available (as will be described in more detail in Sect. 4).

1.1.4 What are the prospects for detection?

The prospects for detection depend on the source of the background (i.e., astrophysical
or cosmological) and the type of detector being used. For example, a space-based inter-
ferometer like LISA is guaranteed to detect the gravitational-wave confusion noise
produced by the galactic population of compact white dwarf binaries. Pulsar timing
arrays, on the other hand, should be able to detect the confusion noise from supermas-
sive black hole binaries (SMBHBSs) at the centers of merging galaxies, provided the
binaries are not affected by their environments in a way that severely diminishes the
strength of the background (Shannon et al. 2015). Detection sensitivity curves are a
very convenient way of comparing theoretical predictions of source strengths to the
sensivity levels of the various detectors (as we will discuss in Sect. 10).

1.2 Searches across the gravitational-wave spectrum

The frequency band of ground-based laser interferometers like LIGO, Virgo, and
KAGRA is between ~10 Hz and a few kHz (gravity gradient and seismic noise are the
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THE GRAVITATIONAL WAVE SPECTRUM

quantum fluctuations in the very early Universe
%]
['¥)
Q
[4 black holes, compact merging binary
8 stars captured by neutron stars and
A supermassive holes stellar black holes
in galactic nuclei in distant galaxies;
binary stars in fsistthpulsars
the galaxy |and mountains
beyond
. AGE OF THE
Wave Period  j\1yERSE YEARS HOURS SECONDS ~ MSEC
Frequency (Hz) 10 10" 102 10" 108 10%  10% 102 1 102
. I ] Il N
&
8 INFLATION precision LISA BIG GEQ, LIGO,
o PROBE timing of (ESA/NASA, BANG OBS  VIRGO, TAMA
,'i" (NASA) millisecond 2010) (NASA) (2002-)
g pulsars .
polarization (1982-) laser tracking of laser
map of cosmic drag-free proof interfero-
microwave mass in spacecraft meters
background orbiting the sun on Earth
(also bar

detectors)

Fig. 1 Gravitational-wave spectrum, together with potential sources and relevant detectors. Image credit
Institute of Gravitational Research/University of Glasgow

limiting” noise sources below 10 Hz, and photon shot noise above a couple of kHz).
Outside this band there are several other experiments—both currently operating and
planned—that should also be able to detect gravitational waves. An illustration of the
gravitational-wave spectrum, together with potential sources and relevant detectors,
is shown in Fig. 1. We highlight a few of these experiments below.

1.2.1 Cosmic microwave background experiments

At the extreme low-frequency end of the spectrum, corresponding to gravitational-
wave periods of order the age of the Universe, the Planck satellite (ESA 2016¢)
and other cosmic microwave background (CMB) experiments, e.g., BICEP and Keck
(BICEP/Keck 2016) are looking for evidence of relic gravitational waves from the
Big Bang in the B-mode component of CMB polarization maps (Kamionkowski et al.
1997; Hu and White 1997; Ade et al. 2015a). In 2014, BICEP2 announced the detec-
tion of relic gravitational waves (Ade et al. 2014), but it was later shown that the
observed B-mode signal was due to contamination by intervening dust in the galaxy
(Flauger et al. 2014; Mortonson and Seljak 2014). So at present, these experiments
have been able to only constrain (i.e., set upper limits on) the amount of gravitational

2 Actually, even if the gravity-gradient and seismic noise were zero, one couldn’t go below ~1 Hz with the
current generation of ground-based laser interferometers, since the suspended mirrors (i.e., the test masses)
are no longer freely floating when you go below their resonant frequencies: ~1 Hz.
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waves in the very early Universe (Ade et al. 2015a). But these constraints severely
limit the possibility of detecting the relic gravitational-wave background with any of
the higher-frequency detection methods, unless its spectrum increases with frequency.
[Note that standard models of inflation predict a relic background whose energy den-
sity is almost constant in frequency, leading to a strain spectral density that decreases
with frequency.] Needless to say, the detection of a primordial gravitational-wave
background is a “holy grail” of gravitational-wave astronomy.

1.2.2 Pulsar timing arrays

At frequencies between ~10~° Hz and 10~/ Hz, corresponding to gravitational-wave
periods of order decades to years, pulsar timing arrays (PTAs) can be used to search
for gravitational waves. This is done by carefully monitoring the arrival times of radio
pulses from an array of galactic millisecond pulsars, looking for correlated modula-
tions in the arrival times induced by a passing gravitational wave (Detweiler 1979;
Hellings and Downs 1983). The most-likely gravitational-wave source for PTAs is a
gravitational-wave background formed from the incoherent superposition of signals
produced by the inspirals and mergers of SMBHBs in the centers of distant galax-
ies (Jaffe and Backer 2003). These searches continue to improve their sensitivity by
upgrading instrument back-ends and discovering more millisecond pulsars that can be
added to the array. These improvements have led to more constraining upper limits on
the amplitude of the gravitational-wave background (Shannon et al. 2015; Arzouma-
nian et al. 2016), with a detection being likely before the end of this decade (Siemens
et al. 2013; Taylor et al. 2016b).

1.2.3 Space-based interferometers

At frequencies between ~10~* Hz and 10~! Hz, corresponding to gravitational-wave
periods of order hours to minutes, proposed space-based interferometers like LISA
can search for gravitational waves from a wide variety of sources (Gair et al. 2013).
These include: (i) inspirals and mergers of SMBHBs with masses of order 10° M,
(ii) captures of compact stellar-mass objects around supermassive black holes, and
(iii) the stochastic confusion noise produced by compact white-dwarf binaries in our
galaxy. In fact, hundreds of binary black holes that are individually resolvable by LISA
will coalesce in the aLIGO band within a 10 year period, opening up the possibility
of doing multi-band gravitational-wave astronomy (Sesana 2016).

The basic space-based interferometer configuration consists of three satellites (each
housing two lasers, two telescopes, and two test masses) that fly in an equilateral-
triangle formation, with arm lengths of order several million km. A variant of the
original LISA design was selected in February 2017 by the European Space Agency
(ESA) as the 3rd large mission in its Cosmic Vision Program (ESA 2016a). The earliest
launch date for LISA would be around 2030. A technology-demonstration mission,
called LISA Pathfinder (ESA 2016b), was launched in December 2015, meeting or
exceeding all of the requirements for an important subset of the LISA technologies
(Armano et al. 2016).
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1.2.4 Other detectors

Finally, in the frequency band between ~0.1 Hz and 10 Hz, there are proposals for
both Earth-based detectors (Harms et al. 2013) and also second-generation space-based
interferometers—the Big-Bang Observer (BBO) (Phinney et al. 2004) and the DECI-
hertz interferometer Gravitational-wave Observatory (DECIGO) (Ando et al. 2010).
Such detectors would be sensitive to gravitational waves with periods between ~10 s
and 0.1 s. The primary sources in this band are intermediate-mass (103-10* M) binary
black holes, galactic and extra-galactic neutron star binaries, and a cosmologically-
generated stochastic background.

1.3 Goal of this article

Starting with the pioneering work of Grishchuk (1976), Detweiler (1979), Hellings
and Downs (1983), and Michelson (1987), detection methods for gravitational-wave
backgrounds have increased in scope and sophistication over the years, with several
new developments occuring rather recently. As mentioned above, we have search
methods now that target different properties of the background (e.g., isotropic or
anisotropic, Gaussian or non-Gaussian, polarized or unpolarized, etc.). These searches
are necessarily implemented differently for different detectors, since, for example,
ground-based detectors like LIGO and Virgo operate in the small-antenna (or long-
wavelength) limit, while pulsar timing arrays operate in the short-wavelength limit.
Moreover, each of these searches can be formulated in terms of either Bayesian or fre-
quentist statistics. The goal of this review article is to discuss these different detection
methods from a perspective that attempts to unify the different treatments, emphasizing
the similarities that exist when viewed from this broader perspective.

1.4 Unification

The extensive literature describing stochastic background analyses leaves the reader
with the impression that highly specialized techniques are needed for ground-based,
space-based, and pulsar timing observations. Moreover, reviews of gravitational-wave
data analysis leave the impression that the analysis of stochastic signals is somehow
fundamentally different from that of any other signal type. Both of these impressions
are misleading. The apparent differences are due to differences in terminology and
perspective. By adopting a common analysis framework and notation, we are able to
present a unified treatment of gravitational-wave data analysis across source classes
and observation techniques.

We will provide a unified treatment of the various methods at the level of detector
response functions, detection sensitivity curves, and, more generally, at the level of
the likelihood function, since the choice of signal and noise models and prior proba-
bility distributions are actually what define the search. The same photon time-of-flight
calculation underpins the detector response functions, and the choice of prior for the
gravitational-wave template defines the search. A matched-filter search for binary
mergers and a cross-correlation search for stochastic signals are both derived from
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the same likelihood function, the difference being that the former uses a parameter-
ized, deterministic template, while the latter uses a stochastic template. Hopefully, by
the end of this article, the reader will see that the plethora of searches for different
types of backgrounds, using different types of detectors, and using different statistical
inference frameworks are not all that different after all.

1.5 Outline

The rest of the article is organized as follows: We begin in Sect. 2 by specifying the
quantities that one uses to characterize a stochastic gravitational-wave background. In
Sect. 3, we give an overview of statistical inference by comparing and contrasting how
the Bayesian and frequentist formalisms address issues related to hypothesis testing,
model selection, setting upper limits, parameter estimation, etc. We then illustrate
these concepts in the context of a very simple toy problem. In Sect. 4, we introduce
the key concept of correlation, which forms the basis for the majority of detection
methods used for gravitational-wave backgrounds, and show how these techniques
arise naturally from the standard template-based approach. We derive the frequentist
cross-correlation statistic for a simple example. We also describe how a null channel
is useful when correlation methods are not possible.

In Sect. 5, we go into more detail regarding the different types of detectors. In
particular, we calculate single-detector response functions and the associated antenna
patterns for ground-based and space-based laser interferometers, spacecraft Doppler
tracking, and pulsar timing measurements. (We do not discuss resonant bar detec-
tors or CMB-based detection methods in this review article. However, current bounds
from CMB observations will be reviewed in Sect. 10). By correlating the outputs of
two such detectors, we obtain expressions for the correlation coefficient (or overlap
reduction function) for a Gaussian-stationary, unpolarized, isotropic background as a
function of the separation and orientation of the two detectors. In Sect. 6, we discuss
optimal filtering. Section 7 extends the analysis of the previous sections to anisotropic
backgrounds. Here we describe several different analyses that produce maps of the
gravitational-wave sky: (i) a frequentist gravitational-wave radiometer search, which
is optimal for point sources, (ii) searches that decompose the gravitational-wave power
on the sky in terms of spherical harmonics, and (iii) a phase-coherent search that can
map both the amplitude and phase of a gravitational-wave background at each loca-
tion on the sky. In Sect. 8, we discuss searches for: (i) non-Gaussian backgrounds,
(1) circularly-polarized backgrounds, and (iii) backgrounds having non-standard
(i.e., non-general-relativity) polarization modes. We also briefly describe extensions
of the cross-correlation search method to look for non-stochastic-background-type
signals—in particular, long-duration unmodelled transients and continuous (nearly-
monochromatic) gravitational-wave signals from sources like Sco X-1.

In Sect. 9, we discuss real-world complications introduced by irregular sampling,
non-stationary and non-Gaussian detector noise, and correlated environmental noise
(e.g., Schumann resonances). We also describe what one can do if one has only a
single detector, as is the case for LISA. Finally, we conclude in Sect. 10 by discussing
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prospects for detection, including detection sensitivity curves and current observa-
tional results.

We also include several appendices: In Appendix A we discuss different polariza-
tion basis tensors, and a Stokes’ parameter characterization of gravitational-waves.
In Appendices B and C, we summarize some standard statistical results for a Gaus-
sian random variable, and then discuss how to define and test for non-stationarity
and non-Gaussianity. In Appendix D we describe the relationship between continuous
functions of time and frequency and their discretely-sampled counterparts. Appen-
dices E, F, G are adapted from Gair et al. (2015), with details regarding spin-weighted
scalar, vector, and tensor spherical harmonics. Finally, Appendix H gives a “Rosetta
stone” for translating back and forth between different response function conventions
for gravitational-wave backgrounds.

2 Characterizing a stochastic gravitational-wave background

When you can measure what you are speaking about, and express it in numbers,
you know something about it, when you cannot express it in numbers, your
knowledge is of a meager and unsatisfactory kind; it may be the beginning of
knowledge, but you have scarely, in your thoughts, advanced to the stage of
science. William Thomson, Baron Kelvin of Largs

In this section, we define several key quantities (e.g., fractional energy density spec-
trum, characteristic strain, distribution of gravitational-wave power on the sky), which
are used to characterize a stochastic background of gravitational radiation. The defi-
nitions are appropriate for both isotropic and anisotropic backgrounds. Our approach
is similar to that found in Allen and Romano (1999) for isotropic backgrounds and for
the standard polarization basis. For the plane-wave decomposition in terms of tensor
spherical harmonics, we follow Gair et al. (2014, 2015). Detailed derivations can be
found in those papers.

2.1 When is a gravitational-wave signal stochastic?

The standard “textbook” definition of a stochastic background of gravitational radi-
ation is a random gravitational-wave signal produced by a large number of weak,
independent, and unresolved sources. To say that it is random means that it can be
characterized only statistically, in terms of expectation values of the field variables
or, equivalently, in terms of the Fourier components of a plane-wave expansion of the
metric perturbations (Sect. 2.3.1). If the number of independent sources is sufficiently
large, the background will be Gaussian by the central limit theorem. Knowledge of
the first two moments of the distribution will then suffice to determine all higher-order
moments (Appendix B). For non-Gaussian backgrounds, third and/or higher-order
moments will also be needed.

Although there is general agreement with the above definition, there has been some
confusion and disagreement in the literature (Rosado 2011; Regimbau and Mandic
2008; Regimbau and Hughes 2009; Regimbau 2011) regarding some of the defining
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properties of a stochastic background. This is because terms like weak and unresolved
depend on details of the observation (e.g., the sensitivity of the detector, the total
observation time, etc.), which are not intrinsic properties of the background. So the
answer to the question “When is a gravitational-wave signal stochastic?” is not as
simple or obvious as it might initially seem.

In Cornish and Romano (2015), we addressed this question in the context of searches
for gravitational-wave backgrounds produced by a population of astrophysical sources.
We found that it is best to give operational definitions for these properties, framed in
the context of Bayesian inference. We will discuss Bayesian inference in more detail
in Sect. 3, but for now the most important thing to know is that by using Bayesian
inference we can calculate the probabilities of different signal-plus-noise models,
given the observed data. The signal-plus-noise model with the largest probability is
the preferred model, i.e., the one that is most consistent with the data. This is the
essence of Bayesian model selection.

So we define a signal to be stochastic if a Bayesian model selection calculation
prefers a stochastic signal model over any deterministic signal model. We also define
asignal to be resolvable if it can be decomposed into separate (e.g., non-overlapping in
either time or frequency) and individually detectable signals, again in a Bayesian model
selection sense.’ If the background is associated with the superposition of signals
from many astrophysical sources—as we expect for the population of binary black
holes which gave rise to GW150914 and GW151226—then we should subtract out
any bright deterministic signals that standout above the lower-amplitude background,
leaving behind a residual non-deterministic signal whose statistical properties we
would like to determine. In the context of Bayesian inference, this ‘subtraction’ is done
by allowing hybrid signal models, which consist of both parametrized deterministic
signals and non-deterministic backgrounds. By using such hybrid models we can
investigate the statistical properties of the residual background without the influence
of the resolvable signals.

We will return to these ideas in Sect. 8.1, when we discuss searches for non-Gaussian
backgrounds in more detail.

2.2 Plane-wave expansions

Gravitational waves are time-varying perturbations to the spacetime metric, which
propagate at the speed of light. In transverse-traceless coordinates, the metric pertur-
bations A, (2, X) corresponding to a gravitational-wave background can be written
as a superposition of sinusoidal plane waves having frequency f, and coming from
different directions 7 on the sky:*

o0 A =
hap(t, X) = / df f d>Qj hap(f, h)e 2T/ CH3/), @2.1)
—00

3 Signals may be separable even when overlapping in time and frequency if the detector has good sky reso-
lution, or if the signals have additional complexities due to effects such as orbital evolution and precession.

4 The gravitational-wave propagation direction, which we will denote by k. is given by k=—h.
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For a stochastic background, the metric perturbations /g,y (¢, X) and hence the Fourier
coefficients h,p (f, 1) are random variables, whose probability distributions define the
statistical properties of the background.

2.2.1 Polarization basis

Typically, one expands the Fourier coefficients /45 (f, 71) in terms of the standard +
and x polarization tensors:

hap(f. ) = hy (f. A)e, () + hy (f, ey, (), (2.2)
where . .
et (n) = Il — mamy,
SO R (2.3)
e, () = lgmp + malp,
and [, i are the standard angular unit vectors tangent to the sphere:
n=sinfcos¢x +sinfsing y + cosh z =7,
[ =cosOcospi+cosOsing $—sinh =0, 2.4)
Mm=—singx+cospH=g.

(See Fig. 2). Searches for stochastic backgrounds having alternative polarization
modes, as predicted by modified (metric) theories of gravity, will be discussed in
Sect. 8.3.

2.2.2 Tensor spherical harmonic basis

It is also possible to expand the Fourier coefficients i, ( f, 71) in terms of the gradient
and curl tensor spherical harmonics (Gair et al. 2014):

00 1
han(£. 1) = D 3 [aGoy (DY G + 4G (DY s D] @)

=2 m=—I

where

1
Y(IGm)ab = (Z)Nl (Y(lm);ab - EgabY(lm);Cc) ,
(2.6)
c (Z)Nl ‘ .
Y(lm)ab = T (Y(lm);acecb + Y(lm);bcéca) .

In the above expressions, a semi-colon denotes covariant differentiation, g, is the met-
ric tensor on the sphere, and €, is the Levi-Civita anti-symmetric tensor. In standard
spherical coordinates (6, ¢),

1 0 0 1 .
gab= (O Sin26>v 6ab=\/§<_1 O)’ \/EZSIHQ' (27)
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direction to
A GW source

A\ 4

X

Fig. 2 Our convention for the unit vectors {7, I, m} in terms of which the polarization basis tensors e[jb n)
and e:b (n) are defined. The unit vector 7 points in the direction of the gravitational-wave source (the

gravitational wave propagates in direction k=—-hayli=0andm = ¢ are two unit vectors that lie in the
plane perpendicular to 7. Another choice for the polarization basis tensors, defined in terms of the ‘rotated’
unit vectors p and ¢, is given in Appendix A

The normalization constant

201 — 2)!

Qp,; =
+2)°

(2.8)

was chosen so that {Y((l;m) ap ()5 Y((lj ) (M)} is a set of orthonormal functions (with
respect to the multipole indices / and m) on the 2-sphere. Appendix G contains addi-
tional details regarding gradient and curl spherical harmonics.

Note that we have adopted the notational convention used in the CMB literature,
e.g., Kamionkowski et al. (1997), by putting parentheses around the /m indices to
distinguish them from the spatial tensor indices a, b, etc. In addition, summations
over [ and m start at / = 2, and not [ = 0 as would be the case for the expansion
of a scalar field on the 2-sphere in terms of ordinary (i.e., undifferentiated) spherical
harmonics. In what follows, we will use ), as shorthand notation for ) /=, an:_ /
unless indicated otherwise.
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2.2.3 Relating the two expansions

The gradient and curl spherical harmonics have been used extensively in the CMB
community for decomposing CMB-polarization maps in terms of E-modes and B-
modes (corresponding to the gradient and curl spherical harmonics). The most relevant
property of the gradient and curl spherical harmonics is that they transform like com-
binations of spin-weight £2 fields with respect to rotations of an orthonormal basis at
points on the 2-sphere. Explicitly,

Y(le)a,,(ﬁ) + iY(fm)a,,(ﬁ) = (e, (D) £ie)y (7)) +2Yim (R), (2.9)

1
V2
where 1, Y}, () are the spin-weight £2 spherical harmonics (Appendix E). Using this

relationship between the tensor spherical harmonic and (4, x) polarization bases, one
can show (Gair et al. 2014):

1
h () £ i () = —= 3 (4G () £ 65 () 2Yin@,  2.10)

(Im)

or, equivalently,

(1) i (1) = V2 [ 05 (b (f) Fiho(£.0) 52 ). 1D

These two expressions allow us to go back and forth between the expansion coefficients
for the two different bases.

2.3 Statistical properties

The statistical properties of a stochastic gravitational-wave background are specified
in terms of the probability distribution or moments (Appendix B) of the metric pertur-
bations:

(hap(t, %)), (hap(t, Dohea(t', X)), (hap(t, D hea(t', X hep (2", X)), ...
(2.12)
or similar expressions in terms of the Fourier coefficients & 4 ( f, ), where A = {+, x}
labels the standard polarization modes of general relativity, or a(’;m)( f), where P =
{G, C} and (Im) label the multipole components for the gradient and curl tensor
spherical harmonic decomposition. Without loss of generality we can assume that the
background has zero mean:

hap(t. ) =0 & (ha(fii))=0 & (af, (/H=0.  (2.13)

We will also assume that the background is stationary (Appendix C). This means that
all statistical quantities constructed from the metric perturbations at times ¢, ¢/, etc.,
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depend only on the difference between times, e.g., t — ¢/, and not on the choice of time
origin. We expect this to be true given that the age of the universe is roughly 9 orders
of magnitude larger than realistic observation times, ~10 year. It is thus unlikely that
a stochastic gravitational-wave background has statistical properties that vary over the
time scale of the observation.

For Gaussian backgrounds we need only consider quadratic expectation values,
since all higher-order moments are either zero or can be written in terms of the quadratic
moments (Appendix B). For non-Gaussian backgrounds (Sect. 8.1), third and/or higher
order moments will also be needed.

Beyond our assumption of stationarity, the specific form of the expectation values
will depend, in general, on the source of the background. For example, a cosmo-
logical background produced by the superposition of a large number of independent
gravitational-wave signals from the early Universe is expected to be Gaussian (via
the central limit theorem), as well as isotropically-distributed on the sky. Contrast
this with the superposition of gravitational waves produced by unresolved Galactic
white-dwarf binaries radiating in the LISA band (10~* Hz to 10~! Hz). Although
this confusion-limited astrophysical foreground is also expected to be Gaussian and
stationary, it will have an anisotropic distribution, following the spatial distribution of
the Milky Way. The anistropy will be encoded as a modulation in the LISA output, due
to the changing antenna pattern of the LISA constellation in its yearly orbit around the
Sun. Hence, different sources will give rise to different statistical distributions, which
we will need to consider when formulating our data analysis strategies.

2.3.1 Quadratic expectation values for Gaussian-stationary backgrounds

The simplest type of stochastic background will be Gaussian-stationary, unpolarized,
and spatially homogenous and isotropic. The quadratic expectation values for such a
background are then

1
(haCf, R (f D) = ITRATAL Y FHand i, i), (2.14)

or, equivalently,

! 1 4
(o (Dl () = = SH DS = £35S 219)

The numerical factors out front have been included so that Sy, () has the interpretation
of being the one-sided gravitational-wave strain power spectral density function (units
of strain? /Hz), summed over both polarizations and integrated over the sky. The factor
of §(f — f') arises due to our assumption of stationarity; the factor of §4 4+ (or 877 /)
is due to our assumption that the polarization modes are statistically independent of
one another and have no preferred component; and the factor of 82 (71, i) (or 81/ Sym’)
is due to our assumption of spatial homogeneity and isotropy.

Anisotropic, unpolarized, Gaussian-stationary backgrounds, whose radiation from
different directions on the sky are uncorrelated with one another, are also simply
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represented in terms of the quadratic expectation values:

1

(Ra(f. )RS, (f 7)) = =P(f.AS(f — FH8and* (i, ). (2.16)
4

The function P( f, n) describes the spatial distribution of gravitational-wave power on
the sky at frequency f. It is related to S, (f) via

Sp(f) = /dZQﬁ P(f, h). (2.17)

The corresponding expectation values in terms of the tensor spherical harmonic expan-
sion coefficients a 5 m) (f) are more complicated, since an individual mode in this basis
corresponds to a gravitational-wave background whose radiation is correlated between
different angular directions on the sky. (See Gair et al. (2014) for a discussion of
backgrounds that have such correlations). We will discuss searches for anisotropic
backgrounds in more detail in Sect. 7.

More general Gaussian-stationary backgrounds (e.g., polarized, statistically
isotropic but with correlated radiation, etc.) can be represented by appropriately chang-
ing the right-hand-side of the quadratic expectation values. However, for the remainder
of this section and for most of the article, we will consider “vanilla” isotropic back-
grounds, whose quadratic expectation values (2.14) or (2.15) are completely specified
by the power spectral density Sj,(f).

2.4 Fractional energy density spectrum

The gravitational-wave strain power spectral density Sy, (f) is simply related to the
fractional energy density spectrum in gravitational waves Qgy (f), see e.g., Allen and
Romano (1999):

3H; Qgu(f)

Sn(f) = 23 (2.18)
where | d,ng
Qew(f) = oedinf (2.19)

Here dpgy is the energy density in gravitational waves contained in the frequency
interval f to f 4 df, and p. = 3c? HO2 /87 G is the critical energy density need to
close the universe. The tofal energy density in gravitational waves normalized by the
critical energy density is thus

fmax
Qgw = / _dn f) Qg (), (2.20)

where finax 1S some maximum cutoff frequency (e.g., associated with the Planck
scale), beyond which our current understanding of gravity breaks down. Q. can be
compared, for example, to the total fractional energy density Qyp, O A, in baryons,
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dark energy, etc. Since p. involves the Hubble constant, one sometimes writes
Hy = hg 100 km s~ ! Mpc_l, and then absorbs a factor of h(z) in Qgw(f). The quan-
tity h(% Qgw(f) is then independent of the value of the Hubble constant. However,
since recent measurements by Planck (Ade et al. 2015b; ESA 2016¢) have shown that
ho = 0.68 to a high degree of precision, we have assumed this value in this review
article and quote limits directly on Qg (f) (Sect. 10). The specific functional form
for Qew(f) depends on the source of the background, as we shall see explicitly below.

2.5 Characteristic strain
Although the fractional energy density spectrum Q,y(f) completely characterizes

the statistical properties of a Gaussian-stationary isotropic background, it is often
convenient to work with the (dimensionless) characteristic strain amplitude %.(f)

defined by
he(f) =V fSn(f)- (2.21)

It is related to Qg (f) via:

2 2
Qew(f) = 3”7021‘%%(]‘). 2.22)

Several theoretical models of gravitational-wave backgrounds predict characteristic
strains that have a power-law form

f o
he(f)=Ao | =) . 2.23
W (fref) 229

where « is spectral index and frer is typically set to 1/year. (There is no sum over
« in the above expression, and no sum over § in the following expression). Using
Egs. (2.22) and (2.23) it follows that

f B
Qow(f) =Qp ( ) , (2.24)
fref
where
272 2 9
Qp = —2fref Ay, B=2a+2. (2.25)
3H,

For inflationary backgrounds relevant for cosmology, it is often assumed that
Qgw(f) = const, for which 8 = 0 and @ = —1. For a background arising from binary
coalescence, Qgy (f) 273, for which B = 2/3 and & = —2/3. This power-law
dependence is applicable to super-massive black-hole binary (SMBHB) coalescences
targeted by pulsar timing observations as well as to compact binary coalescences
relevant for ground-based and space-based detectors.
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3 Statistical inference

If your experiment needs statistics, you ought to have done a better experiment.
Ernest Rutherford

In this section, we review statistical inference from both the Bayesian and frequentist
perspectives. Our discussion of frequentist and Bayesian upper limits, and the example
given in Sect. 3.5 comparing Bayesian and frequentist analyses is modelled in part
after Rover et al. (2011). Readers interested in more details about Bayesian statistical
inference should see, e.g., Howson and Urbach (1991), Howson and Urbach (2006),
Jaynes (2003), Gregory (2005) and Sivia and Skilling (2006). For a description of
frequentist statistics, we recommend Helstrom (1968), Wainstein and Zubakov (1971)
and Feldman and Cousins (1998).

3.1 Introduction to Bayesian and frequentist inference

Statistical inference can be used to answer questions such as “Is a gravitational-wave
signal present in the data?” and, if so, “What are the physical characteristics of the
source?” These questions are addressed using the techniques of classical (also known
as frequentist) inference and Bayesian inference. Many of the early theoretical studies
and observational papers in gravitational-wave astronomy followed the frequentist
approach, but the use of Bayesian inference is growing in popularity. Moreover, many
contemporary analyses cannot be classified as purely frequentist or Bayesian.

The textbook definition states that the difference between the two approaches comes
down to their different interpretations of probability: for frequentists, probabilities are
fundamentally related to frequencies of events, while for Bayesians, probabilities
are fundamentally related to our own knowledge about an event. For example, when
inferring the mass of a star, the frequentist interpretation is that the star has a true, fixed
(albeit unknown) mass, so it is meaningless to talk about a probability distribution for
it. Rather, the uncertainty is in the data, and the relevant probability is that of observing
the data d, given that the star has mass m. This probability distribution is the likelihood,
denoted p(d|m). In contrast, in the Bayesian interpretation the data are known (after
all, it is what is measured!), and the mass of the star is what we are uncertain about,’
so the relevant probability is that the mass has a certain value, given the data. This
probability distribution is the posterior, p(m|d). The likelihood and posterior are
related via Bayes’ theorem:

_ p(d|m)p(m)

p(m|d) o)

3.1

5 In some treatments, the Bayesian interpretation is equated to philosophical schools such as Berkeley’s
empiricist idealism, or subjectivism, which holds that things only exist to the extent that they are perceived,
while the frequentist interpretation is equated to Platonic realism, or metaphysical objectivism, holding that
things exist objectively and independently of observation. These equivalences are false. A physical object
can have a definite, Platonic existence, and Bayesians can still assign probabilities to its attributes since our
ability to measure is limited by imperfect equipment.
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where p(m) is the prior probability distribution for 7, and the normalization constant,

p(d) = /p(dIM)P(m)dm, (3.2)

is the marginalized likelihood, or evidence. For uniform (flat) priors the frequentist
confidence intervals for the parameters will coincide with the Bayesian credible inter-
vals, but the interpretation remains quiet distinct.

The choice of prior probability distributions is a source of much consternation and
debate, and is often cited as a weakness of the Bayesian approach. But the choice of
probability distribution for the likelihood (which is also important for the frequentist
approach) is often no less fraught. The prior quantifies what we know about the range
and distribution of the parameters in our model, while the likelihood quantifies what
we know about our measurement apparatus, and, in particular, the nature of the mea-
surement noise. The choice of prior is especially problematic in a new field where there
is little to guide the choice. For example, electromagnetic observations and population
synthesis models give some guidance about black hole masses, but the mass range and
distribution is currently not well constrained. The choice of likelihood can also be
challenging when the measurement noise deviates from the stationary, Gaussian ideal.
More details related to the choice of likelihood and choice of prior will be given in
Sect. 3.6.

In addition to parameter estimation, statistical inference is used to select between
competing models, or hypotheses, such as, “is there a gravitational-wave signal in
the data or not?” Thanks to GW150914 and GW 151226, we know that gravitational-
wave signals are already present in existing data sets, but most are at levels where
we are unable to distinguish them from noise processes. For detection we demand
that a model for the data that includes a gravitational-wave signal be favored over a
model having no gravitational-wave signal. In Bayesian inference a detection might
be announced when the odds ratio between models with and without gravitational-
wave signals gets sufficiently large, while in frequentist inference a detection might
be announced when the p-value for some test statistic is less than some prescribed
threshold. These different approaches to deciding whether or not to claim a detection
(e.g., Bayesian model selection or frequentist hypothesis testing), as well as differences
in regard to parameter estimation, are described in the following subsections. Table 2
provides an overview of the key similarities and differences between frequentist and
Bayesian inference, to be described in detail below.

3.2 Frequentist statistics

As mentioned above, classical or frequentist statistics is a branch of statistical inference
that interprets probability as the “long-run relative occurrence of an event in a set of
identical experiments.” Thus, for a frequentist, probabilities can only be assigned
to propositions about outcomes of (in principle) repeated experiments (i.e., random
variables) and not to hypotheses or parameters describing the state of nature, which
have fixed but unknown values. In this interpretation, the measured data are drawn
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Table 2 Comparison of frequentist and Bayesian approaches to statistical inference

Frequentist Bayesian

Probabilities assigned only to Probabilities can be assigned to hypotheses and
propositions about outcomes of parameters since probability is degree of belief (or
repeatable experiments (i.e., confidence, plausibility) in any proposition

random variables), not to
hypotheses or parameters which
have fixed but unknown values

Assumes measured data are drawn Same
from an underlying probability
distribution, which assumes the
truth of a particular hypothesis or
model (likelihood function)

Constructs a statistic to estimate a Needs to specify prior degree of belief in a particular
parameter or to decide whether or hypothesis or parameter
not to claim a detection

Calculates the probability Uses Bayes’ theorem to update the prior degree of belief
distribution of the statistic in light of new data (i.e., likelihood “plus” prior yields
(sampling distribution) posterior)

Constructs confidence intervals and Constructs posteriors and odds ratios for parameter
p-values for parameter estimation estimation and hypothesis testing/model comparison

and hypothesis testing

See Sects. 3.2 and 3.3 for details

from an underlying probability distribution, which assumes the truth of a particular
hypothesis or model. The probability distribution for the data is just the likelihood
function, which we can write as p(d|H), where d denotes the data and H denotes an
hypothesis.

Statistics play an important role in the frequentist framework. These are random
variables constructed from the data, which typically estimate a signal parameter or
indicate how well the data fit a particular hypothesis. Although it is common to con-
struct statistics from the likelihood function (e.g., the maximum-likelihood statistic
for a particular parameter, or the maximum-likelihood ratio to compare a signal-plus-
noise model to a noise-only model), there is no a priori restriction on the form of a
statistic other than it be some function of the data. Ultimately, it is the goal of the
analysis and the cleverness of the data analyst that dictate which statistic (or statistics)
to use.

To make statistical inferences in the frequentist framework requires knowledge of
the probability distribution (also called the sampling distribution) of the statistic. The
sampling distribution can either be calculated analytically (if the statistic is sufficiently
simple) or via Monte Carlo simulations, which effectively construct a histogram of the
values of the statistic by simulating many independent realizations of the data. Given a
statistic and its sampling distribution, one can then calculate either confidence intervals
for parameter estimation or p-values for hypothesis testing. (These will be discussed in
more detail below). Note that a potential problem with frequentist statistical inference
is that the sampling distribution depends on data values that were not actually observed,
which is related to how the experiment was carried out or might have been carried

@ Springer



2 Page 24 of 223 J. D. Romano, N. J. Cornish

P(A|Ho)

X

p = area

1 >
> A
Ax Aobs

Fig. 3 Definition of the p-value (or significance) for frequentist hypothesis testing. The value of p equals
the area under the probability distribution p(A|Hp) for A > Agps

out. The so-called stopping problem of frequentist statistics is an example of such a
problem (Howson and Urbach 2006).

3.2.1 Frequentist hypothesis testing

Suppose, as a frequentist, you want to test the hypothesis H; that a gravitational-wave
signal, having some fixed but unknown amplitude a > 0, is present in the data. Since
you cannot assign probabilities to hypotheses or to parameters like a as a frequentist,
you need to introduce instead an alternative (or null) hypothesis Hy, which, for this
example, is the hypothesis that there is no gravitational-wave signal in the data (i.e., that
a = 0). You then argue for H; by arguing against Hy, similar to proof by contradiction
in mathematics. Note that H; is a composite hypothesis since it depends on a range
of values of the unknown parameter a. It can be written as the union, H; = U,~0H,,
of a set of simple hypotheses H, each corresponding to a single fixed value of the
parameter a.

To rule either in favor or against Hy, you construct a statistic /A, called a test or
detection statistic, on which the statistical test will be based. As mentioned above,
you will need to calculate analytically or via Monte Carlo simulations the sampling
distribution for A under the assumption that the null hypothesis is true, p(/A|Hp). If
the observed value of A lies far out in the tails of the distribution, then the data are
most likely not consistent with the assumption of the null hypothesis, so you reject
Hp (and thus accept Hj) at the p * 100% level, where

o0

p = Prob(A > Agps| Hp) = //\ p(A|Hp) dA. 3.3)
obs

This is the so-called p-value (or significance) of the test; it is illustrated graphically in
Fig. 3. The p-value required to reject the null hypothesis determines a threshold A\,
above which you reject Hy and accept H; (e.g., claim a detection). It is related to the
false alarm probability for the test as we explain below.

The above statistical test is subject to two types of errors: (i) type I or false alarm
errors, which arise if the data are such that you reject the null hypothesis (i.e., Agps >
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/Ay) when it is actually true, and (ii) type Il or false dismissal errors, which arise if the
data are such that you accept the null hypothesis (i.e., Agps < /Ay) when it is actually
false. The false alarm probability o and false dismissal probability S(a) are given
explicitly by

o = Prob(A > AL|Hy), 3.4
B(a) = Prob(A < A|Hy), (3.5

where a is the amplitude of the gravitational-wave signal, assumed to be present under
the assumption that Hj is true. To calculate the false dismissal probability 8(a), one
needs the sampling distribution of the test statistic assuming the presence of a signal
with amplitude a.

Different test statistics are judged according to their false alarm and false dismissal
probabilities. Ideally, you would like your statistical test to have false alarm and false
dismissal probabilities that are both as small as possible. But these two properties
compete with one another as setting a larger threshold value to minimize the false
alarm probability will increase the false dismissal probability. Conversely, setting a
smaller threshold value to minimize the false dismissal probability will increase the
false alarm probability.

In the context of gravitational-wave data analysis, the gravitational-wave commu-
nity is (at least initially) reluctant to falsely claim detections. Hence the false alarm
probability is set to some very low value. The best statistic then is the one that mini-
mizes the false dismissal probability (i.e., maximizes detection probability) for fixed
false alarm. This is the Neyman—Pearson criterion. For medical diagnosis, on the other
hand, a doctor is very reluctant to falsely dismiss an illness. Hence the false dismissal
probability will be set to some very low value. The best statistic then is the one which
minimizes the false alarm probability for fixed false dismissal.

3.2.2 Frequentist detection probability

The value 1 — B(a) is called the detection probability or power of the test. It is the
fraction of times that the test statistic /A correctly identifies the presence of a signal of
amplitude a in the data, for a fixed false alarm probability « (which sets the threshold
A4). A plot of detection probability versus signal strength is often used to show how
strong a signal has to be in order to detect it with a certain probability. Since detection
probability does not depend on the observed data—it depends only on the sampling
distribution of the test statistic and a choice for the false alarm probability—detection
probability curves are often used as a figure-of-merit for proposed search methods for
a signal. Figure 4 shows a detection probability curve, with the value of a needed to
be detectable with 90% frequentist probability indicated by the dashed vertical line.
We will denote this value of a by a®*%'PP Note that as the signal amplitude goes to
zero, the detection probability reduces to the false alarm probability «, which for this
example was chosen to be 0.10.
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Detection probability

o
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o

90%.DP

Fig. 4 Detection probability as a function of the signal amplitude for a false alarm probability equal to
10%. The value of a needed for 90% detection probability is indicated by the dashed vertical line and is
denoted by q%0%DP

p(A|a :a90%,UL} Ha)

area = 0.90

1 >
> A

Aobs A

Fig. 5 Graphical representation of a frequentist 90% confidence level upper limit. When a = a%0%. UL,

the probability of obtaining a value of the detection statistic A > Agpg is equal to 0.90

3.2.3 Frequentist upper limits

In the absence of a detection (i.e., if the observed value of the test statistic is less
than the detection threshold A.), one can still set a bound (called an upper limit) on
the strength of the signal that one was trying to detect. The upper limit depends on
the observed value of the test statistic, Agps, and a choice of confidence level, CL,
interpreted in the frequentist framework as the long-run relative occurrence for a set
of repeated identical experiments. For example, one defines the 90% confidence-level
upper limit ¢®0% UL as the minimum value of a for which A > Agps at least 90% of
the time:

Prob(A > Agpsla = a®*% VUt H,) > 0.90. (3.6)

In other words, if the signal has an amplitude %' UL or higher, we would have

detected it in at least 90% of repeated observations. A graphical representation of a
frequentist upper limit is given in Fig. 5.
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3.2.4 Frequentist parameter estimation

The frequentist prescription for estimating the value of a particular parameter a, like
the amplitude of a gravitational-wave signal, is slightly different than the method used
to claim a detection. You need to first construct a statistic (called an estimator) a of the
parameter a you are interested in. (This might be a maximum-likelihood estimator of
a, but other estimators can also be used). You then calculate its sampling distribution
p(ala, Hy). Note that statements like

Prob(a — A < a <a+ A) = 0.95, (3.7)

which one constructs from p(ala, H,) make sense in the frequentist framework, since
a is a random variable. Although the above inequality can be rearranged to yield

Prob(a— A <a <a+A) =0.95, (3.8)

this should not be interpreted as a statement about the probability of a lying within a
particular interval [a@ — A, a + A], since a is not a random variable. Rather, it should
be interpreted as a probabilistic statement about the set of intervals {[a — A, a + A]}
for all possible values of a. Namely, in a set of many repeated experiments, 0.95 is the
fraction of the intervals that will contain the true value of the parameter a. Such an
interval is called a 95% frequentist confidence interval. This is illustrated graphically
in Fig. 6.

It is important to point out that an estimator can sometimes take on a value of the
parameter that is not physically allowed. For example, if the parameter a denotes the
amplitude of a gravitational-wave signal (so physically a > 0), it is possible fora < 0
for a particular realization of the data. Note that there is nothing mathematically wrong
with this result. Indeed, the sampling distribution for a specifies the probability of

plala, H,)

> a

Fig. 6 Definition of the frequentist confidence interval for parameter estimation. Each circle and line
represents a measured interval [a — A, @ + A]. The set of all such intervals will contain the true value of the
parameter a (indicated here by the dotted vertical line) CL x 100% of the time, where CL is the confidence
level

@ Springer



2 Page 28 of 223 J. D. Romano, N. J. Cornish

obtaining such values of a. Itis even possible to have a confidence interval [a —A, a+A]
all of whose values are unphysical, especially if one is trying to detect a weak signal
in noise. Again, this is mathematically allowed, but it is a little awkward to report a
frequentist confidence interval that is completely unphysical. We shall see that within
the Bayesian framework unphysical intervals and unphysical posteriors never arise, as
a simple consequence of including a prior distribution on the parameter that requires
a>0.

3.2.5 Unified approach for frequentist upper limits and confidence intervals

Frequentists also have a way of avoiding unphysical or empty confidence intervals,
which at the same time unifies the treatment of upper limits for null results and
two-sided intervals for non-null results. This procedure, developed by Feldman and
Cousins (1998), also solves the problem that the choice of an upper limit or two-sided
confidence interval leads to intervals that do not have the proper coverage (i.e., the
probability that an interval contains the true value of a parameter does not match the
stated confidence level) if the choice of reporting an upper limit or two-sided con-
fidence interval is based on the data and not decided upon before performing the
experiment.

The basic idea underlying this unified approach to frequentist intervals is a new
specification (or ordering) of the values of the random variable to include in the
acceptance intervals for an unknown parameter. If we let a denote the parameter
whose value we are trying to determine, and a be an estimator of a with sampling
distribution p(ala, H,), then the choice of acceptance intervals becomes, for each
value of a, how do we choose [a1, d] such that

as
Prob(a; < a < ap) = f plala, Hy)da = CL, 3.9

ai

where CL is the confidence level, e.g., CL = 0.95. The ordering principle proposed
by Feldman and Cousins (1998) is based on the ranking function

p(ala’ Ha)

R(a =
@) = Gla, Hy)|

) (3.10)

aA=dbpest

where apey 1S the value of the parameter a that maximizes the sampling distribution
p(ala, H,) for a given value of a. The prescription then for constructing the acceptance
intervals is to find, for each allowed value of a, values of a; and a; such that R(a;|a) =
R(az|a) and for which (3.9) is satisfied. The set of all such acceptance intervals for
different values of a forms a confidence belt in the aa-plane, which is then used to
construct an upper limit or a two-sided confidence interval for a particular observed
value of the estimator d, as explained below and illustrated in Fig. 7.

As a specific example, let us suppose that a is Gaussian-distributed about a with

variance o2
R 1 _l(&fa)z
plala, Ha)=—m e 2 o2 3.11)
o
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Fig. 7 Confidence belt for 95%
confidence-level intervals for a
Gaussian distribution with mean
a > 0. (The values for a and a
are given here in units of ). The
solid horizontal line shows the
acceptance interval for a = 2.0.
The two dashed vertical lines
correspond to two different
observed values for the estimator
a: a = —0.5, which has a 95%
confidence-level upper limit

a < 1.5;and a = 2, which has a
95% confidence-level two-sided
interval a € [0.35, 3.95]

and that the unknown parameter a represents the amplitude of a signal, so thata > 0.
(Recall that it is possible, however, for the estimator a to take on negative values).
Then apesy = a if a > 0, while apesy = 0 if a < 0, for which

, a>0
p(ala, Hy) — | V2o L2l (3.12)
A=apest Nerr exp —7?] , a<0
and -
exp [—%(a;f) ], a>0
R(ala) = | (2aaia®) R . (3.13)
exp[ 2(_‘?2” ], a<o0

The confidence belt constructed from this ranking function is shown in Fig. 7. The solid
horizontal line at a = 2 shows the corresponding 95% confidence-level acceptance
interval for this ranking function. The two dashed vertical lines correspond to two
different observed values for the estimator a, leading to a 95% confidence-level upper
limit and two-sided interval, respectively.

3.3 Bayesian inference

In the following subsections, we again describe parameter estimation and hypothesis
testing, but this time from the perspective of Bayesian inference.
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plald)

area=0.95

Amode - A Amode Amode T A

Fig. 8 Definition of a Bayesian credible interval for parameter estimation. Here we construct a symmetric
95% credible interval centered on the mode of the distribution

3.3.1 Bayesian parameter estimation

In Bayesian inference, a parameter, e.g., a, is estimated in terms of its posterior dis-
tribution, p(a|d), in light of the observed data d. As discussed in the introduction to
this section, the posterior p(a|d) can be calculated from the likelihood p(d|a) and the
prior probability distribution p(a) using Bayes’ theorem

_ p(dla)p(a)_

p(ald) (@)

(3.14)

The posterior distribution tells you everything you need to know about the parameter,
although you might sometimes want to reduce it to a few numbers—e.g., its mode,
mean, standard deviation, etc.

Given a posterior distribution p(a|d), a Bayesian confidence interval (often called
a credible interval given the Bayesian interpretation of probability as degree of belief,
or state of knowledge, about an event) is simply defined in terms of the area under
the posterior between one parameter value and another. This is illustrated graphically
in Fig. 8, for the case of a 95% symmetric credible interval, centered on the mode of
the distribution amege- If the posterior distribution depends on two parameters a and
b, but you really only care about a, then you can obtain the posterior distribution for
a by marginalizing the joint distribution p(a, b|d) over b:

plald) = /db p(a,bld) = /db p(alb,d)p(b), (3.15)

where the second equality follows from the relationship between joint probabilities
and conditional probabilities, e.g., p(al|b,d)p(b) = p(a, bld). Variables that you
don’t particularly care about (e.g., the variance of the detector noise as opposed to
the strength of a gravitational-wave signal) are called nuisance parameters. Although
nuisance parameters can be handled in a straight-forward manner using Bayesian
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inference, they are problematic to deal with (i.e., they are a nuisance!) in the context
of frequentist statistics. The problem is that marginalization doesn’t make sense to a
frequentist, for whom parameters cannot be assigned probability distributions.

The interpretation of Bayes’ theorem (3.14) is that our prior knowledge is updated
by what we learn from the data, as measured by the likelihood, to give our posterior
state of knowledge. The amount learned from the data is measured by the information

gain
/= /da plald) log (p(‘”d)) . (3.16)
p(a)

Using a natural logarithm gives the information in nats, while using a base 2 logarithm
gives the information in bits. If the data tells us nothing about the parameter, then
p(d|a) = constant, which implies p(a|d) = p(a) and thus I = 0.

3.3.2 Bayesian upper limits
A Bayesian upper limit is simply a Bayesian credible interval for a parameter with the
lower end point of the interval set to the smallest value that the parameter can take.
For example, the Bayesian 90% upper limit on a parameter a > 0 is defined by:
Prob(0 < a < a”*%r|4) = 0.90, (3.17)
where probability is interpreted as degree of belief, or state of knowledge, that the
parameter a has a value in the indicated range. One usually sets an upper limit on a
parameter when the mode of the distribution for the parameter being estimated is not
sufficiently displaced from zero, as shown in Fig. 9.

3.3.3 Bayesian model selection

Bayesian inference can easily be applied to multiple models or hypotheses, each with
a different set of parameters. In what follows, we will denote the different models

plald)

area = 0.90

Amode 0%, UL

Fig. 9 Bayesian 90% credible upper limit for the parameter a
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by My, where the index « runs over the different models, and the associated set of
parameters by the vector . The joint posterior distribution for the parameters 6, is
given by

p(d|0o, Mo)p(0a| Ma)
0yld, My) = , 3.18
A ) SdIMy) (3.18)

and the model evidence is given by

p(d|Mq) =/P(d|0a,/\/la)p(0al/\/la)d0a, (3.19)

where we marginalize over the parameter values associated with that model. The
posterior probability for model M, is given by Bayes’ theorem as

d|IMg)p(My
p(Mgld) = M (3.20)
p(d)

where the normalization constant p(d) involves a sum over all possible models:

pd) =Y p(d|IMq) p(Ma). (3.21)

Since the space of all possible models is generally unknown, the sum is usually taken
over the subset of models being considered. The normalization can be avoided by
considering the posterior odds ratio between two models:

PMald) _ pMa) pdIMe)
pMgld)  p(Mp) p(dIMpg)

Oup(d) = (3.22)

The first ratio on the right-hand side of the above equation is the prior odds ratio for
models «, B, while the second term is the evidence ratio, or Bayes factor,

p(d|Ma)

Bugld) = ——.
D =AMy

(3.23)

The prior odds ratio is often taken to equal unity, but this is not always justified. For
example, the prior odds that a signal is described by general relativity versus some
alternative theory of gravity should be much larger than unity given the firm theoretical
and observational footing of Einstein’s theory.

While the foundations of Bayesian inference were laid out by Laplace in the 1700s, it
did not see widespread use until the late twentieth century with the advent of practical
implementation schemes and the development of fast electronic computers. Today,
Monte Carlo sampling techniques, such as Markov Chain Monte Carlo (MCMC)
and Nested Sampling, are used to sample the posterior and estimate the evidence
(Skilling 2006; Gair et al. 2010). Successfully applying these techniques is something
of an art, but in principle, once the likelihood and prior have been written down, the
implementation of Bayesian inference is purely mechanical. Calculating the likelihood
and choosing a prior will be discussed in some detail in Sect. 3.6.
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3.4 Relating Bayesian and frequentist detection statements

It is interesting to compare the Bayesian model selection calculation discussed above
to frequentist hypothesis testing based on the maximum-likelihood ratio. For con-
creteness, let us assume that we have two models My (noise-only) and M (noise
plus gravitational-wave signal), with parameters 6, and {6,, 6}, respectively. The
frequentist detection statistic will be defined in terms of the ratio of the maxima of the
likelihood functions for the two models:

maxg, maxg, p(d|0,,0,, M)
maxg, p(d|6), Mo)

As described above, the Bayes factor calculation also involves a ratio of two quantities,
the model evidences p(d| M) and p(d|My), but instead of maximizing over the
parameters, we marginalize over the parameters:

Jd8, [d8y p(d8,, 0, M1)p(@n, 0, M1)

Bio(d) =
0@ a0, pdio),, Mo)p(®, 1 Mo)

(3.25)

These two expressions can be related using Laplace’s approximation to individually
approximate the model evidences p(d| M) and p(d|My). This approximation is
valid when the data are informative—i.e., when the likelihood functions are peaked
relative to the joint prior probability distributions of the parameters. For an arbitrary
model M with parameters 6, the Laplace approximation yields:

AV
/ 40 pdi0. M)pOIM) = p(diyr. M) T2, (3.26)

where 0\ = Oy (d) maximizes the likelihood with respect to variations of 6 given
the data d; AV, is the characteristic spread of the likelihood function around its
maximum (the volume of the uncertainty ellipsoid for the parameters); and Vp is the
total parameter space volume of the model parameters. Applying this approximation
to models Mg and M in (3.25), we obtain

AV V)

~ A
Bio(d) ML(d)AVO/ Vo

(3.27)
or, equivalently,

(3.28)

21n Bio(d) ~ 21In (Am(d)) + 2In (M) .

AVy/ Vo

The second term on the right-hand side of the above equation is negative and penalizes
models that require a larger parameter space volume than necessary to fit the data. This
is basically an Occam penalty factor, which prefers the simpler of two models that
fit the data equally well. The first term has the interpretation of being the squared
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Table 3 Bayes factors and their interpretation in terms of the strength of the evidence in favor of one model
relative to the other

Byp(d) 21In Byg(d) Evidence for model My relative to Mg
<1 <0 Negative (supports model Mpg)

1-3 0-2 Not worth more than a bare mention
3-20 2-6 Positive

20-150 6-10 Strong

>150 >10 Very strong

Adapted from Kass and Raftery (1995)

signal-to-noise ratio of the data, assuming an additive signal in Gaussian-stationary
noise, and it can be used as an alternative frequentist detection statistic in place of
AML.

Table 3 from Kass and Raftery (1995) gives a range of Bayes factors and their
interpretation in terms of the strength of the evidence in favor of one model relative to
another. The precise levels at which one considers the evidence to be “strong” or “very
strong” is rather subjective. But recent studies (Cornish and Sampson 2016; Taylor
et al. 2016a) in the context of pulsar timing have been trying to make this correspon-
dence a bit firmer, using sky and phase scrambles to effectively destroy signal-induced
spatial correlations between pulsars while retaining the statistical properties of each
individual dataset. This is similar to doing time-slides for LIGO analyses, which are
used to assess the significance of a detection.

Taylor et al. (2016a) even go so far as to perform a hybrid frequentist-Bayesian
analysis, doing Monte Carlo simulations: (i) over different noise-only realizations,
and (ii) over different sky and phase scrambles, which null the correlated signal.
These simulations produce different null distributions for the Bayes factor, similar
to a null-hypothesis distribution for a frequentist detection statistic (in this case, the
log of the Bayes factor). The significance of the measured Bayes factor is then its
corresponding p-value with respect to one of these null distributions. The utility of
such a hybrid analysis is its ability to better assess the significance of a detection claim,
especially when there might be questions about the suitability of one of the models
(e.g., the noise model) used in the construction of a likelihood function.

3.5 Simple example comparing Bayesian and frequentist analyses
To further illustrate the relationship between Bayesian and frequentist analyses, we

consider in this section a very simple example—a constant signal with amplitude
a > 0 in white, Gaussian noise (zero mean, variance o'):

d=a+n;, i=1,2,...,N, (3.29)

where the index i labels the individual samples of the data. The likelihood functions for
the noise-only and signal-plus-noise models Mg and M are thus simple Gaussians:
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1 —LyN &2
PUIMY) = e e =1, (3:30)
1 1NN g2
p(la, M) = e > Limi(di=a)y” 3.31)

We will assume that the value of ¢ is known a priori. Thus, the noise model has no
free parameters, while the signal model has just one parameter, which is the amplitude
of the signal that we are trying to detect. We will choose our prior on a to be flat over
the interval (0, amax], S0 p(a) = 1/amax-

It is straight-forward exercise to check that the maximum-likelihood estimator of
the amplitude a is given by the sample mean of the data:

N
a=au.(d) = Z =d (3.32)

This is an unbiased estimator of ¢ and has variance aaz = 02 /N (the familiar variance

of the sample mean). Thus, the sampling distribution of a is simply

1 —5p-a?
Ners e Y . (3.33)
%a

plala, My) =

where a can take on either positive or negative values (even though a > 0).
To compute the posterior distribution p(a|d, M) for the Bayesian analysis, we
first note that

N
> (di — a)* = N(Var[d] + (a — &)*). (3.34)

The model evidence p(d|M) is then given by

_ Var[d]

Z(nz Amax—4
e a [erf( «/i ) + erf <fga)j|
Damaxv/N 2 )N=D/25(N=1)

pdIMy) = ) (3.35)

and the posterior distribution is given by

_ta=a? _ -1
P(Cl|d’Ml):«/%aAe 22 2[ef( “;"_0 )+erf(fa )} . (3.36)

Note that this is simply a truncated Gaussian on the interval a € (0, amax ], with mean
a and variance 0&2.

The above calculation shows that a is a sufficient statistic for a. This means that the
posterior distribution for @ can be written simply in terms of @, in lieu of the individual

samples d = {d;, d3, . .., dy}. The Bayes factor
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p(d|M)

Bio(d) = ———,
@) = Mo)

(3.37)

is given by
2
2

2 V2mos \ 1 Amax — 4 a
_ 27 a)t ax
Biold) =e ( - > |:erf (—ﬁ% ) + erf (—ﬁ0a>:| . (3.38)

In the limit where a is tightly peaked away from 0 and apax, the Bayes factor simplifies

to
2 J—
Bio(d) ~ e@ (ﬂ)

(3.39)

Amax

If we take the frequentist detection statistic to be twice the log of the maximum-
likelihood ratio, A(d) = 21n Apmp.(d), then

a? d?
Ad) = — = = p°, 3.40
(d) =N =" (3.40)

which is just the squared signal-to-noise ratio of the data. Furthermore, taking twice
the log of the approximate Bayes factor in (3.39) gives

21In Bio(d) ~ A(d) +21In (@) , (3.41)

max

where the first term is just the frequentist detection statistic and second term expresses
the Occam penalty. This last result is consistent with the general relation (3.28) dis-
cussed in the previous subsection.

The statistical distribution of the frequentist detection statistic can be found in
closed form for this simple example. Since a linear combination of Gaussian random
variables is also Gaussian-distributed, A is the square of a (single) Gaussian random
variable p = d+/N /o . Moreover, since p has mean y = a~/N /o and unit variance,
the sampling distribution for A in the presence of a signal is a noncentral chi-squared
distribution with one degree of freedom and non-centrality parameter A = u’> =
a’N/o?:

1 ANV
p(Ala, My) = Ze™ P2 (7) L1 (YN, (3:42)
where I_1 /5 is amodified Bessel function of the first kind of order —1/2. In the absence

of a signal (i.e., when a and hence A are equal to zero), /A is given by an (ordinary)
chi-squared distribution with one degree of freedom:

P(AIMp) = A12g=N2 (3.43)

V2I(1/2)
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Fig. 10 Equal-probability contour plot for the frequentist detection statistic A = d*N / o2 forasi gnal with
amplitude a > 0. The contours correspond to the values p(Ala, M7) = 0.01, 0.03, 0.05, 0.07, and 0.09

where I is the gamma function. Substituting explicit expressions for /_1,2(~/A/\) and
I'(1/2), we find:

1
P(AIMg) = %AfN% (3.44)
p(Ala, M) = 2;/\% [e‘%(ﬁ—mz + e_%(‘/KJ"/W] . (345)

An equal-probability contour plot of the sampling distribution of the detection statistic
is shown in Fig. 10. The fact that we are able to write down analytic expressions for the
sampling distributions for the detection statistic A is due to the simplicity of the signal
and noise models. For more complicated real-world problems, these distributions
would need to be generated numerically using fake signal injections and time-shifts
to produce many different realizations of the data (signal plus noise) from which one
can build up the distributions.

It is also important to point out that A is not a sufficient statistic for a, due to the fact
that A involves the square of the maximum-likelihood estimate &—i.e., A = >N /o>
Thus, we cannot take p(/Ala, M) conditioned on A (assuming a flat prior on a from
[0, amax]) to get the posterior distribution for a given d, since we would be missing
out on data samples that give negative values for a. Another way to see this is to start
with p(Ala, M) given by (3.45), and then make a change of variables from A to a
using the general transformation relation

pr(dy =px(x)dx = px(x)=[pr() If/(x)l]y:f(x) . (3.40)

This leads to

M 1 —ﬁ(&—a)z —2%(&+a)2
plala, My) = e +e i , (3.47)
V2moy
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Fig. 11 Examples of simulated data for weak (left panel) and strong (right panel) signals injected into the
data—aq = 0.05 and 0.3, respectively

which is properly normalized for @ > 0, but differs from (3.33) due to the second
term involving a + a. Thus, we need to construct p(a|d) from (3.33)—and not from
(3.47)—if we want the posterior to have the proper dependence on a.

3.5.1 Simulated data

For our example, we will take N = 100 samples, 0 = 1, and amax = 1.0. We also
simulate data with injected signals having amplitudes ap = 0.05 and 0.3, respectively.
Since the expected signal-to-noise ratio, a+/N /o, is given by 0.5 and 3.0, these injec-
tions correspond to weak and (moderately) strong signals. Single realizations of the
data for the two different injections are shown in Fig. 11. The noise realization is the
same for the two injections.

3.5.2 Frequentist analysis

Given the values for N, o, and the probability distributions (3.44) and (3.45) for the
frequentist detection statistic /A, we can calculate the detection threshold for fixed
false alarm probability « (which we will take to equal 10%), and the corresponding
detection probability as a function of the amplitude a. The detection threshold turns
out to equal A, = 2.9 (so 10% of the area under the probability distribution p(A| M)
is for A > A,). The value of the amplitude a needed for 90% confidence detection
probability with 10% false alarm probability is given by a”%PP = 0.30. (These
results for the detection threshold and detection probability do not depend on the
particular realizations of the simulated data). The corresponding curves are shown in
Fig. 12.

The sample mean of the data for the two simulations are given by d = 0.085
and 0.335, respectively. Since ¢ = d, these are also the values of the maximum-
likelihood estimator of the amplitude a. The corresponding values of the detection
statistic are Agps = 0.72 and 11.2 for the two injections, and have p-values equal to
0.45 and 9.0 x 104, as shown in Fig. 13. The 95% frequentist confidence interval is
given simply by [a@ — 203, a + 20;], since a is Gaussian-distributed, and has values
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Fig. 12 Left panel Probability distribution for the frequentist detection statistic A for the noise-only model.
The threshold value of the statistic for 10% false alarm probability is Ay = 2.9. Right panel Detection
probability as a function of the amplitude a. The value of the amplitude needed for 90% confidence detection

probability with 10% false alarm probability is %0%-PP = 0.30
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Fig.13 Graphical representation of the p-value calculation for the weak (left panel) and strong (right panel)
injections. For the weak injection, Aqps = 0.72 is marked by the red vertical line, with corresponding p-
value 0.45. For the strong injection, Agps = 11.2 is sufficiently large that the corresponding red vertical
line is not visible on this graph. The p-value for the strong injection is 9.0 x 104

[—0.11, 0.29] and [0.14, 0.54], respectively. These intervals contain the true value of
the amplitudes for the two injections, ap = 0.05 and 0.3.

The 90% confidence-level frequentist upper limits are %'V = 0.20 and 0.46,
respectively. Figure 14 shows the probability distributions for the detection statistic
/A conditioned on these upper limit values for which the probability of obtaining
A > Agps 1s equal to 0.90.

3.5.3 Bayesian analysis

The results of the Bayesian analysis for the two different injections are summarized
in Fig. 15. The plots show the posterior distribution for the amplitude a given the
value of the maximum-likelihood estimator a, which (as we discussed earlier) is a
sufficient statistic for the data d. Recall that the posterior for a for this example is
simply a truncated Gaussian from 0 to am,x centered on a, which could be negative,
see (3.36). The left two panels show the graphical construction of the Bayesian 90%
upper limit and 95% credible interval for the amplitude a for the weak injection,
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Fig. 14 Probability distributions for the frequentist detection statistic /A, conditioned on the value of the
amplitude a for which the probability of obtaining A > Agpg is equal to 0.90. These define the 90%
confidence-level frequentist upper limits a%0%.UL = .20 and 0.46, respectively. The red vertical lines
mark the value of Agpg for the weak (left panel, Agps = 0.72) and strong (right panel, Agpg = 11.2)
injections
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Fig. 15 Posterior distributions for the amplitude a given the value of the maximum-likelihood estimator a.
The left two panels are for the weak injection; the right two panels are for the strong injection. The top two
plots illustrate the graphical construction of Bayesian 90% upper limits for the two injections; the bottom
two plots illustrate the graphical construction of the Bayesian 95% credible intervals. The dashed vertical
lines indicate the values of the injected signal amplitude ag, which equal 0.05 and 0.3, respectively

a”0% UL — (.23 and [0, 0.26]. The right two panels show similar plots for the strong
injection, a®0% UL = 0.46 and [0.14, 0.54].

Finally, the Bayes factor for the signal-plus-noise model M relative to the noise-
only model My can be calculated by taking the ratio of the marginalized likelihood
p(d| M) given by (3.35) to p(d|My) given by (3.30). Doing this, we find 2 In
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Table 4 Tabular summary of the frequentist and Bayesian analysis results for the simulated data (both
weak and strong injections)

(Weak injection, ayg = —0.05) (Strong injection, ag = 0.3)
Frequentist Bayesian Frequentist Bayesian
Detection threshold (Ax) 2.9 - 2.9 -
Detection statistic (Agpg) 0.72 - 11.2 -
p-value 0.45 - 9.0 x 1074 -
90% upper limit 0.20 0.23 0.46 0.46
95% interval [—0.11,0.29] [0, 0.26] [0.14, 0.54] [0.14, 0.54]
ML estimator (a) 0.085 0.085 0.335 0.335
Bayes factor (21n Bjg) - 2.2 - 9.2
Laplace approximation - -2.0 - 8.5

A dash indicates that a particular quantity is not relevant for either the frequentist or Bayesian analysis

Bip = —2.2 and 9.2 for the weak and strong signal injections, respectively. The
Laplace approximation to this quantity is given by (3.41), with values —2.0 and 8.5,
respectively.

3.5.4 Comparison summary

Table 4 summarizes the numerical results for the frequentist and Bayesian analyses.
We see that the frequentist and Bayesian 90% upper limits and 95% intervals numer-
ically agree for the strong injection, but differ slightly for the weak injection. The
interpretation of these results is different, of course, for a frequentist and a Bayesian,
given their different definitions of probability. But for a moderately strong signal in
noisy data, we expect both approaches to yield a confident detection as they have for
this simple example.

3.6 Likelihoods and priors for gravitational-wave searches

To conclude this section on statistical inference, we discuss some issues related
to calculating the likelihood and choosing a prior in the context of searches for
gravitational-wave signals using a network of gravitational-wave detectors.

3.6.1 Calculating the likelihood

Defining the likelihood function (for either a frequentist or Bayesian analysis) involves
understanding the instrument response and the instrument noise. The data collected
by gravitational-wave detectors comes in a variety of forms. For ground-based inter-
ferometers such as LIGO and Virgo, the data comes from the error signal in the
differential arm-length control system, which is non-linearly related to the laser phase
difference, which in turn is linearly related to the gravitational-wave strain. For pulsar
timing arrays, the data comes from the arrival times of radio pulses (derived from
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the folded pulse profiles), which must be corrected using a complicated timing model
that takes into account the relative motion of the telescopes and the pulsars, along
with the spin-down of the pulsars, in addition to a variety of propagation effects. The
timing residuals formed by subtracting the timing model from the raw arrival times
contain perturbations due to gravitational waves integrated along the line of sight to
the pulsar. For future space-based gravitational-wave detectors such as LISA, the data
will be directly read out from phase meters that perform a heterodyne measurement
of the laser phase. Synthetic combinations of these phase read outs (chosen to cancel
laser phase noise) are then linearly proportional to the gravitational-wave strain.

Since gravitational waves can be treated as small perturbations to the background
geometry, the time delays or laser phase/frequency shifts caused by a gravitational
wave can easily be computed. These idealized calculations have then to be related
to the actual observations, either by propagating the effects through an instrument
response model, or, alternatively, inverting the response model to convert the measured
data to something proportional to the gravitational-wave strain. (For example, most
LIGO analyses work with the calibrated strain, rather than the raw differential error
signal). If we assume that the gravitational-wave signal and the instrument noise are
linearly independent, then the data taken at time ¢ can be written as

d(t) = h(t) + n(t), (3.48)

where h(t) is shorthand for the gravitational-wave metric perturbations /.y (z, X)
convolved with the instrument response function and converted into the appropriate
quantity—phase shift, time delay, differential arm length error, etc. (A detailed calcu-
lation of & () and the associated detector response functions will be given in Sect. 5.2).
As mentioned above, the data d(¢#) may be the quantity that is measured directly, or,
more commonly, some quantity that is derived from the measurements such as timing
residuals or calibrated strain. In any analysis, it is important to marginalize over the
model parameters used to make the conversion from the raw data.
The likelihood of observing d(¢) is found by demanding that the residual

r(t) =d(t) — h(), (3.49)
be consistent with a draw from the noise distribution pj, (x):
pAD)|h(1) = pp(r(t)) = pa(d(t) — h(1)). (3.50)

Here h(t) is our model® for the gravitational-wave signal. The likelihood of observing
a collection of discretely-sampled data d = {di,da, ...,dy}, where d; = d(t;),
is then given by p(d|h) = p,(r), where r = {r{,r2, ..., ry} with r; = r(;). Since
instrument noise is due to a large number of small disturbances combined with counting
noise in the large-number limit, the central limit theorem suggests that the noise
distribution can be approximated by a multi-variate normal (Gaussian) distribution:

6 Since the model h(r) will differ from the actual i (), we use an overbar for the model to distinguish the
two.
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_ 1 _1 (C- ,
pdli) = ——— 2 Xai 1y (3.51)

Jdetn Cp)

where C), is the noise correlation matrix, with components
(Cnij = (ninj) — (ni)(nj). (3.52)

If the noise is stationary, then the correlation matrix only depends on the lag |f; —
tjl, and the matrix C,, can be (approximately) diagonalized by transforming to the
Fourier domain, where r; should then be interpreted as 7 ( f;) (see Appendix D.6 for a
more careful treatment of discrete probability distributions in the time and frequency
domain). In practice, the noise observed in most gravitational-wave experiments is
neither stationary nor Gaussian (Sect. 9 and Appendix C), but (3.51) still serves as a
good starting point for more sophisticated treatments. The Gaussian likelihood (3.51)
immediately generalizes for a network of detectors:

_ 1 Iy, (G i
dlih) = 2 21i i\ )i gj J-’, 3.53
pin) Nzl (59

where I, J labels the detector, and i, j labels the discrete time or frequency sample
for the corresponding detector. Note here that the parameters 6 appearing in (3.18) are
the individual time or frequency samples /;.

3.6.2 Choosing a prior

For Bayesian inference, it is also necessary to define a model M for the gravitational-
wave signal, which is done by placing a prior p (| M) on the samples /; . In some cases,
a great deal is known about the signal model, such as when approximate solutions to
Einstein’s equations provide waveform templates. In that case the prior can be written
as

p(h|M) = 8(h — h(0, M)) p(O|M). (3.54)

Marginalizing over & converts the posterior p(h|d) to a posterior distribution for the
signal parameters p(@|d, M). In other cases, such as for short-duration bursts associ-
ated with certain violent astrophysical events, much less is known about the possible
signals and weaker priors have to be used. Models using wavelets, which have finite
time-frequency support, and priors that favor connected concentrations of power in
the time-frequency plane are commonly used for these “unmodeled burst” searches.
At the other end of the spectrum from deterministic point sources are the statistically-
isotropic stochastic backgrounds that are thought to be generated by various processes
in the early Universe, or through the superposition of a vast number of weak astro-
physical sources. In the case of Gaussian stochastic signals, the prior for a signal
h = (hy(7), hx (7)) coming from direction 7 direction has the form

_ 1 NP YN
p(RIM) = s o~ R+ @)/28) (3.55)
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where Sj, is the power spectrum of the background. As we shall show in Sect. 4,
marginalizing over & converts the posterior p(h|d) to a posterior p(Sy|d, M) for Sj,.

4 Correlations

Correlation is not cause, it is just a ‘music of chance’. Siri Hustvedt

Stochastic gravitational waves are indistinguishable from unidentified instrumental
noise in a single detector, but are correlated between pairs of detectors in ways that
differ, in general, from instrumental noise. Cross-correlation methods basically use
the random output of one detector as a template for the other, taking into account the
physical separation and relative orientation of the two detectors. In this section, we
introduce cross-correlation methods in the context of both frequentist and Bayesian
inference, analyzing in detail a simple toy problem (the data are “white” and we ignore
complications that come from the separation and relative orientation of the detectors—
this we discuss in detail in Sect. 5). We also briefly discuss possible alternatives to
cross-correlation methods, e.g., using a null channel as a noise calibrator.

The basic idea of using cross-correlation to search for stochastic gravitational-
waves can be found in several early papers (Grishchuk 1976; Hellings and Downs
1983; Michelson 1987; Christensen 1990, 1992; Flanagan 1993). The derivation of
the likelihood function in Sect. 4.2 follows that of Cornish and Romano (2013); parts
of Sect. 4.4 are also discussed in Allen et al. (2003) and Drasco and Flanagan (2003).

4.1 Basic idea

The key property that allows one to distinguish a stochastic gravitational-wave back-
ground from instrumental noise is that the gravitational-wave signal is correlated
across multiple detectors while instrumental noise typically is not. To see this, con-
sider the simplest possible example, i.e., a single sample of data from two colocated
and coaligned detectors:

di=h+ny,

4.1
dy = h+ no. @D

Here h denotes the common gravitational-wave signal and n1, n, the noise in the two
detectors. To cross correlate the data, we simply form the product of the two samples,
C12 = dids. The expected value of the correlation is then

A

(C12) = (dids) = (h2) + (mina) + g2 ahi2 (02 + (mina), (42)

since the gravitational-wave signal and the instrumental noise are uncorrelated. If the
instrumental noise in the two detectors are also uncorrelated, then

(ninz) =0, 4.3)
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which implies
(Cr2) = (h*) = Sp. (4.4)

This is just the variance (or power) of the stochastic gravitational-wave signal. So
by cross-correlating data in two (or more) detectors, we can extract the common
gravitational-wave component.

We have assumed here that there is no cross-correlated noise (instrumental or envi-
ronmental). If there is correlated noise, then the simple procedure describe above needs
to be augmented. This will be discussed in more detail in Sect. 9.6.

4.2 Relating correlations and likelihoods

The cross-correlation approach arises naturally from a standard likelihood analysis if
we adopt a Gaussian stochastic template for the signal. Revisiting the example from
the previous section, let’s assume that the detector noise is Gaussian-distributed with
variances S,, and S,,. Then the likelihood function for the data d = (dy, d») for the
noise-only model My is simply

ISy S Mo) ! Y @.5)
s Sy =———exp|—=|—+="=1]|. .
PR S 0 = s P T2\ 8 T S

For the signal-plus-noise model M, we have

_ 1 1(dy=h)? (d—h)?
p<d|sm,sn2,h,M1>=—xp[——{“ N )”,<4.6)

e
27/ Sn; Sny 2 Sny Sns

where the gravitational-wave signal / is assumed to be a Gaussian random deviate
with probability distribution

p(h|Sp, My) =

1 h?
exp|—=—1. 4.7
27 Sy, 2.8y

In most applications we are not interested in the value of h, but rather the power Sj,.
Marginalizing over #, the likelihood takes the form

1 1 2 —1
d|S,., Su., Sp, M) = ——e¢" 2 Yr=1di(C )udf, 4.8
p( | nys Onys Oh 1) det(271C) ( )
where
. Sn1 + Sy Sh
C= [ o St Sh] (4.9)
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Maximizing the likelihood with respect to Sy, S,, and S,, yields the maximum-
likelihood estimators

Sy, =d? —dydy, (4.10)

Thus, the cross-correlation statistic C 12 is the maximum-likelihood estimator for a
Gaussian stochastic gravitational wave template with zero mean and variance Sj.

4.3 Extension to multiple data samples
The extension to multiple data samples

di=hi+ny, i=12,...,N,
drj =hi +ny, i=12,...,N, “.11)
is fairly straightforward. In the following two subsections, we consider the cases where
the detector noise and stochastic signal are either: (i) both white (i.e., the data are
uncorrelated between time samples) or (ii) both colored (i.e., allowing for correlations
in time). The white noise example will be analyzed in more detail in Sects. 4.4—4.6.

4.3.1 White noise and signal

If the detector noise and stochastic signal are both white, then the likelihood functions
for the datad = {d;; d»;}, are simply products of the likelihoods (4.5) and (4.8) for the
individual data samples. We can write these product likelihoods as single multivariate
Gaussian distributions:

1 | T -1
da|S,,, Sy, Mp) = ———— 347Gy d, 4.12
pd] nis Ony 0) det(ann)e ( )

1 1 T -1
d|Sn;s Spys Spa M) = ——— e 24 C 4, 4.13
p(d| nys Onys Oh 1) ’—det(Zn'C) ( )

where
Sy Inxn OnxnN
C, = ! s 4.14
! [ Onxn  Suy ]lN><N:| “4.14)
| Sy S Ty xwn ShIyxn

C‘[ Silnen  (Swy+ S0 Ty | (+-15)

The arguments in the exponential have the form

2 N
d'c,ld = Z Z dri (Cn_l)” s dyj, (4.16)

1,J=1i,j=1
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and similarly for 7 C~'d. The maximum-likelihood estimators for this case are:

L
Sh = delidﬁ,

i=1

1o 1 &
Smo=y Zdlzi N Zdlidzi, (4.17)
i=1 i=1

| |
2

n = 2 lidZi N E 1 diidy;.

1= 1=

>
I

Note that these are just averages of the single-datum estimators (4.10) over the N
independent data samples.

A couple of remarks are in order: (i) It is easy to show that the expectation values
of the estimators are the true values of the parameters Sy, Sy,,, Sy,. It is also fairly
straightforward to calculate the variances of the estimators. In particular,

N A A 1
Var(§) = (57 = (3102 = - [SmSus + Su(S + S +257]. @18)

Note that this expression reduces to Var(Sh) A Sy, Sn,/N in the weak-signal limit,
Sp K Sp,, for I = 1,2. (ii) If we simply maximized the likelihood with respect to
variations of Sy, treating the noise variances S,, and S,, as known parameters, then
the frequentist estimator of S, would also include auto-correlation terms for each
detector:

A

N
1
S 280 8wy D dhidhi

i=1

T (S + Sw)? [

N N
1 1
+ Su, (ﬁ > di - Sm> + S, (ﬁ S od3 - Sn2>} . (419

i=1 i=1

In practice, however, the noise variances are not known well enough to be able to
extract useful information from the auto-correlation terms; they actually worsen the
performance of the simple cross-correlation estimator when the uncertainty in S, or
Sy, is greater than or equal to Sj,.

4.3.2 Colored noise and signal

For the case where the detector noise and stochastic signal are colored, it simplest to
work in the frequency domain, since the Fourier components are independent of one
another. (This assumes that the data are stationary, so that there is no preferred origin
of time). Assuming multivariate Gaussian distributions as before, the variances S, ,,
Su,, and S;, generalize to power spectral densities, which are functions of frequency
defined by
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(A (Hp(f)) = %S(f = ) Su, () (R(HR*(fN) = %50‘ — ) Su( ),
(4.20)
where I = 1, 2 and tilde denotes Fourier transform.” The factor of 1/2 in (4.20) is for
one-sided power spectra, for which the integral of the power spectrum over positive
frequencies equals the variance of the data:

Var[h]:/o df Su(f). 4.21)

This is just the continuous version of Parseval’s theorem, see e.g., (D.40). For N
samples of discretely-sampled data from each of two detectors I = 1, 2 (total duration
T), the likelihood function for a Gaussian stochastic signal template becomes (Allen
et al. 2002; Cornish and Romano 2013):

N/2—1

1 ~3 s di o (Co™), ditio
(d|Sny s Snys Sny M) = —— 2 17 ,
PR S Sk 20 ,EO detz C(fi)
(4.22)
where .
~ Sn () + Sn(f) Sn(f) }
C(fy==|"""M . 4.23
=7 [ SIS+ i) (29
Here k = 0,1,..., N/2 — 1 labels the discrete positive frequencies. There is no

square root of the determinant in the denominator of (4.22) since the volume element
for the probability density involves both the real and imaginary parts of the Fourier
transformed data (Appendix D.6).

We do not bother to write down the maximum-likelihood estimators of the signal
and noise power spectral densities for this particular example. We will return to this
problem in Sect. 6, where we discuss the optimally-filtered cross-correlation statistic
for isotropic stochastic backgrounds. There one assumes a particular spectral shape
for the gravitational-wave power spectral density, and then simply estimates its overall
amplitude. That simplifies the analysis considerably.

4.4 Maximum-likelihood detection statistic

Let’s return to the example discussed in Sect. 4.3.1, which consists of N samples of
data in each of two detectors, having uncorrelated white noise and a common white
stochastic signal. As described in Sect. 3.4, one can calculate a frequentist detection

statistic based on the maximum-likelihood ratio:

maxs, .S,,,S p|Snys Snys Suy M)

maxsnl »Snz p(d|Sn1 ) Sn27 MO)

7 Our convention for Fourier transform is fl(f) = ffooo dt eiiZ”fth(t).
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Substituting (4.12) and (4.13) for the likelihood functions and performing the maxi-
mizations yields

co 1-N2
S
AmL@) = | 1— -2 , (4.25)
S182
where
| & el
Sl Eﬁzdlzl =Sn1 +Sh7 SZENZdZZZ =S"2+Sh' (426)
i i=1

Note that the these estimators involve only autocorrelations of the data. In the absence
of a signal, they are maximum-likelihood estimators of the noise variances S,, and
Sy, But in the presence of a signal, they are maximum-likelihood estimators of the
combined variances S1 = S,, + S, and $2 = S, + Sp.

Recall that for comparison with Bayesian model selection calculations, it is
convenient to define the frequentist statistic A(d) as twice the logarithm of the
maximum-likelihood ratio:

o2
Ad) = 21n (AmL(d)) = —N In [1 - AS"A } . (4.27)
518,

In the limit that the stochastic gravitational-wave signal is weak compared to the
detector noise—i.e., S, K Sy, for I = 1, 2—the above expression reduces to

Si S
Ald) ~ — ~ .
SISZ/N Serlz/N

(4.28)

This is Just the squared signal-to-noise ratio of the cross-correlation statistic. Note also
that Sh / 51 Sz is the normalized cross-correlation (i.e., coherence) of the data from the
two detectors. It is a measure of how well the data in detector 2 matches that in detector
1.

From (4.17), we see that A(d) is a ratio of the square of a sum of products of Gaus-
sian random variables to the product of a sum of squares of Gaussian random variables.
This is a sufficiently complicated expression that we will estimate the distribution of
A(d) numerically, doing fake signal injections into many realizations of simulated
noise to build up the sampling distribution. We do this explicitly in Sect. 4.6, when
we compare the frequentist and Bayesian correlation methods for this example.

4.5 Bayesian correlation analysis

Compared to the frequentist cross-correlation analysis described above, a Bayesian
analysis is conceptually much simpler. One simply needs the likelihood functions
p(d|Su,, Sny, Mo) and p(d|Su,, Sn,, Sh. M) given by (4.12) and (4.13), and joint
prior probability distributions for the signal and noise parameters. For our example,
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we will assume that the signal and noise parameters are statistically independent of
one another so that the joint prior distributions factorize into a product of priors for
the individual parameters. We use Jeffrey’s priors for the individual noise variances:

pi(Sy,) < 1/S,,, 1=1,2, (4.29)
and a flat® prior for the signal variance:
p(Sy) = const. (4.30)
Then, using Bayes’ theorem (3.18), we obtain the joint posterior distribution:
p(dISn;, Snys Sy M1)p(Snys Snys SpIM1)

p(dIMy)

1 1
X P(d|Sn1, Snzs Sh, MI)S_S_,
ny Ony

p(Snlv Snz» Sh|d7 Ml) =
(4.31)

where p(d|M) is the evidence (or marginalized likelihood) for the signal-plus-noise
model M. (Similar expressions can be written down for the noise-only model My).
The marginalized posterior distributions for the signal and noise parameters are given
by marginalizing over the other parameters. For example,

ds ds
p<sh|d,M1)o</ S”‘ / S”"’ p(d|Sn,s Suys Shy M) (4.32)
ni ny

for the signal variance Sj,.

Correlations enter the Bayesian analysis via the covariance matrix C that appears
in the likelihood function p(d|Sy,, Sn,. Sk, M1). The covariance matrix for the data
includes the cross-detector signal correlations, as we saw in (4.15). So although one
does not explicitly construct a cross-correlation statistic in the Bayesian framework,
cross correlations do play an important role in the calculations.

4.6 Comparing frequentist and Bayesian cross-correlation methods

To explicitly compare the frequentist and Bayesian methods for handling cross-
correlations, we simulate data for the white noise, white signal example that we have
been discussing in the previous subsections. The particular realization of data that we
generate has N = 100 samples with S, = 1, S,, = 1.5, and S;, = 0.3. Plots of the
simulated data in the two detectors are given in Fig. 16.

8 A flat prior for S, yields more conservative (i.e., larger) upper limits for S;, than a Jeffrey’s prior, since
there is more prior weight at larger values of S, for a flat prior than for a Jeffrey’s prior.
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Fig. 16 Simulated data in the two detectors. The detector output is shown by the black curves; the common
stochastic signal is shown by the red dashed curves

4.6.1 Frequentist analysis

The frequentist maximum-likelihood estimators (4.17) are very easy to calculate. For
the simulated data they have values:

Sy, =0.78, §,, = 1.46, §), = 0.40. (4.33)

In addition
AML(d) =44, Ad) =2In(AmrL(d)) =17.6. (4.34)

The weak-signal approximation to A(d), given by (4.28), is significantly larger (having
a value of 14), since the injected stochastic signal for this case was relatively strong,
with the injected Sy, equal to 0.3S,,, and 0.25,,,. In addition, for this realization of data,
the signal variance was overestimated while both noise variances were underestimated,
leading to a much larger value than the nominal squared signal-to-noise ratio of 6.

As mentioned previously, the form (4.27) of the detection statistic A(d) is suffi-
ciently complicated that it was simplest to resort to numerical simulations to estimate
its sampling distribution, p(A|S,,, Sn,, Sk, M1). We took 50 values for each of S,,,,
Sy,, and Sy, in the interval [0, 3], and then for each of the corresponding 503 points
in parameter space, we generated 10* realizations of the data, yielding 10* values
of A(d). By histogramming these values for each point in parameter space, we were
able to estimate the probability density function (and also the cumulative distribution
function) for A.

Figure 17 shows the frequentist 90% confidence-level exclusion and inclusion
regions for our simulated data with Agps = 7.6. The 90% confidence-level exclusion
region Egg, lies above the red surface; it consists of points (S, Sp,, Si) satisfying

Prob (/\ > Aobs| (Snys Sy, Sh) € 590%) > 0.90. (4.35)
The region below the red surface is the 90% confidence-level inclusion region Zggg,.
Note that construction of these regions is such that the true values of the parameters

S Sny» and Sy, have a 90% frequentist probability of lying in Zggg,. This generalizes,
to multiple parameters, the definition of the frequentist 90% confidence-level upper-
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Fig. 17 Frequentist 90% confidence-level exclusion and inclusion regions for the simulated data with
Agbs = 7.6. The 90% exclusion region Egqg, lies above the red surface; the 90% inclusion region Zggo,
lies below the red surface. The green, blue and magenta curves are projections of the S, = 1.5,1.0,0.5
level surfaces of the boundary onto the (Sy, Sp,) plane

limit for a single parameter, which was discussed in detail in Sect. 3.2.3. Note that it is
not correct to simply “cut” the surface using the maximum-likelihood point estimates
S‘nl =0.78 and S’nz = 1.46 to obtain a single value for S?IO%’UL. One needs to include
the whole region in order to get the correct frequentist coverage.

A similar procedure can be used to estimate sampling distributions for the frequen-
tist maximume-likelihood estimators 3',” R S’nz ,and S‘h . From these distributions, one can
then calculate e.g., frequentist 95% confidence-level exclusion and inclusion regions
for the given point estimates. For example, (Sy;, Su,, Si) € Zosg, for the observed point
estimate S, 1.obs if and only if S‘h,obs is contained in the symmetric 95% confidence-level
interval centered on the mode of the probability distribution p(.SA’hLS’n1 s Snys Spy M),
These regions again generalize to multiple parameters the definition of a frequentist
confidence interval for a single parameter, which was discussed in detail in Sect. 3.2.4.
They will be different, in general, for the different maximum-likelihood estimators.
But in order to move on to the Bayesian analysis for this example, we will leave the
explicit construction of these regions to the interested reader.

4.6.2 Bayesian analysis

For the Bayesian analysis of this example, we limit ourselves to calculating the Bayes
factor 21n Bjo(d) comparing the noise-only and signal-plus-noise models M and
M, as well as the posterior distributions for the three parameters Sy, S,,, and S,,.
Following the procedure described above in Sect. 4.5 we find, for this particular real-
ization of data,

Bio =10, 21nBjo(d) = 4.6. (4.36)
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Fig. 18 Marginalized posterior distribution for the stochastic signal variance S}, for the signal-plus-noise
model M. The actual value of S, used for the simulation is shown by the grey dashed vertical line. The
95% Bayesian credible interval centered on the mode of the distribution is the grey-shaded region. For
comparison, the frequentist maximum-likelihood estimator of Sy, is shown by the blue dotted vertical line
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2.5 : — p(Suld, Mo) | T 141 — P(Snld, Mo) | /' : L
2.0 ' L 121 AV ,
_ 1.0 ,
L2 0.8 s
1.0 L 061 f
0.4/ : I
| L 1
0.5 021 : |
0.0 ‘ 0.0 ‘ ‘ a | ‘
0.0 . 0 25 30 00 05 10 15 20 25 30
Snl Sng

Fig. 19 Marginalized posterior distributions for the detector noise variances Sy (left panel) and Sy, (right
panel) for the signal-plus-noise model M (blue curves) and the noise-only model M (green curves),
respectively. The actual values of Sy and Sy, used for the simulation are shown by the grey dashed vertical
lines. The 95% Bayesian credible intervals for the signal-plus-noise model M | are the grey-shaded regions.
For comparison, the frequentist estimators of S,; and Sy, for the two models are shown by the (blue and
green) dotted vertical lines

This Bayes factor corresponds to positive evidence (see Table 3) in favor of a correlated
stochastic signal in the data.

Figure 18 shows the marginalized posterior p(Sy|d, M) for the stochastic signal
variance given the data d and signal-plus-noise model M. The peak of the posterior
lies close the frequentist maximum-likelihood estimator Sy = 0.40 (blue dotted ver-
tical line), and easily contains the injected value in its 95% Bayesian credible interval
(grey shaded region). Figure 19 shows similar plots for the marginalized posteriors
for the noise variances S,, and S,, for both the signal-plus noise model M (blue
curves) and the noise-only model M (green curves). For comparison, the frequen-
tist maximum-likelihood estimators S,,,, S,, = 0.78, 1.46 and 1.18, 1.86 for the two
models are shown by the corresponding (blue and green) dotted vertical lines. Again,
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the peaks of the Bayesian posterior distributions lie close to these values. The 95%
Bayesian credible intervals for S,,, and S, for the signal-plus-noise model M are
also shown (grey shaded region). These intervals easily contain the injected values for
these two parameters.

4.7 What to do when cross-correlation methods aren’t available

Cross-correlation methods can be used whenever one has two or more detectors that
respond to a common gravitational-wave signal. The beauty of such methods is that
even though a stochastic background is another source of “noise” in a single detector,
the common signal components in multiple detectors combine coherently when the
data from pairs of detectors are multiplied together and summed, as described in
Sect. 4.1. But with only a single detector, searches for a stochastic background need
some other way to distinguish the signal from the noise—e.g., a difference between
the spectra of the noise and the gravitational-wave signal, or the modulation of an
anisotropic signal due to the motion of the detector (as is expected for the confusion-
noise from galactic compact white dwarf binaries for LISA). Without some way of
differentiating instrumental noise from gravitational-wave “noise”, there is no hope
of detecting a stochastic background.

As a simple example, suppose that we have N samples of data from each of two
detectors I = 1, 2 (which we will call channels in what follows), but let’s assume that
the second channel is insensitive to the gravitational-wave signal:

dii = hi +nij, oo N,

4.37
dri = nyj, ..., N. (4.37)
Then if we make the same assumptions as before for the signal and the noise, it follows
that the likelihood function for the data d = {d;; d»;} is given by

1 LT =1
d|Sp;s Snys Sy M) = ——e" 24 €4, 4.38
p( | ny nys Oh 1) det(27tC) ( )

where

C— |:(Sn1 + S Iyxwn Onxn i| (4.39)

Onxn Sy Inxn

is the covariance matrix of the data. Since the off-diagonal blocks of the covariance
matrix are identically zero, it is clear that we will not be able to use the cross-correlation
methods developed in the previous sections. So we need to do something else if we
are going to extract the gravitational-wave signal from the noise.
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4.7.1 Single-detector excess power statistic

If we knew S, a priori, then we could construct an excess power statistic from the
autocorrelated data to estimate the signal variance:

N
L1
Si= ;dﬁ. — S, (4.40)

(This is effectively how Penzias and Wilson (1965) discovered the CMB; they observed
excess antenna noise that they could not attribute to any other known source of noise).
But as mentioned at the end of Sect. 4.3.1, typically we do not know the detector noise
well enough to use such a statistic, since the uncertainty in S, is much greater than the
variance of the gravitational-wave signal that we are trying to detect. This is definitely
the case for ground-based detectors like LIGO, Virgo, etc. An exception to this “rule”
will probably be the predicted foreground signal from galactic white-dwarf binaries in
the LISA band. For frequencies below a few mHz, the gravitational-wave confusion
noise from these binaries is expected to dominate the LISA instrument noise (Hils
et al. 1990; Bender and Hils 1997; Hils and Bender 2000; Nelemans et al. 2001).

4.7.2 Null channel method

If it were possible to make an off-source measurement using detector 1, then we could
estimate the noise variance S, directly from the detector output, free of contamination
from gravitational waves. Using this noise estimate, S’n, , we could then define our
excess power statistic as

N
A 1 A
Sh= > di; = Sy, (4.41)

i=1

Unfortunately, such off-source measurements are not possible, since you cannot shield
a gravitational-wave detector from gravitational waves. However, in certain cases one
can construct a particular combination of the data (called a null channel) for which
the response to gravitational waves is strongly suppressed. The symmetrized Sagnac
combination of the data for LISA (Tinto et al. 2001; Hogan and Bender 2001) is one
such example.

So let us assume that channel 2 for our example is such a null channel, and let us also
assume that there is some relationship between the noise in the two channels—e.g.,
Sn, = aSy,, witha > 0. (For colored noise, the variances would be replaced by power
spectra and a would be replaced by a function of frequency—i.e., a transfer function
relating the noise in the two channels). To begin with, we will also assume that a is
known. Then the data from the second channel can be used as a noise calibrator for
the first channel. The frequentist estimators for this scenario are:
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A 1 2

Snz - ﬁ ;dﬁv

Sp, = a8y, (4.42)
LN

A ) A

These are the maximum-likelihood estimators of the signal and noise parameters,
derived from the likelihood (4.38) with S, replaced by aS,,,. In the Bayesian frame-
work, the relation S,,, = aS,, is encoded in the joint prior probability distribution

P(Snys Sny) = 8(Sp; — aSny) P2(Sny)s (4.43)

which eliminates S, as an independent variable. The marginalized posterior distribu-
tion for the signal variance Sy, assuming a flat prior p;(Sy) = const, is then

p(Spld) /d5n2 p(d|Sp; = aSny, Spy, Sn)P2(Spy)- (4.44)

In the more realistic scenario where the transfer function a is not known a priori, but
is described by its own prior probability distribution p,(a), we have

P(Snys Sny @) = 6(Suy — aSny) pa(@) p2(Sny) (4.45)

and
p(Sld) o / da / Sy P(ISn, = ASns Suas SOPa@p2(Ser).  (446)

This integral can be done numerically given priors for Sy, and a.

To help illustrate the above discussion, Fig. 20 shows plots of several different pos-
terior distributions for Sy, corresponding to different choices for the prior distribution
Da(a). For these plots, we chose a Jeffrey’s prior for S,,:

pZ(Snz) X 1/Sn2» (447)

and a log-normal prior for a:

1 (In a—/t)z
1 — 1 (nap)”

1
(alp,0) = — e a7, (4.48)
prain a/2ro

The different curves correspond to different values of p and o':

uw=InA, A=agp,0.67a9,1.5a9,

(4.49)
o=, X=1,1.1,125/15,2,
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Fig. 20 Posterior distributions for Sy, for the null channel analysis, corresponding to different priors for the
parameter a, which relates the instrumental noise variances in the two channels. The labels “p %, unbiased”
correspond to A = ag and Z = 1+ p/100; the labels “25%, biased low (or high)” correspond to A = 0.67ag
(or 1.5a0) and & = 1.25. The vertical grey dashed line corresponds to the injected value of Sy,

where ag denotes the nominal (true) value of a. Note that A = 0.67ag and 1.5ag
correspond to priors for a that are biased away from its true value a = ag. Note
also that 68% of the prior distribution is contained in the region a € [A/L, AZ] (so
Y =1 corresponds to a delta-function prior—i.e., no uncertainty in @). The particular
realization that we used consisted of N = 100 samples of data (4.37) with S, = 1,
Sp, = 1,and S, = aoSy, withap = 1. Note that for the biased priors for a (associated
with the dashed and dotted curves in Fig. 20), an under (over) estimate in a corresponds
to over (under) estimate in Sy, as Sy, is effectively the difference between the estimated
variance in channel 1 and a times the estimated variance in channel 2. For this particular
realization of the data, the mode of the “0%, unbiased” posterior for S, is about 20%
less than the injected value, S, = 1. On average, they would agree.

5 Geometrical factors

There is geometry in the humming of the strings, there is music in the spacing
of the spheres. Pythagoras

In the previous sections, we ignored many details regarding detector response and
detector geometry. We basically assumed that the detectors were isotropic, responding
equally well to all gravitational waves, regardless of the waves’ directions of prop-
agation, frequency content, and polarization. We also ignored any loss in sensitivity
in the correlations between data from two or more detectors, due to the separation
and relative orientation of the detectors. But these details are important if we want to
design optimal (or near-optimal) data analysis algorithms to search for gravitational
waves. To specify the likelihood function, for example, requires models not only for
the gravitational-wave signal and instrument noise, but also for the response of the
detectors to the waves that a source produces.
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In this section, we fill in these details. We first discuss the response of a single
detector to an incident gravitational wave. We then show how these non-trivial detector
responses manifest themselves in the correlation between data from two or more
detectors. The results are first derived in a general setting making no assumption, for
example, about the wavelength of a gravitational wave to the characteristic size of a
detector. The general results are then specialized, as appropriate, to the case of ground-
based and space-based laser interferometers, spacecraft Doppler tracking, and pulsar
timing arrays. We conclude this section by discussing how the motion of a detector
relative to the gravitational-wave source affects the detector response.

The approach we take in this section is similar in spirit to that of Hellings (1991),
attempting to unify the treatment of detector response functions and correlation func-
tions across different gravitational-wave detectors. Readers interested in more details
about the effect of detector geometry on the correlation of data from two or more
detectors should see the original papers by Hellings and Downs (1983) for pulsar tim-
ing arrays, and Flanagan (1993) and Christensen (1990, 1992) for ground-based laser
interferometers.

5.1 Detector response

Gravitational waves are time-varying perturbations to the background geometry of
spacetime. Since gravitational waves induce time-varying changes in the separation
between two freely-falling objects (so-called test masses), gravitational-wave detectors
are designed to be as sensitive as possible to this changing separation. For example,
a resonant bar detector acts like a giant tuning fork, which is set into oscillation
when a gravitational wave of the natural frequency of the bar is incident upon it.
These oscillations produce a stress against the equilibrium electromagnetic forces
that exist within the bar. The stress (or oscillation) is measured by a strain gauge (or
accelerometer), indicating the presence of a gravitational wave. The response for a bar
detector is thus the fractional change in length of the bar, 4 () = Al(¢)/[, induced by
the wave. Since the length of the bar is typically much smaller than the wavelength
of a gravitational wave at the bar’s resonant frequency, the response is most easily
computed using the geodesic deviation equation (Misner et al. 1973) for the time-
varying tidal field.

In this article, we will focus our attention on beam detectors, which use electro-
magnetic radiation to monitor the separation of two or more freely-falling objects.
Spacecraft Doppler tracking, pulsar timing arrays, and ground- and space-based laser
interferometers (e.g., LIGO-like and LISA-like detectors) are all examples of beam
detectors, which can be used to search for gravitational waves (see, e.g., Section 4.2
in Sathyaprakash and Schutz 2009).

5.1.1 Spacecraft Doppler tracking
For spacecraft Doppler tracking, pulses of electromagnetic radiation are sent from one

test mass (e.g., aradio transmitting tower on Earth) to another (e.g., the Cassini probe),
and then bounced back (or coherently transponded) from the second test mass to the
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Fig. 21 A spacetime diagram 4
representation of AT (¢) for a

two-way spacecraft Doppler

tracking measurement. Time AT(t){ &
increases vertically upward. The
vertical arrows are spacetime
worldlines for the Earth and a
spacecraft. The measurement is
made at time ¢. The blue dotted
line shows the trajectory of a
pulse of electromagnetic
radiation in the absence of a
gravitational wave; the red solid
line shows the trajectory in the
presence of a gravitational wave

Earth spacecraft

first. From the arrival times of the returning pulses, one can calculate the fractional
change in the frequency of the emitted pulses induced by a gravitational wave. The
detector response for such a measurement is thus

Av(t)  dAT (1)

5.1
%) dt -1

hdoppler () =

where AT (¢) is the deviation of the round-trip travel time of a pulse away from the
value it would have had at time 7 in the absence of the gravitational wave. A schematic
representation of AT (¢) for spacecraft Doppler tracking is given in Fig. 21.

5.1.2 Pulsar timing
Pulsar timing is even simpler in the sense that we only have one-way transmission of
electromagnetic radiation (i.e., radio pulses are emitted by a pulsar and received by a
radio antenna on Earth). The response for such a system is simply the timing residual
hiiming (1) = AT (1), (5.2)
which is the difference between the measured time of arrival of a radio pulse and the
expected time of arrival of the pulse (as determined from a detailed timing model for
the pulsar) due to the presence of a gravitational wave. A schematic representation of
AT (t) for a pulsar timing measurement is given in Fig. 22.

5.1.3 Laser interferometers

For laser interferometers like LIGO or LISA, the detector response is the phase differ-
ence in the laser light sent down and back the two arms of the interferometer. Again,
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Fig. 22 A spacetime diagram 4 A
representation of AT (¢) for a
(one-way) pulsar timing residual
measurement. Time increases
vertically upward. The vertical
arrows are spacetime worldlines
for a pulsar and a detector on
Earth. The measurement is made
at time 7. The blue dotted line
shows the trajectory of the radio
pulse in the absence of a
gravitational wave; the red solid
line shows the trajectory in the
presence of a gravitational wave

11 AT(t)

pulsar Earth

the phase difference can be calculated in terms of the change in the round-trip travel
time of the laser light from one test mass (e.g., the beam splitter) to another (e.g., one
of the end test masses). If we consider an equal-arm Michelson interferometer with
unit vectors u# and v pointing from the beam splitter to the end masses in each of the
arms, then

hphase (1) = A® (1) = 2w v AT (1), (5.3)

where AT (t) = T;, (t) — T; 1 (¢) is the difference of the round-trip travel times, and
Vo is the frequency of the laser light. (See Fig. 23). Alternatively, one often writes the
interferometer response as a strain measurement in the two arms

AL(t)  AT(1)
L 2LJ)c’

Rstrain (1) = 54

where AL(t) = L;(t) — L;(¢) is the difference of the proper lengths of the two arms
(having unperturbed length L), and AT (¢) is the difference in round-trip travel times
as before. Thus, interferometer phase and strain response are simply related to one
another.

Calculation of AT (¢) for beam detectors is most simply carried out in the transverse-
traceless gauge® (Misner et al. 1973; Schutz 1985; Hartle 2003) since the unperturbed
separation L of the two test masses can be larger than or comparable to the wavelength
A = ¢/f of an incident gravitational wave having frequency f. This is definitely the
case for pulsar timing where L is of order a few kpc, and for spacecraft Doppler
tracking where L is of order tens of AU. It is also the case for space-based detectors
like LISA (L = 5 x 10° km) for gravitational waves with frequencies around a tenth
of a Hz. On the other hand, for Earth-based detectors like LIGO (L = 4 km), L < A
is a good approximation below a few kHz. Thus, the approach that we will take in the
following subsections is to calculate the detector response in general, not making any
approximation a priori regarding the relative sizes of A = ¢/f and L. To recover the
standard expressions (i.e., in the long-wavelength or small-antenna limit) for Earth-

9 See Creighton et al. (2009) and Koop and Finn (2014) for an alternative derivation of the response
of a detector to gravitational waves, which is done in terms of the curvature tensor and not the metric
perturbations.

@ Springer



Detection methods for stochastic gravitational-wave backgrounds Page 61 of 223 2

Fig. 23 A spacetime diagram 4
representation of AT (¢) for an
equal-arm Michelson
interferometer. Time increases
vertically upward. The vertical
arrows are spacetime worldlines
for the beam splitter and two end
mirrors. The blue dotted lines
show the trajectory of the laser
light in the two arms of the
interferometer in the absence of
a gravitational wave; the red
solid lines show the trajectory in
the presence of a gravitational
wave. The black dotted arrows,
labeled & and 9, show the
orientation of the two arms,
from beam splitter to end
mirrors, at t = 0, assuming an
opening angle of 90°

.

A
u _.-° .
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Table 5 Characteristic properties of different beam detectors: column 2 is the arm length or characteristic
size of the detector (tens of AU for spacecraft Doppler tracking; a few kpc for pulsar timing); column 3 is
the frequency corresponding to the characteristic size of the detector, fix = c¢/L; columns 4 and 5 are the
frequencies at which the detector is sensitive in units of Hz and units of fi, respectively; and column 6 is
the relationship between f and fi

Beam detector L (km) fx (Hz) f (Hz) f/f« Relation
Ground-based interferometer ~1 ~103 10 to 10* 1074 t0 107! [ < fx
Space-based interferometer ~10° ~10~1 1074 t0 107! 10301 < fs
Spacecraft Doppler tracking ~10° ~1074 10 %0103 10721010 f~ fx
Pulsar timing ~10!7 ~10712 10901077  103w010° > fu

based detectors like LIGO will be a simple matter of taking the limit f L /c to zero. For
reference, Table 5 summarizes the characteristic properties (i.e., size, characteristic
frequency, sensitivity band, etc.) of different beam detectors.

5.2 Calculation of response functions and antenna patterns

Gravitational waves are weak. Thus, the detector response is linear in the metric
perturbations &, (#, X) describing the wave, and can be written as the convolution of
the metric perturbations f.p (7, X) with the impulse response R* (¢, X) of the detector:

h(t) = Rxh)(,X) = /oo dt/d3y R (¢, Dhap(t — 7, % — 3), (5.5)
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where X is the location of the measurement at time z. In terms of a plane-wave expansion
(2.1) of the metric perturbations, we have

o0
h(t) = / df / d* QiR (f, Whap(f, A)e P, (5.6)

—0o0

or, in the frequency domain,
h(f) = / d* QiR (f, Mhap(f, A), (5.7)

where!?
- OO -
Rab(f, fl) — ei27rfﬁ~x/c/ dt / d3y Rab(_[’ 5)') e—l’27tf(‘[+ﬁ-y/€)- (58)
—00

Further specification of the response function depends on the choice of gravitational-
wave detector as well as on the basis tensors used to expand A4, ( f, 1), as we shall see
below and in the following subsections.

For example, if we work in the polarization basis, with expansion coefficients
ha(f,n), where A = {+, x}, then

i) = [ 00 3 RA L idhacs ), (5.9)
A

with
RA(f, h) = R (f, hyel (h). (5.10)

If we work instead in the tensor spherical harmonic basis, with expansion coefficients
a(ﬁ’m)(f), where P = {G, C}, then

RCE =YD RO (F)af (), .11)
(Im) P
with
R{l)m)(f) = /dz—sz Rab(f, ﬁ)Y(fm)ab(ﬁ)- (5.12)

Note that in the polarization basis the response function R4 (f,7) is the detector
response to a sinusoidal plane-wave with frequency f, coming from direction 7, and

10 Some authors (Christensen 1990, 1992; Flanagan 1993; Allen and Romano 1999; Cornish and Larson
2001; Finn et al. 2009), including us in the past, have defined the response function RAab (f, n) without the
factor of ¢!27/A¥/¢ Tf one chooses coordinates so that the measurement is made at ¥ = 6, then these two
definitions agree. Just be aware of this possible difference when reading the literature. To distinguish the
two definitions, we will use the symbol Rab (f, n) to denote the expression without the exponential term,
ie. Rab(f, i) = eiZJIfﬁ-E/cRab(ﬁ ).
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Fig. 24 Geometry for
calculating the change in the
photon propagation time from 7
to 7o = ry + Li in the presence
of a plane gravitational wave
propagating in direction k

having polarization A = +, x. Plots of |[RA(f, 7)| for fixed frequency f are antenna
beam patterns for gravitational waves with polarization A. A plot of

1/2
R(f.i) = (IR (£ + R (f)2) (5.13)

for fixed frequency f is the beam pattern for an unpolarized gravitational wave—i.e.,
a wave having statistically equivalent 4+ and x polarization components.

Since the previous subsection showed that the response of all beam detectors can
be written rather simply in terms of the change in the light-travel time of an elec-
tromagnetic wave propagating between two test masses, we now calculate AT (¢) in
various scenarios and use the resulting expressions to read-off the response functions
R (f, ) for the different detectors. We also make plots of various antenna patterns.

5.2.1 One-way tracking
Consider two test masses located at position vectors 7| and 7, = 7| + Lii, respectively,
in the presence of a plane gravitational wave propagating in direction k = —n, as

shown in Fig. 24. Then the change in the light-travel time for a photon emitted at 7|
and received at r at time 7 is given by Estabrook and Wahlquist (1975):

L
AT (t) = %u“ub /_0 ds hap(t(s), X(s5)), (5.14)

where the Oth-order expression for the photon trajectory can be used in /,:
t(s)=(t—LJ/c)+s/c, X(s)=r+si. (5.15)
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Since hgp(t, X) = hqp(t + 1 - X/c) for a plane wave, it is relatively easy to do the
integral. The result is

AT (1)

00 1 b
[ arsutithanri
—00
1 1
Rrf l+n-0
0 1 . P
/ dfzuaubhab(f, ﬁ) ez2nf(t+n-r2/c)

—00

X

[eiznf(’2+;"72/c) _ei2nf(t1+ﬁ.7|/c)] (5.16)

w1 ;[1%—*"2’3”“”'@] (5.17)
i2nf 1+h-a ’

where we factored out ¢!27/ (+772/¢) corresponding to the time and location of the
measurement, to get the last line. Note that the two terms in square brackets in (5.16)
correspond to sampling the gravitational-wave phase at photon reception (location 7
at time 7, = t) and photon emission (location 7| at time t; = ¢t — L/c), respectively.
In the context of pulsar timing, these two terms are called the Earth term and pulsar
term, respectively.

From Eq. (5.17), we can read-off the response function for a timing residual mea-
surement, Nming (1) = AT (¢). Itis

1 ST
Rtaiﬁling(f7 ﬁ) = Euaub ,Tﬁ(f, i 12)6127-[jn-r2/g7 (5.18)
where | |
i2nfL PPN
Ti(fin-i) = - S I:l_e—Tf(l+n-u)i|
lz]Tf 1 +n-u

(5.19)

L - i gy <”f—L[1 +A- ﬁ])
c c
is the timing transfer function for one-way photon propagation along # = Lii. (Here
sincx = sin x/x). If we choose 7, to be the origin of coordinates, then 7 (f, 71 - it)
contains all the frequency-dependence of the timing response. For example, for normal
incidence of the gravitational wave (n - & = 0), |Z;(f, 0)| = (L/c) |sinc(zwfL/c)].
Figure 25 is a plot of | 7; (f, 0)| versus frequency on a logarithmic frequency scale.
If we choose instead to measure the fractional Doppler frequency shift of the incom-
ing photons, then we need to differentiate the timing response with respect to ¢ as
indicated in (5.1). This simply pulls-down a factor of 27 f from the exponential in
AT (1), leading to
RGP e (fo ) = i2mf RGP (f. ). (5.20)

Thus, the frequency-dependence of the Doppler frequency response is i 277 f times the
timing transfer function 7;(f, 71 - i1). All of the above remarks are relevant for pulsar
timing and one-way spacecraft Doppler tracking.

In Fig. 26 we plot the antenna beam pattern (5.13) for unpolarized gravitational
waves for a one-way tracking Doppler frequency measurement (e.g., pulsar timing)
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Fig. 25 Magnitude of the 1.0
one-way tracking timing transfer
function |75 ( f, 0)| for normal
_ L 0.8- -
incidence of the gravitational e
wave, plotted on a logarithmic ~
frequency scale. Nulls in the ,—L\ 0.6+ r
transfer function occur at <.
frequencies equal to integer % 0.4+ -
multiples of ¢/L h
0.2 -
0.0 5 — ‘ .
10~ 10~ 10° 10
fL/c
Fig. 26 Antenna pattern for
unpolarized gravitational waves 0.9 ]
for a one-way tracking Doppler 0.8 ]
frequency measurement with ’
it = —Z. The gravitational waves 0.7 1
propagate toward the origin. The 0.6 ]
3-d antenna pattern is axially
symmetric around i 0.5
0.4 1
0.3 1
0.2 1
0.1 1
0 -
-0.1 . R ./\. . . ]

-06 -04 -02 0 0.2 0.4 0.6

with ii = —Z. For this calculation, we chose 7, = 0 and ignored the exponential (i.e.,
‘pulsar’) term in the timing transfer function, which yields

1 a,b
A ~ A A
Rdoppler(fa n) = 5 1 +a- ﬁeab(n) (Earth term only), (5.21)
for the A = +, x polarization modes. Setting # = —Z and taking the gravitational

waves to propagate inward (toward the origin), we find
n 1
Rdoppler (1) = 5(1 + cos 8), (5.22)

which is axially symmetric around . The response is maximum when the photon and
the gravitational wave both propagate in the same direction.

Figure 27 shows plots of the real parts of the individual polarization basis response
functions (5.21), represented as color bar plots on a Mollweide projection of the sky.
For this plot we chose the pulsar to be located in the direction (6, ¢) = (50°, 60°).
(The direction p to the pulsar is given by p = —u). The imaginary parts of both
response functions are identically zero, so are not shown in the figure.
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real(F+)

Fig. 27 Mollweide projections of the response functions R;:)ppler n), Rc>1<0ppler (n), for one-way tracking
Doppler frequency measurements corresponding to a pulsar located in the direction of the white star (0, ¢) =
(50°, 60°). The imaginary parts of both response functions are identically zero, so are not shown above

Making the same approximations as above, we can also calculate the correspond-
ing Doppler-frequency response functions for the gradient and curl tensor spherical
harmonic components {aﬁn ), aﬁn (f)} by performing the integration in (5.12). As
shown in Gair et al. (2014), this leads to!!

R, (f) =21 ONiYim(p), R, (f) =0, (5.23)

where @)N; is given by (2.8) and p = —1 is the direction on the sky to a pulsar. Note,
somewhat surprisingly, that the curl response is identically zero. We will discuss the
consequences of this result in more detail in Sect. 7.5.6, in the context of phase-coherent
mapping of anisotropic gravitational-wave backgrounds.

5.2.2 Two-way tracking

To calculate AT (t) for two-way spacecraft Doppler tracking, we need to generalize
the calculation of the previous subsection to include a return trip of the photon from
7> back to 7. This can be done by simply summing the expressions for the one-way
timing residuals:

AT (t) = AT12(t — L/c) + AT (1) (5.24)

where the subscripts on the AT ’s on the right-hand side of the above equation indicate
the direction of one-way photon propagation (e.g., 12 indicates photon propagation
from test mass 1 to test mass 2), and the arguments of AT}, and AT»; indicate when
the photon arrived at test mass 2 and test mass 1, respectively. Doing this calculation

1 There is a factor of (—1)[ difference between R(Glm)( f) in (5.23) and (92) in Gair et al. (2014). The
difference is due to the change in expressing the response functions in terms of the direction to the
gravitational-wave source, 71, as opposed to the direction of gravitational-wave propagation, k= —n
Appendix H provides expressions relating the response functions calculated using these two different con-

ventions.
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leads to the following expression for the timing residual:
a, b 1 1 127rf(t+n r1/c)
AT (1) = df uu’hap(f, 1) —— T-72¢ :
0o i2rf —n-

i
. 2n - 27 (t=L/c+iiTa/c) _ 1 o127 (1=2L [+ rl/c):|
— —n =

1— (7-0)? 1+
(5.25)
which has rhree terms corresponding to the final reception of the photon at 7 at time

t, the reflection of the photon at 7 at time t — L/c, and the emission of the photon at
71 at time t — 2L /c. The timing response function is given by

ub T o (f, 7 - )P ime, (5.26)

)

inf L
4 TR oo <i[1 _A- ﬁ]) } (5.27)
C

l\.)l'—‘

R e (f2 ) =

where

A A L _i2nfL tﬂfL T L
Tin(fin-i)y=—e ¢ [e (=71) ine ( f
, - .

is the timing transfer function for two-way (or roundtrip) photon propagation along
1 and back. For normal incidence, the magnitude of the timing transfer function is
given by |7; «(f,0)| = (2L/c)|sinc(2rw f L/c)|, which is identical to the expression
for one-way tracking with L /c replaced by 2L /c. We also note that if we choose the
origin of coordinates to be at 7; (which we can always do for a single detector), and
if the frequency f is such that fL/c < 1, then the timing response simplifies to

. L
RED o (f ) = uu® - (for fL/c < 1). (5.28)

We will use the terminology small-antenna limit (instead of long-wavelength limit) for
this type of limit, since it avoids an ambiguity that might arise if we want to compare
three or more length scales. For example, if we have two detectors that are physically
separated and the wavelength of a gravitational wave is large compared to the size of
each detector but small compared to the separation of the detectors, we would be in the
long-wavelength limit with respect to detector size but in the short-wavelength limit
with respect to detector separation. (This is actually the case for the current network
of ground-based interferometers). The terminology small-antenna, large-separation
limit is more appropriate for this case.

5.2.3 Michelson interferometer

For an equal-arm Michelson interferometer, the timing residual that we calculate is
the difference in the round-trip light-travel times down and back each of the arms.
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Fig. 28 Geometry for calculating the difference in the round-trip light-travel times in the two arms of a
Michelson interferometer: K = —# is the direction of propagation for a plane gravitational wave; i and
0 are unit vectors that point from the vertex of the interferometer (e.g., the beam splitter) to the two end
masses; and L denotes the lengths of each of the arms in the absence of a gravitational wave

(See Fig. 28). If we let & and v denote the vectors pointing from e.g., the beam splitter
to the two end mirrors for LIGO, or from one spacecraft to the other two spacecraft
for LISA, then!?

AT (1) = Ty (1) — T (t) = ATy 1 (1) — AT (1), (5.29)

where the last equality is valid for an equal-arm interferometer. But we just calculated
these single-arm round-trip AT’s in the previous section. Thus, the timing response
of an equal-arm Michelson is simply

1
Riping (£, 1) = 3 [0 Ton(f - i) =0 Ta(fi- )] (5.30)
where we have chosen the origin of coordinates to be at the vertex of the interferometer.
The phase and strain responses of a Michelson are related to the timing response by
constant multiplicative factors, cf. (5.3) and (5.4), so that

Rgl?ase(f’ ﬁ) = 27[ VORSIquing(fa ﬁ)a

b R b N (5.31)

Rstrain(f’ n) = Rtiming(fs n)/(2L/c),
where vy is the frequency of the laser. Note that in the small-antenna limit, which is
valid for the LIGO detectors below a few kHz, the strain response is given by

1
Rigin (f. ) = 5 (uu® — o) (for fL/e < 1). (5.32)
Plots of the antenna patterns for the strainresponse to A = +, x polarized gravitational
waves are given in Fig. 29, for both the small-antenna limit (where we simply set
f = 0) and at the free-spectral range of the interferometer, f = fi = ¢/(2L).

12 Although Fig. 28 shows # and v making right angles with one another, the following calculation is valid
for ii and ¥ separated by an arbitrary angle.
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Fig. 29 Antenna patterns for Michelson interferometer strain response [Rgirain! @nd [RZ i | evaluated in

the small-antenna limit, f = 0 (tfop two plots) and at the free-spectral range frequency, f = c¢/(2L) (bottom
two plots). The interferometer arms point in the X and  directions. Note the change in the scale of the axes
between the top and bottom two plots

Similar plots of the antenna patterns for unpolarized gravitational waves are given in
Fig. 30. In Fig. 31 we show colorbar plots of the antenna patterns for the strain response
to unpolarized gravitational waves for the LIGO Hanford and Virgo interferometers
(located in Hanford, WA and Cascina, Italy, respectively), again evaluated in the small-
antenna limit.

We can also calculate the strain response of an interferometer to the gradient and
curl tensor spherical harmonic components {a((l;m)( ), a(Clm)( f)} by performing the
integration in (5.12). As shown in Appendix E of Gair et al. (2014), this leads to

4 1 . .
RS, (/) = azz?”\@ [Y2 (@) = Yau(®]. RS, (f) =0, (5.33)

for an interferometer in the small-antenna limit, where the vertex is at the origin of
coordinates, and &, ¥ are unit vectors pointing in the direction of the interferometer
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Z-axis

Y-axis Y-axis
X-axis X-axis

Fig. 30 Antenna pattern for Michelson interferometer strain response to unpolarized gravitational waves
evaluated in the small-antenna limit, f = 0 (left plot) and at the free-spectral range frequency, f = ¢/(2L)
(right plot). The interferometer arms point in the X and y directions. Note the change in the scale of the
axes between the two plots

arms. Similar to (5.23) for pulsar timing, the curl response is again identically zero.
We will discuss the consequences of this result in more detail in Sect. 7.5.7, in the
context of phase-coherent mapping of anisotropic gravitational-wave backgrounds.

5.3 Overlap functions

As mentioned in Sect. 4, a stochastic gravitational-wave background manifests itself
as a non-vanishing correlation between the data taken by two or more detectors. This
correlation differs, in general, from that due to instrumental noise, allowing us to dis-
tinguish between a stochastic gravitational-wave signal and other noise sources. In this
section, we calculate the expected correlation due to a gravitational-wave background,
allowing for non-trivial detector response functions and non-trivial detector geometry.
Interested readers can find more details in Hellings and Downs (1983), Christensen
(1990, 1992), Flanagan (1993), and Finn et al. (2009).

5.3.1 Definition

Letd; and dj denote the data taken by two detectors labeled by I and J . In the presence
of a gravitational wave, these data will have the form

dr =hr +ny,

(5.34)
dy=hy+ny,

where h; j denote the response of detectors 7, J to the gravitational wave, and ny_;
denote the contribution from instrumental noise. If the instrumental noise in the two
detectors are uncorrelated with one another, it follows that the expected correlation of

@ Springer



Detection methods for stochastic gravitational-wave backgrounds Page 71 of 223 2

Latitude [degree]

Longitude [degree]

0.9
0.8
0.7
0.6
0.5

0.4

Latitude [degree]

0.3

0.2

Longitude [degree] 0.1

Fig. 31 Antenna patterns for the strain response to unpolarized gravitational waves for the LIGO Hanford
(top panel) and Virgo (bottom panel) interferometers evaluated in the small-antenna limit. The antenna
patterns are represented as colorbar plots on a Mollweide projection of the Earth. Note that the maxima
of the antenna patterns (the centers of the red regions) are directly above (and below) the location of the
two interferometers—in Hanford, WA and Cascina, Italy, respectively. The blue regions correspond to the
minima of the antenna patterns—i.e., the ‘dimples’ in the left panel plot of Fig. 30

the data is just the expected correlation of the detector responses, (d;dy) = (hihy). If
we also assume that the gravitational wave is due to a stationary, Gaussian, isotropic,
and unpolarized stochastic background, then

1 [ ; /
(h1 (R (")) = 5/ df & OT (F)Su(f), (5.35)

where S, (f) is the one-sided strain power spectral density of the gravitational-wave
background, computed from the expectation values of the Fourier components of the
metric perturbations (2.14), and

1
C(f) = o [ @00 Y REGDR ) (5.36)
A
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is the so-called overlap function for the two detectors I, J written in terms of the
polarization-basis response function R;‘ 7 ),13 where A = {4, x}. In terms of the

tensor spherical harmonic-basis response functions R f 7am) f), we would have

1
Crr(h) = 5= 20 2 Rium (DRI (), (5.37)

(Im) P
where P = {G, C} for the gradient and curl tensor spherical harmonic components.
5.3.2 Interpretation

The overlap function I'7;(f) quantifies the reduction in sensitivity of the cross-
correlation to a stochastic gravitational-wave background due to the non-trivial
response of the detectors and their separation and orientation relative to one another.
This meaning of the overlap function is most easily seen in the frequency domain,
where (5.35) becomes

~ ~ 1
(hi(HRG(N) = 58 = IOT1(HISh(f). (5.38)

This implies _
Chiny (F) =T15(HS(f), (5.39)

where Cj, ,hy (f) is the (one-sided) cross-spectrum of the response in the two detectors.
Thus, I'7 7 (f) can be interpreted as the transfer function between gravitational-wave
strain power Sy, (f) and detector response cross-power Cj, 1y ().

Expression (5.36) for the overlap function involves four length scales: the lengths
of the two detectors, L; and L, which appear in the response functions Ré Fei n);
the separation of the detectors, s = |X; — X |, which appears in the exponential factor;
and the wavelength of the gravitational waves, A = ¢/f. In general, one has to evaluate
the integral in (5.36) numerically, due to the non-trivial frequency dependence of the
response functions. However, as we shall see in Sect. 5.4, in certain limiting cases
of the ratio of these length scales, we can do the integral analytically and obtain
relatively simple expressions for the overlap function in terms of spherical Bessel
or trigonometric functions. This is the case for ground-based interferometers, which
operate in the small-antenna limit—i.e., fL/c < 1 for both detectors, even though
the separation can be large compared to the wavelength, fs/c 2 1. It is also the case
for pulsar timing arrays, which operate in the large-antenna, small-separation limit,

13 Recall from Footnote 10 that the phase factors IR/ e already contained in our definition of

the response functions R;‘ 7 (f. k). If we explicitly display this dependence then
1 - = N AR —31) /e
T =g / d*Q; Y RIS ARG (f, Ay 21 =x /e
A
where R?J (f,n) = R?’b] (f, ﬁ)eé‘b (n). One often sees this latter expression for I';  (f) in the literature.
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since fL/c > 1 for each pulsar and f's/c < 1 for different radio receivers on Earth.
(The Earth effectively resides at the solar system barycenter relative to the wavelength
of the gravitational waves relevant for pulsar timing).

5.3.3 Normalization

It is often convenient to define a normalized overlap function y;;(f) o I';;(f) by
requiring that y7;(0) = 1 for two detectors that are co-located and co-aligned. For
the strain response of two identical equal-arm Michelson interferometers, this leads
to the relation

vis(f) = Cri(f) (5.40)

sin® B

where S is the opening angle between the two arms (;r /2 for LIGO and 7 /3 for LISA).

5.3.4 Auto-correlated response

To obtain the auto-correlated response of a single detector, we can simply set / = J in
the previous expressions. This means that the gravitational-wave strain power Sy (f)
and the detector response power Py, (f) in detector I are related by

P (f) =T (NS (f), (5.41)

where

1
() = o f d*0; Y IRAC ). (5.42)
A

Note that I';; (f) isjust the square of the antenna pattern for the response to unpolarized
gravitational waves integrated over the whole sky. A plot of the normalized transfer
function yy;(f) for the strain response of an equal-arm Michelson interferometer is
shown in Fig. 32. Compared to Fig. 25 for the timing transfer function |7Z; (f, 0)| for
one-way photon propagation evaluated at normal incidence of the gravitational wave,
we see that the relevant frequency scale for an equal-arm Michelson is ¢/(2L) (as
opposed to ¢/L) due to the round-trip motion of the photons. Also, the hard nulls in
Fig. 25 have been softened into dips due to averaging of the waves over the whole
sky. The high-frequency ‘bumps’ for y;;(f) are lower than those for |7;(f, 0)| due
to the squaring of |R;4 (f, n)| which enters into the definition of I';; (f) (and y;;(f)).
Figure 33 is an extended version of Fig. 32, with the appropriate frequency ranges for
ground-based interferometers (like LIGO), space-based interferometers (like LISA),
spacecraft Doppler tracking, and pulsar timing searches indicated on the plot. See also
Table 5 for more details.
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Fig. 32 A plot of the
normalized transfer function
y11(f) for the strain response of
an equal-arm Michelson
interferometer. The dips in the
transfer function occur around
integer multiples of ¢/(2L)

1,

2fL/c

Fig. 33 An extension of Fig. 32 10°
to lower and higher frequencies,

and plotted on a log—log scale.

The position of the labels show 10
the relative location of the

frequency bands for "
gravitational-wave searches I
using ground-based
interferometers like LIGO, 10t
space-based interferometers like

LISA, spacecraft Doppler

tracking, and pulsar timing 10
arrays, expressed in units of

¢/(2L). See also Table 5 for

more details S e S

Spacecraft
tracking

1,(M

Pulsar

5.4 Examples of overlap functions
5.4.1 LHO-LLO overlap function

As mentioned above, Earth-based interferometers like LIGO operate in the small-
antenna limit where fL/c « 1. This implies that the associated response functions
are well-approximated by the expression in (5.32). If we denote the unit vectors along
the two arms of one Earth-based interferometer by ii; and 91, and the corresponding
unit vectors of a second Earth-based interferometer by iy and v;, then the strain
responses in the two interferometers are simply

A AN o~ ab A (AN i2rfi-Xi/c
Rl,strain(f’n)—Dl eab(n)e ! /,

A A\ P2 FAN O (5.43)
R?,Strain(fv n) ~ ng eﬁb(n)elznf”'xz/c,

where
a, b a.b
<u2u2 — vz) , (5.44)
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and x; and X, denote the vertices of the two interferometers. The tensors D‘fb s Di’b
defined above are called detector tensors; they are symmetric and trace-free with
respect to their ab indices. In terms of the detector tensors, the overlap function
becomes

F12(f) = DY D5 Tapea(A5), (5.45)

where
Tubed (AX) = / d*Q; Z e (el (i) e~ 12T/ AT e (5.46)
A

and AX = X, — X is the separation vector connecting the two vertices. We will also
define:
a=2nfs/c, s=|AX|, §=AX/s. (5.47)

Thus, in the small-antenna limit, the orientation-dependence of the overlap function
I'12(f) is encoded in the detector tensors D‘fb , ng , while the separation-dependence
is encoded in ['ypeq (AX).

Note that I'ypeq is a tensor which is symmetric under the interchanges a < b,
¢ < d,and ab < cd; it is also trace-free with respect to the ab and cd index pairs.
The most general expression that we construct for T'ypeq (AX) given 84p, Sq, and its
symmetry properties is:

Fubcd(A;) = A(@)8ap0ca + B(@)(8ucba + Sbcbaa) + C () (BabScSa + ScaSaSh)
+ D(a)(BacspSd + 8adSbSc + SpeSaSd + SpdSase) + E(a)saSpScSq.
(5.48)

By contracting the above expression with tensors of the form §#?§¢¢, (§4¢ 54 5b¢ 594,
..., 5%Ps¢s? we obtain a linear system of equations for A, B, ..., E, which we can
solve in terms of scalar integrals involving contractions of the products of the polar-
ization tensors, efb (fz)efd (), with various combinations of §%” and s?. As shown in
Flanagan (1993) and Allen and Romano (1999), these integrals can be done analyti-

cally, leading to

A@) —50% 10a 5

B(a) ] 502 =10 5| [ jo(e)

Cl) | = 37 502 =100 =25 | | ji(e) |, (5.49)
D(x) T =502 200 =25 | | ja(@)

E(a) 502 =50 175

where jo (o), j1 (o), and jp () are the standard spherical Bessel functions (Abramowitz
and Stegun 1972). With these explicit expressions for A, B, ..., E in hand, all that is
left to do is to contract the right-hand side of (5.48) with be D;d to obtain I'12(f).
If we only assume that the detector tensors are symmetric,14 then all terms contribute
(Coughlin and Harms 2014):

14 This is needed, for example, to calculate the overlap functions for an array of seismometers in the small-
antenna limit (Coughlin and Harms 2014). For this case, the detector tensors are simply D?b = udyb

1
where i is a unit vector pointing along the sensitive direction of the Ith seismometer.

@ Springer



2 Page 76 of 223 J. D. Romano, N. J. Cornish
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Fig. 34 Overlap function for the LIGO Hanford-LIGO Livinston cross-correlation in the small-antenna
limit. Left panel linear frequency scale. Right panel logarithmic frequency scale

T12(f) = A(@)Tr (D) Tr (D2) + 2B(e) D{’ Daup
4 Cla) [Tr (D1)DS® + Tt (DZ)D?”] $aSh (5.50)
+ 4D (a) D Dy spse + E(a) DI DS sy5p5054.

For symmetric, trace-free detector tensors, as is the case for ground-based interfer-
ometers, there is no contribution from the A and C terms. Thus, in the small-antenna
limit, the overlap function for the strain response of two equal-arm Michelson inter-
ferometers can be written as a sum of the first three spherical Bessel functions with
coefficients that depend on the product of the frequency and separation of the two
detectors. (The analytic expression for the overlap function can also be derived using
(5.37), which involves the tensor spherical harmonic response functions. A detailed
derivation using these response functions is given in Romano et al., 2015).

Figure 34 is a plot of the normalized overlap function for the strain response of the
4-km LIGO interferometers in Hanford, WA and Livingston, LA. There are several
things to note about the plot: (i) The overlap function is negative as f — 0. This is
because the arms of the Hanford and Livingston interferometers are rotated by 90°
with respect to one another. (ii) The magnitude of the overlap function at f = 0 is less
than unity—i.e., |yy 1 (0)| = 0.89, even though the overlap function was normalized.
This is because the planes of the Hanford and Livingston interferometers are not
identical; these two detectors are separated by 27.2° as seen from the center of the
Earth. (iii) The first zero of the overlap function occurs just above 60 Hz. This is
roughly equal to ¢/(2s) = 50 Hz, where s = 3000 km is the separation between
the two interferometers. Note that f = c¢/(2s) is the frequency of a gravitational
wave that has a wavelength equal to twice the separation of the two sites. For lower
frequencies, the two interferometers will be driven (on average) by the same positive
(or negative) part of the incident gravitational wave. For slightly higher frequencies,
one interferometer will be driven by the positive (or negative) part of the incident
wave, while the other interferometer will be driven by the negative (or positive) part.
The zeros of the overlap function correspond to the transitions between the in-phase
and out-of-phase excitations of the two interferometers.
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Fig. 35 Hexagram configuration for the cross-correlation of two LISA-like detectors, relevant for the
proposed Big-Bang Observer space mission. Spacecraft, which house lasers and freely-falling test masses,
are located at each vertex of the hexagram. The vectors X| and X, denote the vertices of two equal-arm
Michelson interferometers, with opening angle 8 = 60°. Image reproduced with permission from Cornish
and Larson (2001), copyright by IOP

Fig. 36 Plot of the normalized
overlap function for strain
response for the hexagram
configuration shown in Fig. 35

¥

5.4.2 Big-bang observer overlap function

As a second example, we consider the overlap function between two LISA-like con-
stellations oriented in a hexagram (i.e., ‘six-pointed star’) configuration as shown in
Fig. 35. This is one of the configurations being considered for the Big-Bang Observer
(BBO), which is a proposed space mission designed to detect or put stringent limits
on a cosmologically-generated gravitational-wave background (Phinney et al. 2004).
The arm lengths of the two interferometers, with vertices X; and X5, are taken to be
L =5 x 10% km. The opening angle for the two interferometers is 8 = 60°. For this
example, we calculate the normalized overlap function for strain response numerically,
since the small-antenna limit is not valid for the high-frequency end of the sensitivity
band. A plot of the normalized overlap function is given in Fig. 36.
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5.4.3 Pulsar timing overlap function (Hellings and Downs curve)

As our final example, we consider the overlap function for timing residual measure-
ments from an array of N pulsars, labeled by index / = 1,2,..., N. Each pulsar
defines a one-way tracking beam detector with the position of pulsar / at p; and
the position of detector I (i.e., a radio receiver on Earth) by ¥;. For convenience,
we will take the origin of coordinates to lie at the solar system barycenter. Since the
diameter of the Earth (fle4 km) and its distance from the Sun (fle8 km) are both
small compared to the wavelength of gravitational waves relevant for pulsar timing
(A = ¢/f ~ 10'3 km), we can effectively set X; ~ X; ~ 0 in the argument of the
exponential term that enters expression (5.36) for the overlap function. Thus,

1 1 1 e
L (f) = Qrf)? /dZQﬁZ§”7”l;€?b(n) zucjuljefd(n)elznfnw/c
A
X } - } - [I_M[l_M’
l+n-da; 1+n-ay

(5.51)

where the unit vectors i, it J are defined by X; = p;+Ljii;, where Ly is the distance
to pulsar /. But since X; & 0, it follows that ii; and i are just unit vectors pointing
from the location of pulsars I and J foward the solar system barycenter. For distinct
pulsars (I # J), we can ignore the exponential terms in the square brackets, since
fL/c > 1for L ~ 1kpc (=3 x 10'° km) implies that ¢ 27/ Li(+iin/c apq jg
product with the corresponding term for pulsar J are rapidly varying functions of 7
and do not contribute significantly when integrated over the whole sky (Hellings and
Downs 1983; Anholm et al. 2009). (For a single pulsar (I = J), the product of the two
exponential terms equals 1 and hence cannot be ignored). With these simplifications,
the integral can be done analytically (Hellings and Downs 1983; Anholm et al. 2009;
Jenet and Romano 2015). The result is

1 1
Lry(f) = W 3 x10), (5.52)
where
_E 1 —cos¢yy 1 —cos¢yy _1 1 —cos¢yy l l
X(CIJ)=2< 5 )ln( 5 ) 4<—2 >+2+23”,
(5.53)

and ¢;; is the angle between the two pulsars / and J relative to the solar system
barycenter. (For Doppler frequency measurements, the overlap function is independent
of frequency, I'7; = x(¢17)/3). x(¢) is the Hellings and Downs function (Hellings
and Downs 1983); it depends only on the angular separation of a pair of pulsars. The
normalization was chosen so that for a single pulsar, x (0) = 1 (for two distinct pulsars
occupying the same angular position on the sky, x (0) = 0.5). A plot of the Hellings
and Downs curve is given in Fig. 37.
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Fig. 37 Plot of the Hellings and 0.5
Downs curve as a function of the
angular separation between two 0.4f
distinct pulsars
0.3f
0.2
0.1}
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-0.2
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A couple of remarks are in order: (i) The Hellings and Downs curve is independent
of frequency; itis a function of the angle ¢ between different pulsar pairs. This contrasts
with the overlap functions for the two LIGO interferometers and for BBO given in
Figs. 34 and 36. These overlap functions were calculated for a fixed pair of detectors;
they are functions instead of the frequency of the gravitational wave. (ii) The value
of the Hellings and Downs function x (¢;7) for a pair of pulsars I, J can be written
as a Legendre series in the cosine of the angle between the two pulsars. This follows
immediately if one uses (5.37) for the overlap function and (5.23) for the pulsar
timing response functions in the tensor spherical harmonic basis. As shown in Gair
et al. (2014):

3 L
X @) =73 > (OND* @+ DPGr - b)), (5.54)
=2

where p; and py are unit vectors that point in the directions to the two pulsars. A
Legendre series expansion out to Ipax = 4 (i.e., only three terms) gives very good
agreement with the exact expression for the Hellings and Downs function, except for
very small angular separations. This is illustrated in Fig. 38.

5.5 Moving detectors

So far, we have ignored any time-dependence in the detector response introduced by
the motion of the detectors relative to the gravitational-wave source. In general, this
relative motion produces a modulation in both the amplitude and the phase of the
response of a detector to a monochromatic, plane-fronted gravitational wave (Cut-
ler 1998). For Earth-based interferometers like LIGO, the modulation is due to both
the Earth’s daily rotation and yearly orbital motion around the Sun. For space-based
interferometers like LISA, the modulation is due to the motion of the individual space-
craft as they orbit the Sun with a period of 1 year. For example, for the original LISA
design, three spacecraft fly in an equilateral-triangle configuration around the Sun.
The center-of-mass (or guiding center) of the configuration moves in a circular orbit
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Fig. 38 Comparison of the 0.5 ‘ : :

exact expression of the Hellings

and Downs curve (black) with 0.4 1
Legendre series approximations

for different values of Imax. The 0.3F =

blue, green, and red curves
correspond to /max = 2, 3, and
4, respectively

45 90 135 180
angle between pulsars (degrees)

Sun

Fig. 39 Original LISA configuration: the center-of-mass of the equilateral-triangle configuration of space-
crafts orbits the Sun in a circle of radius 1 AU, 20° behind Earth, while the configuration ‘cartwheels’ in
retrograde motion about the center-of-mass, also with a period of 1 year. [Figure adapted from Cornish and
Larson (2001)]

of radius 1 AU, at an angle of 20° behind Earth, while the configuration ‘cartwheels’ in
retrograde motion about the guiding center, also with a period of 1 year (see Fig. 39).

5.5.1 Monochromatic plane waves

The phase modulation of a monochromatic plane wave will have contributions from
both the time-varying orientation of the detector as well as the detector’s transla-
tional motion relative the source. The time-varying orientation leads to changes in the
response of the detector to the + and x polarization components of the wave, |[RTh |
and |R*h«|. The translational motion leads to a Doppler shift in the observed fre-
quency of the wave, which is proportional to v/c times the nominal frequency, where
v is velocity of the detector relative to the source:

1 dep(0) _

o — fh -3 /c. (5.55)

Apf =

For example, for a monochromatic source with f = 100 Hz observed by ground-based
detectors like LIGO, the Earth’s daily rotational motion (v ~ 500 m/s) produces
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Fig. 40 The time-domain output of a particular Michelson combination, X (¢), of the LISA data over a 2-
year period. The contribution from the detector noise is shown in black. The combined output, consisting of
both detector noise and the confusion noise from the Galactic population of compact white-dwarf binaries,
is shown in red. The modulation in the amplitude is due to the time-varying orientation of the LISA
constellation as it performs a ‘cart-wheel’ in its 1-year orbit around the Sun (Fig. 39). The amplitude of
the output is largest when the main lobes of LISA’s antenna pattern points in the general direction of the
galactic center. (Data provided by Matt Benacquista)

a Doppler shift of order ~10~* Hz, while the Earth’s yearly orbital motion (v ~
3 x 10* m/s), produces a shift of order ~10~2 Hz. A matched-filter search for a
sinusoid must take this latter modulation into account, as the frequency shift is larger
than the width of a frequency bin for a typical search for such a signal.

5.5.2 Stochastic backgrounds

For stochastic gravitational-wave backgrounds, things are slightly more complicated as
the signal is an incoherent sum of sinusoidal plane waves having different amplitudes,
frequencies, and phases, and coming from different directions on the sky (2.1). But
since the signal is broad-band, the Doppler shift associated with the phase modulation
of the individual component plane waves is not important, as the gravitational-wave
signal power is (at worst) shuffled into nearby bins.!> On the other hand, the amplitude
modulation of the signal, due to the time-varying orientation of a detector, can be sig-
nificant if the background is anisotropic—i.e., stronger coming from certain directions
on the sky than from others. (We will discuss searches for anisotropic backgrounds
in detail in Sect. 7). As the lobes of the antenna pattern sweep through the “hot” and
“cold” spots of the anisotropic background, the amplitude of the signal is modulated
in time.

15 Actually, the bin size for a typical LIGO search for a stochastic background is larger than the ~1072 Hz
Doppler shift due to the Earth’s orbital motion around the Sun.
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Fig.41 A single frame of an animation showing the time evolution of the LISA antenna pattern, represented
as a colorbar plot on a Mollweide projection of the sky in ecliptic coordinates. Maxima (minima) of the
antenna pattern are shown by the red (blue) regions. The full animation corresponds to a period of 1 year.
To view the animation, please go to the online version of this review article at http://dx.doi.org/10.1007/
s41114-017-0004-1

Figure 40 shows the expected time-domain output of a particular Michelson com-
bination, X (¢), of the LISA data over a 5-year period. The combined signal (red)
consists of both detector noise (black) and the confusion-limited gravitational-wave
signal from the galactic population of compact white-dwarf binaries. At frequencies
~10~% — 1073 Hz, which corresponds to the lower end of LISA’s sensitivity band, the
contribution from these binaries dominates the detector noise. The modulation of the
detector output is clearly visible in the figure. The peaks in amplitude are more than
50% larger than the minimima; they repeat on a 6 month time scale, as expected from
LISA’s yearly orbital motion around the Sun (Fig. 39).

Figure 41 is a single frame of an animation showing the time evolution of the LISA
antenna pattern, represented as a colorbar plot on a Mollweide projection of the sky
in ecliptic coordinates. The peaks in the detector output that we saw earlier in Fig. 40
correspond to those times when the maxima of the antenna pattern point in the general
direction of the galactic center, (lon, lat) = (—93.3°, —5.6°) in ecliptic coordinates.'®
The motion of the LISA constellation was taken from Cutler (1998), and the antenna
pattern was calculated for the X-Michelson combination of the LISA data, assuming
the small-antenna approximation for the interferometer response functions. The full
animation corresponds to LISA’s orbital period of 1 year. Go to http://dx.doi.org/10.
1007/s41114-017-0004-1 to view the animation.

5.5.3 Rotational and orbital motion of Earth-based detectors

As mentioned above, given the broad-band nature of a stochastic signal, the Doppler
shift associated with the motion of a detector does not play an important role for
stochastic background searches. This means that we can effectively ignore the velocity
of a detector, and treat its motion as quasi-static. So, for example, the motion of a
single Earth-based detector like LIGO can be thought of as synthesizing a set of static

16 1 equatorial coordinates, the galactic center is located at (ra, dec) = (76h15m, —29°).
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virtual detectors located along an approximately circular ring 1 AU from the solar
system barycenter (Romano et al. 2015). Each virtual detector in this set observes the
gravitational-wave background from a different spatial location and with a different
orientation.

As described in Romano et al. (2015), the relevant time-scale for a set of virtual
detectors is the time over which measurements made by the different virtual detectors
are correlated with one another. Basically, we want two neighboring virtual detectors
to be spaced far enough apart that they provide independent information about the
background. For a gravitational wave of frequency f, the minimal separation corre-
sponds to |AX| ~ A/2, where A = c¢/f is the wavelength of the gravitational wave. For
smaller separations, the two detectors will be driven in coincidence (on average), as
discussed in item (iii) at the very end of Sect. 5.4.1. Writing |AX| = vAt and solving

for At yields
A c

At ~ — = — = teorr, 5.56
2U 2Uf corr ( )
where feorr iS the correlation time-scale. For Ar < feorr, the measurements taken

by the two virtual detectors will be correlated with one another; for At 2 feop the
measurements will be uncorrelated with one another.

As a concrete example, let us consider a gravitational wave having frequency f =
100 Hz, and calculate the correlation time scale for the Earth’s rotational and orbital
motion, treated independently. Since v ~ 500 m/s for daily rotation and v ~ 3 X
10* m /s for orbital motion, we get

3000 s (rotational motion),
50s (orbital motion).

tcorr

(5.57)

~
~

tCOIT

Thus, the orbital motion of the Earth around the Sun will more rapidly synthesize a
large network of independent detectors from the motion of a single detector, compared
to just rotational motion.

We can confirm these approximate results by plotting the overlap function at
f = 100 Hz for two virtual interferometers synthesized by the Earth’s rotational
and orbital motion as function of time. This is done in Fig. 42, assuming an isotropic
and unpolarized stochastic background, and using the small-antenna approximation
to calculate the detector response functions. The left-hand plot is for a set of virtual
interferometers synthesized by the daily rotation of a detector located on the Earth’s
equator, with no orbital motion. The center of the Earth is fixed at the solar system
barycenter, and the virtual interferometers have one arm pointing North and the other
pointing East. One sees from the plot that the virtual interferometers decorrelate on a
timescale of roughly an hour, consistent with (5.57), and recorrelate after 24 h when
the original detector returns to its starting position. The right-hand plot is for a set
of virtual interferometers at 1 AU from the solar system barycenter, associated with
Earth’s yearly orbital motion. There is no rotational motion for this case, as the inter-
ferometers are located at the center of the Earth in its orbit around the Sun, with the
orientation of the interferometer arms unchanged by the orbital motion. Here we see
that the virtual interferometers decorrelate on a timescale of roughly 1 min, again
consistent with (5.57). They will recorrelate only after 1 year (not shown on the plot).
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Fig. 42 Overlap function at f = 100 Hz for two virtual interferometers as a function of time. The left-
hand plot is for a set of virtual interferometers located on Earth’s equator, associated with Earth’s daily
rotational motion. The right-hand plot is for a set of virtual interferometers at 1 AU from the SSB, associated
with Earth’s yearly orbital motion. The first zero-crossing times in these two plots are consistent with the
correlation times given in (5.57). Image reproduced with permission from Romano et al. (2015), copyright
by APS

Since the orbital velocity of the Earth is much larger than the velocity of a detector
on the surface of the Earth due to the Earth’s daily rotational motion, the virtual inter-
ferometers associated with orbital motion build up a larger separation and decorrelate
on a much shorter time scale.

We will return to this idea of using the motion of a detector to synthesize a set
of static virtual detectors when we discuss a phase-coherent approach for mapping
anisotropic gravitational-wave backgrounds in Sect. 7.5.

6 Optimal filtering
Filters are for cigarettes and coffee. Cassandra Clare

Optimal filtering, in its most simple form, is a method of combining data so as to
extremize some quantity of interest. The optimality criterion depends on the particular
application, but for signal processing, one typically wants to: (i) maximize the detection
probability for a fixed rate of false alarms, (ii) maximize the signal-to-noise ratio of
some test statistic, or (iii) find the minimal variance, unbiased estimator of some
quantity. Finding such optimal combinations plays a key role in both Bayesian and
frequentist approaches to statistical inference (Sect. 3), and it is an important tool
for every data analyst. For a Bayesian, the optimal combinations are often implicitly
contained in the likelihood function, while for a frequentist, optimal filtering is usually
more explicit, as there is much more freedom in the construction of a statistic.

In this section, we give several simple examples of optimal (or matched) filtering
for deterministic signals, and we then show how the standard optimally-filtered cross-
correlation statistic (Allen 1997; Allen and Romano 1999) for an Gaussian-stationary,
unpolarized, isotropic gravitational-wave background can be derived as a matched-
filter statistic for the expected cross-correlation. This derivation of the optimally-
filtered cross-correlation statistic differs from the standard derivation given, e.g., in
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Allen (1997), but it illustrates a connection between searches for deterministic and
stochastic signals, which is one of the goals of this review article.

6.1 Optimal combination of independent measurements
As a simple explicit example, suppose we have N independent measurements
di=a+n;, i=12,...,N, 6.1)

where a is some astrophysical parameter that we want to estimate and n; are (indepen-
dent) noise terms. Assuming the noise has zero mean and known variance oiz (which
can be different from measurement to measurement), it follows that

(di) =a, Var(d;) = (d*) — (d)? = o} (6.2)

1

The goal is to find a linear combination of the data
a=Yy nd 6.3)
i

that is optimal in the sense of being an unbiased, minimal variance estimator of a.
Unbiased (i.e., (@) = a) implies
Z ro=1, (6.4)
i

while minimum variance implies

Var(a) = aaz = Z k%aiz = minimum. (6.5)

1

Since (6.4) is a constraint that must hold when we minimize the variance, we can use
Lagrange’s method of undetermined multipliers (Boas 2006) and minimize instead

fOL N =) 2jol + A (1 - Zx,-) (6.6)

1

with respect to both X; and A. The final result is:

A= Z_Z = (6.7)

so that

a= Zaiz Zd—z (6.8)
i i '
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Thus, the linear combination is a weighted average that gives less weight to the noiser
measurements (i.e., those with large variance 012). The variance of the optimal com-

bination is X

o} = Ziz . (6.9)

If the individual variances happen to be equal (i.e., al.z = ¢'2), then the above expres-
sions reduce toa = N~!''Y° ;d; and oaz = 02/N, which are the standard formulas for
the sample mean and the reduction in the variance for N independent and identically-
distributed measurements as we saw in Sect. 3.5.

The above results can also be derived by maximizing the likelihood function

N 2
1 1 (di —a)
2 2 2y _ L
plla,of,05,...,0y) = exp|: 221 2 :|
=

(Zn)N/z,/olzazz...o]%, i
(6.10)

with respect to the signal parameter a, assuming that the noise terms n; are Gaussian-
distributed and independent of one another. In fact, similar to what we showed in
Sect. 3.5, one can rewrite the argument of the exponential so that

Ox
a

1 (a —a)?
p(dla,0f,03,...,0%) X exp [—5—2}, (6.11)

where a and 0&2 are given by (6.8) and (6.9), respectively. From this expression, it
immediately follows that @ maximizes the likelihood, and also the posterior distribution
of a, if the prior for a is flat.

6.2 Correlated measurements
Suppose the N measurements d; are correlated, so that the covariance matrix C has

non-zero elements
Cij = (did;) — (d;)(d}) (6.12)

when i # j. Again, we want to find a linear combination (6.3) that is unbiased and

has minimum variance
G[%:ZZMKJ'C,‘]’. (6.13)
i

By following the same Lagrange multiplier procedure described in the previous sub-
section, one can show that the optimal estimator is

a= (;Xl:(c—l)k)_l;;(c—l)ﬁ d;. (6.14)
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Thus, the weighting factors 1/ oiz of the previous subsection are replaced by
>;(C ~1);;. Note that for uncorrelated measurements, C;; = &;j07, so the above
expression for a reduces to that found previously in (6.8).

Note that although (6.14) shows how to optimally combine data that are correlated
with one another, it turns out that for most practical purposes one can get by using
expressions like (6.8) and (6.18) below, which are valid for uncorrelated data. This
is because the values of the Fourier transform of a stationary random process are
uncorrelated for different frequency bins. Basically, the Fourier transform is a rotation
in data space to a basis in which the covariance matrix is diagonal; this is called a
Karhunen—Loeve transformation. (See also Appendix D.6). This is one of the reasons
why much of signal processing is done in the frequency domain.

6.3 Matched filter

Suppose that the astrophysical signal is not constant but also has a ‘shape’ &; so that
di=ahi+n;, i=12,...,N. (6.15)

We will assume that the 4; are known, so that the only unknown signal parameter is
a. We will also assume that the different measurements are independent, as will be
the case for a stationary random process in the frequency domain. Since (d;) = ah;
is not a constant, the analysis of the previous subsection does not immediately apply.
However, if we simply rescale d; by h;, we obtain a new set of measurements

d; = d;/ h; (6.16)

for which ) )
(d)) =a, Var(d)=3&?=o7/h?, (6.17)

so that the previous analysis is now valid. Thus,

-1 -1

R 1 d: h2 hd
i-(2h) SL-(sh) 2t e
j o il J J i L

is the optimal estimator of a.

The above expression for a is often called a matched filter (Wainstein and Zubakov
1971) since the data d; are projected onto the expected signal shape h; (as well as
weighted by the inverse of the noise variance al.z). The particular combination

Qi = h;/o? (6.19)
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multiplying d; is the optimal filter for this analysis.!” When there are many possible
candidate signal shapes, one constructs a template bank—i.e., a collection of possible
shapes against which the data compared. By normalizing each of the templates so that
> (hl.2 / aiz) = 1, the signal-to-noise ratio of the matched filter

R hid;
p(h) = Z gt (6.20)

i 1

or its square, can be used as a frequentist detection statistic. That is, the maximum
value of p(h) over the space of templates {/;} is compared against some threshold
P« (chosen so that the false alarm probability is below some acceptable value). If the
maximum signal-to-noise ratio exceeds the threshold, then one claims detection of the
signal with a certain level of confidence. The shape of the detected signal is that which
corresponds to the maximum matched-filter signal-to-noise ratio.

6.4 Optimal filtering for a stochastic background

As noted by Fricke (2006), the above results can be used to derive the optimal cross-
correlation statistic for the stochastic background search. (A more standard derivation
can be found, e.g., in Allen 1997). To see this, consider a cross-correlation search
for a Gaussian-stationary, unpolarized, isotropic gravitational-wave background using
two detectors having uncorrelated noise. Let T be the total observation time of the
measurement. In the frequency domain, the measurements are given by the values of
the complex-valued cross-correlation

x(f) = di(f)d3(f) 6.21)

where d 1(f), I = 1,2 are the Fourier transforms of the time-series output of the two

detectors:
di(t) = h () +n1(2),

dy (1) = ha(t) + na(2).

The x (f) for different frequencies correspond to the measurements d; of the previous
subsections. Since we are assuming uncorrelated detector noise,

6.22)

- ~ T
(x(N)) = (i (Hh3(f)) = > T12(f)Sk(f). (6.23)

where Sy, (f) is the power spectral density of the stochastic background signal, and
I'12(f) is the overlap function for the two detectors.!® In the weak-signal limit, the

17 For correlated measurements, Q; = Zj (¢! )ij/ hi where C~! is the inverse of the re-scaled covari-
ance matrix CU = Cij/(hihj)~

18 The last equality in (6.23) follows from (5.38) with the Dirac delta function §(f — f) replaced by its
finite-time version 87 (f — f’) = Tsinc[m(f — f/)T], which equals T when f = f’.
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covariance matrix is dominated by the diagonal terms:

Crp = (X () = @)
~ (i (DR SHia(f) 624

T
= 7 P (NP (N)8(f - .

where P,, (f) are the 1-sided power spectral densities of the noise in the two detectors:

1
(A (Hy(fH) = 5P (H)8(f = - (6.25)

Thus, in this approximation

R 1
/_oodf O ™ T B P (6.26)

Now, suppose we are searching for a stochastic background with a power-law spectrum

Q = Y
ew(f) = Qp i) (6.27)

whose amplitude Qg we would like to estimate. Then, according to (2.18),

3H; Qp ([ f 7
)= 5 ( fref) — QuHyP), (6.28)
where ) 43
3H2 1 -

Using the above form of S;,(f) and (6.23), we see that

T
FTRNH(f) <« ki (6.30)

is the expected signal ‘shape’ h; in the notation of the previous subsection. Given
(6.26) and (6.30), it is now a simple matter to show that

A o Cia(HH(f) ~
Q =N/ df ——————d|(f)d , 6.31)
=N B Ry BT (
where '
T (> ThNHZNH]
N = —/ df —— . 6.32
[2 o B DPu ) (32

@ Springer



2 Page 90 of 223 J. D. Romano, N. J. Cornish

The variance and expected signal-to-noise ratio of the estimator Q) g are:

FLNOHFN ]
, 6.33
[ [ 5 (©39

and

F%zmsh(f)
. 6.34
[/ VB (DD 39

The combination
Ci2(f)Hp(f)
Py (f) Puy (f)

multiplying dy ( f )57; (f) in (6.31) is the standard optimal filter (see, e.g., Allen 1997;
Allen and Romano 1999), which was derived in those references for a flat spectrum,
B = 0. The optimally-filtered cross-correlation statistic, denoted S in Allen (1997)
and Allen and Romano (1999), is given by S = Q7.

o(fy =N (6.35)

6.4.1 Optimal estimators for individual frequency bins

As shown in Aasi et al. (2015), we can also construct estimators of the amplitude Qg
of a power-law spectrum using cross-correlation data for individual frequency bins,
of width A f, centered at each (positive) frequency f:

2 R0 (N5 ()]

B = .
8 = T H ()

(6.36)

Note that these estimators are just the measured values of the cross-spectrum divided
by the expected spectral shape of the cross-correlation due to a gravitational-wave
background with spectral index 8. In the above expression, 7 is the duration of the
data segments used in calculating the Fourier transforms d~1 f, 572( f);and I'1a(f) is
the overlap function for the two detectors.

In the absence of correlated noise, the above estimators are optimal in the sense
that they are unbiased estimators of ()g and have minimal variance for a single bin:

I Pu(HPu(f)
XA TL(NHR(f)

o5, ~ (6:37)

where we assumed the weak-signal limit to obtain the approximate equality for the
variance. For a frequency band consisting of many bins of width A f, we can opti-
mally combine the individual estimators Qﬁ( f) using the standard 1/o2-weighting
discussed earlier:
Y0200 -
Gp= 2 T2 S Y 2| L 639
Zf’ Jﬁﬂ (f ) p f B
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The expressions for f),g and aé obtained in this way reproduce the standard optimal
)

filter expressions (6.31) and (6.33) in the limit where Af — df and the sums are
replaced by integrals.

6.4.2 More general parameter estimation

The analyses in the previous two subsections take as given the spectral shape of an
isotropic stochastic background, and then construct estimators of its overall amplitude.
But it is also possible to construct estimators of both the amplitude and spectral index
of the background. One simply treats these as free parameters in the signal model e.g.,
when constructing the likelihood function. Interested readers should see Mandic et al.
(2012) for details.

7 Anisotropic backgrounds

Sameness is the mother of disgust, variety the cure. Francesco Petrarch

An anisotropic background of gravitational radiation has preferred directions on the
sky—the associated signal is stronger coming from certain directions (“hot” spots)
than from others (“cold” spots). The anisotropy is produced primarily by sources
that follow the local distribution of matter in the universe (e.g., compact white-dwarf
binaries in our galaxy), as opposed to sources at cosmological distances (e.g., cosmic
strings or quantum fluctuations in the gravitational field amplified by inflation Allen,
1997; Maggiore, 2000), which would produce an isotropic background. This means
that the measured distribution of gravitational-wave power on the sky can be used to
discriminate between cosmologically-generated backgrounds, produced in the very
early Universe, and astrophysically-generated backgrounds, produced by more recent
populations of astrophysical sources. In addition, an anisotropic distribution of power
may allow us to detect the gravitational-wave signal in the first place; as the lobes
of the antenna pattern of a detector sweep across the “hot” and “cold” spots of the
anisotropic distribution, the amplitude of the signal is modulated in time, while the
detector noise remains unaffected (Adams and Cornish 2010).

In this section, we describe several different approaches for searching for anisotropic
backgrounds of gravitational waves: The first approach (described in Sect. 7.2) looks
for modulations in the correlated output of a pair of detectors, at harmonics of the
rotational or orbital frequency of the detectors (e.g., daily rotational motion for
ground-based detectors like LIGO, Virgo, etc., or yearly orbital motion for space-based
detectors like LISA). This approach assumes a known distribution of gravitational-
wave power P(n), and filters the data so as to maximize the signal-to-noise ratio of
the harmonics of the correlated signal. The second approach (Sect. 7.3) constructs
maximum-likelihood estimates of the gravitational-wave power on the sky based on
cross-correlated data from a network of detectors. This approach produces sky maps
of P(n), analogous to sky maps of temperature anisotropy in the cosmic microwave
background radiation. The third approach (Sect. 7.4) constructs frequentist detection
statistics for either an unknown or an assumed distribution of gravitational-wave power
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on the sky. The fourth and final approach we describe (Sect. 7.5) attempts to measure
both the amplitude and phase of the gravitational-wave background at each point on
the sky, making minimal assumptions about the statistical properties of the signal. This
latter approach produces sky maps of the real and imaginary parts of the random fields
hy(f, i) and hy (f, i), from which the power in the background P (A1) = |h |>+|h |?
is just one of many quantities that can be estimated from the measured data.

Numerous papers have been written over the last ~20 years on the problem of
detecting anisotropic stochastic backgrounds, starting with the seminal paper by Allen
and Ottewill (1997), which laid the foundation for much of the work that followed.
Readers interested in more details should see Allen and Ottewill (1997) regarding
modulations of the cross-correlation statistic at harmonics of the Earth’s rotational
frequency; Ballmer (2006a, b), Mitra et al. (2008), Thrane et al. (2009), Mingarelli et al.
(2013) and Taylor and Gair (2013) for maximum-likelihood estimates of gravitational-
wave power; Thrane et al. (2009) and Talukder et al. (2011) for maximum-likelihood
ratio detection statistics; and Gair et al. (2014), Cornish and van Haasteren (2014)
and Romano et al. (2015) regarding phase-coherent mapping. For results of actual
analyses of initial LIGO data and pulsar timing data for anisotropic backgrounds, see
Abadie et al. (2011) and Taylor et al. (2015) and Sect. 10.2.5.

Note that we will not discuss in any detail methods to detect anisotropic backgrounds
using space-based interferometers like LISA or the Big-Bang Observer (BBO). As
mentioned in Sect. 5.5.2, the confusion noise from the galactic population of compact
white dwarf binaries is a guaranteed source of anisotropy for such detectors. At low
frequencies, measurements made using a single LISA will be sensitive to only the
I = 0,2,4 components of the background, while cross-correlating data from two
independent LISA-type detectors (as in BBO) will allow for extraction of the full
range of multipole moments. The proposed data analysis methods are similar to those
that we will discuss in Sects. 7.2 and 7.3, but using the synthesized A, E, and T data
channels for a single LISA (see Sect. 9.7). Readers should see Giampieri and Polnarev
(1997), Cornish (2001), Ungarelli and Vecchio (2001), Seto (2004), Seto and Cooray
(2004), Kudoh and Taruya (2005), Edlund et al. (2005) and Taruya and Kudoh (2005)
for details.

7.1 Preliminaries
7.1.1 Quadratic expectation values

For simplicity, we will restrict our attention to Gaussian-stationary, unpolarized,
anisotropic backgrounds with quadratic expectation values given by (2.16):

1
(ha(f, Ry (f',7") = AL AS(f — f)8and* (A, A'), (7.1)

where

Sh(f) = / d*Q; P(f, ). (7.2)
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We will also assume that P( f, i) factorizes
P(f, 1) = H(f)P@), (1.3)

so that the angular distribution of power on the sky is independent of frequency. We
will chose our normalization so that A (frer) = 1, where fr.r is a reference frequency,
typically taken to equal 100 Hz for ground-based detectors. We will also assume that
the spectral shape H (f) is known, so that we only need to recover P (7). If we expand
the power P () in terms of spherical harmonics,

00 l

P@ =YY PinYin(), (7.4)

[=0 m=—I

then this normalization choice is equivalent to Pog = Sp(frer)/ /47, and has units
of (strain)2 Hz !'sr—!, where sr = rad? is one steradian. Thus, Pqg is a measure of
the isotropic component of the background, and sets the overall normalization of the
strain power spectral density S;(f).

7.1.2 Short-term Fourier transforms

Since the response of a detector changes as its antenna pattern sweeps across the “hot”
and “cold” spots of an anisotropic distribution, we will need to split the data taken by the
detectors into chunks of duration 7, where 7 is much greater than the light-travel time
between any pair of detectors, but small enough that the detector response functions
do not change appreciably over that interval. (For Earth-based interferometers like
LIGO, t ~ 100 s to 1000 s is appropriate). Each chunk of data [t — 7/2, t + /2] will
then be Fourier transformed over the duration 7, yielding

» t+1/2 . ,
di(t; f) = / i dr’ d;(t"e ¥ (7.5)
t—t/

This operation is often called a short-term Fourier transform. Note that, in this notation,

t labels a particular time chunk, and is not a variable that is subsequently Fourier
transformed.

7.1.3 Cross-correlations

For many of the approaches that map the distribution of gravitational-wave power, it
is convenient to work with cross-correlated data from two detectors, evaluated at the
same time chunk ¢ and frequency f:

A 2 -
Cry@t; f) = ;dl(t: Nt ). (7.6)
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Fig. 43 Real and imaginary parts of y (f, 1) (appropriately normalized) for the strain response of the 4-
km LIGO Hanford and LIGO Livingston interferometers for f = 0 Hz (top two plots) and f = 200 Hz
(bottom two plots). In the top left plot, note the large blue region in the vicinity of the two detectors,
corresponding to the anti-alignment of the Hanford and Livingston interferometers—i.e., the arms of the
two interferometers are rotated by 90° with respect to one another. As shown in the fop right plot, there is no
imaginary component to the integrand of the overlap function at 0 Hz. The bottom two plots show multiple
positive and negative oscillations (‘lobes’), which come from the exponential factor e~ 2fii-AX/¢ of the
product of the two response functions (5.43). The location of the positive and negative lobes are shifted
relative to one another for the real and imaginary parts. The separation between the lobes depends inversely
on the frequency

The factor of 2 is a convention consistent with the choice of one-sided power spectra.
Assuming uncorrelated detector noise and using expectation values given in (7.1), we
find

(Crs(; ) = H(f) / d>Qy yrs(t; f, AP, (7.7)

where

1
yis(t; o) = 5 3 O REG £ART @ £ 7). (7.8)
A

Note that up to a factor of 1/(4rx), the function y;;(¢; , f, 71) is just the integrand of
the isotropic overlap function I'y ; (f) given by (5.36). In what follows, we will drop
the detector labels 7J from both C 17(t; ) and y;;(¢; f, n) when there is no chance
for confusion.

Figure 43 shows maps of the real and imaginary parts of y (¢; f, n) (appropriately
normalized) for the strain response of the 4-km LIGO Hanford and LIGO Livingston
interferometers evaluated at f = 0 Hz (top two plots) and f = 200 Hz (bottom
two plots). (In the Earth-fixed frame, the detectors don’t move so there is no time
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angle between pulsars (degrees)

Fig. 44 Top row Mollweide projections of y (i) for pairs of pulsars separated on the sky by ¢ = 0°, 45°,
90°, 135°, 180°. Reddish regions correspond to positive values of y (11); blueish regions correspond to
negative values of y (7). Bottom Hellings and Downs curve as a function of the angular separation between
two distinct pulsars. The integral of the top plots over the whole sky equal the values of the Hellings and
Downs curve for these angular separations. (See also Fig. 37)

dependence to worry about). Note the presence of oscillations or ‘lobes’ for the f =
200 Hz plots, which come from the exponential factor ¢ 27/ A-AX/e of the product of
the two response functions (5.43). For f = 0, this factor is unity.

Figure 44 is a similar plot, showing Mollweide projections of y (¢; f, n) for the
Earth-term-only Doppler frequency response (5.21) of pairs of pulsars separated on
the sky by ¢ = 0°,45°,90°, 135°, 180°. (There is no time dependence nor frequency
dependence for these functions). The bottom panel is a plot of the Hellings and Downs
curve as a function of the angular separation between a pair of Earth-pulsar baselines.
By integrating the top plots over the whole sky (appropriately normalized), one obtains
the values of the Hellings and Downs curve for those angular separations.

7.1.4 Spherical harmonic components of y (t; f, i)

As first noted in Allen and Ottewill (1997), the functions y (¢; f, n) defined above (7.8)
play a very important role in searches for anisotropic backgrounds. For a fixed pair of
detectors at a fixed time ¢ and for fixed frequency f, these functions are scalar fields
on the unit 2-sphere and hence can be expanded in terms of the ordinary spherical
harmonics Y, (7):

00 I
y(t; LAY =YY vt )Y, (), (7.9)

=0 m=—I

or, equivalently,

@ Springer



2 Page 96 of 223 J. D. Romano, N. J. Cornish

Vit f) = / PQ (@ fo )Y ). (7.10)

Note that this definition differs from (7.4) for P, by a complex conjugation, but
agrees with the convention used in Allen and Ottewill (1997). In terms of the spherical
harmonic components, it follows that

00 I

/ Qi y (5 fPE) =Y D" Vim(t; f)Pim, (7.11)

=0 m=—I

as a consequence of the orthogonality of the Y, (7). This expression enters (7.7) for
the expected cross-correlation of the output in two detectors. As explained in Allen
and Ottewill (1997) and Thrane et al. (2009), the time dependence of y;,, (¢; f) is
particularly simple:

Vim (5 £) = yim (0; f) 27/ Tmoa (7.12)

where Thoq 1s the relevant modulation period associated with the motion of the detec-
tors. For example, for ground-based detectors like LIGO and Virgo, Tinog = 1 sidereal
day, since the displacement vector AX(t) = X(t) — X (¢) connecting the vertices of the
two interferometers (and which enters the expression for the overlap function) traces
out a cone on the sky with a period of one sidereal day. If there is no time dependence,
as is the case for pulsar timing, Tioq is infinite.

Example: Earth-based interferometers

As was also shown in Allen and Ottewill (1997), one can derive analytic expressions
for v, (¢; f) for a pair of Earth-based interferometers in the short-antenna limit. If we
set t = 0, then y;,,,(0; f) can be written as a linear combination!? involving spherical
Bessel functions, j,(x)/x" (for [ even) and j,(x)/x"~! (for [ odd), where x depends
on the relative separation of the two detectors, x = 27 f|AX|/c. The coefficients of
the expansions are complex numbers that depend on the relative orientation of the
detectors. Explicit expression for the first few spherical harmonic components for the
LIGO Hanford-LIGO Livingston pair are given below:

700(0; F) = —0.0766 jo(x) — 2.1528 j1 (x)/x + 2.4407 j»(x) /x>,
y10(0; £) = —0.0608i ji (x) — 2.6982i j»(x)/x + 7.7217i j3(x) /x>,
y11(0; f) = —(0.0519 + 0.0652i) ji (x) — (1.8621 + 1.0517i) jo(x)/x
+(4.0108 — 2.4933i) j3(x) /x>,
120(0; £) = 0.0316jo(x) — 0.9612j; (x)/x + 10.9038 j»(x) /x> — 52.7905 j3 (x) /x>,
12100; £) = —(0.0669 — 0.0532i) jo(x) — (1.9647 — 2.6145i) ji (x)
+(15.0524 — 24.7604i) j»(x) /x% — (36.5620 — 50.7179i) j3 /x>,
y22(0; f) = —(0.0186 — 0.0807i) jo(x) + (1.2473 + 1.6858i) ji (x)/x
—(12.2048 + 12.5814i) jo(x)/x* + (60.7859 + 12.7191i) j3(x) /x>.
(7.13)

19 The number of terms in the expansion is given by 2 + floor(1 +1/2).
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Note that the above numerical coefficients do not agree with those in Allen and Ottewill
(1997) due to an overall normalization factor of 47/5 and phase e/”"?, where ¢ =
—38.52° is the angle between the separation vector between the vertices of the LIGO-
Hanford and LIGO-Livingston interferometers and the Greenwich meridian (Thrane
et al. 2009). Plots of the real and imaginary parts of y;,, (0; f) forl =0, 1,2, 3,4 and
m > 0 for the LIGO Hanford-LIGO Livingston detector pair are given in Fig. 45. For
m < 0, one can use the relation

Vim (@5 ) = (=D (85 £), (7.14)

which follows from the properties of the spherical harmonics Yy, (17) (see Appendix E).
Note that up to an overall normalization factor of 5/+/47, the real part of 100 (0; f)
is the Hanford-Livingston overlap function for an unpolarized, isotropic stochastic
background, shown in Fig. 34.

Example: Pulsar timing arrays

InFig. 46, we show plots of the spherical harmonic components of y (¢; f, i) calculated
using the Earth-term-only Doppler-frequency response functions (5.21) for pulsar
timing. Since there is no frequency or time-dependence for these response functions,
the spherical harmonic components of y (1) depend only of the angular separation ¢
between the two pulsars that define the detector pair. As shown in Mingarelli et al.
(2013) and Gair et al. (2014), these functions can be calculated analytically for all
values of / and m. A detailed derivation with all the relevant formulae can be found
in Appendix E of Gair et al. (2014); there the calculation is done in a ‘computational’
frame, where one of the pulsars is located along the z-axis and the other is in the
xz-plane, making an angle ¢ with respect to the first. In this computational frame, all
of the components y;,, (¢) are real. Note that up to an overall normalization factor?® of
3/ /47, the function 100(¢) is just the Hellings and Downs function for an unpolarized,
isotropic stochastic background, shown in Fig. 37.

7.2 Modulations in the correlated output of two detectors

For ground-based detectors like LIGO and Virgo, an anisotropic gravitational-wave
background will modulate the correlated output of a pair of detectors at harmonics
of the Earth’s rotational frequency. It turns out that for an unpolarized, anisotropic
background, the contribution to the mth harmonic of the correlation has a frequency
dependence proportional to

H) Y Yim©: £)Pim, (7.15)

I=|m|

20 The functions here are a factor of 1/2 smaller than those in Fig. 8 in Gair et al. (2014), due to different
definitions of y (¢; f, 7). Compare (115) in that paper to (7.8) and (7.10) above.
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Fig. 45 Real and imaginary parts of the spherical harmonic components y;,, (0; f) for the LIGO Hanford—
LIGO Livingston detector pair. Here we show plots for / = 0, 1,2, 3,4 and m > 0. For m < 0, use (7.14)

where Py, are the spherical harmonic components of the gravitational-wave power
on the sky P(n). (We are assuming here that the spherical harmonic decomposition
of P(n) is with respect to a coordinate system whose z-axis points along the Earth’s
rotational axis). In this section, we derive the above result following the presentation in
Allen and Ottewill (1997) and construct an optimal filter for the cross-correlation that

@ Springer



Detection methods for stochastic gravitational-wave backgrounds Page 99 of 223 2

radians

pREYY

02 — 1=0,m=0 5, =1, m=0

_____ 1=1, m=1

radians ;
[ 05 ) 15 2 25 30 04

(a) (b)

— =2, m=0

radians  ===== 1=2, m=1 0.00
........ 1=2, m=2

radians
0

— I=5,m=0
mmmm 125, m=1
-------- 1=5, m=2
= radians

25 30 1=5, m=3
— |=5, m=4
..... 1=5, m=5

©) : ®)

Fig. 46 Spherical harmonic component functions y;,, (¢) for pulsar timing as a function of the angle ¢
between two distinct pulsars. Here we show plots for/ =0, 1, ..., 5 and m > 0. We used the Earth-term-
only Doppler-frequency response (5.21) to calculate these functions

maximizes the signal-to-noise ratio for the mth harmonic. This was the first concrete
approach that was proposed for detecting an anisotropic stochastic background.

7.2.1 Time-dependent cross-correlation

We start by writing down an expression (in the frequency domain) for the correlated
output of two ground-based detectors (e.g., LIGO Hanford and LIGO Livingston):

dn:/ df 0 die: HEE f), (7.16)

where d 1.2(t; f) are (short-term) Fourier transforms (7.5) centered around ¢, and where
we have included a filter function Q(t; f), whose specific form we will specify later.
Since the cross-correlation is periodic with a period Toq = 1 sidereal day (due to the
motion of the detectors attached to the surface of the Earth), we can expand c (t)asa
Fourier series:
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o0
é(t) — Z émeimZT[t/Tmod,
m=—00 (7.17)

Cm == / dt C(t)e Mt/ Tmoa,

Here T is the total observation time, e.g., 1 sidereal year, which we will assume for
simplicity is an integer multiple of Tiyoq.

Assuming as usual that the detector noise is uncorrelated across detectors, and using
the expectation values (7.1) for an unpolarized, anisotropic background, we find

(C) = %/ df O f )H(f)Z Z Vim (5 ) Pim. (7.18)

=0 m=—1

where vy, (¢; f) are the spherical harmonic components of y12(¢; f, ). (We have
dropped the 12 indices to simplify the notation). Similarly, if we assume that the
gravitational-wave signal is weak compared to the detector noise, and that the duration
7 is also much larger than the correlation time of the detectors, then

(CHC* (")) — (CONCH()) ~ 3,/ / df 10(t; [P Pa,(t; £) Puy (25 ),

(7.19)
where P, (t; f) is the one-sided power spectral density for the noise in detector
I1=1,2 centgred around ¢. These two results can now be cast in terms of the Fourier
components C,, using (7.17). Since (7.12) implies

17 .
- /0 dt Vi (t; e M2 Tmod — 831,05 f), (7.20)

we immediately obtain

(Cn) = %f_ af O PAWD) S Y O 1P (7.21)

I=|m]|
where we used
00 l %] o0
>y -3y 122
=|m
Similarly,

A A 1 2 o ~
(CnCi) = (Ca)(C, >~6mmf—(5)f df 1005 PP Pay (s f)Puy (55 )

(7.23)
for the covariance of the estimators.
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7.2.2 Calculation of the optimal filter

To determine the optimal form of the filter o(t: f) for the mth harmonic Cpny We
maximize the (squared) signal-to-noise:

~ _ 2
(Co) 2 T|[%df O ) S50 Yim ;)P
(1Cnl?) = (C) > [, df 10t; )2 Pay (85 )Py (83 £)
(7.24)

The above expression can be written in a more suggestive form if we introduce an
inner product on the space of complex-valued functions (Allen 1997):

2 _
m =

(A, B) E/ df ACf)B*(f) P, (t; ) Puy (23 ). (7.25)

—00

In terms of this inner product,

~ q 00 2
T ‘(Q, P, Pry Zl=|m\ Vlmﬁm)‘

SNR2 = —
(N0

(7.26)

But now the maximization problem is trivial, as it has been cast as a simple
problem in vector algebra—namely to find the vector Q that maximizes the ratio
1(Q, A)? /(Q Q) fora fixed vector A. Butsince this ratio is proportional to the squared
cosine of the angle between O and A, it is maximized by choosing 0 proportional to
A. Thus,

- H(f) -

06 N % o p ) l% Vim (O3 )P (7.27)

is the form of the filter function that maximizes the SNR for the mth harmonic.

Note that this expression reduces to the standard form of the optimal filter (6.35)
for an isotropic background, Pj,, = 8;08m0P00- Note also that the optimal filter
assumes knowledge of both the spectral shape H (f) and the angular distribution of
gravitational-wave power on the sky, Pj,,. So if one has some model for the expected
anisotropy (e.g., a dipole in the same direction as the cosmic microwave background),
then one can filter the cross-correlated data to be optimally sensitive to the harmonics
C,, induced by that anisotropy.

7.2.3 Inverse problem

In Allen and Ottewill (1997), there was no attempt to solve the inverse problem—that
is, given the measured values of the correlation harmonics, how can one infer (or
estimate) the components Py, ? The first attempt to solve the inverse problem was
given in Cornish (2001), in the context of correlation measurements for both ground-
based and space-based interferometers. Further developments in solving the inverse
problem were given in subsequent papers, e.g., Ballmer (2006a, b), Mitra et al. (2008)
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and Thrane et al. (2009), which we explain in more detail in the following subsections.
Basically, these latter methods constructed frequentist maximum-likelihood estimators
for the Py,,,, using singular-value decomposition to ‘invert’ the Fisher matrix (or point
spread function), which maps the true gravitational-wave power distribution to the
measured distribution on the sky.

7.3 Maximum-likelihood estimates of gravitational-wave power

In this section, we describe an approach for constructing maximum-likehood estimates
of the gravitational-wave power distribution P (7). It is a solution to the inverse problem
discussed at the end of the previous subsection. But since a network of gravitational-
wave detectors typically does not have perfect coverage of the sky, the inversion
requires some form of regularization, which we describe below. The gravitational-
wave radiometer and spherical harmonic decomposition methods (Sect. 7.3.6) are the
two main implementations of this approach, and have been used to analyze LIGO
science data (Abadie et al. 2011; Abbott et al. 2016a).

7.3.1 Likelihood function and maximum-likelihood estimators

As shown in Sect. 7.1.3 the cross-correlated data from two detectors
~ 2 . ~
Cry(t; f) = ;dl(t; N5 f) (7.28)

has expectation values

Cra ) = AU [ @05y 0P, (729)
We can write this relation abstractly as a matrix equation
(Crs) =My P, (7.30)

where M;; = H( )y (; f, n) and the matrix product is summation over directions
n on the sky. The covariance matrix for the cross-correlated data is given by

Nigorpr = (Cri(t; £)CT; 5 f)) = (Crp(t; HNCT; (5 £) (7.31)
~ Sy 8 fpr Puy (85 ) Py (25 ),
where we have assumed as before that there is no cross-correlated detector noise, and
that the gravitational-wave signal is weak compared to the detector noise.
If we treat the detector noise and the gravitational-wave spectral shape H(f) as
known quantities (or if we estimate the detector noise from the auto-correlated output
of each detector), then we can write down a likelihood function for the cross-correlated
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data given the signal model (7.30). Assuming a Gaussian-stationary distribution for
the noise, we have

p(C|P) o exp [—%(é —MP)Y'N"IC - MP)] , (7.32)

where we have temporarily dropped the 1 J indices for notational convenience.?! Since
the gravitational-wave power distribution P enters quadratically in the exponential of
the likelihood, we can immediately write down the maximum-likelihood estimators
of P: A

P=FX, (7.33)

where .
F=M'N"'M, XxX=M'N"'C. (7.34)

The (square) matrix F is called the Fisher information matrix. It is typically a singular
matrix, since the response matrix M = H y usually has null directions (i.e., anisotropic
distributions of gravitational-wave power that are mapped to zero by the detector
response). Inverting F' therefore requires some sort of regularization, such as singular-
value decomposition (Press et al. 1992) (Sect. 7.3.5). The vector X is the so-called
dirty map, as it represents the gravitational-wave sky as ‘seen’ by a pair of detectors.
If the spectral shape H (f) that we used for our signal model exactly matches that of
the observed background, then

(Xy=M'N"'"MP=FP. (7.35)

Thus, even in the absence of noise, a point source P (k) = 82(f, Ap) does not map
to a point source by the response of the detectors, but it maps instead to Fjj,. This
‘blurring’ or ‘spreading’ of point sources is represented by a point spread function,
which is a characteristic feature of any imaging system. We give plots of point spread
functions for both pulsar timing arrays and ground-based interferometers in Sect. 7.3.4.

7.3.2 Extension to a network of detectors

The above results generalize to a network of detectors. One simply replaces X and F
in (7.33) by their network expressions, which are simply sums of the dirty maps and
Fisher matrices for each distinct detector pair:

X=ZZX”, F=ZZF”. (7.36)

1 J>1 I J>I

21 The multiplications inside the exponential are matrix multiplications—either summations over sky direc-
tions 72 or summations over discrete times and frequencies, 7 and f.
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Explicit expressions for the dirty map and Fisher matrix for a network of detectors
are:

H(f) A
ZZZZV,JO I e e D 03D

I J>I t

and

H>(f) e
F = Fyj —ZZZZ%N LD LD 039

I J>I t

Note that including more detectors in the network is itself a form of regularization,
as adding more detectors typically means better coverage of the sky. This tends to
‘soften’ the singularities that may exist when trying to deconvolve (i.e., invert) the
detector response.

7.3.3 Error estimates

Using (7.35) it follows that P is an unbiased estimator of P

A

(P)="P. (7.39)
Similarly, in the weak-signal approximation,

(xxh —(x)(x"y ~ F, (7.40)
(PPY) — (PY(P) ~ F~! '

Thus, F is the covariance matrix for the dirty map X, while F ~1 is the covariance
matrix of the clean map P. We will see below (Sect. 7.3.5) that regularization neces-
sarily changes these results as one cannot recover modes of P to which the detector
network is insensitive. This introduces a bias in P, and changes the corresponding
elements of the covariance matrix for P.

7.3.4 Point spread functions

As discussed in the previous section, the point spread function for mapping
gravitational-wave power is given by the components of the Fisher information matrix:

PSF;, (7) = PSE(#, fig) = Fjj,.- (7.41)

Here 71 is the direction to the point source and 7 is an arbitrary point on the sky. In
the following three figures (Figs. 47, 48, 49) we shows plots of point spread functions
for both pulsar timing arrays and the LIGO Hanford—LIGO Livingston detector pair.
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Fig. 47 Point spread functions for gravitational-wave power for pulsar timing arrays consisting of N = 2,
5, 10, 20, 25, 50 pulsars. The point source is located at the center of the maps, (0, ¢) = (90°, 0°), indicated
by a black dot. The pulsar locations (indicated by white stars) are randomly placed on the sky. The point
spread function becomes tighter as the number of pulsars in the array increases

Example: Pulsar timing arrays

Figure 47 shows plots of point spread functions for pulsar timing arrays consisting
of N = 2,5, 10, 20, 25, 50 pulsars. The point source is located at the center of the
maps, indicated by a black dot. The pulsar locations (indicated by white stars) were
randomly-distributed on the sky, and we used equal-noise weighting for calculating
the point spread function. One can see that the point spread function becomes tighter
as the number of pulsars in the array increases. Figure 48 are similar plots for an
actual array of N = 20 pulsars given in Table 6. Note that the pulsar locations are
concentrated in the direction of the galactic center, (ra, dec) = (—6"15™, —29°) in
equatorial coordinates. The point source is again located at the center of the maps,
indicated by a black dot. The left panel shows the point spread function calculated
using equal-noise weighting, while the right panel shows the point spread function
calculated using actual-noise weighting, based on the timing noise values given in the
second column of Table 6. Note that this latter plot is similar to the small-N plots in
Fig. 47, being dominated by pulsars with low timing noise—in this particular case,
J0437—4715 and J2124—3358, which have the lowest and third-lowest timing noise.

Example: Earth-based interferometers

In Fig. 49 we plot point spread functions for gravitational-wave power for the LIGO
Hanford-LIGO Livingston pair of detectors. The left-hand plot is for a point source
located at the center of the map, (0, ¢) = (90°, 0°), while the right-hand plot is for a
point source located at (6, ¢) = (60°, 0°) (indicated by black dots). We assumed equal
white-noise power spectra for the two detectors, and we combined the contributions
from 100 discrete frequencies between 0 and 100 Hz, and 100 discrete time chunks
over the course of one sidereal day. The point spread functions for the two different
point source locations are shaped, respectively, like a figure-eight with a bright region
at the center of the figure-eight pattern, and a fear drop with a bright region near the
top of the drop. These results are in agreement with Mitra et al. (2008) (see e.g., Fig. 1
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Fig. 48 Point spread functions for the array of N = 20 pulsars listed in Table 6 for both equal-noise
weighting (left panel) and actual-noise weighting (right panel), using the timing noise values in the second
column of the Table. The timing noise values were rescaled by an overall factor so that the maps for the
two different weighting schemes could be meaningfully compared with one another. The point source is
located at the center of the maps, indicated by a black dot

Table 6 Actual pulsar locations and timing noise

Pulsar name Timing noise (jLs) Pulsar name Timing noise (jLs)
J0437—-4715 0.14 J1730-2304 0.51
J0613—-0200 2.19 J1732—-5049 1.81
JO711-6830 1.04 J1744—1134 0.17
J1022+41001 0.60 J1824—-2452 3.62
J1024—-0719 0.35 J1909—-3744 0.56
J1045—-4509 3.24 J1939+2134 3.58
J1600—3053 2.67 J2124-3358 0.25
J1603—-7202 1.64 J2129-5721 2.55
J1643—1224 4.86 J2145-0750 0.50
J1713+0747 0.89 B1855+0900 0.70

The pulsar name specifies its location: the first four digits is right ascension (ra) in hours and minutes
(hhmm); the last four digits is declination (dec) in degrees and minutes (ddmm), with the preceding + or
— sign. The rms timing noise is in microsec

/n m/b_’wﬁkf\\\ /n 2»—/—"".”_'5\\

080 120°w 60°W. ( 60°E 120°E 1 a7"vv 080 120°w 60°W ° 60°E 120°E 1 w{"w
™ / /
40°8 / 40° 2 i >
) \ : : >
B = " H #

-250 200 -150 -100 -50 0 50 100 150 200 250 -250 -200 -150 -100 -50 0 50 100 150 200 250

Fig. 49 Point spread functions for gravitational-wave power for the LIGO Hanford-LIGO Livingston
detector pair. Left panel point source at the center of the map, (6, ¢) = (90°, 0°). Right panel point source
at (0, ¢) = (60°,0°)
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in that paper). Provided one combines data over a full sidereal day, the point spread
function is independent of the right ascension (i.e., azimuthal) angle of the source.
Readers should see Mitra et al. (2008) for more details, including a stationary phase
approximation for calculating the point spread function.

Angular resolution estimates
There are “rules of thumb” that can be used to estimate the angular resolution A8
(or size of a point spread function) for an anisotropic stochastic background search.
For cross-correlations using ground-based interferometers like LIGO, Virgo, etc., the
angular resolution of the detector network can be estimated from the diffraction limit
(Monnier 2003):

A c

ANg~ L =
2D~ 2fD

, (7.42)
where f is gravitational-wave frequency and D is separation between a pair of detec-
tors. Thus, the larger the separation between detectors and the higher frequencies
searched for, the better the angular resolution. For a pulsar timing array consisting of
N pulsars, the corresponding estimate is given by

AG ~ 180°/ Imax =~ 180°/+/N, (7.43)

where /jn,x is the maximum value of / for a spherical harmonic decomposition of the
background having angular features of size A6. The last approximate equality follows
from the fact that, at each frequency, one can extract at most N (complex) pieces of
information about the gravitational-wave background using an N-pulsar array (Boyle
and Pen 2012; Cornish and van Haasteren 2014; Gair et al. 2014); and those N pieces
of information correspond to the number of spherical harmonic components (/) out
t0 /max, SO N ~ lrznax. (We will discuss this again in Sect. 7.5.4, in the context of basis
skies for a phase-coherent search for anisotropic backgrounds). Note that if we knew
the distances to the pulsars in the array and used information from the pulsar-term
contribution to the timing residuals (5.17), then A9 for a pulsar timing array would
have the same form as (7.42), but with D now representing the Earth-pulsar distance.
See Boyle and Pen (2012) for details.

7.3.5 Singular-value decomposition

Expression (7.33) for the maximum-likelihood estimator P involves the inverse of
the Fisher matrix F. But this is just a formal expression, as F' is typically a singular
matrix, requiring some sort of regularization to invert. Here we describe how singular-
value decomposition (Press et al. 1992) can be used to ‘invert’ F. Since this a general
procedure, we will frame our discussion in terms of an arbitrary matrix S.
Singular value decomposition factorizes an n X m matrix S into the product of three
matrices:
S=ULV", (7.44)

where U and V are n x n and m x m unitary matrices, and X is an n x m rectangular
matrix with (real, non-negative) singular values oy along its diagonal, and with zeros
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everywhere else. We will assume, without loss of generality, that the singular values
are arranged from largest to smallest along the diagonal. We define the pseudo-inverse
St of S as

st=vItuT, (7.45)

where £ is obtained by taking the reciprocal of each nonzero singular value of Z,
leaving all the zeros in place, and then transposing the resulting matrix. Note that
when S is a square matrix with non-zero determinant, then the pseudo-inverse S
is identical to the ordinary matrix inverse S~!. Thus, the pseudo-inverse of a matrix
generalizes the notion of ordinary inverse to non-square or singular matrices.

As a practical matter, it is important to note that if the nonzero singular values of
¥ vary over several orders of magnitude, it is usually necessary to first set to zero
(by hand) all nonzero singular values < some minimum threshold value o, (e.g.,
1073 times that of the largest singular value). Alternatively, we can set those very
small singular values equal to the threshold value op,i,. This procedure helps to reduce
the noise in the maximum-likelihood estimates, which is dominated by the modes to
which we are least sensitive.

Returning to the gravitational-wave case, the above discussion means that all of
the previous expressions for the inverse of the Fisher matrix, F~!, should actually be
written in terms of the pseudo-inverse F' *. Thus,

P=F'X, (7.46)

which then implies
(P)y=FTFP,
. ons A (7.47)
(PPT) — (P)(PT) ~ F*.
So P is actually a biased estimator of P if F* # F —1 as was discussed in Thrane
et al. (2009).

Figure 50 is a plot of the singular values of typical Fisher matrices for differ-
ent ground-based interferometer detector pairs (Hanford-Livingston, Hanford—Virgo,
Livingston—Virgo) and a multibaseline detector network (Hanford-Livingston—Virgo).
For these examples, we chose to expand the gravitational-wave power on the sky P (71)
and the integrand of the overlap functions yy;(¢; f, ) in terms of spherical harmon-
ics out to Imax = 20. (See Sect. 7.3.6 for more details about the spherical harmonic
decomposition method). This yields (/max + 1)? = 441 modes of gravitational-wave
sky that we would like to recover. Note how the inclusion of more detectors to the
network reduces the dynamic range of the singular values of F, hence making the
matrix less singular without any external form of regularization.

7.3.6 Radiometer and spherical harmonic decomposition methods
The gravitational-wave radiometer (Ballmer 2006a, b; Mitra et al. 2008) and spher-
ical harmonic decomposition methods (Thrane et al. 2009; Abadie et al. 2011) are

two different ways of implementing the maximum-likelihood approach for mapping
gravitational-wave power P (7). They differ primarily in their choice of signal model,
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Fig. 50 Singular values of typical Fisher matrices F for different ground-based interferometer detector
pairs and a multibaseline detector network. For this analysis there were 441 total modes. For each individual
detector pair, some of the singular values are (almost) null. The multibaseline network has fewer null modes,
thus acting as a natural regularizer. Image reproduced with permission from Thrane et al. (2009), copyright
by APS

and their approach for deconvolving the detector response from the underlying (true)
distribution of power on the sky.

Gravitational-wave radiometer
The radiometer method takes as its signal model a point source characterized by a
direction 719 and amplitude Py

P() = Pp, 8% (A, fig). (7.48)

Itis applicable to an anisotropic gravitational-wave background dominated by a limited
number of widely-separated point sources. As the number of point sources increases
or if two point sources are sufficiently close to one another, the point spread function
for the detector network will cause the separate signals to interfere with one another.
Thus, the radiometer method is not appropriate for diffuse backgrounds. Moreover,
by assuming that the signal is point-like, the radiometer method ignores correlations
between neighboring pixels on the sky, effectively side-stepping the deconvolution
problem. Explicitly, the inverse of the Fisher matrix that appears in the maximum-
likelihood estimator P = F~1X is replaced by the inverse of the diagonal element
F;; to obtain an estimate of the point-source amplitude at 7:

i = (Fan) ™' X, (7.49)
where X is the dirty map (7.34). Thus, the radiometer method estimates the strength

of point sources at different points on the sky, ignoring any correlations between
neighboring pixels.
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Note that for a single pair of detectors I J the above estimator (7.49) is equivalent
to an appropriately normalized cross-correlation statistic:

8yt ) = / df 15G: £ PN ), (7.50)

with filter function o
vig(t; fin) H(f)
Py, (25 f)Py, (85 f)

where yy; is given by (7.8). For a network of detectors, one recovers the estimator
75,3 by summing the individual-baseline statistics (7.50) over both time and distinct
detector pairs, weighted by the inverse variances of the individual-baseline statistics.
See e.g., Ballmer (2006a,b) and Mitra et al. (2008) for more details.

Qry(t; fin) (7.51)

Spherical harmonic decomposition

The spherical harmonic decomposition method is appropriate for extended anisotropic
distributions on the sky, assuming a signal model for gravitational-wave power that
includes spherical harmonic components up to some specified value of /jax:

lmax l

PR =YY PinYin(h). (7.52)

=0 m=—I

The cutoff in the expansion at /¢ corresponds to an angular scale A0 >~ 180°/ Inax.-
The diffraction limit (Monnier 2003):

o= © 7.53

~ 2D  2fD’ (7.53)
where f is the maximum gravitational-wave frequency and D is the separation between
a pair of detectors, sets an upper limit on the size of /;,,«, since the detector network is
not able to resolve features having smaller angular scales. For example, for the LIGO
Hanford-LIGO Livingston detector pair (D = 3000 km) and a stochastic background
having contributions out to f ~ 500 Hz, we find I, < 30. Alternatively, one can
use Bayesian model selection to determine the value of /i« that is most consistent
with the data.

Since the spherical harmonic method targets extended distributions of gravitational-
wave power on the sky, correlations between neighboring pixels or, equivalently,
between different spherical harmonic components must be taken into account. This is
addressed by using singular-value decomposition as described in Sect. 7.3.5 to ‘invert’
the Fisher matrix. By effectively ignoring those modes to which the detector network
is insensitive, we can construct the pseudo-inverse F* to perform the deconvolution.
In terms of F*, we have

lmax l,
Pin=2_ Y F X (7.54)
=0 m'=—I'
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Fig. 51 Results of spherical harmonic decomposition analyses performed using different detector pairs and
a multibaseline detector network. The simulated anisotropic power distribution is shown in the bottom plot.
Top row clean maps for the Hanford-Livingston and Hanford—Virgo detector pairs. Second row same as the
top row, but for the Livingston—Virgo detector pair and for the Hanford—Livingston—Virgo multibaseline
detector network. For all maps /max = 20. Image reproduced with permission from Thrane et al. (2009),
copyright by APS

for the spherical harmonic components of the maximum-likelihood estimators P. The
sky map constructed from the 751m is called a ‘clean’ map, since the inversion removes
the detector response from the ‘dirty’ map X.

Figure 51 shows clean maps produced by the spherical harmonic decomposi-
tion method for a simulated anisotropic background distributed along the galactic
plane (Thrane et al. 2009). The injected map is the bottom plot in the figure. (All
sky maps are in equatorial coordinates). The four maps shown in the top two rows
of the figure correspond to analyses with different interferometer detector pairs
(Hanford-Livingston, Hanford—Virgo, and Livingston—Virgo) and a multibaseline
detector network (Hanford-Livingston—Virgo). Consistent with our findings in Fig. 50,
we see that the recovered map is best for the multibaseline network, whose Fisher
matrix has singular values with the smallest dynamic range. For the reconstructed
maps, F was calculated by keeping 2/3 of all the eigenmodes (those with the largest
singular values), setting the remaining singular values equal to the minimum value
omin of the modes that were kept. For all cases, /jn,x = 20. The anisotropic background
was injected into simulated LIGO and Virgo detector noise (initial design sensitivity)
whose power spectra are shown in Fig. 52. The overall amplitude of the signal was
chosen to be large enough that it was easily detectable in 1 sidereal day’s worth of
simulated data. For additional details see Thrane et al. (2009).
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Fig. 52 The power spectral 107
densities used for the simulated

detector noise for the injections

described in Fig. 51. Image 1078}
reproduced with permission
from Thrane et al. (2009),
copyright by APS
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7.4 Frequentist detection statistics
As discussed in Sects. 3.4 and 4.4, one can construct a frequentist detection statistic

AML(d) by taking the ratio of the maxima of the likelihood functions for the signal-
plus-noise model to the noise-only model. The logarithm,

A(d) = 2 In[AmL(d)], (7.55)

is the squared signal-to-noise ratio of the data. If we calculate this quantity for an
anisotropic background P () using (7.32) for the signal-plus-noise model, we find

A(d) = PTFP, (7.56)
where P are the maximum-likelihood estimators of P. As described in Sect. 3.2.1,
one can use this statistic to do frequentist hypothesis testing, comparing its observed

value Agps to a threshold A, to decide whether or not to claim detection of a signal.
The above detection statistic can be written in several alternative forms:

A 1/ .
Ad) =PTFP=x"F'x = 5 (PTX + XTP) , (7.57)

where X is the ‘dirty’ map, which is related to P via P = F~'X. The last form
suggests a standard matched-filter statistic:

1/ _
Md) = 5 (P,Imddx + XTPmodel) , (7.58)

where 75m0del is an assumed distribution of gravitational-wave power on the sky, nor-
malized such that B B
P st F Prmoder = 1. (7.59)

model
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The above normalization is chosen so that if the true gravitational-wave background
has the same spectral shape H (f) and the same angular distribution 75mode1, then A(d)
is an estimator of the overall amplitude of the background. In the absence of a signal,
A(d) has zero mean and unit variance.

Such a matched-filter statistic was proposed in Appendix C of Thrane et al. (2009)
and studied in detail in Talukder et al. (2011). One nice property of this statistic is that it
does not require inverting the Fisher matrix. Hence it avoids the inherent bias (7.47) and
introduction of other uncertainties associated with the deconvolution process. Indeed,
if we are given a model of the expected anisotropy, A(d) is the optimal statistic for
detecting its presence. Thus, A(d) is especially good at detecting weak anisotropic
signals. See Talukder et al. (2011) for more details.

7.5 Phase-coherent mapping

Phase-coherent mapping is an approach that constructs estimates of both the amplitude
and phase of the gravitational-wave background at each point of the sky (Cornish
and van Haasteren 2014; Gair et al. 2014; Romano et al. 2015). In some sense, it
can be thought of as the “square root” of the approaches described in the previous
subsections, which attempt to measure the distribution of gravitational-wave power
P) = |ho|> + |hzX |. The gravitational-wave signal can be characterized in terms of
either the standard polarization basis components {h (f, 1), hx (f, 1)} or the tensor
spherical harmonic components {a((f ) f, a(cl m ( )}. In what follows we will restrict
our attention the polarization basis components, although a similar analysis can be
carried out in terms of the spherical harmonic components (Gair et al. 2014).

7.5.1 Maximum-likelihood estimators and Fisher matrix

Unlike the previous approaches, which target gravitational-wave power and hence use
cross-correlations (7.6) as their fundamental data product, phase-coherent mapping
works directly with the data from the individual detectors. In terms of the short-term
Fourier transforms defined in Sect. 7.1.2, we can write

Qi ) = [ @03 RN L) 4G D) T60)
A

where I labels the different detectors, and r1; (¢; f) denotes the corresponding detector
noise. Given our assumption (7.3) that the spectral and angular dependence of the
background factorize with known spectral function H (f), we can rewrite the above
equation as

a6 ) = [ @03 AP YR s+ i . (6D
A
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so that the only unknowns are {/ (71), h« (1)} at different locations on the sky. We
will write this equation abstractly as a matrix equation

d=Ma+n, (7.62)
where B
M = {H'2(NHR] (@ ). a={haG). (7.63)
The matrix multiplication corresponds to a sum over polarizations A and directions 7
on the sky.

Assuming that the noise is uncorrelated across detectors, the noise covariance matrix
is given by:

Nigre g = (g (t; iy (e f1) = g HIET A 1)

T (7.64)
= 5811/8tt/5ff’Pn/(t§ 5,

where Py, (t; f) is the one-sided power spectral density of the noise in detector / at
time 7. Thus, we can write down a likelihood function for the data d = {d;(¢; f)}
given a:

p(d)a) « exp [—%(d —Ma)'N"'d - Ma):| (7.65)

where the multiplications inside the exponential are matrix multiplications, involving
summations over detectors /, times ¢, and frequencies f, or summations over polar-
izations A and directions 71 on the sky. Note that (7.65) has exactly the same form as
(7.32), so the same general remarks made in Sect. 7.3.1 apply here as well. Namely,
the maximum-likelihood estimators of a are

a=FXx, (7.66)

where
F=M'N"'"M, x=M'N"4, (7.67)

are the Fisher matrices and ‘dirty’ maps for this analysis. (The definitions of M, N
here are different, of course, from those in Sect. 7.3.1). Explicit expression for X and
F are given below:

. 2 aer o HP2(O) =
X =Xai== ;Z;R, @ f, n)mdl(h ), (7.68)

and

2 ~ H !/ A/
F=Fuaw =233 ) R 1) Pm((f]f) RY(t: f7).  (1.69)
It f

Note that these expressions have an extra polarization index A, compared to the cor-
responding expressions, (7.37) and (7.38), for gravitational-wave power.
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7.5.2 Point spread functions

The point spread function for the above analysis can now be obtained by fixing values
for both A” and 7/, and letting A and 7 vary. Since there are two polarization modes
(+ and x), there are actually four different point spread functions for each direction
n’ on the sky:

PSF 4 (71, 7) = Fun arir- (7.70)

These correspond to the A = +, x responses to the A’ = +, x-polarized point sources
located in direction n’.

To illustrate the above procedure, we calculate point spread functions for phase-
coherent mapping, for pulsar timing arrays consisting of N = 1, 2, 5, 10, 25, 50,
100 pulsars. Figure 53 show plots of these point spread functions. The pulsars are
randomly distributed over the sky (indicated by white stars), and the point source is
located at the center of the maps (indicated by a black dot). For simplicity, we assumed
a single frequency bin, and used equal-noise weighting for calculating the point spread
functions. (In addition, there is no time dependence as the directions to the pulsars
are fixed on the sky). Different rows in the figure correspond to different numbers of
pulsars in the array. Different columns correspond to different choices for A and A’:
columns 1, 2 correspond to the A = +, x response of the pulsar timing array to an
A’ = +-polarized point source; columns 3, 4 correspond to the A = +, x response
of the pulsar timing array to an A" = x-polarized point source. Note that for N = 1,
the point spread functions are proportional to either R;r(ﬁ) or Ry () for that pulsar,
producing maps similar to those shown in Fig. 27. As N increases the ++ and x x
point spread functions (columns 1 and 4) become tighter around the location of the
point source, which is at the center of the maps. But since the + and x polarizations
are orthogonal, the x+ and + x point spread functions (columns 2 and 3) have values
close to zero around the location of the point source.

7.5.3 Singular value decomposition

Just as we had to deconvolve the detector response in order to obtain the estimators P
for gravitational-wave power, we need to do the same for the estimators a for the phase-
coherent mapping approach. Although we could use singular-value decomposition for
the Fisher matrix F' given by (7.69), we will first whiten the data, which leads us
directly to pseudo-inverse of the whitened response matrix M, (7.63). This is the
approach followed in Cornish and van Haasteren (2014) and Romano et al. (2015),
and it leads to some interesting results regarding sky-map basis vectors, which we will
describe in more detail in Sect. 7.5.4. An alternative approach involving the pseudo-
inverse of the unwhitened response matrix is given in Gair et al. (2014) and Appendix B
of Romano et al. (2015).

To whiten the data, we start by finding the Cholesky decomposition of the inverse
noise covariance matrix N~! = LL", where L is a lower triangular matrix. The
whitened data are then given by d = L'd (since this has unit covariance matrix),
and the whitened response matrix is given by M = L™ M. In terms of these whitened
quantities,
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Fig. 53 Point spread functions for phase-coherent mapping, for pulsar timing arrays consisting of N = 1,
2,5, 10, 25, 50, 100 pulsars. The point source is located at the center of the maps, (0, ¢) = (90°,0°),
indicated by a black dot. The pulsar locations (indicated by white stars) are randomly placed on the sky.
Different rows correspond to different numbers of pulsars in the array. Columns 1 and 2 correspond to the
+ and X response of the pulsar timing array to a +-polarized point source; columns 3 and 4 correspond to
the 4+ and x response of the pulsar timing array to a x-polarized point source

F=M'M, X=M1d, (7.71)
implying

A

a=F 'X=WMm"M)y"'"M'd=mtd. (7.72)

The last equality is a formal expression for the pseudo-inverse M+ since MM is not
necessarily invertible. But as shown in Sect. 7.3.5 it is always possible to define the
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pseudo-inverse of a matrix in terms of its singular-value decomposition. Thus, given
the singular-value decomposition:

M=UzV"T, (7.73)

we have B ,
MT=viItuT, (7.74)

where LT is defined by the procedure described in Sect. 7.3.5. Thus,
a=Mtd=vitu'd. (7.75)

This is the expression we need to compute to calculate the maximum-likelihood esti-
mators a for the phase-coherent mapping approach.

7.5.4 Basis skies

The singular-value decomposition of M also has several nice geometrical properties.
For example, from (7.75), we see that the columns of V corresponding to the non-zero
singular values of X are basis vectors (which we will call basis skies) in terms of which
a can be written as a linear combination. Similarly, if write the whitened response to
the gravitational-wave background as

Ma=UZXV'a, (7.76)

then we see that the columns of U corresponding to the non-zero singular values of X
can be interpreted as range vectors for the response. To be more explicit, let u ) and
v(k) denote the kth columns of U and V, and let r be the number of non-zero singular
values of X. Then

.
a= ZU;:I(M(I«) (2) V(k)»
k=1 (1.77)

r
Ma = Zak(v(k) . a) u(k),
k=1

where the dot product of two vectors a and b is defined asa - b = a’b. If we further
expand d = Ma + n in the first of these equations, then

r
a=> (v aw + M. (7.78)
k=1

This last expression involves the projection of the true gravitational-wave sky a onto
the basis skies vy for only the non-zero singular values of X.

In Fig. 54, we show plots of the real parts of the 4+ and x-polarization basis skies
for a pulsar timing array consisting of N = 5 pulsars randomly distributed on the
sky. The imaginary components of the basis skies are identically zero, and hence are
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Fig. 54 The real parts of the + and x-polarization basis skies for pulsar timing array consisting of N = 5

-0.05
pulsars randomly distributed on the sky. The imaginary components of the basis skies are identically zero.
The basis skies are shown in decreasing size of their singular values, from the fop of the figure to the bottom
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not shown in the figure. The basis skies are shown in decreasing size of their singular
values, from top to bottom. In general, if N is the number of pulsars in the array, then
the number of basis skies is 2N (the factor of 2 corresponding to the two polarizations,
+ and x). This means that one can extract at most 2N real pieces of information about
the gravitational-wave background with an N-pulsar array. This is typically fewer than
the number of modes of the background that we would like to recover.

7.5.5 Underdetermined reconstructions

More generally, let’s consider the case where the total number of measured data points
n is less than the number of modes m that we are trying to recover (son < m), or where
there are certain modes of the gravitational-wave background (e.g., null skies) that our
detector network is simply insensitive to. Then, for both of these cases, the linear
system of equations that we are trying to solve, d = Ma, is underdetermined—i.e.,
there exist multiple solutions for a, which differ from (7.75) by terms of the form

anall = Mpxm — M—"—M)aarbv (7.79)

where a,, 1S an arbitrary gravitational-wave background. (Note that apy; is an element
of the null space of M as it maps to zero under the action of M). Our solution for 4
given in (7.75) sets to zero those modes that we are insensitive to. Our solution also
sets to zero the variance of these modes.

In a Bayesian formulation of the problem, one needs to specify prior probability
distributions for the signal parameters, in addition to specifying the likelihood function
(7.65). For a mode of the background to which our detector network is insensitive,
the marginalized posterior for that mode will be the same as the prior, since the data
are uniformative about this mode. This is what one would expect for a mode that
is unconstrained by the data, in contrast to setting the variance equal to zero as we
do with our maximum-likelihood reconstruction. Basically, our maximum-likelihood
reconstruction does not attempt to say anything about the modes of the background
for which we have no information.

7.5.6 Pulsar timing arrays

The phase-coherent mapping approach was first developed in the context of pulsar
timing arrays (Cornish and van Haasteren 2014; Gair et al. 2014). In Cornish and
van Haasteren (2014), the analysis was done in terms of the standard polarization
components a = {hy(f, n), hx(f, n)}, similar to what we described above. In Gair
et al. (2014), the analysis was done in terms of the tensor spherical harmonic com-
ponents a = {agm)(f ), a(clm)( f)}. Now recall from (5.23) that the Earth-term-only,
Doppler-frequency response functions are given by

R () =272 PN Yim (D), R, (f) =0, (7.80)

where p is the direction to an arbitrary pulsar. Thus, the pulsar response to curl modes
is identically zero. This means that a pulsar timing array is blind to half of all possible

@ Springer



2 Page 120 of 223 J. D. Romano, N. J. Cornish

reai(he) roai(he) reai(ne)

~ ‘' » A V.o \
o T T PR . Y. v

R T
(a) (©)
J—
. . — e — o -
e "q{g:;" luma\*. g ,;" m
o i N i " t n - -
fo Ty g \ fex % ‘ ( « W
oy o Tty T Y g w0 g wen oy . ¢ - : °afm’5§ "
T8 s EARPTI P * oW 4
o - o) . o
e B gy - ‘?)‘ﬁﬁ/‘/
e el e,
[ SaaaaEaaase | [ SaaaaEaaaasa |
R S T S S
(d) (e) ®

Fig. 55 Mollweide projections of the real parts of /4 (72) for the different components of the simulated
background (panels a—c), the maximum-likelihood recovered map for a pulsar timing array consisting of
N = 100 pulsars (panel e), and the corresponding residual maps for the grad-component (panel d) and the
total simulated background (panel f). Sky maps of the imaginary part of 4 (71) and the real and imaginary
parts of hx () are similar, and hence are not shown in this figure. Note that the maximum-likelihood
recovered map most-closely resembles the gradient component of the simulated background, since a pulsar
timing array is insensitive to the curl modes of a gravitational-wave background. Image reproduced with
permission from Gair et al. (2014), copyright by APS. a Total map (grad+curl). b Gradient component. ¢
Curl component. d Gradient residual map. e Max-likelihood recovered map. f Total residual map

modes of a gravitational-wave background, regardless of how many pulsars there are
in the array. Note that this statement is not restricted to the tensor spherical harmonic
analysis; it is also true in terms of the standard (4, x) polarization components, since
a((l;m)(f) and a(clm) (f) are linear combinations of 4. (f, ) and hy (f, n), see (2.11).
It is just that the insensivity of a pulsar timing array to half of the gravitational-wave
modes is manifest in the gradient and curl spherical harmonic basis for which (7.80)
is valid.

To explicitly demonstrate that a pulsar timing array is insensitive to the curl-
component of a gravitational-wave background, Gair et al. (2014) constructed
maximum-likelihood estimates of a simulated background containing both gradient
and curl modes. The total simulated background and its gradient and curl components
are shown in the top row (panels a—c) of Fig. 55. (Note that this is for a noiseless
simulation so as not to confuse the lack of reconstructing the curl component with the
presence of detector noise). Panel e shows the maximum-likelihood recovered map
for a pulsar timing array consisting of N = 100 pulsars randomly distributed on the
sky. Panels d and f are residual maps obtained by subtracting the maximum-likelihood
recovered map from the gradient component and the total simulated background,
respectively. Note that the maximum-likelihood recovered map resembles the gradi-
ent component of the background, consistent with the fact that a pulsar timing array
is insenstive to the curl component of a gravitational-wave background. The resid-
ual map for the gradient component (panel d) is much cleaner than the residual map
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for the total simulated background (panel f), which has angular structure that closely
resembles the curl component of the background.

7.5.7 Ground-based interferometers

The phase-coherent mapping approach can also be applied to data taken by a network
of ground-based interferometers (Romano et al. 2015). Again the analysis can be
performed in terms of either the standard +, x polarization components or the gradient
and curl spherical harmonic components. Recall from (5.33) that

4 1 . .
RS, (f) = slz?”\@ [Y2 (@) = Yau(®]. RS, (f) =0, (7.81)

for a ground-based interferometer in the small-antenna limit, with its vertex at the
origin, and with unit vectors i, 9 pointing in the direction of the interferometer arms.
At first, one might think that these expressions imply that a network of ground-based
interferometers is also blind to the curl component of a gravitational-wave background.
But (7.81) are valid only for interferometers with their vertices at the origin of coordi-
nates. Since a translation mixes gradient and curl components, the response functions
for an interferometer displaced from the origin by x( are given by Romano et al.
(2015):

1+2 L

RG,(f) = Z > Z Fy (@1, 0)

m'==2 L=1-2 M=
(-1 )m

x 47 (=" jL @)Yy o) —— [ (=D + (= D*]

(2~2+1)(2[~|—1)(2L+1)< 2 L><2 i L)

4 —m'mM)\2-20
L (7.82)

CRUED NP P WY

m'==2L=I-2M=

()’"

[ = D]

(2-2+1)(2[+1)(2L+1) 2 1L 21 L
47 —-m'm M 2-20

x 4 (=) E jr (@)Y}, (o)

where a = 27 f|Xo|/c and jy () are spherical Bessel functions of order L. Here

4 1
Fouit, §) = ?”\E [Yam (@) — Yom ()], (7.83)

is shorthand for the particular combination of spherical harmonics that enter the expres-

sion for Rgm) (f) in (7.81). The two expressions in parentheses () for each response
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function are Wigner 3-j symbols (see, e.g., Wigner 1959; Messiah 1962). Note that the
curl response is now non-zero, and both response functions depend on frequency via
the quantity «, which equals 27 times the number of radiation wavelengths between
the origin and the vertex of the interferometer. These expressions are valid in an arbi-
trary translated and rotated coordinate system, provided the angles for iz, 0, and %o are
calculated in the rotated frame.

Thus, the spatial separation of a network of ground-based interferometers, or of a
single interferometer at different times during its daily rotational and yearly orbital
motion around the Sun (Sect. 5.5.3), allows for recovery of both the gradient and
curl components of a gravitational-wave background. This is in contrast to a pulsar
timing array, which is insensitive to the curl component, because one vertex of all
the pulsar baselines are ‘pinned’ to the solar system barycenter. To illustrate this
difference, we show in Fig. 56, maximum-likelihood recovered sky maps for simulated
grad-only and curl-only anistropic backgrounds injected into noise for a 3-detector
network of ground-based interferometers (Hanford-Livingston—Virgo). The grad-only
and curl-only backgrounds are the same as those used for the simulated maps in
Fig. 55. In contrast to the recovered maps shown in that figure for the pulsar timing
array, the maximum-likelihood maps (bottom row) for the network of ground-based
interferometers reproduce the general angular structure of both the grad-only and curl-
only injected maps (shown in the top row). (The noise for these injections degrades the
recovery compared to the noiseless injections in Fig. 55). See Romano et al. (2015)
for more details and related simulations.

8 Searches for other types of backgrounds/signals

No idea is so outlandish that it should not be considered with a searching but at
the same time a steady eye. Winston Churchill

Since stochastic gravitational-wave backgrounds come in many different “flavors”,
one needs additional search methods that go beyond the standard “vanilla” cross-
correlation search for a Gaussian-stationary, unpolarized, isotropic signal (Sects. 4, 5)
to extract the relevant information from the more exotic backgrounds. In Sect. 7, we
discussed how to search for anisotropic signals, which are stronger coming from cer-
tain directions on the sky than from others. In this section, we discuss search methods
for non-Gaussian signals (Sect. 8.1), circularly polarized backgrounds (Sect. 8.2), and
additional polarization modes predicted by alternative (non-general-relativity) metric
theories of gravity (Sects. 8.3, 8.4, 8.5). In Sect. 8.6, we also briefly mention searches
for other types of gravitational-wave signals, which are not really stochastic back-
grounds, but nonetheless can be searched for using the basic idea of cross-correlation,
which we developed in Sect. 4. The majority of the search methods that we will
describe here have been implemented “across the band”—i.e., for ground-based inter-
ferometers, space-based interferometers, and pulsar timing arrays. For these methods,
we will highlight any significant differences in the implementations for the different
detectors, if there are any.
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Fig. 56 Mollweide projections of the real parts of Ay (71) for grad-only and curl-only anisotropic back-
grounds injected into noise and analysed using a 3-detector network of ground-based laser interferometers
(Hanford-Livingston—Virgo). The injected maps are shown in the fop row; the maximum-likelihood recov-
ered maps are shown in the second row. Sky maps of the imaginary part of i (7) and the real and imaginary
parts of /1 x (1) are similar for both the injections and the recovered maps, and hence are not shown in the
figure. Note that a network of ground-based interferometers is capable of recovering both the gradient and
curl components of a gravitational-wave background, in contrast to a pulsar timing array (compare with
Fig. 55). Image reproduced with permission from Romano et al. (2015), copyright by APS. a Injected
grad-only map. b Injected curl-only map. ¢ Max-likelihood recovered map. d Max-likelihood recovered
map

Of course, we do not have enough time or space in this section to do justice for all of
these methods. As such, readers are strongly encouraged to read the original papers for
more details. For non-Gaussian backgrounds, see Drasco and Flanagan (2003), Seto
(2009), Thrane (2013), Martellini and Regimbau (2014) and Cornish and Romano
(2015); for circular polarization, see Seto and Taruya (2007, 2008) and Kato and Soda
(2016); for polarization modes in alternative theories of gravity, see Lee et al. (2008),
Nishizawa et al. (2009), Chamberlin and Siemens (2012) and Gair et al. (2015); and
for the other types of signals, see Thrane et al. (2011) and Messenger et al. (2015).

8.1 Non-Gaussian backgrounds

In Sect. 2.1, we asked the question “when is a gravitational-wave signal stochastic”
to highlight the practical distinction between searches for deterministic and stochastic
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Fig. 57 Simulated toy-model signals and histograms for different duty cycles. The left two panels cor-
respond to 1 burst every 10 s (on average); the right two panels correspond to 100 bursts every second
(on average). The red curves in the bottom two panels show the best-fit Gaussian distributions to the data.
Similar to Fig. 1 from Thrane (2013)

signals. From an operational perspective, a signal is stochastic if it is best searched for
using a stochastic signal model (i.e., one defined in terms of probability distributions),
even if the signal is intrinsically deterministic, e.g., a superposition of sinusoids. This
turns out to be the case if the signals are: (i) sufficiently weak that they are individually
unresolvable in a single detector, and hence can only be detected by integrating their
correlated contribution across multiple detectors over an extended period of time, or (ii)
they are sufficiently numerous that they overlap in time-frequency space, again making
them individually unresolvable, but producing a confusion noise that can be detected
by cross-correlation methods. If the rate of signals is large enough, the confusion noise
will be Gaussian thanks to the central limit theorem. But if the rate or duty-cycle is
small, then the resulting stochastic signal will be non-Gaussian and “popcorn-like”, as
we discussed in Sect. 1.1. This is the type of signal that we expect from the population
of binary black holes that produced GW 150914 and GW151226; and it is the type of
signal that we will focus on in the following few subsections.

Figure 57 illustrates the above statements in the context of a simple toy-model
signal consisting of simulated sine-Gaussian bursts (each with a width o; = 1 s)
having different rates or duty cycles. The left two panels correspond to the case where
there is 1 burst every 10 seconds (on average). The probability distribution of the
signal samples / (estimated by the histogram in the lower-left-hand panel) is far from

@ Springer



Detection methods for stochastic gravitational-wave backgrounds Page 125 of 223 2

Gaussian for this case. The right two panels correspond to 100 bursts every second (on
average), for which the probability distribution is approximately Gaussian-distributed,
as expected from the central limit theorem.

8.1.1 Non-Gaussian search methods: overview

There are basically two different approaches that one can take to search for non-
Gaussian stochastic signals: (i) The first is to incorporate the non-Gaussianity of the
signal into the likelihood function by marginalizing over the appropriate signal model
(Sect. 8.1.2). Then given the likelihood, one can construct frequentist detection statis-
tics and estimators from the maximum-likelihood ratio (3.24), or do Bayesian model
selection in the usual way (Sect. 3). (ii) The second approach is to construct specific
frequentist statistics that targets the higher-order moments of the non-Gaussian distri-
bution, and then use these statistics to do standard frequentist hypothesis testing and
parameter estimation. This approach is most simply cast in terms of the skewness and
(excess) kurtosis of the distribution, which are the third and fourth-order cumulants,
defined as follows: If X is a random variable with probability distribution px (x), then
the moments are defined by (Appendix B):

wn = (X" = /dx x" px(x), (8.1)
and the cumulants by

c1 = i1,
_ 2
€2 = U2 — MUy,
3 = 3 — 3popr + 213, (8.2)
c4 = pa — dpapn — 33 + 12uouf — 6,

Note that ¢; and ¢; are just the mean p and variance o2 of the distribution. For a
Gaussian distribution, ¢3 = 0,c4 = 0, .... For a distribution with zero mean, the
above formulas simplify to ¢c; = 0, ¢2 = Uz, 3 = u3, and ¢4 = pa — 3;@. The
higher-order-moment approach requires 3rd or 4th-order correlation measurements
(Sect. 8.1.5).

8.1.2 Likelihood function approach for non-Gaussian backgrounds

Fundamentally, searching for non-Gaussian stochastic signals is no different than
searching for a Gaussian stochastic signal. In both cases one must: (i) specify a signal
model, (ii) incorporate that signal model into a likelihood function or frequentist
detection statistic/estimator, and (iii) then analyze the data to determine how likely it
is that a signal is present. It is the choice of signal model, of course, that determines
what type of signal is being searched for.
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The signal model is incorporated into the likelihood via marginalization over the
signal samples as discussed in Sect. 3.6.2. Assuming Gaussian-stationary noise > with
covariance matrix C,, the probability of observing data d in a network of detectors
given signal model / is (3.53):

- 1 TNl (e TaT
d ]’l, C = ——¢ 2 1,0 "1 &n Ii,Jj ]J’ 83
PUlh.Cn) = s 8.3)

where B
rii =dp — hy; (8.4)

are the residuals in detector /. (The subscript i labels either a time or frequency
sample for the analysis, whichever is being used). Since one is often not interested in
the particular values of h, but rather the values of the parameters 6, that describe the
signal, one marginalizes over /:

p(d|0n.0,) = fdf_l p(dlh, Cy)p(hl6}). (8.5)

This yields a likelihood function that depends on the signal and noise parameters 6},
0, = C,. It is this likelihood function that we then use for our statistical analysis.

Several different signal priors, which have been proposed in the literature, are given
below. For simplicity, we will consider the case where the detectors are colocated and
coaligned, and have isotropic antenna patterns, so that the contribution from the signal
is the same in each detector, and is independent of direction on the sky. For real
analyses, these simplifications will need to be dropped, as is done e.g., in Thrane
(2013).

Gaussian signal prior

N 52

i, _ Ly
p(h|Sp) = By = (8.6)

1
QSN2 ¢

This is the standard prior that one uses for describing a Gaussian-stochastic signal, and
leads to the usual Gaussian-stochastic cross-correlation detection statistic (Sect. 4.4).

Drasco and Flanagan (2003) non-Gaussian signal prior
N 1 72 1902
p(hlg, @) = [s = (1 —mal)]. ®.7)
1_[ V2ma? l

i=1

This prior corresponds to Gaussian bursts occuring with probability 0 < & < 1 and
with root-mean-square (rms) amplitude .

22 What to do when the noise is non-stationary or non-Gaussian is discussed in Sects. 9.2 and 9.3.
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Mixture-Gaussian signal prior

N
- 1 ) 1 72002

hlE, a, B) = _eThi L ey hi2E 8.8
pig.o.p) =1 [s — (-8 s } (8.8)

The mixture-Gaussian signal prior is a non-Gaussian distribution, which reduces to
the Gaussian signal prior in the limit & — 1. It reduces to the Drasco and Flanagan
signal prior in the limit 8 — O.

Martellini and Regimbau (2014) non-Gaussian signal prior

N
p(hlg. @) =[] [§ pnc i) + (1 —€) 8] (8.9)
i=1
where
PG (hy)
e oy (Y e (), S hi
= 2ﬂa2e |:1+6a3H3<a>+24a4H4(a>+72a6H6<a):|

(8.10)

is the 4th-order Edgeworth expansion (Martellini and Regimbau 2014) of a non-
Gaussian distribution with third and fourth-order cumulants c¢3 and c4. (H,, (x) denotes
a Hermite polynomial of order n). The Edgeworth expansion is referenced off a Gaus-
sian probability distribution, and is thus said to be a semi-parametric representation
of a non-Gaussian distribution. This prior reduces to the Drasco and Flanagan signal
prior when ¢c3 = 0, ¢4 = 0.

Multi-sinusoid signal prior

p(hl0y) =8 (h — h(81))

M
i 8.11)
hi@n) =) AjcosQfit; — ).

I1=1

This is a deterministic signal prior, corresponding to the superposition of M sinu-
soids with unknown amplitudes, frequencies, and phases, 8, = {A;, f1, 7|l =
1,2, ..., M}. This was one of the signal models used in Cornish and Romano (2015)
to investigate the question of when is a signal stochastic.

Superposition of finite-duration deterministic signals

p(hly) =8 (h — h(@1))
M
_ (8.12)
hi@n) =Y ArT(t; — t1107).
I1=1
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Here, 7 (¢|67) is a normalized waveform (template) for some deterministic signal
(e.g., a chirp from an inspiralling binary, a sine-Gaussian burst, a ringdown signal,
...) described by parameters 7 (e.g., chirp mass, correlation time, frequency, .. .).
Ay is the amplitude of the /th signal and #; is its arrival time. Note that these signal
waveforms can be extended in time, having a characteristic duration t. Thus, this
signal model is intermediate between the single-sample burst and multi-sinusoid signal
models.

Generic likelihood for unresolvable signals

In Thrane (2013), Thrane writes down a generic likelihood function for a non-Gaussian
background formed from the superposition of signals which are individually unresolv-
able in a single detector. The likelihood function:

P(BIE. On, 0,) = [ | [£ S(5i10n) + (1 — &) B(5i10.)] (8.13)

1

is defined for a pair of detectors /, J, and takes as its fundamental data vector estimates
of the signal-to-noise ratio of the cross-correlated power in the two detectors:

. . Crs(t; f)
i = p(t; =./176 s 8.14)
=P D) =N e P G ) (
where )
Crit; f) = ;Jza; N5t ). (8.15)

Here 7 is the duration of the short-term Fourier transforms and §f is the frequency
resolution. (Note that §f can be greater than 1/t if one averages together neighboring
frequency bins). The product over i is over time-frequency pixels 7 f. The functions S
and B are probability distributions for p; for the signal and noise models, respectively.
These distributions are generic in the sense that they are to be estimated using Monte
Carlo simulations with injected signals for the signal model S, and via time-slides on
real data for the noise model B. They need not be Gaussian for either the signal or
the detector noise. The vectors 6} and 8,, denote parameters specific to the signal and
noise models. Although the above likelihood function was not obtained by explicitly
marginalizing over /1, mathematically there is some signal prior and noise model which
yields this likelihood upon marginalization.

8.1.3 Frequentist detection statistic for non-Gaussian backgrounds

As discussed in Sect. 3.4, given likelihood functions for the signal-plus-noise and
noise-only models, we can construct a frequentist detection statistic from either the
maximum-likelihood ratio Apmp (d) given by (3.24), or twice its logarithm, A(d) =
2 In(AmL(d)), which has the interpretation of being the squared signal-to-noise ratio
of the relevant data. For a white Gaussian stochastic signal in white Gaussian detector
noise (assuming a pair of colocated and coaligned detectors), we showed in Sect. 4.4:
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c N2 @
Al(\E/IL(d) =|1--2 , AS@)~ ——, (8.16)
S152 Sp Sn, /N

where N is the number of samples, and where the last approximate equality assumes
that the gravitational-wave signal is weak compared to the detector noise. We have
added the superscript G to indicate that this is for a Gaussian-stochastic signal model.

We can perform exactly the same calculations, making the same assumptions,
for the likelihood functions constructed from any of the non-Gaussian signal pri-
ors given above (in Sect. 8.1.2). These calculations have already been done for the
Drasco—Flanagan and Martellini—-Regimbau signal priors (Drasco and Flanagan 2003;
Martellini and Regimbau 2014). The expressions that they find for the maximum-
likelihood ratios /\Eﬁ(d) for their non-Gaussian signal models are rather long and
not particularly informative, so we do not bother to write them down here (inter-
ested readers should see (1.8) in Drasco and Flanagan 2003, and the last equation in
Martellini and Regimbau 2014). The values of the parameters that maximize the like-
lihood ratio are estimators of &, «, Sy, , Sy, for the Drasco and Flanagan signal model,
and estimators of &, «, ¢3, ¢4, Sy, Sp, for the Martellini and Regimbau signal model.

To illustrate the performance of a non-Gaussian detection statistic, we plotin Fig. 58
the minimum value of Qg (S, in the notation above) necessary for detection as a
function of the duty cycle &. (The signal becomes Gaussian as § — 1). The solid line
is the theoretical prediction for the Drasco and Flanagan non-Gaussian maximum-
likelihood statistic, while the dashed line is the theoretical prediction for the standard
Gaussian-stochastic cross-correlation statistic. The dotted line is the theoretical pre-
diction for a single-detector burst statistic, which is just the maximum of the absolute
value of the data samples in e.g., detector 1: AB(d) = max; |d1i|. The false alarm and
false dismissal probabilities were both chosen to equal 0.01 for this calculation. From
the figure one sees that for & >1073, the Gaussian-stochastic cross-correlation statistic
performs best. For smaller values of &, the non-Gaussian statistic is better. In particular,
for & ~ 10™*. there is a factor of ~2 improvement in the minimum detectable signal
amplitude if one uses the non-Gaussian maximum-likelihood detection statistic.

Figure 59 is taken from Thrane (2013) and shows posterior distributions for the duty
cycle & calculated for Monte Carlo simulations corresponding to pure background
& = 0 (dash-dot blue), pure signal £ = 1 (solid red), and an even mixture £ = 0.5
(dashed green). These curves illustrate that the formalism in Thrane (2013) can provide
estimates of the duty cycle £ of the non-Gaussian background. See Thrane (2013) for
more details.

8.1.4 Bayesian model selection

As an alternative to using frequentist detection statistics and estimators to search for
potentially non-Gaussian signals, one can use Bayesian model selection to compare
the noise-only model My to different signal-plus-noise models M, Ma, .. .. This is
a general procedure for Bayesian inference, which was discussed in Sect. 3.3.3. As
shown there, the posterior odds ratio between two different models M, and Mg can
be written as

@ Springer



2 Page 130 of 223

J. D. Romano, N. J. Cornish

1.2

(arbitrary units)

Qdeleclable

-2 1 00

Fig. 58 The minimum detectable value of Qgy as a function of the duty cycle &. The solid line is the
theoretical prediction for the Drasco and Flanagan non-Gaussian maximum-likelihood statistic; the dashed
line is for the standard Gaussian-stochastic cross-correlation statistic; and the dotted line is for a single-
detector burst statistic. The number of data points used was N = 109, and the false alarm and false dismissal
probabilities were both chosen to equal 0.01. Image reproduced with permission from Drasco and Flanagan

(2003), copyright by APS

Fig. 59 Posterior distributions
for the duty cycle & calculated
for Monte Carlo simulations
having & = 0 (dash-dot blue),
& =1 (solid red), and &£ = 0.5
(dashed green). Image
reproduced with permission
from Thrane (2013), copyright
by APS
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(8.17)

where the first ratio on the right-hand side is the prior odds for the two models, while
the second term is the Bayes factor:
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which is a ratio of model evidences:
p(dIMy) = /p(dlf)a, M) p(0yIMy)dby, (8.19)

and similarly for p(d|Mpg). If one assumes equal prior odds, then the posterior odds
ratio is just the Bayes factor, and we can use its value to rule in favor of one model or
another (see Table 3).

The idea of using Bayesian model selection in the context of searches for non-
Gaussian stochastic backgrounds was proposed by us in Cornish and Romano (2015).
We considered a simple toy-problem consisting of simulated data in two colocated
and coaligned detectors, having uncorrelated white Gaussian detector noise plus a
gravitational-wave signal formed from the superposition of sinusoids having ampli-
tudes drawn from an astrophysical population of sources. Such a signal is effectively
the frequency-domain version of the short-duration time-domain bursts discussed in
the previous subsections. Five different models were considered:

— My: noise-only model, consisting of uncorrelated white Gaussian noise in two
detectors with unknown variances 012, 022.

— M: noise plus the Gaussian-stochastic signal model defined by (8.6).

— Mas: noise plus the mixture-Gaussian stochastic signal model defined by (8.8).

— Ma3: noise plus the deterministic multisinusoid model defined by (8.11).

— My noise plus the deterministic multisinusoid signal model plus the Gaussian-
stochastic signal model. This is a hybrid signal model that allows for both stochastic
and deterministic components for the signal.

Simulated data were generated by coadding sinusoidal signals with amplitudes drawn
from an astrophysical model (Sesana 2013), and phases and frequencies drawn uni-
formly across the range spanned by the data. Gaussian-distributed white noise for the
two detectors were then added to the signal data. The amplitude of the signals were
scaled so as to produce a specified matched filter signal-to-noise ratio per frequency
bin. Markov Chain Monte Carlo analyses were run to compare the noise-only model
M to each of the four signal-plus-noise models M, ..., My. Quantile intervals for
the Bayes factors were estimated from 256 independent realizations of the simulated
data for each set of parameter values. These intervals capture the fluctuation in the
Bayes factors that come from different realizations of the data; they are not uncertain-
ties in the Bayes factors associated with different Monte Carlo simulations for a single
realization, which were <10%.

Figure 60 is a representative plot taken from Cornish and Romano (2015), compar-
ing the different models. The left panel shows the Bayes factors for the four different
signal-plus-noise models relative to the noise-only model plotted as a function of the
average number of sources per bin. The right panel shows the fraction of time that the
different models had the largest Bayes factor for the different simulations. The total
number of bins was set to 32 for these simulations and the SNR per bin was fixed at 2.
From these and other similar plots in Cornish and Romano (2015), one can draw the
general conclusion that deterministic models are generally favored for small source
densities, a non-Gaussian stochastic model is preferred for intermediate source densi-
ties, and a Gaussian-stochastic model is preferred for large source densities. Given the
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Fig. 60 Left panel Bayes factor 80% quantile intervals for the four different signal-plus-noise models
relative to the noise-only model as a function of the number of sources per bin. Right panel Fraction of time
that the different models had the largest Bayes factor for the different simulations. Image reproduced with
permission from Cornish and Romano (2015), copyright by APS

large fluctuations in the Bayes factors associated with different signal realizations, the
boundaries between these three regimes is rather fuzzy. The hybrid model, which has
a deterministic component for the bright signals and a Gaussian-stochastic component
for the remaining confusion background, is the best model for the majority of cases.

8.1.5 Fourth-order correlation approach for non-Gaussian backgrounds

In this section, we briefly describe a fourth-order correlation approach for detecting
non-Gaussian stochastic signals, originally proposed in Seto (2009). The key idea is
that by forming a particular combination of data from 4 detectors (the excess kurtosis),
one can separate the non-Gaussian contribution to the background from any Gaussian-
distributed component. This approach requires that the noise in the four detectors be
uncorrelated with one another, but it does not require that the noise be Gaussian. Here
we sketch out the calculation for 4 colocated and coaligned detectors, which we will
assume have isotropic antenna patterns, so that the contribution from the gravitational-
wave signal is the same in each detector, and is independent of direction on the sky.
These simplifying assumptions are not essential for this approach; the calculation for
separated and misalinged detectors with non-isotropic response functions can also be
done (Seto 2009).

Let’s begin then by denoting the output of the four detectors / = 1,2, 3, 4 in the
Fourier domain by

n
dy=i;+h h=g+) b, (8.20)

i=1

where 7i; denotes the noise in detector / and & denotes the total gravitational-wave
contribution, which has a Gaussian-stochastic component g, and a non-Gaussian
component formed from the superposition of short-duration burst signals b;, i =
1,2, ..., n. We assume that the noise in the detectors are uncorrelated with one another
and with the gravitational-wave signals, and that the individual gravitational-wave sig-
nals are also uncorrelated amongst themselves. The (random) number of bursts present
in a particular segment of data is determined by a Poisson distribution
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Mg
P(n) = , (8.21)
n!
where -
A= (n) = ZnP(n), (8.22)
n=0

is the expected number of bursts in segment duration Teg. The 4th-order combination
of data that we consider is

K = (didodid}) — (dido)(d5d}) — (didi)(dod) — (didi)(dady),  (8.23)

where angle brackets ( ) can be thought of as either expectation value (i.e., ensemble
average) or as an average over the Fourier components of the data, i.e., as an estimator
of the expected correlations. Since the noise in the detectors are uncorrelated with
everything, the only contributions to K will come from expectation values of products
of h =g+ i b; with itself. Calculating the quadratic terms that enter (8.23), we
find: s .

) = 38) 5, 520

(didy) = (88") + A (bD"),

where we used
<Z ZBZ-EJ> = <Zz§i1§i> = M{(bb), (8.25)
i i

which assumes that all the bursts have the same mean-square value, (bib;) = (bb).
For the 4th-order term, we find:

(Bdd) = (88°F") + 22 [1(6b) | +2(55")*

3. [(BBB*B*) + (33)(Bb)* + (8)" (bb) + 4(38") (BB .

(8.26)
Substituting these results back into expression (8.23) yields:
K = A(bbb*b*), (8.27)
where we used
(88878") — (88)1° — 2488")* = 0, (8.28)

for the Gaussian-stochastic signal component g. Thus, both the detector noise and the
Gaussian-stochastic component of the signal have dropped out of the expression for /C,
leaving only the contribution from the non-Gaussian component of the background.
As mentioned already, the above calculation can be extended to the case of sepa-
rated and misaligned detectors (Seto 2009). In so doing, one obtains expressions for
generalized (4th-order) overlap functions, which are sky-averages of the product of
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the response functions for four different detectors. The expected value of the 4th-order
detection statistic for this more general analysis involves generalized overlap functions
for both the (squared) overall intensity and circular polarization components of the
non-Gaussian background. We