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Abstract
This paper introduces a method for efficiently solving stochastic optimization problems in the field of engine calibration. 
The main objective is to make more conscious decisions during the base engine calibration process by considering the sys-
tem uncertainty due to component tolerances and thus enabling more robust design, low emissions, and avoiding expensive 
recalibration steps that generate costs and possibly postpone the start of production. The main idea behind the approach is to 
optimize the design parameters of the engine control unit (ECU) that are subject to uncertainty by considering the resulting 
output uncertainty. The premise is that a model of the system under study exists, which can be evaluated cheaply, and the 
system tolerance is known. Furthermore, it is essential that the stochastic optimization problem can be formulated such that 
the objective function and the constraint functions can be expressed using proper metrics such as the value at risk (VaR). The 
main idea is to derive analytically closed formulations for the VaR, which are cheap to evaluate and thus reduce the compu-
tational effort of evaluating the objective and constraints. The VaR is therefore learned as a function of the input parameters 
of the initial model using a supervised learning algorithm. For this work, we employ Gaussian process regression models. 
To illustrate the benefits of the approach, it is applied to a representative engine calibration problem. The results show a 
significant improvement in emissions compared to the deterministic setting, where the optimization problem is constructed 
using safety coefficients. We also show that the computation time is comparable to the deterministic setting and is orders of 
magnitude less than solving the problem using the Monte-Carlo or quasi-Monte-Carlo method.

Keywords Diesel engine · Emission modeling · Design of experiments · Experimental · Gaussian process · Stochastic 
modeling · Stochastic optimization · Engine calibration · Monte Carlo

Abbreviations
ARD  Automatic relevance determination
CAD a. TDCf  Crank angle degree after top dead center 

firing
DoE  Design of experiments
ECU  Engine control unit
EGR  Exhaust gas recirculation
GP  Gaussian process
ICE  Internal combustion engine
IQ  Injected quantity
LOOCV  Leave-one-out cross-validation

MI  Main injection
MINLP  mixed-integer nonlinear programming
MC  Monte Carlo
NOx  Nitrogen oxides
NRMSE  Normalized root-mean-square error
OP  Operation point
PI  Pilot injection
PoI  Post injection
QMC  Quasi-Monte Carlo
R2  Coefficient of determination
SCR  Selective catalytic reduction
SoE  Start of energizing
SE  Squared exponential
VaR  Value at risk

List of symbols
�  Confidence level
�  Mean
��  Noise variance
�s  Signal variance
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Σ  Sigma algebra
�  Identity matrix
k  Covariance function
N   Normal distribution
s  Safety coefficient

1 Introduction

In light of increasing awareness concerning the detrimental 
effects of the transportation sector on the environment, law-
makers and consumers demand stricter legal guidelines for 
motor vehicles. This obliges manufacturers to comply with 
demanding standards such as low carbon dioxide emissions, 
little pollutants, and extensive onboard diagnosis functions 
while expecting high performance and driving comfort [1]. 
European legislation also stipulates that each vehicle in the 
field must be compliant with emission regulations, which is 
verified by random tests on fleet vehicles randomly taken 
from customers [2]. For manufacturers, this means that their 
product must not only comply with emission limits but needs 
also to be robust with regard to them.

A major contributor to the uncertainty of fleet emissions 
is the component tolerances of the internal combustion 
engine (ICE). To provide an intuition: deviations between 
the physical air mass flow and the measured value of the 
air mass flow meter may lead to a change in the volumetric 
efficiency of the ICE, which in turn leads to different com-
bustion behavior and combustion products. Manufacturers 
usually rely on empirical evidence and conservative deci-
sionmaking to account for this. Emission targets are artifi-
cially decreased by using safety coefficients to determine a 
so called enginnering target. Calibration is then performed 
on an ICE consisting of nominal parts and aims at meeting 
the engineering target. However, calibration design that is 
based on an engineering target lacks sound statistical evalu-
ation. It can lead to overly conservative calibration results 
and leaves room for improvement in quantities of interest 
such as carbon dioxide, pollutants, or power output. On 
the contrary, it can also lead to a non-compliant calibra-
tion, which is associated with costs and even delays of the 
start of production. The quantification and consideration of 
component-related uncertainties, therefore, has the potential 
to better meet desired optimization targets and reduce costs.

The complex nature of engine calibration tasks [3] with 
usually 10 and more design parameters generally renders 
manual calibration suboptimal. Model-based calibration 
methods have proven to be a successful solution in the past 
and have become state of the art [1, 3, 4]. Since modeling 
the entire combustion process using physical models is com-
plex and computationally intensive, statistical models turned 
out to be a good alternative [3–5]. In particular, Gaussian 

processes [6] in combination with adapted experimental 
designs [7] are established in the field.

Reliability-based design is of crucial importance in engi-
neering design. Hence, numerous methods have been pro-
posed to systematically treat uncertainties in product design 
and carry out stochastic [8–11] or reliability-based [12] 
design optimization [13–15]. Stochastic methodology has 
already been applied in powertrain development. [16] and 
[17] performed stochastic optimization aiming to quantify 
and minimize uncertainty resulting from different driving 
cycles. In [18] chance-constrained optimization was per-
formed to improve thermal efficiency. [19] did some early 
work on stochastic optimization of spark ignition engines 
considering spark advance and injection time uncertainty. 
Given the resources at the time, they make use of many 
linear approximations, which can be problematic given the 
nonlinear nature of more complex calibration problems. To 
the authors’ knowledge, there is no article addressing sto-
chastic design optimization that considers component toler-
ances and is suitable for large-scale engine calibration prob-
lems. The objective of this paper is, therefore, to develop a 
methodology that solves this issue and incorporates it into a 
statistical framework.

The contribution of this article is a stochastic design opti-
mization methodology for engine calibration problems. It is 
imperative to reduce the computational effort to a manage-
able level, taking into account the dimension of a typical 
calibration problem consisting of numerous operating points 
(OP) that need to be optimized. The proposed method aims 
to improve calibration results by replacing conventional 
safety coefficient-based calibration with uncertainty-based 
optimizations. The uncertainty of the design parameters is 
derived from the component tolerances employing a priori 
uncertainty analysis. The original optimization problem is 
reformulated to minimizing the expectation of a modified 
objective function taking uncertainties into account while 
limiting some high or low quantiles of the constraint func-
tions. This is similar to the chance-constrained optimization 
setting in the literature [20, 21]. Solving this type of sto-
chastic optimization task using Monte Carlo (MC) methods 
[22] can be computationally expensive for state-of-the-art 
calibration tasks where the engine models need to be evalu-
ated several times. To address this issue, we approximate the 
necessary distribution statistics of the quantities of interest 
using Gaussian Process (GP) regression models. Since the 
GP expression has an analytical form, we can simplify the 
stochastic problem into a deterministic one. Thus reducing 
the computational burden by orders of magnitude.

This article is structured as follows: In Sect. 2 we provide 
some necessary fundamentals. In Sect. 3 we describe the 
proposed stochastic design optimization framework. We then 
introduce the test subject in Sect. 4. In Sect. 5, we discuss 
the asymptotic properties of the VaR surrogate models. In 
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Sect. 6, the proposed methodology is applied to an engine 
calibration problem. First, the performance of the method is 
contrasted against a state-of-the-art deterministic calibration 
setting followed by a comparison with the numerical alterna-
tive using the quasi-Monte Carlo (QMC) method to quantify 
the computational effort needed to solve the optimization 
problem. Finally, the results of the article are discussed in 
sect. 7.

2  Background

As described above, this section introduces some necessary 
fundamentals. First, we give some intuition on Gaussian 
Process regression. We then provide an overview of nonlin-
ear constrained optimization problems.

2.1  Black‑box modeling with Gaussian processes

Bayesian regression based on Gaussian processes is an 
approach for nonparametric modeling where an unknown 
system y = f (�) + � is modeled from some observed data 
[23–25]. For combustion engine models we usually assume 
our various system outputs to be uncorrelated. We, there-
fore, focus on the basic single output supervised learn-
ing setting where our goal is to approximate a function 
f ∶ X ⊂ ℝ

d∈ℕ → Y ⊂ ℝ from a set of n ∈ ℕ observations 
D = {�i, yi}

n
i=1

 [26].
In the Bayesian framework, we assume a GP to be a col-

lection of random variables so that every finite set of these 
has a joint Gaussian distribution and is completely specified 
by its mean �(�) and covariance function k(�, �j) and can be 
written as f (�) ∼ GP(�(�), k(�, �j)) . Given noisy observa-
tions and assuming the GP to have a zero-mean prior, its 
joint distribution for an arbitrary input is given as

where � ∈ ℝ
n×n is the covariance matrix, �2

�
 the noise vari-

ance, and �n the n × n identity matrix. Given this joint distri-
bution, the predictive distribution of the GP for an arbitrary 
input � is specified by its mean and variance

with 

 where k(�) = (k(�, �1), ..., k(�, �n))
⊤ is a column vector 

containing the covariance of the input � and the training 
samples.

(1)p(y ∣ D) = N(y|0,� + �2
�
�n).,

(2)p(f ∣ �,D) = N(f |�[f (�)],� [f (�)]),

(3a)�[f (�)] = k⊤(�)(� + 𝜎2
𝜖
�n)

−1(y1,… , yn)
⊤,

(3b)� [f (�)] = 1 − k⊤(�)(� + 𝜎2
𝜖
�n)

−1k(�),

By definition, the covariance function is symmetric pos-
itive-definite, i.e. for any set of inputs the resulting covari-
ance matrix is positive-definite. A popular choice for the 
covariance function is the squared exponential (SE) kernel 
given by

where �2
s
∈ ℝ

+
0
 is the signal variance and ‖⋅‖l designates 

the norm taking into account the characteristic length-scales 
l = {li} with i = 1,⋯ , d given by the sum of squares of the 
product (�p − �q)l

−1
i

 . The infinite differentiability of the SE 
kernel results in smooth predictive functions. Further intui-
tion on covariance functions is given in [6].

The prior and likelihood of the GP encode our beliefs 
about the model we wish to learn. With �� , �s , and l being 
the hyperparameters of the model. GP hyperparameters 
can be learned using different methods such as integration 
via Markov chain Monte Carlo [25, 27]. Given the above 
assumptions, the hyperparameters can also be learned by 
maximizing the log marginal likelihood

with � = (y1,… , yn) . For covariance functions with first-
order derivatives, this can be solved using gradient-based 
optimization.

2.2  Probabilistic nonlinear constrained 
optimization

Many industrial tasks such as base engine calibration are 
nonlinear constrained optimization problems. They aim at 
minimizing an objective f on a domain X  subject to equality 
and inequality constraints. Since equality constraints are of 
no interest to this particular paper, they shall be disregarded 
from here on. The general mathematical formulation of a 
deterministic nonlinear constrained optimization problem 
is, therefore, given by 

 where f is the cost function that needs to be minimized, 
which is subject to constraints c. This kind of problem clas-
sifies as a convex or non-convex mixed-integer nonlinear 
programming (MINLP) problem depending on the space 
Xfeasible ⊆ X  of feasible solutions. More intuition on MINLP 
problems and an overview of methods for solving these are 

(4)k(�p, �q) = �2
s
exp

⎛
⎜⎜⎝
−

����p − �q
���l

2

⎞
⎟⎟⎠
,

(5)
log p(y|𝜎𝜖 , l, 𝜎s)

= −
�(� + 𝜎2

𝜖
�n)

−1�⊤ + log |� + 𝜎2
𝜖
�n| + n log 2𝜋

2
,

(6a)min
�
f (�)

(6b)s.t.ci(�) ≤ 0, i = 1,… , nc
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provided in [28, 29]. Most real-world applications, however, 
are subject to uncertainties ranging from environmental and 
operating conditions to manufacturing tolerances. In this 
probabilistic setting, the system inputs are assumed to be 
random quantities.

Definition 1 Let X be a multivariate random variable on 
a probability space (Ω,Σ,P) with sample space Ω , sigma-
algebra Σ , and probability measure P. Then Y = f (X) is a 
transformation of X under f and again a random variable on 
Ω . Its cumulative distribution function is given by

Given this, a possible probabilistic formulation of the 
nonlinear constrained optimization problem in equation 6a 
and 6bis given by the individual chance-constraint optimiza-
tion setting 

 where the new objective is to minimize the first statistical 
moment of the distribution f(X) subject to probabilistic con-
straints. Solving these kinds of stochastic MINLP problems 
involves the evaluation of multi-dimensional integrals for 
the objective and constraints, which can be computation-
ally expensive even for low dimensional problems. Often a 
more feasible alternative, especially for high dimensional 
problems is, therefore, the utilization of sampling techniques 
such as MC sampling [22]. This involves drawing samples 
from the distribution X, evaluating these, and approximating 
the distribution f(X). However, evaluating a high number of 
samples for optimization tasks involving a large number of 
function evaluations is computationally infeasible. A popu-
lar approach to tackle this issue is to simplify the stochastic 
problem into a deterministic task [30].

3  The stochastic design optimization 
framework

In this section, we propose a framework for stochastic 
design optimization, that aims at quantifying and consid-
ering component tolerances during the model-based cali-
bration process. The methodology aims to find optimal 
design parameters for a system subject to uncertainty by 
solving a probabilistic constrained optimization problem. 
An necessity for the methodology is short computing time. 
This results from the requirement to keep the powertrain 
development cycle as short as possible. The overall objec-
tive of the methodology is to replace conventional safety 

(7)P(Y ≤ y) = P(f (X) ≤ y).

(8a)min
x
�[f (X)]

(8b)s.t.P(ci(X) ≤ 0) ≥ �i, i = 1,… , nc

factors using a priori uncertainty analysis and improve the 
calibration results. Figure 1 depicts the general structure 
of the framework.

3.1  Uncertainty analysis

In general, there are two types of uncertainties [31]: While 
pure random effects such as geometric tolerances due to 
imprecisions during production are classified as aleatoric 
uncertainty, systematic effects like material aging are epis-
temic. Both effects need to be considered in an uncertainty 
analysis.

To take input uncertainty into account during optimiza-
tion, it has to be determined beforehand. The combustion 
process of an engine is mainly determined by the design 
parameters or the set ECU parameters. Manufacturing 
tolerances lead to deviations from the set values and in 
turn to changes in quantities such as fuel consumption and 
emissions. Since the design parameters of our engine mod-
els are not directly subject to uncertainty, we have to per-
form an uncertainty analysis that maps relevant sources of 
uncertainty such as manufacturing tolerances to the design 
parameters. This is achieved by performing an uncertainty 
analysis, where uncertainty propagation is used to deter-
mine the design parameter uncertainty.

Figure 2 depicts an excerpt from the uncertainty analy-
sis we performed for the calibration problem in Sect. 6. 
To convey an intuition here: using the results of toler-
ance investigations on a set of injectors, we determine the 
uncertainty distribution of the injected quantity (IQ) of a 
single pilot injection (PI), which depends on the nominal 
rail pressure and nominal IQ. Since we cannot measure the 
emissions of each individual cylinder, we sample all cyl-
inders and assume the sample mean to represent the final 
quantity that results in the measured emissions.

Fig. 1  Schematic representation of the framework
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3.2  Optimization problem formulation

As mentioned before, the engine calibration task is a con-
strained optimization problem. The aim is to minimize an 
objective function while making sure that some constraints 
are met for the entire vehicle fleet. A potential formula-
tion for a nonlinear constrained optimization problem was 
given by equations 8a and 8b. This is a reasonable for-
mulation for the combustion engine setting since it also 
considers the tails of the target distributions. For example, 
if a vehicle with a nominal ICE barely complies with emis-
sion limits, then a high number of vehicles will be surely 
non-compliant.

Definition 2 The value at risk of a multivariate random vari-
able X given a confidence level � ∈ (0, 1) is given by

We can reformulate equation 8b using the VaR and 
write the optimization problem as 

 where VaR�i
 is a probabilistic constraint function and cc,i the 

corresponding constraint.

3.3  Surrogate model of the value at risk

As already described above, base calibration tasks are 
usually high dimensional MINLP problems. The associ-
ated uncertainty of the design parameters is not necessar-
ily uniform or Gaussian and often correlated. This ren-
ders cheap approximations such as Most Probable Points 
[32] useless. Therefore, sampling is often the only viable 
way to approximate distribution statistics. However, base 
calibration problems usually require millions of function 

(9)VaR�(X) = inf{x ∈ ℝ ∶ � ≤ P(X ≤ x)}.

(10a)min
x
VaR0.50(f (X))

(10b)s.t.VaR�i
(f (X)) ≤ cc,i, i = 1,… , nc,

evaluations, making the problem extremely expensive in 
terms of computing time and impractical to solve. Gener-
ally, a viable way of reducing the computational burden 
resulting from expensive experiments or simulations is to 
train a surrogate model that reproduces the behavior of 
the experiment or simulation [33]. The idea is to create a 
black-box model mapping the parameters of the experi-
ment or the simulation to the desired outputs. If such a 
model can be created with good model quality and using 
a limited number of measurements or simulation runs, 
then it can reduce the computational burden of optimiza-
tion substantially. The resulting black-box model is rela-
tively cheap to evaluate. In our case, we wish to train a 
model g ∶ � ↦ VaR�(X) that maps the nominal input x to 
the corresponding VaR� . Our implementation uses GPs to 
learn the underlying VaR. Given a set of n observations 
E = {xi, VaR�(X)i}

n
i=1

 , the expectation of the GP surrogate 
model is expressed as

where VaR� is the vector containing the empirical VaR val-
ues from the observations. The empirical VaR is estimated 
by drawing m independent samples from a Sobol sequence 
[34–37]. The assumption of continuous domain needed for 
GPs holds true if the VaR exists. Further intuition on the 
approximation of distributional statistics is given by [38].

3.4  Implementation details

We have implemented the framework as a plug-in for the 
above-mentioned commercial software ASCMO as Matlab 
code. This has the advantage that ASCMO already offers sev-
eral possibilities for modeling, optimization, and analysis.

For this work, in particular, we have also implemented the 
methodology in Python. This is necessary to ensure a high 
level of transparency in the calculations. We train all models 
using the GPRegression module from the GPy library [39]. 
Maximum likelihood estimates are calculated using the imple-
mented stochastic conjugate gradient algorithm. For creating 
Sobol quasirandom sequences we use an implementation 
written by [40], which is available at https ://peopl e.sc.fsu.
edu/~jburk ardt/py_src/sobol /sobol .html. We use the sequential 
least squares programming algorithm from the scientific com-
puting library [41] to solve the MINLP problems. Correlated 
random variables are generated using Cholesky decomposi-
tion, see Appendix A.

(11)VaR𝛼(�) = k⊤(x)(� + 𝜎2
𝜖
�n)

−1VaR⊤

𝛼
,

Fig. 2  Excerpt from the uncertainty analysis, which illustrates the 
influence of the injector component tolerance on the injected quantity 
of the first pilot injection

https://people.sc.fsu.edu/%7ejburkardt/py_src/sobol/sobol.html
https://people.sc.fsu.edu/%7ejburkardt/py_src/sobol/sobol.html
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4  Test subject

The ICE we use for our investigations serves as a plat-
form for research purposes at Robert Bosch GmbH [42]. 
The test subject is an inline four-cylinder light-duty diesel 
engine for passenger cars that is equipped with a direct 
injection system. The ICEs main characteristics are given 
in Table 1.

For monitoring purposes, thermodynamic quanti-
ties such as temperatures, pressures, and mass flows are 
measured. The exhaust gas is extracted upstream of the 
exhaust gas after-treatment system. Nitrogen oxide  (NOx) 
emissions are measured via chemiluminescence. Soot is 
measured using a high-resolution smoke meter [44]. The 
combustion noise is calculated using an in-cylinder pres-
sure-based method [45].

4.1  The engine model

In general, the combustion process in a diesel engine is 
determined by the OP and design parameters. The OP is 
defined by the engine speed and engine torque. The con-
trol or design parameters consist of air supply and fuel 

supply parameters. The air supply parameters are intake 
air mass, exhaust gas recirculation rate, swirl flap actua-
tion, and boost pressure. The fuel supply parameters are 
common rail pressure, injected quantities of the pilot and 
post injections (PoI), the start of energizing (SOE) of the 
main injection (MI) in Crank angle degree after top dead 
center firing (CAD a. TDCf) and the distances between 
each injection in seconds, see Figure 3.

For the investigations, we create models of the relevant 
outputs that are sensitive with respect to the parameters 
named above. For the sake of simplicity, the OP is fixed 
to 2000min−1 engine speed and 400kPa brake mean effec-
tive pressure. The model is based on stationary test bench 
measurements from a design of experiments (DoE) that we 
set up using the commercial software package ASCMO 
[46]. The DoE samples are drawn from a Sobol sequence 
on (�lower, �upper) ∈ ℝ

d , with d being the number of input 
dimensions or design parameters and �lower and �upper being 
vectors that represent the range within which the design 
variables can be varied, see Table 2. For this measurement 
campaign, the EGR rate was not actively varied during the 
experiments. This leads to maximum EGR rates and avoids 
parameter combinations producing high nitrogen oxide 

Table 1  Technical data of the 
research engine Power output and torque 110kW & 340N m

Stroke volume 1.7l
Injection system Bosch solenoid CRS2-25, 7 holes with Needle Closing

Control [43]
Charging system Turbocharger with variable geometry turbine
Exhaust-gas recirculation Cooled high-pressure EGR + low-pressure EGR system
(EGR) system
Exhaust-gas after-treatment Diesel oxidation catalyst + close-coupled selective
system catalytic reduction (SCR) catalyst on a diesel particulate

filter + underfloor SCR catalyst with ammonium-slip
coating

Fig. 3  Qualitative representation of the crankshaft position of a diesel 
engine, illustrating the injection pattern for the investigated OP

Table 2  Boundaries of the design of experiments

Design parameter Lower bounds Upper bounds

Intake air mass (mg) 250 375
Boost pressure (kPa) 105 125
Swirl flap actuation (–) 0.10 0.45
Common rail pressure (MPa) 45 90
IQ of the first PI (mg) 0.8 2
IQ of the second PI (mg) 0.8 3
IQ of the PoI (mg) 1 2.5
SOE of the MI (CAD a. TDCf) 1 9
T1 ( μs) 500 1000
T2 ( μs) 500 1000
T3 ( μs) 550 900
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emissions. The low-pressure EGR valve and throttle valve 
were fully open during the experiments. The injection quan-
tity of the MI is not listed, as it results from the other param-
eters and the load. It is important to note that we assume the 
test subject to consist of nearly nominal components since 
we aim to create models for the nominal engine.

We use n = 675 measurements to create a model of each 
target quantity. The outputs are modeled independently using 
zero-mean prior GP regression models with additive Gauss-
ian noise and automatic relevance determination (ARD) SE 
kernel [6, 47]. The model hyperparameters are estimated 
by maximizing the log marginal likelihood. In order to 
make meaningful design decisions through optimization, 
the model quality must be high. This is especially true for 
a stochastic optimization scenario. A common issue with 
supervised learning algorithms such as GPs is overfitting 
[48, 49]. This is basically the phenomenon of the algorithm 
memorizing the training data and not generalizing properly. 
An overfit model makes perfect predictions for the train-
ing data. When confronted with unknown test data, though, 
the predictions will be arbitrary. Although GPs under the 
premise of large amounts of data are generally robust against 
overfitting [6], the model can still overfit when maximizing 
the log marginal likelihood. One way of ruling out overfit-
ting phenomena is to validate the model on unseen test data 
using proper performance metrics such as the normalized 
root-mean-square error (NRMSE) and the coefficient of 
determination ( R2 ), see Appendix B. Since in our case we 
only have a limited amount of training samples, we need to 
validate the model without the use of test samples. A valid 
way to accomplish this is to use the leave-one-out cross-
validation (LOOCV) method, see Appendix C.

Figure 4 shows two scatter plots derived from the nitro-
gen oxide model. The left plot shows the observation and 
prediction value pairs. The model quality is excellent and 

the error between prediction and observation is in the 
measurement error range. The plot to the right shows value 
pairs consisting of observed values and model predictions 
using the leave-one-out method. The correspondence is 
very good and indicates that the model generalizes well.

Table 3 shows the NRMSE LOOCV, and R2 LOOCV 
results of the three engine models. We see that model 
quality is high for each of the three models with R2 val-
ues close to 1 and the error is within the measurement 
accuracy range. The RMSE LOOCV and R2 LOOCV are 
similar to the RMSE and R2 , which indicates good gener-
alization for each of the three models.

4.2  System uncertainty

In this section, we show the results of the uncertainty 
analysis we have performed for the above-described test 
subject. Combustion engines are subject to a variety of 
uncertainties, ranging from environmental and operating 
conditions to manufacturing tolerances. In this article, we 
focus on manufacturing tolerances in the most relevant 
components since these are the main contributors to the 
overall uncertainty during stationary operation.

Table 4 shows a list of the design parameters with the 
corresponding uncertainty distributions, which result from 
the uncertainty analysis we have performed for the engine.

Fig. 4  Scatter plot derived from 
the nitrogen oxide model show-
ing predicted vs. observed value 
pairs for the training data (left) 
and the leave-one-out method 
(right)

Table 3  NRMSE, R2 , NRMSE LOOCV, and R2 LOOCV values of 
the engine models

Target NRMSE R2 NRMSE LOOCV R2 LOOCV

NO
x
 (g/kWh) 0.0003 0.997 0.012 0.995

Soot (FSN) 0.0011 0.980 0.047 0.948
Noise (dBA) 0.0015 0.954 0.033 0.968
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5  Asymptotic properties of the VaR 
surrogates

In this section, we discuss the asymptotic properties of the 
VaR surrogate models. We investigate the performance of 
the GP surrogates with respect to the number of training 
samples n and the number of random samples m used to 
calculate the VaR. We further investigate which ratio of 
n and m is most efficient in terms of computation for a 
given engine out soot emission model. Figure 5 shows the 
performance of three GP surrogates with n = 256 , 512, and 
1024 training data points as a function of m. The surrogate 
models are trained assuming zero-mean prior ARD SE 
kernel and additive Gaussian noise. The input parameter 
uncertainty is given in Table 2 and the chosen confidence 
level is 0.95. The training data is randomly drawn from 
the multivariate uniform distribution given in Table 2. The 
plot also shows the performance of empirical estimates 

using pure MC and QMC. The predictive performance is 
measured on a separate test data set with ntest = 100 using 
the NRMSE. The box plots are the result of repeating this 
experiment with 50 random initializations. Since the train-
ing samples are drawn randomly, the trained model differs 
each time. Similarly, the MC and QMC results vary since 
the bootstrap is initialized randomly. The residual error ei 
for each test sample is the difference of the prediction and 
an empirical VaR using mtest = 106 quasirandom samples 
that is close to the true VaR.

MC sampling shows significant variance in performance. 
QMC sampling shows the best performance with a signifi-
cantly lower variance than the MC method. The GP surro-
gate models show low variance in performance, even with 
small n and m. Given a sufficiently high amount of train-
ing samples, the GP surrogate shows good performance 
only second to the QMC method. [38] have already argued 
that under certain conditions for a given confidence level 
a GP-based quantile estimate is asymptotically consistent 

Table 4  Results of uncertainty 
analysis

Design parameter Distribution Correlation matrix

Intake air mass (mg) N (0,12.25) 1 0 0 0 0 0 0 0 0 0 0
Boost pressure (kPa) N (0,0.49) 0 1 0 0 0 0 0 0 0 0 0
Swirl flap actuation (–) N (0,0.0001) 0 0 1 0 0 0 0 0 0 0 0
Common rail pressure (MPa) N (0,1) 0 0 0 1 0 0 0 0 0 0 0
IQ of the first PI (mg) N (-0.05,0.135) 0 0 0 0 1 1 1 0 0 0 0
IQ of the second PI (mg) N (-0.05,0.135) 0 0 0 0 1 1 1 0 0 0 0
IQ of the PoI (mg) N (-0.05,0.135) 0 0 0 0 1 1 1 0 0 0 0
SOE of the MI (CAD a. TDCf) N (0,0.09) 0 0 0 0 0 0 0 1 0 0 0
T1 ( μs) N (0,12.5) 0 0 0 0 0 0 0 0 1 1 1
T2 ( μs) N (0,12.5) 0 0 0 0 0 0 0 0 1 1 1
T3 ( μs) N (0,12.5) 0 0 0 0 0 0 0 0 1 1 1

Fig. 5  Performance of the GP surrogate with n = 256 , 512, and 
n = 1024 training data points, of MC sampling and QMC sam-
pling as a function over m. The performance is measured using the 
NRMSE on a set of n

test
= 100 test samples. The failure probability is 

1 − � = 0.05

Fig. 6  Performance of the GP surrogate with n ⋅ m = 2
17 (black cir-

cle), n ⋅ m = 2
18 (blue cross), n ⋅ m = 2

19 (red plus) and n ⋅ m = 2
20 

(green diamond) function calls required for training over the ratio 
n

m

 . The performance is measured using the NRMSE on a set of 
n
test

= 100 test samples
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and efficient. These conditions being: X  is a convex and 
compact subset of ℝd , the training data is independent and 
identically distributed in X  , the assumption of continuous 
domain for the VaR holds and there exists a ratio n

m
 that is 

efficient in terms of function evaluations. They established 
a bound under which as n,m → ∞ the mean of the GP pos-
terior almost surely converges to the true VaR at the fastest 
rate possible in terms of function evaluations.

Figure 6 depicts the GP surrogate performance as a func-
tion of the ratio n

m
 for an increasing amount of function calls 

required for training. It is evident that model performance 
increases as n,m → ∞ . For this model, n

m
≈ 2 seems to be a 

good choice to maximize model performance.

6  Application to an engine calibration 
problem

To demonstrate the fitness and strength of the proposed 
framework, we apply it to the engine calibration problem 
described above. For the sake of simplicity, the problem 
is formulated for a single OP. In practice, it is common to 
optimize several interconnected OPs simultaneously [50]. 
For this OP, we aim to minimize nitrogen oxide emissions 
while ensuring that soot and noise emissions are kept below 
an upper bound for 95% of all realizations. We further 
wish to find a solution inside the initial parameter space 
(xlower, xupper) ∈ ℝ

d described by Table 2, since the GPs we 
construct are not suited for extrapolation.

Using the engine models we constructed in Sect. 4.1, we 
train surrogate models to emulate the VaR. We sample n = 500 
training data points from the above mentioned bounded param-
eter space and draw m = 1000 QMC samples from the dis-
tribution given by Table 4 to estimate the empirical VaR for 
each point. This equals n

m
= 0.5 and is only slightly worse 

than n
m
= 2 performance-wise. However, considering the time 

complexity of a standard GP of O(n2) , the computation time 

needed for a prediction is reduced fourfold. The correspond-
ing mean estimate of the emulator can be expressed accord-
ing to equation 11. Figure 7 shows two scatter plots derived 
from the VaR surrogate of the soot model. The left plot shows 
observation and prediction value pairs for the training data. 
The right plot shows observation and prediction value pairs 
for ntest = 100 test data points. The correspondence is nearly 
perfect for the training and test samples.

Table 5 shows the NRMSE and R2 results for all three sur-
rogate models. The surrogates emulate the VaR perfectly, even 
for the unseen test samples, and generalize well.

6.1  Problem formulation

To assess the benefit of our methodology, we contrast it to the 
deterministic setting using safety coefficients. Both tasks can 
be formulated as MINLP problems. The deterministic scenario 
is expressed as 

(12a)min
x
f NOx (�)

(12b)s.t.l Soot ∗ s Soot − f Soot(�) ≤ 0,

(12c)l Noise − s Noise − f Noise(�) ≤ 0,

Fig. 7  Scatter plot derived 
from the soot model showing 
predicted vs. observed value 
pairs for the training data (left) 
and test data (right)

Table 5  NRMSE, R2 , NRMSE LOOCV, and R2 LOOCV values of 
the engine models

Target NRMSE 
(training)

R2 (training) NRMSE 
(test)

R2 (test)

NOx (g/kWh) 0 1 0.0001 1
Soot (FSN) 0 1 0.0002 1
Noise (dBA) 0.0001 1 0.0011 0.9975
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 where f is the predictive mean of the engine model, l is an 
upper limit for admissable emissions, and s is a safety coef-
ficient. The safety coefficients are empirical values based 
on expert knowledge accounting for tolerance behavior. The 
settings we chose for this particular problem are given in 
Table 6. The given safety coefficients are the state of the art 
choice for the given calibration task.

The corresponding problem formulation for the stochastic 
setting is given by 

6.2  Optimization results

In this section, we present the optimization results. The 
Sequential Least-Squares Quadratic Programming algo-
rithm [51] is used for solving the above-formulated prob-
lems. The method can be used to solve MINLP problems, 
which are subject to equality and inequality constraints and 
to lower and upper bounds on the model parameters. The 
optimization problem is solved for ninit = 20 quasirandom 
initialization in an attempt to find a global optimum. The 
function tolerance is set to 10−5 . For the remaining settings, 
the default values are selected. Analytical formulations for 
the GP derivatives are provided for the stochastic setting.

Figure 8, Figure 9 and Table 7 show the optimization 
results for both scenarios. Although the ultimate goal is 

(12d)xlower
i

≤ xi ≤ x
upper

i
∀i = 1,⋯ , d

(13a)min
�
VaR

NOx

0.50
(�)

(13b)s.t.l Soot − VaR Soot
�

(�) ≤ 0,

(13c)l Noise − VaR Noise
�

(�) ≤ 0,

(13d)xlower
i

≤ xi ≤ x
upper

i
∀i = 1,⋯ , d.

the same, we see two distinct results. It is evident that the 
prior assumptions we made for the deterministic case are 
too conservative. The VaR0.95 for soot and noise is well 
below the actual upper bound we were aiming for. By 
selecting smaller safety coefficients, an improvement in 
nitrogen oxide emissions would have been possible for 
this particular setting. On the other hand, for a different 
choice of design parameters, a smaller value could also 
lead to non-compliance with the constraints. Without prior 
knowledge of the output variance, a sufficiently large mar-
gin must be chosen.

In contrast to the deterministic setting, our probabil-
istic approach renders a good estimate for the VaR. This 
way, we obtain a solution that meets the desired bound-
ary conditions almost exactly. The expected  NOx emis-
sions are reduced from 1.129g/kWh to 0.281g/kWh . This 
corresponds to a decrease of 79.54% . The expected soot 
and noise emissions are slightly higher at 0.430FSN and 
85.841dBA but do comply with the limits for 95% of the 
realizations.

Table 6  Constraints used for 
optimization

Target l s �

Soot 0.5FSN 0.7 0.95
Noise 86dBA 1dBA 0.95

Table 7  Optimization results 
for the different optimization 
scenarios. The various statistics 
were calculated using 106 QMC 
samples

NOx ( g/kWh) Soot (FSN) Noise (dBA)

Nom. Mean Q0.95 Nom. Mean Q0.95 Nom. Mean Q0.95

Deterministic 1.122 1,129 1,279 0,351 0,367 0,450 85,000 85,015 85,236
Our approach 0.227 0,231 0,281 0,425 0,430 0,504 85,350 85,383 85,841
QMC 0,218 0,220 0,268 0,432 0,436 0,505 85,483 85,520 85,977

Fig. 8  Nominal optimization results for nitrogen oxide and soot emis-
sion of the deterministic (black circle) and stochastic (black rectan-
gle) solution. And 200 samples drawn from the target distribution at 
these settings for both the deterministic (blue circle) and stochastic 
solution (red rectangle) with corresponding probability density esti-
mates
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6.3  Gain in computing time

In this section, we compare the computation time of our 
method with the deterministic setting and a stochastic 
QMC equivalent. The aim is to keep computing time 
as low as possible. The reason for this is that in prac-
tice multiple OPs need to be optimized simultaneously 
and a high number of constraints must be satisfied. At 
the same time, the cost function needs to be minimized 
for a high number of driving trajectories, which leads to 
high numbers of function evaluations [16]. As mentioned 
above, the optimization problem is solved for ninit = 20 
quasirandom initialization in an attempt to find a global 
optimum. All computations are carried out on a machine 
with an Intel Xeon E3-1505M CPU, 32 GB Ram, and an 
Nvidia Quadro M2000M GPU. We first compare the time 
needed to compute the optimization task of the determin-
istic setting with our approach. The computation time for 
both methods is 15.87s and 9.26s respectively. The time 
difference is mainly due to the higher prediction costs of 
the original engine models. As mentioned above, the time 
complexity of a standard GP is of O(n2) . We further assess 
the amount of computation time that is saved compared to 
the setting where the stochastic problem is solved numeri-
cally. We, therefore, compare our method with the QMC 
method. To ensure similar accuracy as with the surrogate 
model, 500 quasirandom samples are drawn for estimat-
ing the empirical VaR. The optimization results for both 
solutions are given in Table 7. The QMC method finds a 

similar optimum as our approach. Differences in the solu-
tions result mainly from the termination criteria of the 
optimizer. Model inaccuracy and numerical errors account 
for slight differences only. The theoretical time complexity 
for both methods should be of O(n2nem) , where n is the 
number of training samples of the respective models, m is 
the number of draws needed to evaluate the VaR, and ne 
is the number of total function calls needed for optimiza-
tion. If we assume that both algorithms need the same 
amount of function evaluations to find the optimum, our 
approach in this scenario should be approximately 900 
times faster than the QMC method. The measured comput-
ing time for our approach and the QMC method is 9.26s 
and 1691.76s respectively. Our surrogate-based method is 
∼ 183 times faster than the QMC approach. The difference 
to the theoretically possible computational time gain is due 
to the higher impact of load times on the overall shorter 
computing times of our approach. For larger optimization 
tasks, the impact should be significantly lower and the 
computational time gain is expected to be closer to the 
theoretical time gain. The time gain we obtain for the sim-
plified problem we have solved may seem noteworthy. As 
mentioned before though, real-world calibration problems 
involve significantly more function evaluations and opti-
mization usually takes several hours. In view of this, we 
can achieve a considerable reduction in computing time 
and enable large-scale optimizations without the need for 
parallel computing on multiple machines.

6.4  Conclusions

Stochastic design optimization was performed for a repre-
sentative engine calibration problem in a single OP using 
the proposed method. The performance of our method was 
evaluated against the corresponding deterministic optimi-
zation scenario using safety coefficients. Compared to the 
deterministic scenario, it was possible to reduce the expected 
nitrogen oxide emissions for the OP by 79.54% . The imposed 
soot and noise constraints and design space boundaries were 
met in both cases. The reduction in nitrogen oxide emissions 
is mainly due to the accurate estimation of emission distri-
butions. Due to the analytical form of the GP surrogates, 
evaluating the VaR is extremely cheap and computing time 
is comparable to the deterministic method.

In a second step, we contrasted our method to the numeri-
cal equivalent solution using QMC sampling. The global 
optimum was found in both cases with slight numerical dif-
ferences. Our method showed a decrease in computing time 
by a factor of 183. This reduction is likely to be even greater 
for large-scale problems. Due to the low computing time, 
the method can be applied to large-scale engine calibration 
problems without the need for parallel computing.

Fig. 9  Nominal optimization results for nitrogen oxide and noise 
emission of the deterministic (black circle) and stochastic (black rec-
tangle) solution. And 200 samples drawn from the target distribution 
at these settings for both the deterministic (blue circle) and stochastic 
solution (red rectangle) with corresponding probability density esti-
mates
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7  Summary and outlook

In this paper, we proposed and demonstrated a method 
for efficiently solving large-scale stochastic optimiza-
tion problems subject to nonlinear constraints. Our main 
motivation for developing the method is to employ it in 
the field of base engine calibration. The premise of our 
method is that a model of the system under study exists, 
which can be evaluated cheaply. Furthermore, it is essen-
tial that the stochastic optimization problem can be for-
mulated such that the objective function and the constraint 
functions can be expressed using the VaR. The main idea 
is to derive analytically closed formulations for the VaR, 
which are cheap to evaluate and thus reduce the compu-
tational effort of evaluating the objective and constraints. 
The VaR is therefore learned as a function of the input 
parameters of the initial model using a supervised learn-
ing algorithm. For this work, we employ Gaussian process 
regression models.

For demonstration purposes, we have employed the 
methodology on an engine base calibration problem given 
a realistic optimization scenario in a single OP. We also 
performed a state-of-the-art deterministic optimization 
given a realistic engineering target. For the given scenario 
the objective was to minimize nitrogen oxide emissions 
while complying with an upper limit for soot and noise 
emissions. The optimization results show that the con-
sistent treatment of the problem as a statistical one helps 
to maximize performance compared to the deterministic 
approach. Our stochastic approach reduces nitrogen oxide 
emissions by almost 80% compared to the deterministic 
scenario. The constraints on soot and noise emissions are 
complied with. This significant decrease shows a high 
potential for the reduction of overall raw emissions for 
practical application of the methodology.

In a second step, we demonstrated the computational 
efficiency of the method by comparing the computing 
time of the optimization process to the deterministic case 
and an equivalent numerical QMC solution. Our method 
performed on par with the deterministic scenario time-
wise. It reduced computational effort by nearly 200 times 
compared to the QMC alternative while converging on the 
same global optimum.

In this article, we focused on base calibration prob-
lems. Another application of uncertainty quantification 
in the field of engine calibration could be to use uncer-
tainty analysis to assess the overall system uncertainty. 
This would facilitate decision making in the selection of 
engine components.

An interesting topic for future research is the extension 
of the method to larger calibration problems, where the 
entire operating range of the engine consisting of more 

than one OP is considered and optimized simultaneously. 
This adds additional uncertain parameters such as route, 
traffic, and driving style to the probabilistic problem [17]. 
A major challenge for solving this kind of task is to create 
global engine models that are sensitive with regard to the 
design parameters and are able to capture engine dynamics 
at the same time. However, recent proposals seem to be 
promising [52, 53].
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On generating correlated random variables

Let � ∶ Ω → ℝ
n be a n × 1 normal random vector on a prob-

ability space (Ω,Σ,P) consisting of correlated random vari-
ables (Z1,⋯ , Zn) . Given the mean �Z and the positive-defi-
nite covariance �Z , we wish to generate samples for � . Let 
� ∶ Ω → ℝ

n be a n × 1 random vector with (X1,⋯ ,Xn) being 
independent normal random variables with mean �X = 0 and 
covariance �X = �n . With �n being the n × n identity matrix. 
Then we can write � as

with � yet to be determined and

The covariance of � is defined as

If the covariance of Z is an n × n real-valued symmetric 
matrix, it can be expressed as

(14)� = � + ��,

(15)� = �Z − ��X = �Z .

(16)
�Z =�[(� − �(�))(� − �(�))⊤] = �[���⊤�⊤]

=��n�
⊤ = ��⊤.

(17)𝖢Z = 𝖰𝖰⊤ = 𝖰
√
⊤𝖰⊤,

http://creativecommons.org/licenses/by/4.0/
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where � is the eigenmatrix of �Z and  a diagonal matrix 
with the entries being the eigenvalues of �Z . Using equa-
tion 16 and 17, we can write

and compute it as the Cholesky decomposition of �Z . Using 
� and � we can calculate � given samples �.

Performance metrics

A widely used metric that measures the difference between 
measured data points y and corresponding model predic-
tions ŷ is the NRMSE. It measures the normalized average 
quadratic error of the model predictions. Since the error is 
squared, it is disproportionately large for high error values, 
making it sensitive to outliers. An NRMSE of 0 means a 
perfect model fit. We denote the NRMSE as

where e = ŷ − y is the residual and ymin and ymax are the mini-
mum and maximum values of the observations �.

The coefficient of determination is another commonly 
used metric. It measures the error of the model proportional 
to the variation in the data. The coefficient of determination 
can be described as

A R2 of 1 means a perfect model fit.

Leave‑one‑out cross‑validation

A valid way of evaluating the performance of a model with-
out the need for test samples is to use the leave-one-out 
cross-validation method. The idea is to first split the training 
inputs � consisting of n samples into n sets {�−1,⋯ ,�−n} , 
where �−i is the set containing all training samples but the 
ith. In a second step the model is trained on (�−i,�−i) , with 
� being the respective outputs. And a prediction is made 
for the ith training sample. This way, the error of the model 
for the ith training point can be determined for all i ∈ ℕ , 
with the predicted values not being used for estimation. The 
calculation cost of this method is usually prohibitive, but in 
the case of GP regression, there are suitable approximations. 
One way to compute a numerical approximation to this is 
described in [54] and is written as

(18)𝖡 = 𝖰
√


(19)NRMSE =

�
1

n

∑n

i=1
e2
i

ymax − ymin
,

(20)R2 = 1 −

∑n

i=1
e2
i∑n

i=1
(yi − y)2

.

where wii is the ith diagonal entry of the n × n Woodbury 
identity denoted as

and vi is the ith entry of the 1 × n vector

The ith residual of the LOOCV approximation is, therefore, 
given by
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