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Abstract
This paper proposes a methodological approach to explore the ability to detect social
media users based on pedestrian networks and neighborhood attributes. We propose
the use of a detection function belonging to the Spatial Capture–Recapture (SCR)
which is a powerful analytical approach for detecting and estimating the abundance of
biological populations. To test our approach, we created a set of proxy measures for
the importance of pedestrian streets as well as neighborhood attributes. The
importance of pedestrian streets was measured by centrality indicators. Additionally,
proxy measures of neighborhood attributes were created using multivariate analysis of
census data. A series of candidate models were tested to determine which attributes
are most important for detecting social media users. The results of the analysis provide
information on which attributes of the city have promising potential for detecting
social media users. Finally, the main results and findings, limitations and extended use
of the proposed methodological approach are discussed.

Keywords: Mexico city, Social media, Pedestrian networks, Socio-demographic
attributes, User behaviour, Protest march, Mixed methods

Introduction
How can habitat elements in a given city contribute to detecting users of social media?
As a constructive answer to this question, we propose a novel methodological approach
that relies on the centralities of pedestrian networks together with socio–demographic
attributes. Our ongoing research proposes a novel methodological approach to eval-
uate whether the centralities of pedestrian networks and/or the socio-demographic
attributes of the neighborhood contribute to detecting social media users. Our example
data stem from Mexico City and is portrayed in the context of a planned urban protest
march.
Previous research has been focused on individual and socio-demographic attributes

to understand social media usage. One strand of research identifies, classifies, or
predicts aspects of social media users from their personal attributes (Hiruta et al.
2012; Pratama and Sarno 2015), or also proves that social media users have socio-
demographic characteristics which are not representative of the general population
(Malik et al. 2015; Li et al. 2013; Mislove et al. 2011). The underlying idea of this type of
research is, that the socio-demographic dimension plays an important role in explaining
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the behavior of the social media user. We could call this the socio-demographic hypothe-
sis. It is based on the assumption that socio-demographic attributes have the potential to
explain the use of social media in a particular context of place and time.
Other approaches draw more explicitly on spatial structures such as the street net-

work of a city and use social network theory for modeling and analysis (Neal 2012;
Porta et al. 2006; Crucitti et al. 2006). From this perspective, it has been found, for
example, that street centralities are positively correlated with different types of land use
(Rui and Ban 2014); or that the importance of street intersections, measured by
betweenness centrality, is positively correlated with the flow of pedestrian move-
ment (Bielik et al. 2018). Other authors have shown that the spatial distribution
of outdoor serious violence can be explained from the configuration of the street
network (Summers and Johnson 2016). These investigations support the general
hypothesis that the centralities of street networks influence spatial human behavior.
It can be deduce that the idea of detecting social media users on a geograph-
ical plane using street centralities is an instance of this second general research
program.
In this study, we propose a novel approach to compare the performance of social net-

work indicators with other competing explanatory factors in the detection of social media
users. In themethodological approach proposed in the present article, the initial objective
of our analysis is to explore and compare whether the pedestrian networks and/or socio-
demographic attributes of the neighborhood have the potential to detect social media
users in the city. The detection models allow to obtain information about the use of social
networking sites in a spatial plane, and about the situational conditions that influence the
variation of detectability. In this context, detection models can help to remotely and non–
invasively monitor the use of social media on a geographic plane. Our methodological
approach involves the following five steps:

• Define a geographic area and case study
• Collect data describing who, when and where a particular user was captured using a

social networking site in the area of study
• Calculate the centrality of pedestrian networks
• Create socio–demographic neighborhood indicators
• Assess if pedestrian streets or neighborhood attributes contribute to detecting social

media users

The contribution of this study consists of introducing an exploratory methodological
approach that explores the structural elements of the city that have the potential to detect
social media users in geographical space. In fact, social media research generally attempts
to explain spatial behavior based on variables of the individual, but in our approach, we try
to emphasize that a user uses social media in a given habitat and context of communica-
tion. We believe that our approach can be a contribution to the study of complexity in the
city, especially if we consider that “the growing number of urban and network researchers
(...) vary immensely in their research questions, scales of analysis, disciplinary perspec-
tive, and intended audiences” (Derudder and Neal 2019, p. 1). Thus, the proposedmethod
is particularly relevant, or even necessary, given that there are multiple competing mod-
els, that use different types of measurements and analytical units which are complex to
analyze together.
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The rest of this paper is structured as follows: “Conceptual analytical approach” section
introduces a conceptual analytic approach for detecting social media users; “Materials
and Methods” section describes the proposed methodological workflow (see, Fig. 2), the
set of variables generated and the techniques of analysis applied; “Results” section sets out
the results; and finally, “Discussion” section discusses the main findings, the limitations
of this study and possible future extensions.

Conceptual analytical approach
We propose the use of computational methods developed in the field of population and
landscape ecology, called Spatial Capture–Recapture (SCR) (Royle et al. 2013), to assess
which attributes contribute to detecting social media users in the urban space.
The SCR is an approximation to infer the density and detectability of biological popula-

tions in a given habitat. This approach has brought a newwave of research, as the previous
traditional models used have ignored the spatial dimension of the habitat of organisms
(Royle et al. 2017). SCR samples organisms as they are captured or recaptured over time,
and draws inferences about the detectability of organisms using a variety of live trap-
ping devices distributed over space (i.e., in the study area) (Efford 2004). On the practical
side, SCR can be understood as a non-invasive approach that has generated invaluable
information for conservation programs1.
For SCR methods, the spatial dimension of organisms (i.e. in our case, a social media

user) and the use of space over time is relevant. From a conceptual point of view, it is pro-
posed that an organism has a center of activity (si = [si,X , si,Y ]) that can be understood as a
spatial coordinate. However, due to the fact that we only have access to the location of the
organism when it is caught in a trapping device, it is said that si is a latent or unobserved
variable. Additionally, it is proposed that the organism lives in an area that is represented
by a state of space (S). The null model establishes that each of the activity centers of the
organisms is distributed uniformly in the space:

si ∼ Uniform(S). (1)

If we take the same assumption, we can state that social media users have an unobserv-
able activity center and that their activity takes place in an area of the city. In the same
way, as it is done with SCR, it is proposed to carry out samples of users as they are cap-
tured or recaptured in the study area. More specifically, social media data was sampled
at k = 1,...,K occasions through the use of traps (i.e. cells of a spatial grid) allocated in a
given area of study. The number of traps is explicitly defined, as j = 1, ..., J traps, as well
as the location of each one of the traps, which we will denote as xj.
The spatial structure of the traps, allows indexing the stories of encounters describing

who (i), when (k), and where (j) the users were detected, i.e., yi,j,k (See Fig. 1). Typically,
these observations are assumed to be the result of a Bernoulli process:

yi,j,k ∼ Bernoulli(pi,j,k). (2)

Where pi,j,k corresponds to the probability of finding the individual i in the j trap and on
occasion k. In its simplest form, it is stated that this probability depends on the distance

1For an extended overview of this approach, see (Royle et al. 2017).
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Fig. 1 Illustration of the spatial encounter history of social media users in Mexico City. The 3D-array records
who, where, and when a social media user was captured

between the location of the trap (xj) and the center of activity of the individual (si). This
is known as the Gaussian encounter model which in its general form is as follows:

yi,j,k = p0 × exp
(−(1/2σ 2)d(xj, si)2

)
. (3)

Where the parameter logit(p0) = α0 is the baseline encounter probability (i.e., the max-
imum probability of encountering an individual), the parameter σ describes the rate at
which the probability of detection declines as a function of distance, and d(xj, si) corre-
sponds to the Euclidean distance between the trap j and the activity center of social media
user i. Therefore, the detection model of social media users requires the estimation of the
parameters p0 and σ . The final model considers all the values observed in Eq. (3), plus
corrections with respect to the total population of individuals under observation.
In (Sutherland et al. 2019), it appears that the model is adjusted using the maximum

likelihood criterion for generalized linear models, where they simultaneously calculate
the estimate of the values p0, σ , and s (i.e. activity centers) and weights of the covariates
used as explanatory variables. The complexity of the calculation of the centers of activities
(s) is reduced using the Eq. (1) as an a priori distribution. If we assume that activity centers
are distributed uniformly, we can assume that the activity surfaces (of those centers) in a
grid of states of space are uniform as well. When individuals are captured or recaptured
in the activity centers, they affect the density on the surface of the activity centers. The
effect, for the general model, is considered to be negatively dependent on the exponential
of the Euclidean distance to the activity center. Considering the three previous ideas, the
activity centers are estimated.
The detection function can be enriched with the incorporation of spatial covariants.

In our methodological approach, we include as spatial covariants the centrality of pedes-
trian streets and socio–demographic attributes of neighborhoods, among other related
variables that will be described below.With the above considerations regarding the basics
of the method and keeping state of the art in mind, the next section describes the
experimental method adopted for the present study.
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Materials andMethods
The proposed method consists of a several steps (see, Fig. 2). The first step is to select a
study area of the city. The second is to create a history of social media usage over the study
area. The third and fourth steps consist of creating spatial covariants of the centrality
of pedestrian networks as well as socio-demographic indicators of the neighborhoods.

Fig. 2 Methodological workflow
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Finally, the fifth step is to adjust a set of candidate models and select the one that offers
the best results. The methodological steps are discussed in detail below.

Define an area and case of study

The area of study corresponds to Cuauhtémoc, a borough in Mexico City. This
area of study is of great interest because here, different social movements are being
demonstrated. Mexico City, like most Latin American cities, is a complex and socio–
demographically diverse city with stratified traffic routes. In particular, we are interested
in detecting social media users who used social media in the historic center of Mexico
City2. The historical center is located in Cuauhtémoc (area ∼32.44 km2), which is one of
the 16 alcaldías (i.e., boroughs) into which Mexico City is divided.
Specifically, we monitor the use of social media during the annual LGBTTTI (Lesbian,

Gay, Bisexual, Transgender, Transvestite, Transsexual and Intersexual) demonstration
(see, Fig. 3). In the figure, the arrow with dashed line indicates the planned main route
of the LGBTTTI march: the starting point of the march is the monument The Ángel of
Independence3, and the ending point is the so-called Zócalo4 (area ∼ 57,600 m2, or 240
m ∗ 240 m), which is the main square in central Mexico City. The distance between the
starting point of the march and the ending point is ∼3 km. Arrows with solid lines indi-
cate which routes and direction the vehicles should use to avoid entering the area of the
planned march. This case is interesting because we can explore whether social media
users who supported this public event have a different probability of being detected.
In order to safeguard the participants of the march of the LGBTTTI community, as

well as the general public, the Mexican Secretary of Public Safety and Security and the
municipal and local authorities, implemented a plan to regulate the transit of vehicles and
pedestrians during the demonstration event. As a consequence of the planned march,
most of the area under study was transformed into an almost exclusively walkable area.

Collection of data and generation of capture history

Social media data was collected using the Twitter API. For these purposes, geotagged
tweets were collected for 24 h and the area under study corresponds to the following rect-
angular shaped area: [lat ≥ 19.39, lat ≤ 19.46, long ≥ -99.18, long: ≤ -99.12]. In ecology,
a spatial grid is used over space and physical traps devices are placed to sample where
organisms are captured or recaptured. In our methodology, we created a grid over the
studied geographical area, in which each grid cell represents a trap where the social media
user can be captured. Through this spatial grid, as we mentioned before, we can index
who (i), when (k), and where (j) the users were captured or recaptured, where yi,j,k = 1
denotes that an individual was captured in a given grid cell in one occasion, and yi,j,k = 0
means that the social media user was not captured. To identify users, we used the unique
identifier naturally provided by the Twitter API (i.e., User ID) to represent (i), we also
generated an identifier for grid cells –a grid of hexagons was used where each cell has a
size of 0.39497 Km2 where users were captured or recaptured– to represent (j), and finally,
we created 24 identifiers corresponding to the 24 h of observation to represent k.

2For additional details, see https://en.wikipedia.org/wiki/Historic_center_of_Mexico_City
3see, https://en.wikipedia.org/wiki/Angel_of_Independence
4see, https://en.wikipedia.org/wiki/Zocalo

https://en.wikipedia.org/wiki/Historic_{c}enter_{o}f_{M}exico_{C}ity
https://en.wikipedia.org/wiki/Angel_{o}f_{I}ndependence
https://en.wikipedia.org/wiki/Zocalo
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Fig. 3 Public information posted on Twitter by the Centro de Información Vial de la Secretaría de Seguridad
Pública de la Ciudad deMéxico (SSP–CMDX). This infographic includes information about the starting (i.e.
Ángel de la Independencia) and ending point (i.e. Zócalo) of the protest march

Compute centrality of pedestrian networks

In the literature, there are various hypotheses on how the structure of the street networks
can support different explanatory mechanisms. A pedestrian network is a type of spatial
network or geometric graph in which street intersections are represented by nodes, and
the edges between pairs of nodes represent intersections that are connected by a street.
Specifically, a pedestrian network is conveniently described as a graph G = (V ,E), where
the set V of vertices represents street intersections, and E the set of edges represents
streets connecting pairs of intersection nodes. Also, if the Euclidean length of the streets
is added as a weight of the edges we obtain a weighted graph known as Euclidean Graph.
For this paper, the centralities of the Mexico City pedestrian network were calculated

using centrality measures and are defined as follows. Let a(e) be a function representing
the existence of an edge e in E. If a(e) = 1, then there exists the edge e ∈ E, and it does
not exist if a(e) = 0. Similarly, let ω be a ω-weight function on the edges, where ω(e) > 0
for weighted graphs. Let denote ev an edge, which v ∈ V is one of the vertices.
Define a path from s ∈ V to t ∈ V as an alternating sequence of vertices and edges, from

vertex s to t, so that each edge connects its preceding with its succeeding vertex. We use
δ(v, t) in order to denote the distance between vertices s and t (i.e., the minimum length of
all paths connecting s and t). By definition δ(s, s) = 0 for every s ∈ V and δ(s, t) = δ(t, s)
for s, t ∈ V .
(Opsahl et al. 2010) define a distance measure called αω-weighted length, which is

a generalization of ω-weighted length. It should be noted that the length considering
between two vertices connecting by an edge e is 1, (Opsahl et al. 2010) instead define the
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length by 1
ω(e)α , with α ≥ 0. In addition, (Opsahl et al. 2010) define the αω-weighted dis-

tance δαω(s, t) between any pair of vertices s, t ∈ V based on the αω-weighted length. A
particular case is α = 1 obtaining the ω-weighted length δω(s, t) from the αω-weighted
distance δαω(s, t).
Let σ(s, t) = σ(t, s) denote the number of shortest paths from s ∈ V to t ∈ V , where

σ(s, s) = 1 by convention. Let σ(s, t|v) the number of shortest paths from s to t where
v ∈ V lies on the path. In addition, by using the definition αω-weighted distance (Opsahl
et al. 2010), define σαω(s, t), σαω(s, t|v). In case of α = 1, we obtain σω(s, t) and σω(s, t|v),
respectively.
The definition αω subsume the definitions ω when α = 1, and the measures

not weighted when ω(e) = a(e) = 1. Therefore, the definitions proposed by
(Opsahl et al. 2010) can be considered a useful generalization of the standard measures of
degree, closeness and betweenness. The centrality measures are defined in Table 1.
In this context, and taking into account the previous definitions, the pedestrian net-

works of Mexico City were retrieved using the approach developed by Boeing (Boeing
2017), a flexible and powerful approach that allows to download data from Open-
StreetMap using configurable user queries. Under this framework, a walk or pedestrian
network includes all the public streets and paths that pedestrians can use. After prepar-
ing the database, we obtained a total of 112188 nodes and 164586 edges representing the
pedestrian network of Mexico City. The length of the edges had a mean of 88.91 meters
and and the standard deviation was SD = 128.12.

Create socio–demographic neighborhood indicators

As we pointed out in Fig. 2, we also intend to explore the performance of centrality
measures in the problem of detecting social media users. For this purpose, we use the
principal components analysis (PCA) (Lê et al. 2008; Husson and LêS Pagès 2017) to cre-
ate a series of indicators that characterize the neighborhoods of Mexico City. PCA has
been a method frequently used to create proxy measures. For example, it has been used
to create socio-economic scales based on household assets (Townend et al. 2015), to con-
struct socio-economic status indices (Vyas and Kumaranayake 2006), and it is commonly
used to create poverty indicators in Latin America (Santos and Villatoro 2016).

Table 1 Node centrality in weighted networks

Centrality measure Notation Definition Reference

degree CD(v)
∑

ev∈E
a(ev) (Diestel 2017)

ω-weighted degree Cω
D (v)

∑

ev∈E
ω(ev) (Opsahl et al. 2010)

αω-weighted degree Cαω
D (v) CD(v)(1−α)Cω

D (v)α ,α > 0 (Opsahl et al. 2010)

betweenness CB(v)
∑

s �=v �=t∈V
σ(s,t|v)
σ (s,t) (Freeman 1977)

ω-weighted betweenness Cω
B (v)

∑

s �=v �=t∈V
σω(s,t|v)
σω(s,t) (Opsahl et al. 2010)

αω-weighted betweenness Cαω
B (v)

∑

s �=v �=t∈V
σαω(s,t|v)
σαω(s,t) (Opsahl et al. 2010)

closeness CC(v)
1∑

t∈V δ(v,t) (Beauchamp 1965; Sabidussi 1966)

ω-weighted closeness Cω
C (v) 1∑

t∈V δω(v,t) (Opsahl et al. 2010)

αω-weighted closeness Cαω
C (v) 1∑

t∈V δαω(v,t) (Opsahl et al. 2010)

The αω-weightedmetrics subsume the ω-weightedmetrics (if α = 1), which subsume the standard metrics (if ω = 1)
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A sample of data from the 2010 Mexico national census was used. Specifically,
anonymized data was obtained from a total of 58,064 census blocks. In order to create
sociodemographic indicators of the neighborhood, the attributes of inhabited dwellings
were aggregated at the census block level and were normalised (i.e. divided) by cen-
sus block area. Then, using the analysis of principal components, the following proxy
measures were created:

• Age composition: This proxy measure describes the age structure of the
inhabitants of the census block (see, Figure 8 in Appendix 2).

• Educational level: This proxy measure describes the stratification of census
block according to their educational level of its inhabitants (see, Figure 9 in Appendix 2).

• Dwelling: This proxy measure describes the dwelling assets existing in the census
block (see, Figure 10 in Appendix 2).

• Information and communications technology (ICT): This proxy
measure describes the information and communications technological devices (i.e.
including the number of radios, TVs, computers, landline telephones, cell phones,
and dwelling with internet access) existing in the census block (see, Figure 11 in
Appendix 2).

• Population density: This proxy measure describes the population density per
census block, the population density per dwelling, and the population density per
home (see, Figure 12 in Appendix 2).

.
The visualization of principal component analysis results on census data is presented in

Appendix 2.

Interpolate spatial data points

Both the spatial points of the centralities of the pedestrian networks and the socio–
demographic attributes of the census blocks were interpolated over Mexico City. The
detail of the interpolation algorithm, model tuning, and validation are described below.

Inverse DistanceWeighting: The Inverse DistanceWeighting (IDW) is one of the most
intuitive interpolation methods for geospatial data (Shepard 1968). The basic intuition
of this interpolation method is that the influence of the values of the neighbours of a
spatial point on its own value is negatively associated with the Euclidean distance to the
neighbours. Although it is not a statistical method, IDW has been compared in several
subsequent publications because of its simplicity and efficiency (Setianto and Triandini
2013). The definition of the algorithm is as follows:

Ẑx =

n∑

i=1
zid(x, xi)−p

n∑

i=1
d(x, xi)−p

, (4)

Where, Ẑx is the interpolated value at position x, zi the value of the sample at position
xi, d(x, xi) is the Euclidean distance from points xi to x. n is the size of the population or
the number of cases accepted as neighbors of point x, and p is an integer named power
factor.
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Comparative research has shown that IDW is an efficient interpolation technique com-
pared to more sophisticated geo–statistical techniques. In fact, IDW has been reported to
perform slightly better than the classical Kriging techniques (Gong et al. 2014). In other
research, it was reported that the IDW was a better estimator in a variety of analysis and
data treatments that aims to estimate values at peak points (Setianto and Triandini 2013).
The IDW was used in our approach for three main reasons. First, our purpose is to

model how values decay from peak values. Because we have an extensive sample for both
pedestrian networks and census block data, IDW is particularly suitable for this purpose.
Second, the IDWmethod is an intuitive and deterministic method, which makes it possi-
ble to account for and interpret the results obtained. Third, we also selected it for practical
reasons, because this algorithm achieves a good balance between predictive performance
and computation time in large databases.

Quantifying Interpolation Errors: In order to train and validate the interpolation
model, we use the approximation suggested in (Setianto and Triandini 2013). The value
of the power parameter p is the most important factor that influences the accuracy of
IDW (Burrough and McDonnell 1998). However, as the value of the power factor p is
not given a priori, we run the IDW algorithm varying the value of parameter p: from 1
to 5, to obtain 5 candidate interpolation models per neighborhood attribute, and 15 can-
didate models per centrality measure. For quantifying the interpolation errors, the root
mean squared error (RMSE) was calculated for each candidate model using the leave–
one–out–cross–validation technique (Japkowicz and Shah 2009). In this case, it means
that a sample is removed from the data set and its value is estimated by interpolating the
values of the remaining data points using IDW. (Willmott 1982) argued that RMSE is the
best overall measure of model performance as it summarizes the mean difference in the
units of observed and interpolated values. RMSE and can be calculated using Eq. 5:

RMSE =
√

�n
i=1(ẑi − zi)2

n
, (5)

where ẑi is the estimated value at point i interpolated from remaining n–1 points and zi
correspond to its actual value at the point i. Finally, n corresponds to the number of data
points. Therefore, RMSE was determined sequentially for each of the centrality measures
of pedestrian networks as well as for the first two principal component–scores of each
socio-demographic indicators.
RMSE is not difficult to interpret because it represents the sample standard deviation

of the differences between predicted values and observed values. RMSE varies between
0 and infinity, and in our context, it means that the IDW model achieving RMSE val-
ues close to 0, corresponds to a better interpolation. Using this procedure, interpolated
variables that generated lower RMSE values were selected and used for comparative
purposes.

Additional covariates

Two type covariants were created to enrich the analysis.

Creating an individual covariate

We create an individual covariate (i.e. a covariate that applies to the individual level)
denoting if the individual is a supporter of the LGBTTTI march or a generic user. We
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named this individual covariate Type of User. To this end, a native Spanish speaker
trained in qualitative data analysis classified whether a user published content associated
with the planned march. Specifically, both the text of the Tweet, as well as the URLs, and
associated hashtags were read individually to look for evidence of their support to the
march. The qualitative coding scheme and inter–rater reliability is reported in Appendix 2.
The codification was done manually, as the definition of support to a protest based

solely on a set of hashtags, a common practice observed various machine learning and
social network analysis papers exploring protest communication, has recently been crit-
icized. For this purpose, we perform a two-step coding. First, it was classified by each
Tweet if it contained information supporting the march. If the Tweet contained informa-
tion related to themarch, it was codedwithYes label, and if it did not contain information
about the march, it was coded with No label. The visualization of the classified Tweets
can be observed in Fig. 4.
Second, we defined that if users have posted at least one Tweet to support the march,

they will be considered a user Supporting the march (coded 1). Otherwise, they
will be considered a Generic user publishing different types of content (coded 0) during

Fig. 4 Visualization of geo–tagged tweets in the area of study classified by content type. The red dots (coded
= Yes) correspond to tweets that support the march, while the black dots (coded = No) correspond to
tweets that do not refer to the protest march. The city blocks are coloured in calypso, the pedestrian streets
and paths are coloured in black lines, and green areas represent urban parks and city squares
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the day of observation. Through this simple manual coding, we found a total of 1991
users publishing about other types of content and 796 users supporting the march. For
visualization purposes, the capture history of these two types of users is shown in the
Fig. 5b and c.

Physical distance to the demonstration

Finally, we created two spatial covariants, which measure the Haversine distance between
the place where the social media user were captured and the starting point of the march
(i.e. Distance to the Ángel of Independence covariate) and the same dis-
tance measure between the place where the social media users was captured and the
ending point of the march (i.e. Distance to the Zócalo covariate). These two
covariants were created to test whether the detection of social media user depends on the
distance to the place of the planned march. With these two simple distance measures, we
wanted to test if the detectability of the users of social media decays with the distance to
the place of the demonstration.

Model fitting

Several candidate models were fitted to assess the use of the proposedmethodology. First,
we created a null model where the density of social media user, the probability of detec-
tion, and the scale parameter is constant over the plane. Then, we generated a series
of models considering different types of covariates. For the social media user density
model, we use the interpolated population density. To estimate the baseline probability
of detection of social media users, we used the interpolated centralities of the pedestrian
network and socio–demographic indicators of neighborhoods at the centroid of the traps,
as well as the individual covariate Type of User, and also testing if the detectability is
constant. Finally, to model the scale of the parameter, we used the individual covariate
Type of User to assess whether the probability of detection decays differently among
those who protested or not during the observation day. For this parameter, we also
tested if sigma is constant. In total, a set of 75 candidate model configurations were
generated.

Fig. 5 Plot of spatial captures. Subfigure (a) corresponds to the capture history that includes users of social
networks in general and users who support the march (total number of individuals = 2051, number of traps
=100, number of occasions = 24). Additionally, Subfigure (b) and (c) shows, only for visualization purposes,
the capture history of subfigure (a) according to the Type of User individual covariate. Subfigure (b)
describes the capture history of Generic social media users (n = 1991); and finally, subfigure (c) describes
the capture history of social media users Supporting the march (n =796)



Masias et al. Applied Network Science            (2019) 4:96 Page 13 of 24

Maximum likelihood estimation was used to jointly estimate the parameters of the
models, and to evaluate which candidate model has the best fit to our data. Specifically,
we used a likelihood analysis of the models using the R package oSCR (Sutherland et al.
2016) which can be thought of as a type of generalized linear mixed model. This approach
is particularly flexible, as maximum likelihood methods allow the comparison of mul-
tiple competing models and spatial explanatory variables. To select the best model, the
Akaike Information Criterion (AIC) values are reported for each candidate model and
their differences are used to rank them. The model that obtains the lowest �AICc values
is interpreted as the best explanatory model.

Results
The results are organized as follows. First, the results of the capture history are reported
(see, “Results of spatial capture history” section). Then, the results of the interpolation
of the measures of centrality and attributes of the neighborhoods are reported (see,
“Results of the inverse distance interpolation” section). Finally, model fitting results are
reported (see, “Results of model fitting” section).

Results of spatial capture history

This section reports the results of the data collection process as well as the description
of the capture history. Figure 4 shows the geotagged tweets collected during the 24 h of
June 23, 2018. The initial inspection allows observing Tweets that are found in the main
locations where the march was planned. This is the first indication that relates to the use
of social media in areas where the march took place. However, the idea of performing a
spatial correlation between the centrality of the pedestrian networks and the attributes
of the neighborhood directly on these points does not make sense, because the activity
center of the users during the observed period must be assumed as unknown. To obtain
a different perspective of the data, it is necessary to build their history of encounters.
The capture history was constructed from the collected social media data. The aggre-

gated spatial captures are shown and summarised in Fig. 5a. In this figure, each black dot
represents the centroid of the trap and the red lines connecting pairs traps indicate that
the same social media user was recaptured in both traps during the day of observation.
The number of individuals captured in the area under study was 2051. The average num-
ber of captures was 1.36 and theMeanMaximumDistanceMoved (MMDM) was 2308.10
meters.
The results of the spatial interpolation of the covariants are presented below.

Results of the inverse distance interpolation

The analysis of the candidate models showed that the IDW algorithm achieved good
performance. The comparison between candidate models allowed to determine that the
IDW algorithm was useful for interpolating the attributes of the neighborhoods and the
centralities of the pedestrian networks.

Interpolation of neighborhood indicators

The use of IDW allowed us to obtain good interpolations of the indicators of the district.
In general, using a p = 2 we obtained RMSE values are close to 0. This means that the
models obtained have good precision for interpolating the neighborhood attributes (see,
Table 2).
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Table 2 Interpolation errors for neighborhood attributes

Neighborhood attribute RMSE RMSE RMSE RMSE RMSE

p=1 p=2 p=3 p=4 p=5

Age-PC1 978 × 10−3 738 × 10−3* 0.770 798 × 10−3 812 × 10−3

Age-PC2 0.610 555 × 10−3* 581 × 10−3 609 × 10−3 631 × 10−3

ICT-PC1 1.34 986 × 10−3* 992 × 10−3 1.02 1.04

ICT-PC2 227 × 10−3 195 × 10−3* 208 × 10−3 219 × 10−3 225 × 10−3

Education-PC1 1.04 768 × 10−3* 794 × 10−3 818 × 10−3 0.830

Education-PC2 609 × 10−3 475 × 10−3* 483 × 10−3 0.500 516 × 10−3

Dwelling-PC1 1.04 949 × 10−3* 981 × 10−3 1.04 1.09

Dwelling-PC2 903 × 10−3 872 × 10−3* 0.980 1.03 1.07

Population density-PC1 1.04 949 × 10−3* 981 × 10−3 1.04 1.09

Population density-PC2 562 × 10−3 414 × 10−3* 431 × 10−3 447 × 10−3 455 × 10−3

Note: “*” denotes the lowest RMSE value found

Interpolation of centrality measures

We generated a total of 15 models per centrality measure, varying the parameters α of
the centrality measures as well as the power factor p of the IDW algorithm. As it can be
seen in Table 3, IDW technique produced good results to interpolate the centralities of
pedestrian networks. The results show that precise interpolations can be obtained using
a α =0 for centrality measures and a power factor p =2 for IDW5.

Results of model fitting

The results of the detection model obtained are presented below.

Selection ofmodel and comparison

Several configurations of detection models were run to find the one that best fits the
observational data. Table 4 shows the Density (d0), Detection (p0), and Sigma

(σ ) model configurations. For each model, we report the associated log-likelihood (logL
), AIC values, and AIC differences (� AIC). The following is a selection of 7 model
configurations (of a total of 75) that obtained the highest performance per type of vari-
able included in the model. For comparison purposes, we include in this report the
performance of the null model 6.
The ranking of the models allows us to obtain interesting observations if we compare

them to the null model. As it can be seen in Table 4, a better detection model for social
media users is achieved using the neighborhood attribute ICT-PC1 and the individ-
ual covariant Type of User, and using the individual covariant Type of User for
sigma (�AIC = 0).
Another interesting element to observe is that the models including measures of cen-

trality of pedestrian networks are better than the null model: the degree of centrality best
explains the detection of social media users, followed by betweenness and closeness. In
other words, the results show that the centrality of pedestrian streets have the potential
to detect social media users on the plane.
Finally, we can observe that the variables Distance to the Zócalo as well as

Distance to the Ángel of Independence obtained a lower performance than

5We applied the transformation f (x) = log(x + 1) for αω-weighted betweenness centrality. This transformation quickly
reduced RMSE values.
6The “∼1” notation stands for null or intercept only models, that are models which have no covariate effects.
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Table 3 Interpolation errors for centrality measures

Centrality measure RMSE RMSE RMSE RMSE RMSE

p=1 p=2 p=3 p=4 p=5

αω-weighted degree α = 0 792 × 10−3 763 × 10−3* 793 × 10−3 821 × 10−3 0.840

α = 0.5 7.58 7.03 7.15 7.31 7.43

α = 1 76.4 70.2 70.5 71.5 72.5

αω-weighted betweenness α = 0 3.90 3.69* 3.83 3.96 4.05

α = 0.5 4.48 4.42 4.70 4.89 5.01

α = 1 5.00 4.97 5.29 5.51 5.65

αω-weighted closeness α = 0 459 × 10−6 203 × 10−6* 175 × 10−6 176 × 10−6 179 × 10−6

α = 0.5 34.7 × 10−6 16.9 × 10−6 14.8 × 10−6 14.9 × 10−6 15.0 × 10−6

α = 1 5.96 × 10−6 4.06 × 10−6 3.96 × 10−6 3.89 × 10−6 3.85 × 10−6

Note: “*” denotes the lowest RMSE value found

the null model. This is very interesting since the physical distance of the traps to the start-
ing point or end of the march does not seem to contribute to the detection of social media
users.
In general terms, the results show that detection models based on neighborhood

attributes and the individual covariate performed better than the use of other types of
variables.

Modeling variation in detectability

Comparative analysis of various model configurations allowed us to find a model that
best fits our observational data. Table 5 summarizes the result of the Best model and
indicates that all variables were significant.
According to themodel obtained, we can see that σ and p0 depend on Type of User.

On the one hand, and taking into account this finding, the parameter σ was computed as
shown in Eq. 6:

σ = exp (6.635 + 0.137 ∗ (Type of User)) . (6)

Based on Eq. 6, it is understood that the users who supported the march have a greater
σ than those who did not, and therefore, their probability of detection was higher.
On the other hand, in order to obtain p0 (see Eq. 3), it was necessary to solve the

function logit using the parameters shown in the Table 5 (i.e., p0.(Intercept) and
sig.Supporting). The baseline detection probability was computed as shown in Eq. 7.

p0 = exp (−7.836 + 0.431 ∗ (Type of User) − 3.118 ∗ ICT-PC1)

1 + exp (−7.836 + 0.431 ∗ (Type of User) − 3.118 ∗ ICT-PC1)
. (7)

Table 4 Summary of model fitting and selection

Model d0 p0 σ logL AIC �AIC

Best ∼1 ∼ICT-PC1 + Type of User ∼Type of User 8247.87 16509.73 0.00

Alternative ∼1 ∼ αω-weighted degree ∼Type of User 9192.42 18396.83 1887.10

Alternative ∼1 ∼ αω-weighted betweenness ∼Type of User 9280.70 18573.40 2063.67

Alternative ∼1 ∼ αω-weighted closeness ∼Type of User 9372.17 18756.34 2246.61

Null ∼1 ∼1 ∼1 9476.20 18960.40 2450.67

Alternative ∼1 ∼Distance to the Zócalo ∼Type of User 11071.88 22155.76 5646.76

Alternative ∼1 ∼Distance to the Ángel ∼Type of User 11251.07 22514.14 6004.41
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Table 5Model summary

Estimate SE z P(>| z |)
p0.(Intercept) -7.836 0.082 -95.498 0.000

p0.Supporting 0.431 0.104 4.131 0.000

t.beta.ICT–PC1 -3.118 0.066 -47.173 0.000

sig.(Intercept) 6.635 0.031 215.284 0.000

sig.Supporting 0.137 0.051 2.698 0.007

d0.(Intercept) 4.672 0.044 105.927 0.000

psi.constant -1.714 0.084 -20.485 0.000

Therefore, the result shows that there is a variation in the baseline detection probability
of social media users. As can be seen in Fig. 6, the baseline detection probability decays
differently depending on the Type of User, as the values in ICT-PC1 approach 0.
Users who used social media to support the demonstration have a slightly higher prob-
ability of being detected compared to generic social media users. In addition, and based
on Eq. 6, we can report that the estimated scale parameter for users who supported the
march was σSupporting = 873.3358 (se = 35.33071, lwr = 806.7618, upr = 945.4034) and
σGeneric = 761.3973 (se = 23.46663, lwr = 716.7644, upr = 808.809) for Generic users.
Therefore, the model obtained is capable of identifying these very fine differences that
characterize the decline in detection between the observed groups of social media users
studied.
Finally, the inspection of the values of the variable ICT-PC1 on the map of the stud-

ied area allowed us to visually verify that negative values correspond to city blocks
that have low-level housing, while positive values correspond mostly to city blocks that
have apartments and condominiums (see, Fig. 7). However, we must emphasize that
the accumulated information and communications technology (ICT) that exists in the
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Fig. 7 Visual inspection of the area of study based on the ICT–PC1 covariate. The purple areas correspond to
locations where there is a higher ICT–PC1 values

neighborhood and the individual covariate Type of User is what best explains the
detectability of social media users.

Discussion
This paper aimed to explore the contribution of pedestrian networks as well as the char-
acteristics of the neighborhood in the detection of social media users. The present study
has pointed out the existence of a relationship between ICTs in the neighborhood and the
probability of being detected in a given region of Mexico City. Below we offer a series of
observations about our results.

Comparison to previous research

According to our knowledge, there is no previous research dedicated to exploring whether
socio-demographic variables or pedestrian networks allow to detect social media users
at the same time. As mentioned in “Introduction” section, the literature has been ded-
icated to exploring the contribution of social network measures to determine the flow
of pedestrians under different contexts (Porta et al. 2006; Crucitti et al. 2006; Rui and
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Ban 2014; Bielik et al. 2018; Summers and Johnson 2016). On the other hand, the liter-
ature on social movements has emphasized different elements, such as socio-economic
factors (e.g. such as inequality or grievances in a given city) that could contribute to
explain the willingness to support a given protest using social media tools. Among these
elements, it has also been studied whether participation in protests declines with dis-
tance to the end point of the march (Traag et al. 2017). However, to the best of our
knowledge, a combined exploration of all these types of variables (i.e., neighborhood
attributes, pedestrian networks, individual covariates, and the physical distance to the
demonstration march) in a subpopulation of social media users has not been previously
carried out.
The relationship between situational factors and human behavior is not always easy to

discern. First, the model obtained indicates that social media users who participate in the
protest march are slightly more likely to be detected compared to generic users. One of
the few investigations that show a result similar to ours is one conducted by (Zhang et
al. 2016), researchers who analyzed geolocalized Twitter user panels. In this study, the
authors found that geolocated users who were exposed to an event occurring in a city
were slightly more likely to mention the event compared to a random sample of users.
However, one mayor difference is that these authors indirectly assume that the physi-
cal distance to the event location explains the communication content posted on Twitter
(Zhang 2016; Zhang et al. 2016). In our case, we include this piece of information at a
more detailed level and taking two spatial points related to the event (i.e., the starting and
ending point of the march), and we find that the measurements of pedestrian
street networks as well as neighborhood indicators have greater explanatory poten-
tial for detecting social media users than the physical distance to the protest
location.
Second, it makes sense to detect social media users in areas showing low ICTs values.

Mobile information technologies are precisely designed for that purpose: to be used, for
example, in places where it is not possible to have access to the information technol-
ogy that is available at home, or when a user moves through the city. In other words, we
believe that there is a situational user behavior. On the one hand, when users are at home,
they can use non-mobile communication technologies, but when they leaves home they
starts using mobile technologies and social media services such as Twitter. In this way,
users are detected when they are physically distant from other types of non-mobile com-
munication technologies usually found at home. On the other hand, in the case of people
who support a protest, the use of Twitter has the purpose of creating and disseminat-
ing content about the user’s participation in a given place and time, which is related to
a target–driven user behavior. That is to say, the coordinated social media events seems
to reduce randomness in the movements and social media usage of individuals, which
increases their detectability. This would be a reasonable theoretical conjecture, but very
difficult –or even inappropriate– to prove by using separately social media, census, or
network data, or by studying user behavior under an experimental or quasi-experimental
design.
Third, the fact that user detectability is explained by lower ICTs values in the

observed area may be a contradiction. We thought that this result is due to two
main reasons. On the one hand, using common sense, we can expect there to be a
positive linear relationship between the availability of ICTs in a given area and the
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detection of social media users. However, according to our interpretation of the
data, the detection model is showing that users have been detected in mainly non–
residential areas, where ICT density declines over space. The historical center of
Mexico City can be characterized as a non-residential area, full of old and colonial
buildings, cathedrals, museums, public and tourist areas, and downtown–squares such
as Zócalo.
In this sense, our results show something important for future research: it cannot be

assumed that there is always a positive relationship between the availability of ICTs in
a given area and the detectability of social media users. Further research is required to
understand the complex relationship between the structural factors of a city and user
behavior activity patterns that contribute to explain the probability of detecting social
media user over space.

Limitations, future research and practical applications

The research has three main limitations. First, in this study, we have created a
detection model based on 24 h of observation. Our idea was to create a pro-
totype to demonstrate that social media users can be detected using the pro-
posed methodological design. However, more days of observation are required to
improve the quality of the models. In theory, if observed over a longer period of
time and in a larger geographical area, the method would provide us with better
information about the activity centres of social media users. In other words, the
explanatory variables would theoretically relate to the neighborhood where the social
media user inhabits, and not only to the user activity center during the observed
day.
Second, the encounter probability model is based on Euclidean distance (see, Eq. 3).

This means that symmetrical home ranges are assumed, as many of the actual spa-
tial capture-recapture models available in ecological research (Royle et al. 2014). In
order to obtain a model with different assumptions, a different distance measure must
be tested. In future research, the ecological distance proposed in (Royle et al. 2013;
Efford 2019) could be used instead. This type of distance requires using cost sur-
face based on some theoretically relevant –but still unknown– spatial covariant. In
any case, to compare the center of activity of the social media user over time (e.g.,
comparing the detectability or density of social media users before and and after the
protest event), a different design is required that includes more days of observation,
over a larger observation area, and possibly additional spatial covariants and candidate
models to test.
Third, in this study, a deterministic algorithm to interpolate the data was used. How-

ever, we observe that the incorporation of street length in centrality measurements
increased the RMSE error. In this sense, the limitation in the capacity of Euclidean
graphs in the detection of social media users was not evaluated. This means that it
can be used as a methodological approach to evaluate more complex network mea-
sures available at the city level. We think that the use of non-deterministic models
may allow the incorporation of this type of network attributes in the comparative
analysis.
Fourth, we also recommend testing different detection functions in future investiga-

tions. Changing the properties of the detection function also allows you to create new
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detection functions. An attractive idea might be to develop a detection function that,
instead of the Euclidean distance, uses a network-based distance from a street network.
This detector would have the potential to detect objects located primarily on street
networks. A comparative study of different detection functions is needed for future
research to evaluate possible advantages and disadvantages in the task of detecting social
media users.
Finally, beyond the particular case that we analyze in this paper, the detection of

social media users can be used for more practical purposes. For example, it can
be of great value in urban planning to identify where to optimize the placement
of public wifi spots, or also in which places in the city prioritize for development
and applications of augmented reality using social media. Also, the methodologi-
cal approach could be adapted for international organizations and non-governmental
organizations focused on human rights to monitor how the detectability of opposing
political groups increases or deteriorates in countries under authoritarian or dictatorial
regimes.

Conclusion

We conclude that the neighborhood socio-demographic indicators have a better capacity
to detect social media users compared to the centralities of pedestrian networks tested
in this study. We also conclude that social media users who supported the demonstration
have a slightly higher probability of being detected during the day of observation and this
probability decays differently compared to that of a generic social media user. Addition-
ally, and based on the observation that the tested centrality measures performed better
than the null model, it leads us to think that the use of different complex network mea-
sures could obtain a better performance in the task of detecting the users of social media
in the city. Finally, the physical distance to key locations of the protest march performed
worse than the null model in detecting social media users during the observed time and
area of study.
The present study is observational and requires testing and comparing different detec-

tion functions and additional variables in future research. We hope that the interdisci-
plinary methodological approach proposed here, and its variants, helps other researchers
to explore how social network measures, compared to other types of explanatory factors,
contribute to detect social media users over the city.

Appendix 1: Visualization of principal component analysis
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Fig. 8 Census block by Age Composition (PC1 and PC2)
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Fig. 9 Census block by Education (PC1 and PC2)
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Fig. 10 Census block by Dwelling (PC1 and PC2)
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Appendix 2: Qualitative coding scheme and inter-rater reliability
In this section, we summarize how content analysis was performed to classify users based
on the content of the Tweets.

Qualitative coding scheme:

The purpose is to identify the Tweets that contain elements that denote if the users sup-
ported the LGBTTTI protest march during the period of observation. The coding process
is summarized below:

• Step 1 : Identify in the text of the Tweet if it contains hashtags related to the protest
march. The process begins like most previous investigations, exploring the data to
identify the hashtags that a user posts. In previous investigations carried out in the
context of social media networks, it has been used as a proxy support measure to a
cause that the user posts a certain hashtags (e.g. #pride, #pride2018, #loveislove,
#gaypride, #gaypride2018, #pride_cdmx, #lgbt, #lgbtpride, #lgbttti, #orgullogay,
#orgullo2018, #marchaorgullogay2018, #marchadelorgullo, #instagay, #pridemonth,
#pridemonth2018, #pridemexico, #pride2018cdmx, #diversidad, #rainbow,
#marchalgbt, #marchagay, #happypride, #prideparade).

• Step 2 : Identify in the text of the Tweet the existence of emojis related to the
LGBTTTI movement. We do this because the user demonstrates his support for a
social movement through iconographic communication. A flag with six rainbow
colors, usually including red, orange, yellow, green, blue and purple is commonly
used by the LGBTTTI movement as a gay pride flag, or simply as a pride flag.
Additional icons related to the LGBTTTI protest march were also included.

• Step 3 : Open the URL and explore if there is content (i.e. images, video, or maps, or
another type of media content) that denote support for the LBGTTTI community
march.

• Step 4 : The final step is for the qualitative analyst to read the full text of the post. In
this task, the analyst assessed whether he has evidence that the user, despite having
posted a hashtag, emoji, or posted URL content related to the event, is posting
content no related with the LBGTTTI march event. For example, if a Tweet contains
the gay pride flag but uses it to promote tickets to a nightclub, the aim of the Tweet is
for purposes other than to support the protest march.

• Step 5: Finally, the qualitative analyst performs the coding of the data, taking into
consideration the previous steps. First, if the Tweet contain information related
to the march, it was coded with Yes label, and if it does not contain information
about the march, it was coded with No label. Second, we define that if users have
posted at least one Tweet to support the demo march, they will be considered a
user Supporting the march (coded 1). Otherwise, they will be considered a
Generic user publishing different types of content (coded 0) during the day of
observation. Employing this manual coding, it was possible to identify the Type of

User who supported the protest and those who posted other types of information.

Inter–rater reliability:

The qualitative coding scheme was validated by two raters in a random sample of 1242
post. For this purpose, the Cohen’s kappa coefficient (κ) was used. This statistic is given by:
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κ = p0 − pc
1 − pc

(8)

where p0 represents the actual observed agreement and pc represents chance agreement,
and where an outcome equal to 1 represents a perfect agreement. The coefficient can be
negative (it is no lower bound). As can be seen, the qualitative coding procedure achieved
an excellent agreement between the two raters (κ = 0.84).
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