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networks to encode and decode information from graph-structured data. Recurrent
neural networks require sequences, so we choose several methods of traversing graphs
using different types of substructures with various levels of granularity to generate
sequences of nodes for encoding. Our unsupervised approaches leverage long
short-term memory (LSTM) encoder-decoder models to embed the graph sequences
into a continuous vector space. We then represent a graph by aggregating its graph
sequence representations. Our supervised architecture uses an attention mechanism
to collect information from the neighborhood of a sequence. The attention module
enriches our model in order to focus on the subgraphs that are crucial for the purpose
of a graph classification task. We demonstrate the effectiveness of our approaches by
showing improvements over the existing state-of-the-art approaches on several graph
classification tasks.
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Introduction

We address the problem of comparing and classifying graphs by learning their latent rep-
resentation. This problem arises in many domain areas, including bioinformatics, social
network analysis, chemistry, neuroscience, and computer vision. For instance, in neuro-
science, comparing brain networks represented by graphs helps to identify brains with
neurological disorders (Van Wijk et al. 2010). In social network analysis, we may need
to compare egonetworks to detect anomalies (Akoglu et al. 2010) or to identify corre-
sponding egonetworks across multiple social networks. Cutting across domains, we may
be interested in understanding how to distinguish the structure of a social network from
that of a biological network, an authorship network, a computer network, or a citation
network (Newman 2003).

For many years, graph kernels (Vishwanathan et al. 2010; Girtner et al. 2003; Sher-
vashidze et al. 2009, 2011; Borgwardt and Kriegel 2005), feature extraction methods
(Berlingerio et al. 2012; Macindoe and Richards 2010; Yan and Han 2002) and graph
matching algorithms (Bunke 2000; Riesen et al. 2010) have been the approaches of choice
for graph comparison. Recently, remarkable advancements have been made in develop-
ing methods for embedding nodes (Grover and Leskovec 2016; Perozzi et al. 2014; Tang
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et al. 2015; Garcia-Durdn and Niepert 2017), edges (Chen et al. 2018; Trivedi et al. 2017;
Rossi et al. 2018) and subgraphs (Narayanan et al. 2016; Yanardag and Vishwanathan 2015;
Adhikari et al. 2017) into low-dimensional spaces. Moreover, several other approaches
(Niepert et al. 2016, Zhang et al. 2018, Duvenaud et al. 2015, Gilmer et al. 2017,
li et al. 2015b, Lee et al. 2018b) have been proposed to learn graph representations for
a supervised task such as graph classification or regression. These approaches are aimed
at optimizing the performance of the classification task, rather than learning the explicit
topology of a graph.

There is still a lack of well-performing approaches for learning the representation for
an entire graph. There are several challenges that need to be addressed within this area.
First, the choice of the subgraph structures to be incorporated in the graph representation
learning has a significant impact on the expressiveness power of the embeddings of an
entire graph. Second, choosing the appropriate granularity level of this substructure (e.g.,
whether to include first or second order neighborhoods of a node when building node
sequences), which is necessary to preserve the graph embedding, is an open problem.
The choice may depend on many factors, such as the graph domain, scale, density, and its
various structural properties. The types of the substructures, from fine-to-coarse, such
as nodes, edges, trees, graphlets, random walks, and communities, can capture local and
global features of the graph. The question is what types of substructures with what level of
granularity are informative enough to capture the general graph structure and recognize
similarity between graphs, while reducing the loss of information? The additional chal-
lenge is, of course, the efficiency of learning the representation of the substructures and
aggregating them into a graph embedding. In this work, we investigate these challenges
within the context of our proposed architectures.

Moreover, most of the recent studies (Ying et al. 2018; Niepert et al. 2016; Zhang et al.
2018; Duvenaud et al. 2015; Li et al. 2015b) focus on Graph Neural Networks (GNNs) to
investigate the graph representation learning problem. Gilmer et al. (2017) introduced a
message passing framework and explored the family of GNNs by massage propagation in
the graph topology. In this group of approaches, the hidden representations of the nodes
are iteratively updated, using differentiable functions, from the hidden representations of
their neighbors. Several concerns regrading the scalability and training time arise since
these approaches rely on several iterations of message passing using the entire adjacency
matrix. Therefore, in this work we investigate whether it is possible to achieve efficient
graph representations by sampling a set of sequences from the graph and solely rely on
them in order to find a hidden representation for the whole graph structure. Recently,
Lee et al. (2018b) proposed an approach for graph representation learning using embed-
ding sequences. However, their approach is designed in a supervised manner and is not
applicable without task-specific supervision. In this work, we study graph representa-
tion learning techniques using recurrent models in both supervised and unsupervised
regimes.

In the unsupervised representation learning, we only consider a setting in which we
have knowledge about the graph structure, such as an adjacency matrix as well as node
and edge properties. In the supervised representation learning, we assume knowledge
about the supervised task, such as graph classification labels or regression values, in
addition to the information about the graph structure. In both settings, we use effec-

tive models based on a sequence-to-sequence learning framework and demonstrate the
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capability of our models in learning graph representation with or without incorporating
task-specific supervision information.

In the unsupervised regime, we leverage the LSTM sequence-to-sequence learning
framework of (Sutskever et al. 2014), which uses one LSTM to encode the input sequence
into a vector and another LSTM to generate the output sequence from that vector. In
some variations of our models, we use the same sequence as both input and output, mak-
ing this a sequence-to-sequence LSTM autoencoder (Li et al. 2015a). We consider several
types of substructures including random walks, shortest paths, and breadth-first search,
with various levels of node neighborhood granularity to prepare the input to our mod-
els. An unsupervised graph representation approach can be used not only in processing
labeled data, such as in graph classification in bioinformatics, but can be also used in many
practical applications, such as anomaly detection in social networks or streaming data,
as well as in exploratory analysis and scientific hypothesis generation. An unsupervised
method for learning graph representations provides a fundamental capability to analyze
graphs based on their intrinsic properties. Figure 1 shows the result of using our unsuper-
vised approach to embed the graphs in the Proteins dataset (Borgwardt et al. 2005) into
a 100-dimensional space, visualized with t-SNE (Maaten and Hinton 2008). Each point
is one of the 1113 graphs in the dataset. The two class labels were not used when learn-
ing the graph representations, but we still generally find that graphs of the same class are
clustered in the learned space.

In the supervised regime, we suggest a supervised version of a sequence-to-sequence
learning framework to predict graph classification labels. The supervised model is
inspired by the best variation of our unsupervised framework in order to utilize the neigh-
borhood of a sequence for the purpose of the graph classification task. One recurrent
neural network is used to gather information from a sequence and another recurrent
model is applied to incorporate the information from the neighborhood of the sequence
into the graph representation learning. Moreover, our architecture is equipped with a

Fig. 1 Learned graph representations in Proteins (Borgwardt et al. 2005) dataset, which has two classes:
enzyme (red) and non-enzyme (blue)




Taheri et al. Applied Network Science (2019) 4:68 Page 4 of 26

two-level attention mechanism to improve our classification performance by leveraging
local and global information from the neighborhoods of nodes in a sequence. Recent
graph representation approaches (Lee et al. 2018a, 2018b; Velickovi¢ et al. 2018) introduce
the notion of attention mechanism to explore the neighbors of a node and detect the most
informative neighbors. However, our proposed architecture utilizes two levels of atten-
tion to capture more global information from the neighborhood of the entire sequence in
addition to the neighbors of a node.

We demonstrate the efficacy of our supervised and unsupervised approaches in clas-
sification tasks for both labeled and unlabeled graphs. Our approach outperforms the
state-of-the-art methods on nearly all the considered datasets.

Related work
We discuss prior and relevant work in developing unsupervised and supervised methods
for graph comparison.

Unsupervised

In the unsupervised group, existing graph comparison methods can be categorized into
three main (not necessarily disjoint) classes: feature extraction, graph kernels, and graph
matching. Feature extraction methods compare graphs across a set of features, such
as specific subgraphs or numerical properties that capture the topology of the graphs
(Berlingerio et al. 2012; Macindoe and Richards 2010; Yan and Han 2002). The efficiency
and performance of such methods is highly dependent on the feature selection process.
Most graph kernels (Vishwanathan et al. 2010) are based on the idea of R-convolutional
kernels (Haussler 1999), a way of defining kernels on structured objects by decomposing
the objects into substructures and comparing pairs in the decompositions. For graphs,
the substructures include graphlets (Shervashidze et al. 2009), shortest paths (Borgwardt
and Kriegel 2005), random walks (Gértner et al. 2003), and subtrees (Shervashidze et al.
2011). Recently, several new graph kernels such as Deep Graph Kernel (DGK) (Yanardag
and Vishwanathan 2015), optimal-assignment Weisfeiler-Lehman (WL-OA) (Kriege et al.
2016), Pyramid Match Kernel (PM) (Nikolentzos et al. 2017) and local WL label (LWL)
(Morris et al. 2017) have been proposed and evaluated for graph classification tasks.
The DGK (Yanardag and Vishwanathan 2015) uses methods from unsupervised learn-
ing of word embeddings to augment the kernel with substructure similarity. WL-OA
(Kriege et al. 2016) is an assignment kernel that finds an optimal bijection between dif-
ferent parts of the graph. The PM kernel (Nikolentzos et al. 2017) finds an approximate
correspondence between the sets of vectors of the two graphs. LWL (Morris et al. 2017)
is a kernel that considers both local and global features of the graph. While graph kernel
methods are effective, their time complexity is quadratic in the number of graphs, and
there is no opportunity to customize their representations for supervised tasks.

Graph matching algorithms use the topology of the graphs, their nodes and edges
directly, counting matches and mismatches (Bunke 2000; Riesen et al. 2010). These
approaches do not consider the global structure of the graphs and are sensitive to noise.

In addition to the three categories above, Graph2vec (Narayanan et al. 2017) is and
unsupervised method inspired by document embedding models. This approach finds
a representation for a graph by maximizing the likelihood of existing graph subtrees
given the graph embedding. Our approach outperforms this method by a large margin.
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Graph2vec does not capture global information in the graph structure by only consid-
ering subtrees as graph representatives, which ultimately affects its performance. Other
methods have been developed to learn representations for individual nodes in graphs,
such as DeepWalk (Perozzi et al. 2014), node2vec (Grover and Leskovec 2016), and many
others. These methods are not directly related to graph comparison because they require
aggregating node representations to represent entire graphs. However, we compared to
one such representative method in our experiments to show that the aggregation of node
embeddings is not informative enough to represent the structure of a graph.

Supervised

We now discuss supervised methods that learn graph representations for the graph
classification task. The representations obtained by these approaches are tailored for
a supervised task and are not based solely on the graph topology. Most of existing
approaches (Niepert et al. 2016; Zhang et al. 2018; Ying et al. 2018; Gilmer et al. 2017;
Duvenaud et al. 2015; Li et al. 2015b; Bruna et al. 2013; Henaff et al. 2015; Defferrard
et al. 2016; Scarselli et al. 2009) are variations of Graph Neural Networks (GNNs) and
rely on the idea of message propagation around the neighbors. Niepert et al. (2016) devel-
oped a framework (PSCN) to learn graph representations by defining receptive fields of
neighborhoods and using canonical node ordering. Deep Graph Convolutional Neural
Network (DGCNN) (Zhang et al. 2018) is another model that extracts multi-scale node
features and applies a consistent pooling layer on unordered nodes. The main difference
between DGCNN and PSCN is the way they deal with the node-ordering problem. We
compare our models to them in our experiments, outperforming them on all datasets.
Ying et al. (2018) proposed a hierarchical representation learning framework via hier-
archical GNNs pooling layers. Gilmer et al. (2017) proposed a message passing neural
network framework, and explored the existing supervised approaches (Gilmer et al. 2017;
Duvenaud et al. 2015; Li et al. 2015b) that have been recently used for graph-structured
data in chemistry applications, such as molecular property prediction. Duvenaud et al.
(Duvenaud et al. 2015) introduced a GNN to create “fingerprints” (vectors that encode
molecule structure) for graphs derived from molecules. The information about each atom
and its neighbors are fed to the neural network, and neural fingerprints are used to predict
new features for the graphs. Bruna et al. (2013) proposed spectral networks, generaliza-
tions of GNNs on low-dimensional graphs via graph Laplacians. Henaff et al. (2015) and
Defferrard et al. (2016) extended spectral networks to high-dimensional graphs. Scarselli
etal. (2009) proposed a GNN which extends recursive neural networks and find node rep-
resentations using random walks. Li et al. (2015b) extended GNNs with gating recurrent
neural networks to predict sequences from graphs. In general, neural message passing
approaches can suffer from high computational and memory costs, since they perform
multiple iterations of updating hidden node states in graph representations. However,
our supervised approach obtains strong performance without the requirement of passing
messages between nodes for multiple iterations.

Lee et al. (2018b) proposed Graph Attention Model (GAM) using recurrent neural
networks for the graph classification task. The goal is to train a model that is able to
distinguish between different classes of graphs. This approach is limited to the graph clas-
sification application and cannot address the problems of graph comparison and graph
representation learning without any task-specific supervision. GAM captures the graph
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representation by traversing the graph via attention-guided walks. In fact, the approach
decides how to guide a walk while traversing the graph by choosing the nodes that are
more informative for the purpose of the graph classification. Finally, the nodes selected
during the graph traversal and their corresponding attributes are used for graph classi-
fication. However, our architecture is flexible enough to work with different choices of
extracted sequences such as BFS, shortest paths as well as random walks, and to bene-
fit from various types of substructures in learning to represent the graphs. GAM mainly
focuses on local information obtained via attention mechanism on neighbors of nodes and
is not capable of considering global structure of the graph. However, by using extracted
sequences with different order of neighborhood granularity and applying a two-level
attention mechanism, we can retrieve informative information from both local and global

structure of the graph, which ultimately improves performance.

Background
We briefly discuss the required background about graphs and LSTM recurrent neural
networks.

Graphs. For a graph G = (V,E), V denotes its node set and E C V x V denotes its
edge set. Edge e € E is a pair of nodes (v,V') € V x V and represents an undirected edge.
The set of neighbors for a node v is Nbrs(v) = {v'|(v,v) € E}. G is called a labeled graph
if there is a labeling function label : V' — L that assigns a label from a set of labels L to
each node. The graph G is called an unlabeled graph if no labels have been assigned to its
nodes.

Long short-term memory (LSTM). An LSTM (Hochreiter and Schmidhuber 1997)
is a recurrent neural network (RNN) designed to model long-distance dependencies in
sequential data. RNNSs are a class of neural networks that use their internal hidden states
to process sequences of inputs. We denote the input vector at time ¢ by x; and we denote
the hidden vector computed at time ¢ by /. At each time step, an LSTM computes a
memory cell vector ¢;, an input gate vector i, a forget gate vector f;, and an output gate

vector o;:

ir = o (Wixy + Uihi—1 + Kici—1 + by)

Je =0 (Wpxe + Urhi—1 + Krep—1 + by)

0t = o (Woxy + Ushs—1 + Kocs—1 + by) (1)
¢t =fr ©cr—1 + iy © tanh(Wexy + Uchy—1 + be)

hy = oy © tanh(cy)

where © denotes elementwise multiplication, o is the logistic sigmoid function, each W
is a weight matrix connecting inputs to particular gates (denoted by subscripts), each U
is an analogous matrix connecting hidden vectors to gates, each K is a diagonal matrix
connecting cell vectors to gates, and each b is a bias. We refer to this as an “LSTM
encoder” because it converts an input sequence into a sequence of hidden vectors /;. We
will also use a type of LSTM that predicts the next item X in the sequence from /;. This
architecture, which we refer to as an “LSTM decoder;,” adds the following:

x = g(he) ()
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where g is a function that takes a hidden vector /; and outputs a predicted observa-
tion x. With symbolic data, g typically computes a softmax distribution over symbols and
returns the max-probability symbol. When using continuous inputs, g could be an affine
transform of /; followed by a nonlinearity.

Approach overview
We propose unsupervised and supervised architectures for learning representations of
labeled and unlabeled graphs. In our unsupervised architecture, the goal is to learn graph
embeddings such that graphs with similar structure lie close to one another in the embed-
ding space. We seek to learn a mapping function ® : G — RX that embeds a graph G into
a k-dimensional space. We are interested in methods that scale linearly in the number of
graphs in a dataset (as opposed to graph kernel methods that require quadratic time).

Our approach uses encoder-decoder models, particularly autoencoders (Hinton and
Zemel 1993), which form one of the principal frameworks of unsupervised learning.
Autoencoders are typically trained to reconstruct their input in a way that learns useful
properties of the data. There are two parts to an autoencoder: an encoder that maps the
input to some intermediate representation, and a decoder that attempts to reconstruct
the input from this intermediate representation. We need to decide how to represent
graphs in a form that can be encoded and then reconstructed. We do this by extracting
ode sequences with various levels of granularity (the increasing order of node neighbor-
hoods) from the graphs. “Generating sequences from graphs” section describes several
methods for doing this. Given node sequences from a graph, we then need an encoding-
decoding framework that can handle variable-length sequences. We choose LSTMs for
both the encoder and decoder, forming an LSTM autoencoder (Li et al. 2015a). LSTM
autoencoders use one LSTM to read the input sequence and encode it to a fixed dimen-
sional vector, and then use another LSTM to decode the output sequence from the vector.
We consider several variations for the encoder and decoder, described in “Sequence-to-se
quence encoder-decoder” section. We experiment with two training objectives, described
in “Training” section.

Given the trained encoder LSTM,;,., we define the graph embedding function ®(G) as
the mean of the vectors output by the encoder over Seq(G), the set of graph sequences
extracted from G:

®(G) Y LSTMenc(s). ®)

15eq(G)]  _crc

Using the mean outperformed max pooling in our experiments so we only report
results using the mean in this paper. We use @ to represent graphs in our experiments
in “Experiments” section, demonstrating state-of-the-art performance for several graph
classification tasks.

Our supervised model uses a sequence-to-sequence framework to capture the graph
structure with the supervision of a graph classification task. We train our model to
predict the label of a graph using randomly selected sets of node sequences over multi-
ple iterations. The model leverages the node embeddings learned by our unsupervised
encoder-decoder models in learning to predict graph labels. We describe our supervised
approach in “Supervised graph representation learning” section and compare it with other
supervised and unsupervised approaches in “Experiments” section.
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Generating sequences from graphs

The input of our model is a set of node sequences generated from different types of graph
substructures such as Random Walks, Shortest Paths, and Breadth-First Search. Different
substructures capture varying aspects of local vs global topology of the graph. Moreover,
we incorporate information about the neighborhood of a node sequence in order to pre-
serve more information about the region of the graph that is traversed by the sequence.
The neighborhood of a sequence consists of the neighbors of nodes in that sequence. In
order to incorporate the neighborhood of a sequence in graph representation learning,
we assign a label to each node in the sequence based on its neighborhood. The order
of the neighborhood (which we call granularity) determines whether it is the immedi-
ate neighbors (1st order neighborhood) or the neighbors of neighbors as well (2nd order
neighborhood), etc. For instance, the k-order granularity for sequence s : v1,..., Vg,
considers all the nodes in the graph that have a distance of k or less from a v; € s. We
examine the impact of various substructures and orders of granularity on our models.

Types of substructures

Random Walks (RW): Given a source node u, we generate a random walk w,, with fixed
length m. Let v; denote the ith node in w,, starting with vo = u. v,y is a node from the
Nbrs(v;) that is selected with probability 1/deg(v;), where deg(v;) is the degree of v;. (This
is a 0-order Random Walk in our context. A higher order Random Walk replaces nodes
with higher order neighborhoods—see the following “Substructure granularity” section).

Shortest Paths (SP): We generate all the shortest paths between each pair of nodes in
the graph using the Floyd-Warshall algorithm (Floyd 1962).

Breadth-First Search (BFS): We run the BFS algorithm at each node to generate graph
sequences for that node. The graph sequences for the graph include the BFS sequences
starting at each node in the graph, limited to a maximum number of edges from the
starting node. We give details on the maximum used in our experiments below.

Substructure granularity

Each of the sequences defined in the previous section can be sequences of nodes at
different orders of granularity. For example, a Random Walk or a Shortest Path can
be a sequence of nodes with 0-order granularity, a sequence of nodes with first-order
granularity, or a sequence of nodes with the second-order granularity, etc.

We use Weisfeiler-Lehman (WL) algorithm (Weisfeiler and Lehman 1968) to generate
labels for nodes, encoding the node neighborhood (of the correpsonding order of granu-
larity) information in the label. This algorithm is typically used as a graph isomorphism
test. It is known as an iterative node classification or node refinement procedure (Sher-
vashidze et al. 2011). The WL algorithm uses multiset labels to encode the local structure
of the graphs. The idea is to create a multiset label for each node using the sorted list of its
neighbors’ labels. Then, the sorted list is compressed into a new value. The WL algorithm
can iterate this labeling process and add higher order neighbors to the neighborhood list
at each iteration. This labeling process continues until the new multiset labels of graphs in
the dataset are different or the number of iterations reaches a specified limit. Each itera-
tion increases the order of substructure granularity by expanding the node neighborhood.
The WL labels can enrich the information provided by a node, regardless of whether the
original graph is labeled or unlabeled.
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Each unique WL label is converted to a parameter vector in a k-dimensional space
where each entry is initialized with a draw from a uniform distribution with range [ —1, 1].
Overall, depending on the granularity that we consider for nodes, we may include differ-
ent number of parameter vectors in the model. WL parameter vectors are updated during
the training time in addition to the model parameters. For each node v in a sequence,
Emb(v) denotes the parameter vector assigned to the corresponding WL label of node v.

Sequence-to-sequence encoder-decoder

We discussed three types of substructures used for extracting sequences from graphs
and our approach for embedding nodes considering the order of their neighborhoods.
We now describe how we will learn our graph embedding functions in our unsupervised
setting.

We formulate graph representation learning as training an encoder-decoder on node
sequences generated from graphs. The most common type of encoder-decoder is a
feed-forward deep neural network, but those suffer from the limitation of requiring
fixed-length inputs and an inability to model sequential data. Therefore, we focus in
this paper on sequence-to-sequence encoder-decoder architecture, which can support
arbitrary-length sequences.

These encoder-decoder models are based on the sequence-to-sequence learning frame-
work of Sutskever et al. (2014), an LSTM-based architecture in which both the inputs and
outputs are sequences of variable length. The architecture uses one LSTM as the encoder
LSTM,y,. and another LSTM as the decoder LSTM ;... An input sequence s with length m
is given to LSTM,,. and its elements are processed one per time step. The hidden vector
hy, at the last time step m is the fixed-length representation of the input sequence. This
vector is provided as the initial vector to LSTM 4. to generate the output sequence.

We suggested four different versions of sequence-to-sequence encoder-decoder models
to investigate their ability to capture the graph structure. Three out of four encoder-
decoder models adapt the sequence-to-sequence learning framework for autoencoding
simply by using the same sequence for both the input and output. The autoencoders
are trained so that LSTM ;.. reconstructs the input using the final hidden vector from
LSTM ppe.

In our experiments, we use several graph datasets. We train a single encoder-decoder
for each graph dataset. The encoder-decoder is trained on a training set of graph
sequences pooled across all graphs in the dataset. After training the encoder-decoder, we
obtain the representation ® (G) for a single graph G by encoding its sequences s € Seq(G)
using LSTM ., then averaging its encoding vectors, as in Eq. (3).

Encoder-decoder variations

S$2S-AE: This is the standard sequence-to-sequence autoencoder inspired by (Li et al.
2015a), which we customize for embedding graphs. Figure 2 shows an overview of this
model. We use /{"° to denote the hidden vector at time step ¢ in LSTM,,, and hfec to
denote the hidden vector at time step ¢ in LSTM ;.. We define shorthand for Eq. 1 as
follows:

hg" = LSTMenc (Emb(vy), hi™5) ?
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where Emb(v;) takes the role of x; in Eq. 1. The hidden vector at the last time step /4], €
R™ denotes the representation of the input sequence, and is used as the hidden vector of

the decoder at its first time step:

hg’ec — pene (5)

last

The last cell vector of the encoder is copied over in an analogous way. Then each decoder
hidden vector 47 is computed based on the hidden vector and the node embedding from
the previous time step:

h?ec = LSTM g, (Emb(w—l): h?ﬁ) 5

The decoder uses h‘t’l"’c to predict the next node embedding Emb(v;) as in Eq. 2. We have
two different loss functions to test with this model. First, we consider the node embed-
dings fixed and compute a loss based on the difference between the predicted node
embedding Emb(v;) and the true one Emb(v;). Second, we consider a parameter vector for
each embedding and update the node embeddings in addition to the model parameters
using a cross entropy function. We discuss training in “Training” section. For Emb(v), we
use a vector of all zeroes.

S$2S-AE-PP: In the previous model, LSTM .. predicts the embedding of the node at
time step ¢ using h‘ffcl as well as Emb(v_1), the true node embedding at time step ¢ — 1.
However, this may enable the decoder to rely too heavily on the previous true node in
the sequence, thereby making it easier to reconstruct the input and reducing the need
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for the encoder to learn an effective representation of the input sequence. We consider a
variation (“S2S-AE-PP: sequence-to-sequence autoencoder previous predicted”) in which
we use the previous predicted node Emb(v;_1) instead of the previous true one:

e = LSTM goe (Emb@i), 5 ) ’

This forces the encoder and decoder to work harder to respectively encode and decode the
graph sequences. This variation is related to scheduled sampling (Bengio et al. 2015), in
which the training process is changed gradually from using true previous symbols to using
predicted previous symbols more and more during training. The difference of S2S-AE-PP
with previous model is indicated in Fig. 3.

S2S-AE-PP-WL1,2: This model is similar to S2S-AE-PP except that, for each node in
the sequence, we use two different levels of neighborhood granularity. We incorporate the
first-order neighborhoods and second-order neighborhoods (neighbors of neighbors) of
nodes in learning graph representation. We use x1, to denote the embedding of the label
produced by one iteration of WL (for the first-order neighborhood) and x5, for that pro-
duced by two iterations of WL (for second-order neighborhood). Equation 1 is modified
to receive both as inputs. For example, the first line of Eq. 1 becomes:

ir = o (Wh,x1, + Wo,xo, + Uihi—1 + Kice—1 + b)) (8)

Fig.3 S2S-AE-PP
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The other equations are changed analogously. The embeddings for both the first-order
and second-order neighborhoods are learned. Figure 4 shows how this model integrates
the information from neighborhoods in order to learn the graph representation.
S$2S-N2N-PP: This model is a “neighbors-to-node” (N2N) prediction model and uses
random walks as graph sequences (Fig. 5). The idea is to explore the neighborhood of a
sequence by an encoder and predict the sequence itself by the decoder using the gathered
information via the encoder. The encoder is encouraged to collect the information from
the neighborhood which is distinguishable from other graph substructures and decoder
can reconstruct the original sequence from that. That is, each item in the input sequence
is the set of neighbors (their embeddings are averaged) for the corresponding node in the

output sequence:

h§" = LSTM e < Avg (Emb(vﬁ),hf”ﬂ) 9)
V;ENbrs(vy)

where Nbrs(v) returns the set of neighbors of v and we predict the nodes in the random
walk via the decoder as in Eq. 7. Unlike the other models, this model is not an autoencoder

because the input and output sequences are not the same.

h(li’nC __.,hgnc | > hgnc_’ enc

14 i 4% 4%

Fig.4 S2S-AE-PP-WL1,2
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Fig.5 S25-N2N-PP

Training

Let S be a sequence training set generated from a set of graphs. The representations of the
sequences s € S are computed using the encoders described in the previous section. We
use two different loss functions to train our models: squared error and categorical cross-
entropy. The goal is to minimize the following loss functions, summed over all examples
se S, wheres:vy,...,vq.

Squared error

We used the squared error (SE) loss function for the embeddings that are fixed and are
not considered as the trainable parameters of the model. We include a nonlinear trans-
formation to estimate the embedding of the ¢th node in s using the hidden vector of the
decoder at time step t:

Enmb(v;) = ReLU (W + b) (10)

where ReLU is the rectified linear unit activation function and W and b are additional
parameters.

Given the predicted node embeddings for the sequence s, the squared error loss func-
tion computes the average of the elementwise squared differences between the input and
output sequences:
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Is|

losssg(s) = ﬁ 3 HEmb(vt) — Emb(vy) Hj 11)
t=1

Categorical cross entropy
We use the categorical cross entropy (CE) loss function for experiments in which we
update the node embeddings during training. We predict the tth node as follows:

V7 = argmax(h?.Emb(l)) (12)
leL

where L is the set of labels. The loss computes the categorical cross entropy between the
input embeddings and the predicted output embeddings:

Is|

lossce(s) = — Z logp(ve = 1) (13)
t=1
where / denotes the true label of node v;, and the predicted probability of the true label is
computed as follows:

Jiec Emb(l)

pe=10= (14)

3 héee Emb(l')
l'eL

Supervised graph representation learning

In this setting, the graph representation learning is guided by a task-specific supervision,
incorporating the supervision information into the learning process. Given a dataset D :
{G1, ..., Gy}, the goal is to learn a function GrLabel : D — Lg that assigns a label from a
set of labels Lg to each graph in the dataset.

We introduce our supervised method inspired by the most effective unsupervised
method proposed in “Sequence-to-sequence encoder-decoder” section. As we will show
in “Experiments” section, that S2S-N2N-PP outperforms the other methods in almost all
experiments. Therefore, we design the foundation of our supervised method based on
the S25-N2N-PP. We utilize one LSTM for processing a sequence (LSTMse,;) and one
bidrectional LSTM for processing the neighborhoods of the sequence (BiLSTMppy,). The
neighborhoods of a sequence consist of the neighbors of nodes in the sequence. The hid-
den representation obtained by the BiLSTM yyy, from the neighborhoods is given to the
LSTMseq in order to incorporate it in graph representation learning. The BiLSTMnpy,
contains an attention mechanism to select the most informative neighborhoods for the
purpose of graph classification.

Recently, several approaches focused on the application of attention mechanisms in
graph-structured data (Lee et al. 2018a, 2018b; Velickovi¢ et al. 2018). The attention
mechanism in these methods is mainly designed to explore the neighbors of a node and
focus on the most informative neighbors. However, we utilize a two-level attention mech-
anism to improve our classification performance by leveraging local as well as global
information from the neighborhoods of nodes in a sequence. The first-level attention
mechanism, Attyy,, attends over the neighbors of a node to capture more relevant infor-
mation from its neighbors. The second-level attention module, Attypy,, attends over the
neighborhoods along a sequence of nodes to focus on the overall more informative neigh-
borhoods. Our approach aims to capture more globally relevant information from the
graph by the A#tpyy, in comparison with the Attyy,. Figure 6 shows the difference between
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the two levels of attention mechanism. Overall, given a sequence s, our approach includes
two main components: (1) Neighborhood embedding to gather information from the
neighborhoods of nodes in sequence s, and (2) Sequence embedding to represent the
sequence s by incorporating information from its neighborhoods. We discuss these two
components in the following. Figure 7 shows an overview of the proposed approach.

Neighborhood embedding

For each sequence s € S, where s : v1,..., V), extracted in “Generating sequences from
graphs” section, information from the neighbors of nodes in the sequence is gathered and
passed through the BiLSTMypy,. An attention module Attyy, is utilized in order to gather
local information from the neighbors of v; € s. The Attpy, (Nbrs(v;)) function decides to
which nodes in Nbrs(v;) to pay attention in order to enhance their impact during training.
We rely on the attention mechanism in our model to relieve the classification task from
the burden of considering all the nodes in Nbrs(v;) to be equally informative. For each
neighbor n € Nbrs(v;):

en = f(Emb(n), Emb(v;))

= exp(ey)
" Y. exp(e)
jENbrs(vi)
1= Z a;Emb(j)
jENbrs(vi)
Y = BILSTMy, (1 hﬁi”{') , (15)

where f is a neural network that computes the attention coefficient for node n. The nor-
malized coefficient, a,, is obtained by a softmax function. The resulting attention readout
for node v; is represented by r;. The information about the neighborhood of v; is passed
through the BiLSTMpyy,. Finally, BiILSTMppy, provides a hidden representation from the
neighborhood of a sequence.

Sequence embedding

After gathering information from the neighborhood of sequence s, the last hidden repre-
sentation of the neighborhood, hé‘[bh, is used by LSTM .4 to find a representation for the
sequence for the purpose of graph classification. LSTMs,, processes the sequence whose
neighborhood has been already processed by BiLSTM npy,:

Ew TN

O—3 @
® & © O (®

Fig. 6 Two-level attention mechanism




Taheri et al. Applied Network Science (2019) 4:68 Page 16 of 26

I OmO=080
:BiLSTM,mi \
I ; ® 6 & O

L JNbh HNbh J,Nbh
-ﬁ —

Softmax
v

ORCYOR Rl T4
®-O-O-® fomd

Fig. 7 Supervised graph representation learning

B = LSTMseq (Emb), %)

The second-level attention module, Attppy, is applied over the output of BiLSTM ppy, in
order to assign weights to parts of the neighborhood along sequence s and reflect the

importance of each part for the task-specific prediction:

e = f (1N, 13T

exp(e;)
= ———
>_exp(e))
jes
T'seq = Zﬂil’li’\[bh
ies
reps = g <concat (rgeq, hfeq» , (16)

where f is a neural network that computes a single scalar as the attention coefficient for
each hidden state of BiLSTMypy,. The attention coefficient of Attyyy, is represented by
a;. An attention mechanism on the outputs of BiLSTMpy), provides the capability for the
model to focus on the parts of the neighborhoods along the sequence that are influential
in the end-to-end training of the model. The concatenation of sequence embedding and
attention module is given to a simple feed-forward neural network, g, to find the subgraph
representation, rep,, by incorporating sequence s and its neighborhood.

Training

In order to train a scalable end-to-end model, we train the model on a set of extracted
sequences from “Generating sequences from graphs” section. The model is trained so that
it learns to predict the graph label using the set of chosen sequences. A batch of sequences,
b, is selected from a graph G € D, and the graph representation is obtained as follows:

repy = Avgcp,(repy) (17)
Finally, the probability distribution over labels for Gy is computed by:

y = softmax(rep, W + b), (18)
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where W is a weight matrix reducing the dimension of the graph representation and b is
a bias. The loss function computes the categorical cross entropy between the predicted
distribution ¥ and the true label of the graph /g, € Lg:

lossce(Gp) = — Y logp(3 =lg,) (19)
beBatch(Gy)

Experiments

In this section, we evaluate our representation learning procedure on both labeled and
unlabeled graphs using our supervised and unsupervised models. We use our learned
representations for the task of graph classification using several benchmark datasets and
compare the accuracy of our models to state-of-the-art approaches.

Datasets
For our classification experiments with labeled graphs, we use six datasets of bioinfor-
matics graphs. For unlabeled graphs, we use six datasets of social network graphs.

Labeled graphs: The bioinformatics benchmarks include several well known datasets
of labeled graphs. MUTAG (Debnath et al. 1991) is a dataset of mutagenic aromatic
and heteroaromatic nitro compounds. PTC (Toivonen et al. 2003) contains several
compounds classified in terms of carcinogenicity for female and male rats. Enzymes
(Borgwardt et al. 2005) includes 100 proteins from each of the 6 Enzyme Commission top
level enzymes classes. Proteins (Borgwardt et al. 2005) consists of graphs classified into
enzymes and non-enzymes groups. Ncil and Ncil09 (Wale et al. 2008) are two balanced
subsets of chemical compounds screened for activity against non-small cell lung cancer
and ovarian cancer cell lines respectively.

Unlabeled graphs: We use several datasets developed by (Yanardag and Vishwanathan
2015) for unlabeled graph classification. COLLAB is a collaboration dataset where each
network is generated from ego-networks of researchers in three research fields. Net-
works are classified based on research field. IMDB-BINARY and IMDB-MULTI include
ego-networks for film actors/actresses from various genres on IMDB, and networks are
classified by genre. Each graph in the REDDIT dataset corresponds to an online discus-
sion thread. The REDDIT-BINARY dataset includes graphs that are extracted from four
different subreddits. These subreddits may belong to a question/answer-based commu-
nity or a discussion-based community. These community labels are given by the dataset
and the task is to classify the graphs based on their community labels. REDDIT-MULTI-
5K and REDDIT-MULTI-12K are extracted from five subreddits and eleven subreddits
respectively, where the subreddit labels are given by the dataset. The task in these two
datasets is to predict which subreddit a graph belongs to.

Baselines

We compare our approach to several well known graph kernels: shortest path kernel (SPK)
(Borgwardt and Kriegel 2005), random walk kernel (RWK) (Gértner et al. 2003), graphlet
kernels (GK) (Shervashidze et al. 2009), Weisfeiler-Lehman subtree kernel (WLSK)
(Shervashidze et al. 2011). Also, we compare with recently proposed kernel methods:
Deep Graph Kernels (DGK) (Yanardag and Vishwanathan 2015), WL-OA kernel (Kriege
et al. 2016), Pyramid Match Kernel (PM) (Nikolentzos et al. 2017) and local WL label
(LWL) (Morris et al. 2017). We also compare to four recent supervised methods: (PSCN)
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(Niepert et al. 2016), Deep Graph Convolutional Neural Network (DGCNN) (Zhang et
al. 2018), Spectral Graph Representation (SGR) (Tsitsulin et al. 2018), GCN (Kipf and
Welling 2017) and the unsupervised method: Graph2vec of (Narayanan et al. 2017). We
also compare to a graph representation method based on node2vec (Grover and Leskovec
2016); we use it to learn node embeddings and average them for all nodes in a graph. We
report the best results from prior work on each dataset, choosing the best from multiple

configurations of their methods.

Experimental setup

For unsupervised setting, we perform 10-fold cross-validation on the graph representa-
tions of a dataset using a C-SVM classifier from LIBSVM (Chang and Lin 2011) with a
radial basis kernel. Each 10-fold cross-validation experiment is repeated 10 times (with
different random splits) and we report average accuracies and standard deviations. We use
nested cross-validation for tuning the regularization and kernel hyperparameters of the
SVM. For the supervised setting, we again perform 10-fold cross-validation on a dataset,

and use the 9 training folds for training our model.

Hyperparameter selection

We treat three labeled bioinformatics graph datasets (MUTAG, PTC, Enzymes) and
two unlabeled social network datasets IMDB-BINARY and REDDIT-BINARY) as devel-
opment datasets for tuning certain high-level decisions and hyperparameters of our
unsupervised approach, though we generally found results to be robust across most val-
ues. Figure 8 shows the effect of dimensionality of the graph representation, showing
robustness across values larger than 50; thus, we use 100 in all experiments below. The
dashed lines in Fig. 8 show accuracy when the node embeddings are fixed and the solid
lines when the node embeddings are considered as vector parameters and are updated
during training. We use SE (“Squared error” section) when the node embeddings are

90 - T
80 - = —— Mutag
— PTC
—— Enzymes
70
60 -
50 A
40 B T T T T T 1
50 100 150 200 250 300
Fig. 8 Representation dimensionality (x axis) vs classification accuracy (y axis)
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fixed and CE (“Categorical cross entropy” section) when we update the node embed-
dings during training. CE consistently outperforms SE and we use CE for all remaining
experiments. By using CE, we learn representations of neighborhoods at the right order
of granularity and, using those, we learn the representation of the entire graph. We use
AdaGrad (Duchi et al. 2011) with learning rate 0.01 and mini-batch size 100.

In the experiments that used BES for sequence generation, we only consider nodes that
are at most 1 edge from the starting node. In some cases, this still leads to extremely long
sequences for nodes with many neighbors. We convert these to multiple sequences so
that each has a maximum length of 10. When doing so, we still prepend the initial starting
node to each of the truncated partial sequences.

When using random walks, we generate multiple random walks from each node. We
compared random walk lengths of {3, 5, 10, 15, 20}. Figure 9 shows robust performance
with length 5 across datasets and we use this length below.

Comparing models, type, and granularity of sequences

Figures 10, 11 and 12 show the results of the classification task on the development labeled
graphs for our unsupervised models, with varying types of substructures (RW, BES, SP)
and their granularity (WL0, WL1, WL2). WLO shows the 0-order granularity in which
we use the original label of the nodes. WL1 and WL2 show sequences of first order and
second order neighborhoods of the nodes, respectively.

Figure 10 shows the accuracy of the graph classification task with different orders
of sequence granularity. We show the average of accuracies of the two autoencoders
S2S-AE and S2S-AE-PP (rather than all four, since S2S-N2N-PP does not have the full
range of substructures and S2S-AE-PP-WL1,2, uses both WL labels together, thus, not
comparable). The results indicate that using sequences of neighborhoods improves accu-
racy substantially compared to using sequences of nodes. There is a large gap between
accuracies generated by the first order neighborhoods and original labels (0-order neigh-
borhood) across all sequence types. This provides strong evidence that sequences of

90 e
85 - i e b T
80
75
—— Mutag
70 = Mt
—— Enzymes
65
601 - _____
55 @ ommmmm ——————— .
1 3 5 7 9 11 13 15 17 19
Fig. 9 Random walk length (x axis) vs graph classification accuracy (y axis)
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. wLo WLl [ WLZJ

Mutag PTC Enzymes
Fig. 10 Substructure granularity (solid: RW, white hatch: BFS, black hatch:SP)

first order neighborhoods can enrich the original labels in a way that improves graph
representations by capturing additional local node structure.

The number of unique substructures increases from first order neighborhoods to sec-
ond order neighborhoods. Thus, the number of WL labels assigned to neighborhoods
increases with each iteration. Although distinctive labels provide more information about
the local structure of nodes, using WL labels with higher iterations does not necessar-
ily lead to better graph representations. For example, the accuracy of Enzymes (Fig. 10)
shows a significant drop when using the second iteration of the WL algorithm. We believe
that the reason of such a sharp drop in this dataset can be explained by the graphs’ label
entropy (Li et al. 2011). Given a graph G and a set of labels L, the label entropy of G
is defined as H(G) = —)_;.; p(l) logp(l). The average label entropy in each dataset is
depicted in Table 1. The entropy of the Enzymes dataset increases more than MUTAG
and PTC from the substructures with first order neighborhoods to the second order
neighborhoods. As the entropy increases, the number of unique WL labels in a dataset,
and consequently the impurity of the set of labels, increases. When the number of com-
mon labels shared by different graphs decreases, the model cannot learn the similarity
between graphs because each graph is represented by a set of labels that are nearly unique

B BFS Em RW — SP|

Mutag PTC Enzymes
Fig. 11 Type of substructure (solid: WLO, white hatch: WL1, black hatch:WL2)
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Fig. 12 Models (solid: RW, white hatch: BFS, black hatch:SP)

to it. However, the model can detect the commonality among the topology of graphs
(similar substructures) when they have more shared labels.

Moreover, Fig. 11 shows that the accuracies of classification using different types of
sequences are very close to each other when using the first order and second order neigh-
borhoods. The difference between the types of sequences is more evident when we use
the original labels (0-order neighborhood sequences of nodes). In Enzymes, using short-
est paths clearly results in better accuracies than random walks and BES, regardless of the
sequence granularity. For the same type of graphs, Borgwardt and Kriegel (2005) similarly
observed that their shortest path kernel was better than walk-based kernels. We suspect

Table 1 Classification accuracies for labeled graph datasets

Datasets MUTAG PTC Enzymes fig1 Nci1 Nci109

# Graphs 188 344 600 1113 4110 4127
EntropyWL1 2.72 4.03 545 5.54 4.21 4.22
EntropyWL2 4.65 7.09 12.60 13.26 823 8.25
ClusteringCoef 0 0.0025 0453 0.51 0.003 0.003

Avg. Nodes 179 255 326 39.1 298 296

# Labels 7 19 2 3 37 38

# Classes 2 2 6 2 2 2 Avg Rank
SPK (BKO5) 85.2 +24 582 +24 40.1 +15 75.1 o5 73.0 +02 73.0 +02 75
RWK (G+03) 83.7 +15 57.8 +13 242 +16 74.2 104 — — —
GK (5+09) 81.7 21 572 +14 26.6 +09 71.7 xos 62.3 +02 62.6 +01 85
WLSK (S+11) 80.7 +30 57.0 +20 53.7 +11 729 +o0s 80.1 05 80.2 +03 8.5
node2vec (G+16) 82.01+10 55.60+14 1942423 70.76+12 619103 61.53+09 9.5
DGK (YW15) 874 127 60.1 25 534 +09 75.7 +o0s 80.3 +04 80.3 +03 56
PSCN (N+16) 926 62.3 — 759 786 — —
WL-OA (K+16) 86.0 +17 63.6 +15 59.9 +1.1 764 04 86.1 +02 86.3+02 33
GCN (KI+17) 86.3+21 63.28439 56.6435 759428 81.1+16 80.7+18 5.0
graph2vec (N+17) 83.15+92  60.17 x69 — 73.30 +20 73.22 +19 74.26 +15 —
WL PM (NI+17) 87.77 +os 61.41+08 55.55+05 — 86.40 +02 85.34+02 —
LWL (M+17) 85.2 +16 64.7+02 61.8+12 764 +07 83.1 +02 82.0+03 3.0
DGCNN (Z+18) 85.83 116 5859424 — 75.54109 7444104 — —
SGR (T+18) 86.97 — 3367 73.83 — — —
S25-N2N-PP 89.86+1.1 64.54+11 63.96-06 76.51+05 83.72+04 83.64+03 25

supervised 8991415 6572112 57.48+08 77 2809 86.65-06 86.61-05 15
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that the reason is related to the clustering coefficient, a popular metric in network anal-
ysis. The clustering coefficient is the fraction of triangles connected to node v over the
total number of connected triples centered on node v. Having many triangles in the ego-
network of node v may cause the tottering problem in a walk traversing node v and may
generate less discriminative BFS sequences from that ego-network. Shortest paths pre-
vent tottering and capture the global graph structure. BES sequences mainly consider the
local topological features of a graph, and random walks collect a representative sample
of nodes rather than of topology (Kurant et al. 2011). Fortunately, using the sequence of
substructures augmented with neighborhoods can reduce the effect of sequence type in
most settings.

Figure 12 shows the comparison between different unsupervised models, using the
sequences of first order neighborhoods. Model S2S-AE-PP is better than Model S2S-AE
in nearly all cases. As we conjectured above, Model S2S-AE-PP may force the encoder
representation to capture the entire sequence since the decoder has less assistance dur-
ing reconstruction. Model S2S-N2N-PP obtains higher accuracy in almost all datasets,
showing the benefit of capturing local neighborhoods With S2S-AE-PP-WL1,2, we only
observe improvements over the other S2S-AE models on the PTC dataset. This suggests
that adding substructures from both of the first order neighborhoods and second order
neighborhoods could not provide more informative graph representations, regardless of
the type of substructures. The reason could be due to the fact that in this model we add
too many vector parameters for each neighborhood substructure and our model is not
able to learn the meaningful embeddings for these substructures, which leads to poor
graph representation.

Comparison to state-of-the-art

We compare S2S-N2N-PP and our supervised model to the state-of-the-art in Table 1.
We exceed all prior results except on MUTAG dataset. Our supervised method out-
performs other supervised and unsupervised graph representation learning approaches.
However, S2S-N2N-PP in combination with C-SVM performs well in graph classifica-
tion. Considering that none of the previous work can outperform all others in all datasets,
we suggested average ranking measure to compare the performance of all the approaches
together. Our supervised approach shows robustness, achieving the first ranking among
other methods. S2S-N2N-PP obtains the second ranking and this is a strong evidence

l s2s EEE DGCNN
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Fig. 13 Training time of graph embedding methods
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Fig. 14 Growth of training time versus number of graphs

that our unsupervised method learns the graph structure effectively. The third and fourth
rankings are obtained by LWL and WL-OA, which are kernel methods and suffer from
the quadratic complexity of the growth of the running time with the number of graphs
in the dataset. Table 2 compares our method to prior work on the unlabeled graph
datasets. Our approach established new state-of-the-art accuracies on all datasets except
REDDIT-BINARY.

Figure 13 shows the duration of training of the graph representation learning in our
S2S-N2N-PP approach versus the DGCNN. The parameters of DGCNN are configured
according to their paper (Zhang et al. 2018). DGCNN requires more time to learn the
graph representation for the purpose of classification in all datasets. However, the differ-
ence between the two methods is more obvious in the COLLAB dataset, which includes
more graphs and the number of nodes for each graph is more than that of the other
datasets. Moreover, Fig. 14 shows the linear growth of training time of our representation
learning approach with the increase in the number of graphs in a dataset. We report the
training time of our approach by changing the size of a dataset incrementally. The dataset
includes a set of randomly selected graphs from the COLLAB dataset.

Conclusions

We proposed sequence-to-sequence LSTM architectures for learning representations
of graphs in both supervised and unsupervised regimes. We trained our models using
sequences from different types of substructures (random walks, shortest paths, and
breadth-first search) with various levels of granularity (neighborhoods of increasing
order). Our experiments demonstrate that our graph representations can increase the
accuracy of graph classification tasks on both supervised and unsupervised approaches,
achieving to our knowledge, the best results on several datasets considered.

Abbreviations

BFS: Breadth-first search; CE: Cross entropy DGCNN: Deep graph convolutional neural network; DGK: Deep graph kernel;
GAM: Graph attention model; GNNs: Graph neural networks; LSTM: Long short-term memory; LWL: Local WL label; PM:
Pyramid match kernel; RNN: Recurrent neural network; RW: Random walk; SP: Shortest path; WL: Weisfeiler-Lehman;
WL-OA: Optimal-assignment Weisfeiler Lehman

Acknowledgements
Not applicable.



Taheri et al. Applied Network Science (2019) 4:68 Page 25 of 26

Authors’ contributions
AT defined, formalized and implemented the approach under the supervision of TBW. KG contributed ideas in the
unsupervised setting and the overall preparation of the manuscript. All authors read and approved the final manuscript.

Funding
This research was supported in part by the following grants: NSF [15-1515587 and NSF llIl-1514126

Availability of data and materials
The datasets are selected from the related work mentioned in the experiment section.

Competing interests
The authors declare that they have no competing interests.

Author details
University of lllinois at Chicago, Chicago, USA. 2Toyota Technological Institute at Chicago, Chicago, USA.

Received: 15 March 2019 Accepted: 22 July 2019
Published online: 24 August 2019

References

Adhikari B, Zhang Y, Ramakrishnan N, Prakash BA (2017) Distributed representations of subgraphs. In: DaMNet

Akoglu L, McGlohon M, Faloutsos C (2010) Oddball: Spotting anomalies in weighted graphs. In: PAKDD

Bengio S, Vinyals O, Jaitly N, Shazeer N (2015) Scheduled sampling for sequence prediction with recurrent neural
networks. In: NIPS

Berlingerio M, Koutra D, Eliassi-Rad T, Faloutsos C (2012) NetSimile: a scalable approach to size-independent network
similarity. arXiv

Borgwardt KM, Kriegel H-P (2005) Shortest-path kernels on graphs. In: ICDM

Borgwardt K, Ong C, Schonauer S, Vishwanathan S, Smola A, Kriegel H (2005) Protein function prediction via graph
kernels. Bioinformatics 21

Bruna J, Zaremba W, Szlam A, LeCun Y (2013) Spectral networks and locally connected networks on graphs. CoRR

Bunke H (2000) Graph matching: Theoretical foundations, algorithms, and applications. In: Vision Interface

Chang C-C, Lin C-J (2011) Libsvm: a library for support vector machines. ACM TIST 2

Chen J, Xu X, Wu Y, Zheng H (2018) Gc-Istm: Graph convolution embedded Istm for dynamic link prediction. arXiv
preprint arXiv:1812.04206

Debnath A, Lopez de Compadre R, Debnath G, Shusterman A, Hansch C (1991) Structure-activity relationship of
mutagenic aromatic and heteroaromatic nitro compounds. J Med Chem

Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional neural networks on graphs with fast localized spectral
filtering. arXiv

Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic optimization. JMLR

Duvenaud D, Maclaurin D, Iparraguirre J, Bombarell R, Hirzel T, Aspuru-Guzik A, Adams RP (2015) Convolutional networks
on graphs for learning molecular fingerprints. In: NIPS

Floyd RW (1962) Algorithm 97: shortest path. Commun ACM

Garcia-Durdn A, Niepert M (2017) Learning graph representations with embedding propagation. In: NIPS

Gartner T, Flach P, Wrobel S (2003) On graph kernels: Hardness results and efficient alternatives. In: COLT

Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural message passing for quantum chemistry. CoRR

Grover A, Leskovec J (2016) node2vec: Scalable feature learning for networks. In: KDD

Haussler D (1999) Convolution kernels on discrete structures. Technical report

Henaff M, Bruna J, LeCun Y (2015) Deep convolutional networks on graph-structured data. arXiv

Hinton GE, Zemel RS (1993) Autoencoders, minimum description length, and helmholtz free energy. In: NIPS

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput

Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: ICLR

Kriege NM, Giscard P-L, Wilson R (2016) On valid optimal assignment kernels and applications to graph classification. In:
NIPS

Kurant M, Markopoulou A, Thiran P (2011) Towards unbiased bfs sampling. IEEE J Sel Areas Commun

Lee JB, Rossi RA, Kim S, Ahmed NK, Koh E (2018a) Attention models in graphs: A survey. arXiv preprint arXiv:1807.07984

Lee JB, Rossi R, Kong X (2018b) Graph classification using structural attention. In: Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. ACM. pp 1666-1674

Li J, Luong M, Jurafsky D (2015a) A hierarchical neural autoencoder for paragraphs and documents. In: ACL

Li G, Semerci M, Yener B, Zaki MJ (2011) Graph classification via topological and label attributes. In: MLG

Li'Y, Tarlow D, Brockschmidt M, Zemel R (2015b) Gated graph sequence neural networks. arXiv

Maaten Lvd, Hinton G (2008) Visualizing data using t-SNE. JMLR

Macindoe O, Richards W (2010) Graph comparison using fine structure analysis. In: SocialCom

Morris C, Kersting K, Mutzel P (2017) Glocalized weisfeiler-lehman graph kernels: Global-local feature maps of graphs. In:
ICDM

Narayanan A, Chandramohan M, Chen L, Liu Y, Saminathan S (2016) subgraph2vec: Learning distributed representations
of rooted sub-graphs from large graphs. MLG

Narayanan A, Chandramohan M, Venkatesan R, Chen L, Liu Y, Jaiswal S (2017) graph2vec: Learning distributed
representations of graphs. In: MLG

Newman ME (2003) The structure and function of complex networks. SIAM Rev

Niepert M, Ahmed M, Kutzkov K (2016) Learning convolutional neural networks for graphs. In: ICML

Nikolentzos G, Meladianos P, Vazirgiannis M (2017) Matching node embeddings for graph similarity. In: AAAI



Taheri et al. Applied Network Science (2019) 4:68 Page 26 of 26

Perozzi B, Al-Rfou R, Skiena S (2014) DeepWalk: Online learning of social representations. In: KDD

Riesen K, Jiang X, Bunke H (2010) Exact and inexact graph matching: Methodology and applications. In: Managing and
Mining Graph Data

Rossi RA, Zhou R, Ahmed N (2018) Deep inductive graph representation learning. IEEE Trans Knowl Data Eng

Scarselli F, Gori M, Tsoi C, Hagenbuchner M, Monfardini G (2009) The graph neural network model. IEEE Trans Neural
Netw 20

Shervashidze N, Schweitzer P, Leeuwen EJv, Mehlhorn K, Borgwardt KM (2011) Weisfeiler-Lehman graph kernels. JMLR

Shervashidze N, Vishwanathan S, Petri T, Mehlhorn K, Borgwardt KM (2009) Efficient graphlet kernels for large graph
comparison. In: AISTATS

Sutskever |, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In: NIPS

Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q (2015) Line: Large-scale information network embedding. In: WWW

Toivonen H, Srinivasan A, King R, Kramer S, Helma C (2003) Statistical evaluation of the predictive toxicology challenge.
Bioinformatics 19

Tsitsulin A, Mottin D, Karras P, Bronstein A, Miller E (2018) Sgr: Self-supervised spectral graph representation learning.
arXiv preprint arXiv:1811.06237

Trivedi R, Dai H, Wang Y, Song L (2017) Know-evolve: Deep temporal reasoning for dynamic knowledge graphs. In: ICML

Van Wijk BC, Stam CJ, Daffertshofer A (2010) Comparing brain networks of different size and connectivity density using
graph theory. PLoS ONE 5

Velickovi¢ P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2018) Graph attention networks. In: ICLR

Vishwanathan S, Schraudolph N, Kondor R, Borgwardt K (2010) Graph kernels. JMLR

Wale N, Watson IA, Karypis G (2008) Comparison of descriptor spaces for chemical compound retrieval and classification.
KAIS 14

Weisfeiler B, Lehman A (1968) A reduction of a graph to a canonical form and an algebra arising during this reduction.
Nauchno-Technicheskaya Informatsia

Yan X, Han J (2002) gspan: Graph-based substructure pattern mining. In: ICDM

Yanardag P, Vishwanathan S (2015) Deep graph kernels. In: KDD

Ying Z, You J, Morris C, Ren X, Hamilton W, Leskovec J (2018) Hierarchical graph representation learning with
differentiable pooling. In: Advances in Neural Information Processing Systems. pp 4805-4815

Zhang M, Cui Z, Neumann M, Chen Y (2018) An end-to-end deep learning architecture for graph classification. In: AAAI

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com




	Abstract
	Keywords

	Introduction
	Related work
	Unsupervised
	Supervised

	Background
	Approach overview
	Generating sequences from graphs
	Types of substructures
	Substructure granularity

	Sequence-to-sequence encoder-decoder
	Encoder-decoder variations
	Training
	Squared error
	Categorical cross entropy


	Supervised graph representation learning 
	Neighborhood embedding
	Sequence embedding
	Training

	Experiments
	Datasets
	Baselines
	Experimental setup
	Hyperparameter selection
	Comparing models, type, and granularity of sequences
	Comparison to state-of-the-art

	Conclusions
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

