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Abstract

The choice of which emotion regulation strategy to use changes depending on context,
which within Psychology is referred to as ‘flexibility’. Besides that, choices of emotion
regulation strategies are prone to various other factors, ranging from culture to gender,
expectations of their effect, age, etc. This paper considers the phenomenon where choices
of emotion regulation strategies change adaptively with age. In addition, the choices within
specific age frames are driven by some kind of reward that affects in an adaptive manner
the learning of a specific emotion regulation strategy. These adaptive phenomena involve
plasticity or metaplasticity of different orders. They have been modeled by a fourth-order
adaptive mental network model where the choice of emotion regulation strategies is
motivated by reward prediction, and different age phases have their own adaptive
influences. Simulation results are discussed for evaluation of the adaptive network model.
The fourth-order adaptive network model presented here extends a second-order adaptive
network model previously addressed in a paper at the conference COMPLEX NETWORKS
2019.
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Introduction
Changes in one’s behaviour with age, in general and, in particular, the use of emotion

regulation strategies is a well-established fact in today’s literature; e.g., (Carstensen

et al. 1999; Allen and Windsor 2019). There are two types of alterations that take place

over time in case of emotion regulation strategies. One is referred to as flexibility

(Aldao et al. 2015): the changes in the use of strategies for regulation of emotions as

per demand of the context. The other type of alteration concerns long-term tendencies

in using specific strategies from one’s repertoire of strategies. In other words, more use

of a specific strategy rather than another one with increase in age (Nakagawa et al.

2017; Allen and Windsor 2019; Carstensen et al. 1999). Such types of transitions over
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time relate to metaplasticity as they involve some kind of change of the daily learning

while moving from one strategy to another.

Besides the factors that contribute to the age-wise tendencies in the use of emotion

regulation strategies, there are also other factors that specifically influence the rate of

the change at a specific time point (Schultz et al. 1997; Reynolds et al. 2002). One of

those considered here is reward (Schultz et al. 1997), which influences the rate of em-

ployment frequency of specific strategy for the short term. This paper considers both

these factors for development of the adaptive mental network model for age and reward

driven choices of emotion regulation strategies. The model is based on the vast body of

literature available on the topic.

Within neurocognitive science, changes in the choice of emotion regulation strategies

with time are considered specific forms of plasticity. However, also the speed and per-

sistence of such changes do change over time and with events. This effect is named

metaplasticity (Abraham and Bear 1996; Abraham 2008) or ‘plasticity of plasticity’.

While this may suggest a two-level approach to adaptivity, further inspection shows

that the picture is still more detailed. There are still other factors and possibilities that

may influence the factors of these two levels.

One of those factors that this paper considers is reward. Reward, in some way is in-

volved in metaplasticity (Schultz et al. 1997): if there’s reward for one of the strategies,

the choice of that strategy is more probable. In the opposite case, if there’s punishment,

the probability of the use of that strategy decreases. Here, the overall tendency of the

person still goes in the same direction, but at the same time the person also takes ad-

vantage of/uses the available reward. Eventually, the choice of strategy that’s considered

as one’s behaviour, depends on which reward one prefers the most.

The multi-level adaptive network model in this paper has been developed and

simulated using adaptive casual network-oriented modeling approach and its support-

ive environment from (Treur 2019, 2020a, 2020b). This approach has already proven

well-applicable for various adaptive as well as non-adaptive network models, for in-

stance (Ullah et al. 2018, 2020; Gao et al. 2019; Ullah and Treur 2019). Moreover, this

paper extends a conference paper in COMPLEX NETWORKS 2019 (Ullah and Treur

2019a). In the subsequent sections of this paper, Section 2 provides background from

empirical sciences for the model. Section 3 presents the multi-level adaptive network

model, Section 4 gives insight into the simulation results of the model. Finally, Section

5 concludes the paper.

Background
Researchers from (neuro) cognitive sciences agree on the fact that priorities of emotion

regulation strategies change with age (Zimmermann and Iwanski 2014). Various

scholars have worked on exploring the factors of influence and have come up with a

number of them. For instance, in their Socioemotional Selectivity Theory, (Carstensen

et al. 1999), indicate the time constraint as a source of modification in motivational

goals for older people as it increases as a person gets older. (Zimmermann and Iwanski

2014) confirms these differences, indicating age-related developmental alterations that

take place in the use of emotion regulation strategies; therefore, older and younger

adults use different emotion regulation strategies. This shift in strategies is further dug

out by (Carstensen et al. 1999) in the sense that when growing older the dominant
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choice changes from response-focused strategies, like suppression, to antecedent-

focused strategies, such as reappraisal. This has further been confirmed by (John and

Gross 2004; Charles and Carstensen 2007), who indeed found out more use of re-

appraisal as compared to suppression with increase in age (from 20 to 60 years).

Another important factor for such differences in choice of emotion regulation strat-

egies has been pointed out by (Underwood et al. 1992; Gross and John 2003); this is

parental influence at a younger age. According to (Underwood et al. 1992; Gross and

John 2003), parents motivate their children to suppress their emotions at a younger

age, contrary to older age, where the individual turns to more frequent use of re-

appraisal because of his awareness and more attention to the positive side of matters

(Masumoto et al. 2016). Moreover, (Charles 2010) takes these findings to a next level

in his “Strength and vulnerability integration theory” thereby providing a ground for

this shift in the sense that this shift from response-focused strategies to antecedent-

focused strategies can occur because the physiological flexibility decreases with age and

therefore it becomes more difficult to apply response-focused strategies.

In terms of efficacy, contrary to suppression, (John and Gross 2004; Haga et al. 2009)

not only consider cognitive reappraisal an efficient emotion regulation strategy, they

also considered it to be helpful in decreasing psychological distress. Similarly, (Yeung

et al. 2011) also considers reappraisal as an effective emotion regulation strategy and

confirms its contribution to a positive emotional state. In contrast, expressive suppres-

sion may successfully suppress expression of emotions (Gross et al. 1997) but psycho-

logical distress still remains high.

Moving on to the details of these changes in choice of emotion regulation strategies,

in general such changes are referred to as plasticity and metaplasticity. According to

(Labouvie-Vief et al. 1989), maturity in cognition is bound to prevail with age and,

therefore, older people has more mature cognition than their younger counterparts

(Labouvie-Vief and Blanchard-Fields 1982). Moreover, the findings of (Brandtstädter

and Renner 1990; Heckhausen and Schulz 1995) also provide a good basis for the

model in this paper by indicating that flexibility in goal adjustment increases with age.

Similarly, there are various other studies putting forward that the intensity of negative

emotion decreases with age (Regier et al. 1988; Mroczek and Kolarz 1998; Charles et al.

2001; Charles and Almeida 2006; Rocke et al. 2009) in comparison to younger adults;

hence, a weaker negative reaction occurs (Birditt and Fingerman 2003; Birditt et al.

2005), apart from individual differences in self-regulation (Rothbart et al. 2000) and

cognitive abilities (Verhaeghen 2011).

In addition to the above-mentioned changes in the choice of emotion regulation

strategies with age, various studies have found other parameters influencing changes in

the choice of emotion regulation strategies. For instance, (Reynolds et al. 2002) put for-

ward genetics as a factor of individual differences and environment as another influen-

cing component in the choice of emotion regulation strategies along with age. It is

argued that the genetic influences defining one’s individual standing at certain point in

time, maybe on top of the other changes that are taking place over time. Genetics not

only defines individual standing for emotion regulation, it also influences more in gen-

eral cognitive performance in late adulthood (McClearn 1997; McGue and Christensen

2001). Similarly, (Reynolds et al. 2002) highlights the role of educational attainment in

emotion regulation strategies. Apart from these studies, some studies specifically talk

Ullah and Treur Applied Network Science            (2020) 5:27 Page 3 of 15



about the rate of persistence of learning which can increase or decrease due to reward

and punishment, for instance (Schultz et al. 1997).

Reward is a concept relating to dopamine and used to describe the positive values

that creatures assign to a behavioral act, object or an internal physical state (Schultz

et al. 1997). (Wise 1989; Robbins and Everitt 1996) describe reward through the behav-

iour that it may elicit. Experiments on behaviors suggest that learning takes place when

there are changes in the expectations about future, which can be interpreted as reward

and punishment. Similarly, reward is considered to play the role of reinforcer which in-

creases the frequency of behavioral responses during learning and maintaining the be-

havior (Schultz et al. 1997). According to (Farashahi et al. 2017), the metaplastic

synapses adjust to reward prediction in the environment. Similarly, some other reward

dependent learning theories highlight the role of unpredictability in learning by stating

that “learning is driven by the unpredictability of the reward by the sensory cue”

(Rescorla and Wagner 1972; Mackintosh 1975). This idea can be tested by considering

a situation where the reward is entirely predicted by a sensory cue, where no further

learning takes place. For each possible reward, there’s a time dependent learning rate.

Similarly, (Farashahi et al. 2017), through their experiment, confirm increase or de-

crease in learning rate which is driven by the better and worse reward options. More-

over, in their three factors learning approach, (Kuśmierz et al. 2017) names reward as

one of the three factors which functions as a facilitator in different types of learning by

providing feedback about the performance of the entire network.

As discussed, there is an important role of reward and dopamine; this is summarized

in the following two useful quotations:

‘As mentioned, animals do not learn to lever-press for such things as food, water or

sexual contact if the training takes place while dopamine function is impaired. More-

over, although well-trained animals perform normally for an initial period, they do

not continue to do so if their dopamine systems are blocked.’ (Wise 2004, p. 7/8).

‘In the 1940s and 1950s, Hebb (1949) was among the first to propose that al-

terations of synaptic strength based local patterns of activation might serve to

explain how conditioned reflexes operated at the biophysical level. Bliss and

Lomo (1973) succeeded in relating these two sets of concepts when they

showed long-term potentiation in the rabbit hippocampus. Subsequent bio-

physical studies have shown several other mechanisms for altering synaptic

strength that are closely related to both the theoretical proposal of Hebb

(1949) and the biophysical mechanism of Bliss and Lomo (1973). Wickens

(1993) and Wickens and Kotter (1995) proposed the most relevant of these for

our discussion, which is often known as the three-factor rule. What Wickens

(1993) and Wickens and Kotter (1995) proposed was that synapses would be

strengthened whenever presynaptic and postsynaptic activities co-occurred with

dopamine, and these same synapses would be weakened when presynaptic and

postsynaptic activities occurred in the absence of dopamine. Indeed, there is

now growing understanding at the biophysical level of the many steps by

which dopamine can alter synaptic strengths (Surmeier et al. 2009).’ (Glimcher

2011, p. 10/12)
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These findings provide a solid ground for the model introduced in this paper.

The multi-level adaptive network model
The adaptive network model introduced in this paper has been developed using the

Network-Oriented Modeling approach for adaptive networks described in (Treur 2019,

2020a, 2020b). Figure 1 represents the connectivity of the base network and Fig. 2 dis-

plays the connectivity of the multi-level adaptive network model as a whole with the

different adaptation levels on top of the base network. Nomenclature for the base net-

work in Fig. 1 is given in Table 1 and the nomenclature for the adaptive network model

in Fig. 2 is supplied in Table 2.

The base network provides all mental states involved in the regulation of negative

emotions. In this base network, the connection from fsb to csreapp and fsb to cssup are

the ones that are decisive for which strategy is used for regulation of the emotions. In

expressive suppression, only expression of emotions is suppressed but the intensity of

negative stimuli still remains high. Therefore, various studies have found negative psy-

chological consequences of expressive suppression. Cognitive reappraisal, in contrast,

changes the belief/interpretation for the negative stimuli, which also decreases the in-

tensity of negative feelings and stimuli as a result. Therefore, reappraisal has a more

positive psychological impact.

In the overall network model (in Fig. 2), the first and second-order adaptation states

(at the first and second reification level) model the parent’s influence in the choice of

emotion regulation strategies, especially at the initial stages in life as a child. As already

mentioned in Section 2, parents motivate their children to suppress their emotions. So,

in this network model, initially, the person uses suppression as a strategy for handling

emotions. Later on, the priority of the person changes from suppression to reappraisal

as she or he grows and gains awareness. Similarly, as mentioned in Section 2, this

model also considers a reward factor. The reward factor influences the persistence fac-

tor of the learning taking place. If a child obeys parents and suppresses his emotions,

he or she gets some reward and the quality of that reward affects how long the child

will stick to the choice of strategy that the parents have motivated for. On the other

hand, when the person grows older, reward priorities change. She or he starts valuing

internal psychological ease more than worldly reward. So, the person starts reappraising

negative emotions instead of suppressing their expression.

Activation of the control states through the connections from fsb to csreapp and fsb to

cssup in the base network, depends on the weights of these connections, which by

Fig. 1 Base network model for emotion regulation
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Fig. 2 Multi-level adaptive network model for emotion regulation strategies with age

Table 1 Nomenclature of the base model

State Explanation Level

X1 wss World state for stimulus s Base Level

X2 sss Sensor state for stimulus s

X3 srss Sensory representation state for stimulus s

X4 psa Preparation state for action a

X5 esa Execution state for action a

X6 ssb Sensor state for body state b

X7 srsb Sensory representation state for body sate b

X8 fsb Feeling state for body state b

X9 psb Preparation state for body state b

X10 esb Expression execution state for body state b

X 11 shrtr, rwd Short term reappraisal-oriented reward

X 12 bs− Belief state for negative belief -

X 13 bs+ Belief state for positive belief +

X 14 shrts, rwrd Short term suppression-oriented reward

X 15 csreapp Control state for reappraisal

X 16 cssup Control state for suppression

X 17 msdstrss Monitoring state for distress

X 18 esdstrss Execution state for distress
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downward connections are determined by the first-order adaptation states Wfsb ;csreapp

and Wfsb ;cssup , respectively. The dynamics of these W-states represent the plasticity of

Hebbian learning taking place throughout one’s life.

So, these first-order adaptation states (at the first reification level), i.e., the W-states,

represent plasticity of the emotion regulation choice. The second-order adaptation

states represented by M- and H-states (at the second reification level) represent a form

of metaplasticity. These states are responsible for the persistence and speed factor of

the Hebbian learning taking place at the first adaptation level. Short-term rewards

(from parents in young age and internal psychological satisfaction in older age) influ-

ence the persistence factors represented by the M-states at the second adaptation level.

The connections for the effect of reward are from shrts, rwrd to MW fsb;cssup and from

shrtr, rwrd to MW fsb;csreapp for suppression and reappraisal, respectively. In this way the

second adaptation levels handle the influence of parents or other factors on one’s

choice of emotion regulation strategies by affecting the persistence and learning mech-

anism behind this choice, in accordance with the two quotes at the end of Section 2.

However, such influences of parents or other factors change over the years. There-

fore, in the network model the above-mentioned connections from shrts, rwrd to

MW fsb;cssup and from shrtr, rwrd to MW fsb;csreapp change over time as well. To this end, a

third adaptation level was added with states Wshrtr:rwd ;MW fsb ;csreapp
and Wshrts;rwrd ;MW fsb ;cssup

that represent the weights of the above connections. During lifetime, the latter states

also change, and to model this a fourth adaptation level was added with M-states and

Table 2 Nomenclature of the states at the different adaptation levels

State Explanation Level

X
19

Wfsb ;csreapp Representation state for connection weight ωfsb,csreapp First Reification Level

X
20

Wfsb ;cssup Representation state for connection weight ωfsb,cssup

X
21

MWfsb
;csreapp

Representation state for persistence factor μ for Wfsb,csreapp Second Reification
level

X
22

HW fsb ;csreapp Representation state for speed factor η for Wfsb,csreapp

X
23

HW fsb ;cssup Representation state for speed factor η for Wfsb,cssup

X
24

MW fsb ;cssup Representation state for persistence factor μ for Wfsb,cssup

X
25

Wshrtr:rwd ;MW fsb ;csreapp
Representation state for connection weight ωshrtr:rwd ;MW fsb ;csreapp

Third Reification Level

X
26

Wshrts;rwrd ;MW fsb ;cssup
Representation state for connection weight ωshrts;rwrd ;MW fsb ;cssup

X
27

MWshrtr:rwd ;MW fsb ;csreapp
Representation state for persistence factor μ for
Wshrtr:rwd ;MW fsb ;csreapp

Fourth Reification
Level

X
28

HWshrtr:rwd ;MW fsb ;csreapp
Representation state for speed factor η for Wshrtr:rwd ;MW fsb ;csreapp

X
29

HWshrts;rwrd ;MW fsb ;cssup
Representation state for speed factor η for Wshrts;rwrd ;MW fsb ;cssup

X
30

MWshrts;rwrd ;MW fsb ;cssup
Representation state for persistence factor μ for
Wshrts;rwrd ;MW fsb ;cssup
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H-states X27 to X30. All these processes are shown in the simulation scenario depicted

in Figs. 3, 4, 5, 6.

Specification of the multi-level adaptive network model in role matrix format is given

below in Box 1 and Box 2. Each matrix addresses the role a specific network character-

istic has for each of the states Xj indicated in each of the rows, followed by the relevant

data for that characteristic. Role matrix mb in Box 1 specifies all the states by which

the indicated state Xj is affected through its incoming connections. These are the states

either at the same level or from a lower level. The incoming connections from higher

levels are specified in the other role matrices. Role matrix mcw provides the connection

weights of the incoming connections to state Xj. The green cells indicate the non-

adaptive connections weights between − 1 and 1, and the red cells, which indicate state

numbers, indicate the adaptive values for connection weights. In other words, these are

the downward connections from a state at a higher level to a state at a lower level. For

instance, the incoming connections to state X15 - csreapp and X16 - cssup from state X8 -

fsb (base network) shown in mb have adaptive weights indicated in red cells with state

numbers (of upper level) X19 and X20, respectively, in mcw. Here X19 is Wfsb ;csreapp and

X20 is Wfsb ;cssup . The values of these W-states change by a process of Hebbian learning

also called plasticity. Similarly, the persistence speed factor of the W-states changes by

a process of metaplasticity and are represented in their respective matrices, i.e., mcfp

(persistence) and ms (speed factor). The same mechanism of representation and adap-

tation applies to rewards and their effectuation through the upper levels.

In Box 2, it can be seen that the W-states in the first and third adaptation levels have

downward incoming connections from the states at the second and fourth adaptation

levels one each for persistence (in matrix mcfp) and for speed factor (in matrix ms).

The matrix mcf gives insight into the combination functions used for the aggregation

of multiple incoming impacts at a state Xj. There currently is a library of over 36

Fig. 3 Switching from Suppression to Reappraisal over time
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combination functions. Moreover, self-defined combination functions can also be

added to the library which makes the approach quite flexible.

These role matrices are used as input for the modeling environment described in

(Treur 2020a, 2020b) and can be executed then. They represent the conceptual repre-

sentation of the model and show how each node is influenced by other nodes in the

network from the different roles these other nodes play. Starting from base network to

the fourth reification level, Box 1 and 2 specify these influences. For more background

on the role matrices specification format used here, and the modeling environment, see

(Treur 2020a, 2020b).

Fig. 4 Demonstration of only the most relevant states over time

Fig. 5 First- and second-order adaptation states over time (Age)
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Fig. 6 Third- and fourth-order adaptation states over time

Box 1 Role matrices for connectivity
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Simulation results
This section presents some of the simulation results for the fourth-order adaptive net-

work model described in Section 3. Table 3 below provides the initial values of the

states of model. Note that in Table 3 the states dealing with suppression have been

given slightly positive initial values contrary to reappraisal which, as a strategy, develops

in later stage of life. Higher initial values for the latter states would not do any harm,

but also not any good as they would immediately lead to a downward trend in the

graph to let them vanish.

Figure 3 provides all the states in the base network, which shows the basic function-

ing of the network model. It can be seen that, initially, at a younger age the person is

using suppression cssup for the regulation of his or her emotions. In case of suppres-

sion, the intensity of the negative emotions still remains high, which can be confirmed

by looking into the curves representing negative belief bs− and feeling state of body fsb

Box 2 Role matrices for aggregation and timing

Table 3 Initial values of the states

State Initial values

X1 wss 1

X 19 Wfsb ;csreapp 0.01

X 20 Wfsb ;cssup 0.01

X 26 Wshrts;rwrd ;MWfsb ;cssup
0.3

X 29 HWshrts;rwrd ;MWfsb ;cssup
0.5

X 30 MWshrts;rwrd ;MWfsb ;cssup
0.9

All other states 0

Ullah and Treur Applied Network Science            (2020) 5:27 Page 11 of 15



in Fig. 2 and Fig. 3, which remains high even after the activation of the control state for

suppression cssup. Similarly, distress msdstrss also remains high in case of suppression.

Figure 4 represents only the most relevant states of the base network for clarity. In

the later part of the simulation in Fig. 2 and Fig. 3, it can be seen that reappraisal csreapp
gets activated and suppression cssup gets deactivated. This represents the shift that takes

place from suppression to reappraisal as age increases. In case of reappraisal, it can be

seen in the figures that negative belief bs− and feeling state of body fsb also decreases as

the person changes his or her interpretation of the stimuli. Similarly, distress msdstrss
also decreases in case of reappraisal. This intensity of distress execution esdstrss after

regulation of emotions through suppression or reappraisal also helps in differentiating

between the two kinds of rewards that a person gets as a result of applying a specific

strategy. Increase in distress shows that the person is suppressing his or her emotions

which gets a response from parents in the form of some kind of reward like appreci-

ation. This reward motivates the child, for a short time, to use suppression. Contrary to

these kinds of rewards in younger age, the person starts to give more value to psycho-

logical satisfaction and ease as she or he grows, which is obtained by reappraising. The

results of this entire phenomenon have been depicted in the simulation results of base

network but the actual phenomenon has been modeled at the third and fourth-order

adaptation levels. Simulation results of these levels are shown in Fig. 5 and Fig. 6.

Figure 5 shows the patterns for the first- and second-order reification states. The W-

states represent the Hebbian learning taking place for the connections from fsb to

csreapp and fsb to cssup. It can be seen that initially Wfsb ;cssup is higher. This is because of

the parental influence in younger age that children are motivated for suppression. At
later stages of the person’s life, as the person grows older, decrease in Wfsb ;cssup and in-

crease in Wfsb ;csreapp can be seen, which represents the shift taking place from

suppression to reappraisal. The plasticity of this plasticity (metaplasticity), is further
depicted in the second-order adaptation states. In these second-order adaptation states,
the M-states represent the persistence factor and the H-states represent the speed fac-
tor of the Hebbian learning represented by W-states. It can be seen in the figure that
these M and H-states are also dynamic. The M- and H-states controlling the persist-
ence and speed factor of the Hebbian learning for suppression Wfsb ;cssup are decreasing

while the M- and H-states for the Hebbian learning of reappraisal Wfsb ;csreapp are in-

creasing as the age increases. This phenomenon is referred to as ‘plasticity of plasticity’
or metaplasticity. These results are consistent with the findings on the topic discussed
in Section 2.

Figure 6 provides the simulation results for the third- and fourth-level reification

states, which depicts the short-term reward influence in choice of emotion regulation

strategies. Initially, at a younger age, short-term rewards from parents plays a role of

motivation for the use of suppression but as the person grows older the reward valu-

ation changes. In the figure, it can be seen that, initially, this short-term reward driven
Hebbian learning Wshrts;rwrd ;MW fsb ;cssup

is high but decreases to zero as the person grows

older. These curves represent the entire young and older age phase of a person, there-
fore, the short-term suppression reward Wshrts;rwrd ;MW fsb ;cssup

remains high throughout the

person’s childhood and, as the person grows older, the short-term reappraisal reward
Wshrtr:rwd ;MW fsb ;csreapp

also keeps increasing until it reaches 1. This represent the psycho-

logical reward in case of using reappraisal as a strategy in older age. It’s worth
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mentioning here that the reward based short term learning (W-states in third reified
level) and its persistence and speed factor (the M and H-states in the fourth reified
level) takes place at connection from shrts, rwrd to MW fsb;cssup for reward for suppression

and at connection from shrtr. rwd to MW fsb;csreapp for reappraisal. This means that the

persistence factor of the Hebbian learning taking place in base network is influenced by
the reward. In other words, the reward does influence the choice of strategies for short
time but as a whole the pattern of tendencies in choice of emotion regulation strategies
remains the same over one’s entire life. The M and H-states controlling the persistence
and speed factors of the W-states of the third-order reification level are given in the
fourth-order reification level. The fourth-level shows that this reward driven choices
are also dynamic.

Conclusion
The model presented in this paper demonstrates the choices of emotion regulation

strategies throughout one’s life, from childhood to old age. In this model, influences of

two external factors have been considered. The first two adaptation levels represent the

parental influence on the choice of one’s emotion regulation strategies. Parental influ-

ence is stronger during childhood and least in older age. The third and fourth adapta-

tion levels represent the adaptation over time of the short-term reward influence with

aging. External reward, like parental influences, has much influence during younger

ages. As demonstrated through simulation results, parental and external reward influ-

ences decrease as the person grows older because of the shift in internal valuation,

whereby the person starts rating his or her internal psychological status higher than ex-

ternal rewards. Moreover, the person gains more awareness, so, they prefer their own

wellbeing. These changes make this shift possible in choice of emotion regulation strat-

egies as shown in the simulation results.

The main results are in line with the literature, and also with those in (Ullah and

Treur 2019a). However, whereas they only consider differences in choice of emotion

regulation strategies, we consider, along with age, the role of short-term reward in

choice of emotion regulation strategies and its adaptation during aging.

Overall, this paper also shows the scope of adaptive casual modeling approach (Treur

2020a, 2020b) used for the design and simulation of our model. This adaptive network

modeling approach enables and supports modeling of a wide variety of dynamic and

adaptive processes.
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