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Abstract Self-supervised monocular depth estimation
has been widely investigated and applied in previous
works. However, existing methods suffer from texture-
copy, depth drift, and incomplete structure. It is
difficult for normal CNN networks to completely
understand the relationship between the object and
its surrounding environment. Moreover, it is hard to
design the depth smoothness loss to balance depth
smoothness and sharpness. To address these issues,
we propose a coarse-to-fine method with a normalized
convolutional block attention module (NCBAM). In
the coarse estimation stage, we incorporate the
NCBAM into depth and pose networks to overcome
the texture-copy and depth drift problems. Then,
we use a new network to refine the coarse depth
guided by the color image and produce a structure-
preserving depth result in the refinement stage. Our
method can produce results competitive with state-of-
the-art methods. Comprehensive experiments prove
the effectiveness of our two-stage method using the
NCBAM.

Keywords monocular depth estimation; texture copy;
depth drift; attention module

1 Introduction
Depth information in a 2D image has a wide range
of applications, including 3D reconstruction [1–5],
simultaneous localization and mapping (SLAM) [6],
shadow removal [7], and so on. Range finding sensors,
such as LiDAR, time of flight cameras (TOF), and
stereo cameras, are often used to extract depth
information. However, it is unrealistic to rely on

1 School of Computer Science, Wuhan University, Wuhan
430072, China. E-mail: Y. Li, yuanzhen@whu.edu.cn; F. Luo,
luofei@whu.edu.cn (�); C. Xiao, cxxiao@whu.edu.cn (�).

Manuscript received: 2022-01-07; accepted: 2022-02-22

such expensive or complex sensors in many cases.
This has advanced the development of learning-based
methods using large datasets [8, 9]. Supervised
monocular depth estimation methods have made
great progress [10]. However, collecting extensive
and high-quality ground truth depth is challenging
due to sensor noise and unpredictable complex
environmental conditions. Supervised monocular
depth estimation thus has limited generalization
ability.

Recently, self-supervised monocular depth estima-
tion approaches have been introduced, trained
with stereo image pairs [11] or monocular video
sequences [12–14], and supervised with geometric
information. Compared to stereo-based supervision,
monocular video is more attractive, as more
sequenced frames are available for use as supervision
signals. To enhance the performance of depth esti-
mation, many works focus on masking strategies [12,
13, 15], loss functions [12], and multi-task learning [16,
17]. However, existing self-supervised monocular
depth methods still suffer from texture-copy, depth
drift, and incomplete structure.

Texture-copy in depth map is a situation in which
the details of the color image are transferred to the
depth map. Monodepth2 [12] upsamples the generated
multi-scale depths to the input image resolution and
then computes all losses, to partially alleviate the
texture-copy phenomenon. Depth drift occurs when
object depth largely differs from its surrounding
environment in the wrong way. It is caused by the
depth network incompletely understanding the spatial
correlation between the object and its surrounding
environment. The incomplete structure indicates that
the object depth is not completely predicted, especially
for sharp objects in the scene, as the smoothness loss
mistakenly eliminates the depth differences of the
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sharp object. In Fig. 1, we illustrate some typical
examples of the above problems in the predicted
depth; our predicted depth maps are better than
those of the comparator methods.

We propose a coarse-to-fine method with a
normalized convolutional block attention module
(NCBAM). Our pipeline includes coarse depth
estimation and depth refinement, as shown in
Fig. 2. Specially, we improve the lightweight CBAM
attention module [19], to provide a normalized
convolutional block attention module (NCBAM),
and then incorporate it into networks to tackle
the problems of texture-copy and depth drift.
Furthermore, we design a network that uses the
corresponding color image as a guide to refine the
coarse depth, which can deal with the incomplete
structure problem. The coarse depth network and
depth refinement network are trained.

To summarize, this paper presents the following
two main contributions:
• We tackle the texture-copy and depth drift

problems by improving the CBAM and
incorporating it into depth and pose networks.

• We tackle the incomplete structure problem by
designing a new network using the color image as
a guide to refine the coarse depth.

2 Related work
2.1 Background

Inferring depth from a single image is an ill-posed
problem. However, deep learning has shown its
ability to provide acceptable estimation results based
on large-scale datasets. In this section, we mainly
review related work on self-supervised monocular
depth estimation.

Fig. 1 Existing methods suffer from texture-copy, depth drift, and incomplete structure. (a) The depth of the person exhibits an incomplete
structure problem in the Monodepth2 [12] output. (b) The depths of the person and the car suffer from a texture-copy problem in the result of
Guizilini et al. [18]. (c) The car depth has a drift problem in the output of Klingner et al. [15].

Fig. 2 Overview of our method. We use a coarse-to-fine method comprising coarse depth estimation and depth refinement. We train the depth
and pose estimation models in the coarse depth estimation stage. In the depth refinement stage, we only train the depth refinement model.



Self-supervised coarse-to-fine monocular depth estimation using a lightweight attention module 633

Traditionally, structure-from-motion [20] and
binocular stereo algorithms [21] have been used to
estimate depth from a series of images or stereo
image pairs, respectively. Recently, learning-based
algorithms have made great progress in monocular
depth estimation [22, 23]. Supervised methods train
a network model on sparse depth labels provided
using RGBD sensors. However, it is not easy to
collect high-quality ground truth depths. As an
alternative, self-supervised depth estimation has
attracted attention, using stereo image pairs [11]
or monocular video sequences [12, 24] as training
datasets. Self-supervised depth estimation trains
the depth estimation model by projecting one view
to nearby views based on the predicted depth
and minimizing the photometric re-projection loss
between the projected image and the target image.

2.2 Self-supervised stereo training

Deep3D [25] uses a deep neural network to generate
3D stereo image pairs from 2D images or video frames
and uses the photometric re-projection loss to train
the depth network on the stereo image pair datasets.
This network predicts a probabilistic disparity map
for the input image, and the depth-based image
rendering layer produces the right image in the
context of binocular pairs. Garg et al. [26] proposed
a deep neural network to directly estimate the
depth and trained loss terms including a photometric
re-projection loss and a depth smoothness loss.
Monodepth [11] inputs a left image into a depth
network and predicts left–right disparities to enforce
mutual consistency. This method uses photometric
re-projection loss and introduces a left–right disparity
consistency loss. Both methods in Refs. [27] and [28]
use generative adversarial networks to train the depth
network.

2.3 Self-supervised monocular training

Monocular video is more attractive than stereo-based
supervision, as more frame sequences are available for
use as supervision signals. Self-supervised monocular
training needs to estimate the parameters of the depth
and pose estimation models. The pose estimation
network takes a finite series of frames as input
and outputs the relative camera pose. The source
frame is warped to the target frame based on the
predicted depth and relative camera pose, and then
the photometric error between the warped frame and

the target frame is used to supervise the model during
training [13].

The method in Ref. [13] was the first work that
used monocular video to train end-to-end depth and
camera pose estimation networks. Mahjourian et
al. [29] used a 3D geometry consistency loss to train
the model. Godard et al. [12] made the following
three innovations. First, they proposed a minimum
photometric re-projection loss to address the problem
of occluded pixels. Then, they designed an auto-
masking loss to ignore training pixels that violate
relative camera motion assumptions. Finally, they
upsampled the predicted depth maps to the input
resolution and computed all losses to reduce texture-
copy artifacts.

Multi-task training strategies are also available to
improve the accuracy of depth estimation. Yang et
al. [17] constrained the depth to be consistent with the
surface normal and image edges. Ying and Shi [24]
learned depth, optical flow, and pose together and
used the predicted depth and optical flow to mask
moving objects during training. Zhu et al. [30] used
edge consistency between the semantic segmentation
and depth map as a supervision signal. Klingner
et al. [15] used the learned semantic information
to eliminate the influence of moving objects when
computing photometric re-projection loss.

Self-attention (Transformer) [31] has improved the
performance of natural language processing systems
by better handling of long-range dependencies
between words. In addition, self-attention has been
applied in computer vision tasks such as semantic
segmentation [32] and depth estimation [33–35].
Johnston and Carneiro [36] used the ResNet-101
network to encode the input image and then passed
it through a self-attention module [31] to explore
contextual information, allowing the inference of
similar depth values in discontiguous regions of the
input image. However, as the self-attention module
requires much memory, they only incorporated it into
the encoder output layer.

Attention mechanisms have achieved great success
in many visual tasks, such as image classification,
object detection, and semantic segmentation [37]. We
improve the lightweight attention module CBAM [19],
to give a normalized convolutional block attention
module (NCBAM). Then, we generalize the NCBAM
model in multiple places, including the depth
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estimation network, relative pose estimation network,
and depth refinement network, to improve the
accuracy of the depth and pose estimation models.

3 Method
In this section, we give a detailed description of
our method (see Fig. 3). First, we introduce the
improvements to CBAM to give NCBAM. Then,
we describe the coarse depth and pose estimation
methods. Finally, we present the depth refinement
approach. We use the Monodepth2 [12] network as a
baseline.

3.1 NCBAM attention module

The convolutional block attention module (CBAM)
[19] is a lightweight module, which can aggregate
deep features. It sequentially infers attention maps
along with two separate sub-modules: channel and
spatial, as shown in Fig. 4. The attention maps are
multiplied by the input feature map for adaptive
feature refinement. The CBAM attention module
can learn correlations between the object itself and

the surrounding environment. When incorporating
the CBAM model into depth estimation networks, it
cannot completely solve the problems of texture-copy
and depth drift (as shown in Fig. 12 later).

We improve upon the CBAM module in the
following ways, in a normalized convolutional
block attention module (NCBAM). To reduce the
differences between global average pooling and global
max-pooling in the channel and spatial attention
modules, we convert the input feature to the range
(−1, 1) using the tanh function. We use the activation
function softplus(x) = log(1+ex) to replace relu(x) =
max(0, x) in the shared network of the channel sub-
module and the convolution layer of the spatial sub-
module. The activation function softplus can be seen
as smoothing relu, avoiding excessive neuronal death
during training. Experiment comparisons show that
the NCBAM module can produce better results than
the CBAM module.
3.2 Coarse depth estimation
We need to train depth and pose estimation networks
simultaneously based on monocular video training.

Fig. 3 Detailed architecture of our method. (a) Depth network. We incorporate the NCBAM module into the depth estimation network [12],
which is a U-Net network, an encoder with residual blocks and a decoder with skip connections. (b) Pose network. We incorporate the NCBAM
module into the standard pose network [12]. (c) NCBAM module. (d) Depth refinement network. This uses the color image as guidance to
refine the coarse depth.
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Fig. 4 The CBAM attention module [19] has two sequential sub-
modules: channel and spatial.

The depth estimation network fD : I → D predicts
the depth for every pixel in the target image It. The
pose estimation network fT : (It, It′)→Tt→t′ , predicts
the camera transformation relating the target image
It to the source image It′ . Based on the learned depth
and pose, we warp the frame into adjacent frames
{t − 1, t + 1} using the photometric re-projection
loss as the optimization objective function. We follow
the multi-scale depth output strategy proposed in
Ref. [11]. First, we input encoder features into deep
convolutions and output a low-resolution depth map.
Then, we apply three additional stages of upsample-
convolution that receive skip connections from the
ResNet encoder to generate corresponding resolution
depth maps.

The NCBAM attention module can aggregate deep
features and extract correlations between the object
and the surrounding environment. Therefore, we
incorporate the NCBAM model into the ResNet multi-
scale features and the skip connections associated
with decoder layers for the U-Net architecture (SK
feature), as shown in Fig. 3(a). Skip connections
between encoder and associated decoder layers can
keep high-level information in the final depth output.
When incorporating the NCBAM module, the depth
estimation model can overcome with the texture-copy
and depth drift problems.

The output of our depth network is a pixel-wise
disparity probability for multiple disparity layers, to
give a discrete disparity volume (DDV) [38]. We
input the SK feature into a 2D convolutional layer
with filters of size 3 × 3, and output a K channel
disparity probability volume P = {P1, . . . , PK} with
K disparity layers:

dk = dmin + Δd(k − 1), k = 1, . . . , K (1)
where dmin and Δd are the minimum disparity value
and disparity interval, respectively. A depth-wise
softmax operation processes P to produce an actual
probability map for each disparity plane:

P d = softmax(P ) (2)
We extract the final disparity as a weighted sum of
the disparity probabilities P d:

D =
K∑

k=1
dkP d

k (3)

We use a widely used backbone [12], which takes
two images at different time steps as input and learns
the relative camera pose transformation Tt→t′ ∈SE(3)
between the images recorded at time steps t and t′:

Tt→t′ = fT (It, It′) (4)
The special Euclidean group SE(3) defines the set
of all possible rotations and translations. Such
transformations are usually represented by 4 × 4
matrices. Following Ref. [12], we predict the six
degrees of freedom pose.

We also incorporate the NCBAM model into the
pose network, as shown in Fig. 3(d). The NCBAM
model can also learn other related features in the
two input images, enhancing the accuracy of the pose
model, furthermore increasing the accuracy of the
depth estimation model. First, we input a pair of
color images to the ResNet-18 network to extract
corresponding deep features. Then, we input those
deep features into the NCBAM module to learn their
correlation (CF features). Finally, we concatenate
the CF features and input them to a series of 2D
convolution layers to output a single six degrees of
freedom relative pose.
3.2.1 Training the coarse depth network
Following Ref. [12], training our coarse depth
estimation model is mainly based on minimizing
per-pixel photometric re-projection loss between the
source image It′ and target image It, using the learned
relative pose Tt→t′ and depth Dt. The photometric
re-projection loss is defined as

Lp = μmin
t′

pe(It, It′→t) (5)

where pe(.) is the photometric reconstruction error;
t′ ∈{t − 1, t + 1}: we use the two frames temporally
adjacent to It as the source frames [12]. μ is a binary
mask that filters out stationary points:

μ = [min
t′

pe(It, It′→t) < min
t′

pe(It, It′)] (6)

where [.] is the Iverson bracket. The binary mask μ

includes pixels where the re-projection error of It′→t

is lower than the un-warped image It′ , indicating
that the object is stationary relative to the camera.
Re-projection loss minimization significantly reduces
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artifacts along the object boundaries in the image,
leading to better accuracy. The re-projected image is
defined as

It′→t = It′ 〈proj(σ(Dt), Tt→t′ , K)〉 (7)
where 〈.〉 is the sampling operator; K ∈ R

3×3 is
the camera intrinsic parameter matrix, identical for
all images. We also apply differentiable bilinear
sampling [39] to sample the source images. proj(.)
returns 2D coordinates of the projected depths Dt in
It′ [40]:

proj(σ(Dt), Tt→t′ , K) = KTt→t′Dt(pt)K−1pt (8)
where pt denotes a pixel. The photometric
reconstruction error function pe [11] is
pe(It, It′) =

α

2
(1 − ssim(It, It′)) + (1 − α) ‖It − It′‖1

(9)
where α = 0.85, and ssim(·) is the structural
similarity measured as in Ref. [41] with a 3 × 3 block
filter.

Monodepth2 [12] encourages neighbouring pixels
to have similar depths, and uses an edge-aware depth
smoothness loss Ls weighted by image gradients to
improve predictions around object boundaries:
Ls = |∂xD̂t| exp(−|∂xIt|)+|∂yD̂t| exp(−|∂yIt|) (10)

where ∂x, ∂y are gradient operators in x, y, respec-
tively, and D̂t = Dt/Dt is the mean-normalized
inverse depth from Ref. [42] to discourage shrinking
of the estimated depth. The final loss is computed
as the weighted sum of masked image photometric
re-projection loss Lp and smoothness loss Ls:

Lcoarse = Lp + λLs (11)
where λ weights the smoothness term. In our
experiments, we set it to 0.01.

3.3 Depth refinement

3.3.1 Background
In Section 3.2, we incorporate the NCBAM module
into the depth estimation network to tackle the
problems of texture-copy and depth drift, which can
improve the accuracy of the initial depth estimates.
However, these estimates are still imperfect. In
particular, the depths may exhibit incomplete
structure in sharp object regions, as shown in Fig. 7.
We design a refinement network that uses the color
image as guidance to refine the coarse depth, and
deal with the incomplete structure problem.

First, we input the color and corresponding coarse
depth images into a series of 2D convolution layers

to extract their features. Then, we concatenate
the output features and pass them through a 2D
convolution to generate the color–depth feature.
Meanwhile, we input the color feature into the
NCBAM module, allowing the network to learn more
about the color feature. Finally, we concatenate the
color–depth feature and the refined color feature and
pass them through a series of 2D convolution layers
to output a depth residual. The depth residual is
added to the coarse depth to get the refined depth.
Table 1 presents a detailed specification of the depth
refinement network.
3.3.2 Training the depth refinement model
Depth and normal are two highly correlated entities.
Inspired by Ref. [43], we design a normal consistency
loss for the coarse depth D̂ and refined depth D:

Ln(u, û) =
1
N

∑
i

(
1 − < ûi, ui >

||ûi|| ||ui||
)

(12)

where N denotes the number of pixels, i indexes
pixels, and ui = (∂xDi, ∂yDi). Angle minimization is
performed by maximizing the dot-product.

We also use the photometric re-projection loss in Eq.
(5) with the camera pose model trained in the coarse
depth estimation work. Here, we use multi-scale
structural similarity, MS-SSIM [44]. The photometric
reconstruction error function pe is

pe′(It, It′) = (1 − α) ‖It − It′‖1 +
α

2
(1 − msssim(It, It′ , s)) (13)

where s = 4 is the number of scales employed. Here,
the photometric re-projection loss is

Lp′ = μmin
t′

pe′(It, It→t′) (14)

Table 1 Refinement network architecture. k = kernel size, s = stride,
d = kernel dilation, chns = number of input and output channels
for each layer, input = input source of each layer, and + indicates
concatenation

Layer k s d chns active input

conv1 1 3 1 1 3/32 PReLU It

conv1 2 3 1 1 32/32 conv1 1
conv1 3 3 1 2 32/32 conv1 2
conv1 4 NCBAM (conv1 3)
conv2 1 3 1 1 1/32 PReLU Dt

conv2 2 3 1 1 32/32 conv2 1
conv3 1 3 1 1 64/24 PReLU conv1 2 + conv1 2
conv3 2 3 1 1 24/24 conv3 1
conv4 1 3 1 2 56/24 PReLU conv3 2 + conv1 4
conv4 2 3 1 2 24/24 conv4 1
conv5 1 3 1 2 24/24 PReLU conv4 2
conv5 2 3 1 1 24/1 conv5 1
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The final learning objective function of our depth
refinement network is

Lrefine = Lp′ + γnLn + γsLs (15)
where γn and γs are hyperparameters to control
the significance of the normal term Ln and patch
smoothness term Ls, respectively. In our experiments,
γn is set to 10−4, and γs is set to 10−5.

4 Results and discussion
This section presents experimental results to verify
the effectiveness of our approach. Firstly, we describe
the experimental datasets and implementation details.
Secondly, we present evaluations of our method on
various testing configurations. Thirdly, we perform
an ablation study to demonstrate that the NCBAM
module can improve the accuracy of the predicted
depths. Finally, we apply our predicted depths to
novel view synthesis and describe limitations of our
depth estimation model.

4.1 Datasets and evaluation metrics

4.1.1 Datasets
We trained our overall network model using the
standard KITTI benchmark [58]. The KITTI dataset
collects rectified stereo pairs of 61 scenes (containing
about 42,382 stereo frames) mainly concerned with
driving scenarios. The image size is 1242 × 375 pixels.
We follow the Eigen split test dataset [22]. It contains
39,810 monocular training sequences consisting of
three frames, 4424 validation sequences, and 697 for
evaluation. Following previous work [13], we remove
static frames before training and only evaluate depths
up to a fixed range of 80 m per standard practice [12].
We use the same intrinsic parameters for all images;
we set the camera principal point to the image center
and the focal length to the average of all focal lengths
in KITTI.
4.1.2 Training dataset augmentation
For the training dataset, we resized all images to a
standard resolution (640 × 192), or high resolution
(1024×320). We augmented the training dataset with
horizontal flips, and 50% were processed by random
adjustments to contrast ± 0.2, saturation ± 0.2, hue
± 0.1, and brightness ± 0.2. The additional color
images were only used as depth and pose network
input, but the original color images were used to
compute the training loss.

4.1.3 Depth evaluation metrics
To evaluate the depth estimation model, we used
four error metrics and three accuracy metrics as
in Ref. [23]. The four error metrics measure the
difference between predicted depth and ground-truth
depth, namely the absolute relative error (Abs Rel),
the squared relative error (Sq Rel), the root mean
square error (RMSE), and the logarithmic root mean
square error (RMSE log). The three accuracy metrics
give the fraction δ of predicted depths in an image
whose ratio and inverse ratio to the ground truth are
within the thresholds 1.25, 1.252, and 1.253.

4.2 Implementation details

In our experiments, we set the number of disparity
layers K = 98, the minimum disparity value dmin =
10−5, and disparity interval Δd = 0.01. We used the
PyTorch framework [59] to implement our work and
trained on a single Nvidia 2080Ti. We used ResNet-
18, ResNet-50, and ResNet-101 as the encoders for
the depth estimation network. For coarse depth
estimation, we used the Adam optimizer [60] with
α = 10−4, β1 = 0.9, and β2 = 0.999, training for 25
epochs with a batch size of 8. For depth refinement,
α = 10−5, β1 = 0.9, and β2 = 0.999, training for 13
epochs with a batch size of 6. Because the ResNet-101
network needs more memory, the batch size was set
to 4 in coarse depth estimation, and we did not train
it in the depth refinement work.

4.3 Depth evaluation on KITTI dataset

We evaluated our depth estimation model on the
Eigen split test dataset [22]. Table 2 presents the
results, which demonstrate that our method is better
than existing methods in terms of the seven evaluation
metrics. A qualitative evaluation of our coarse depth
estimation model is provided in Fig. 5, showing a
comparison to results generated by the methods in
Refs. [12, 18, 36, 56]. Unlike those methods, our
estimated depth maps have complete structures for
objects, such as the human body. The estimated
depth maps from the comparator methods exhibit
texture-copy phenomena in areas such as the car, but
our approach overcomes these problems. The depth
evaluation results verify that the NCBAM module
effectively estimates monocular depth.

We also have qualitatively evaluated our coarse
depth estimation model on the Cityscapes test
dataset [57]: see Fig. 6. The Cityscapes and KITTI
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Table 2 Comparisons to state-of-the-art methods on the KITTI test dataset [22]. In the Train column: S = self-supervised stereo pair
supervision, M = self-supervised monocular video supervision. The best results in each category are in bold

Method Train Memory (MB)
Error (lower is better) Accuracy (higher is better)

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Zhou et al. [13] M 126 0.183 1.595 6.709 0.270 0.734 0.902 0.959
Yang et al. [45] M — 0.182 1.481 6.501 0.267 0.725 0.906 0.963
Mahjourian et al. [29] M 126 0.163 1.240 6.220 0.250 0.762 0.916 0.968
GeoNet [24] M 229 0.149 1.060 5.567 0.226 0.796 0.935 0.975
DDVO [42] M 142 0.151 1.257 5.583 0.228 0.810 0.936 0.974
DF-Net [46] M — 0.150 1.124 5.507 0.223 0.806 0.933 0.973
LEGO [17] M 211.35 0.162 1.352 6.276 0.252 — — —
Ranjan et al. [16] M 213.471 0.148 1.149 5.464 0.226 0.815 0.935 0.973
EPC++ [47] M 146.1 0.141 1.029 5.350 0.216 0.816 0.941 0.976
Struct2depth [48] M 66.82 0.141 1.026 5.291 0.215 0.816 0.945 0.979
Monodepth2 [12] M 66.72 0.115 0.903 4.863 0.193 0.877 0.959 0.981
Klingner et al. [15] M 110.15 0.113 0.835 4.693 0.191 0.879 0.961 0.981
Guizilini et al. [18] M 106.38 0.120 1.018 5.136 0.198 0.865 0.955 0.980
Johnston and Carneiro [36] M 250.74 0.110 0.872 4.714 0.189 0.878 0.958 0.980
Ours M 69.13 0.101 0.811 4.674 0.179 0.890 0.962 0.983
Ours-refine M 70.58 0.098 0.810 4.672 0.177 0.890 0.964 0.983
Garg et al. [49] S 23 0.152 1.226 5.849 0.246 0.784 0.921 0.967
Monodepth R50 [11] S 668 0.133 1.142 5.533 0.230 0.830 0.936 0.970
StrAT [50] S — 0.128 1.019 5.403 0.227 0.827 0.935 0.971
Poggi et al. (VGG) [51] S 902 0.119 1.201 5.888 0.208 0.844 0.941 0.978
SuperDepth [52] S — 0.112 0.875 4.958 0.207 0.852 0.947 0.977
Monodepth2 [12] S 61.7 0.109 0.873 4.960 0.209 0.864 0.948 0.975
Watson et al. [53] S 132.14 0.111 0.912 4.977 0.205 0.862 0.950 0.977
MonoResMatch [54] S 487 0.111 0.867 4.714 0.199 0.864 0.954 0.979
UnDeepVO [55] MS — 0.183 1.730 6.571 0.268 — — —
EPC++ [47] MS 146.1 0.128 0.936 5.011 0.209 0.831 0.945 0.979
Monodepth2 [12] MS 66.72 0.106 0.818 4.750 0.196 0.874 0.957 0.979
WaveletMonodepth [56] MS — 0.109 0.814 4.808 0.198 0.868 0.955 0.980

Fig. 5 Comparisons to state-of-the-art self-supervised monocular depth estimation methods: Monodepth2 [12], Guizilini et al. [18], Johnston
and Carneiro [36], and WaveletMonodepth [56] using examples from the Eigen split test dataset [22].
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Fig. 6 Comparisons to existing self-supervised monocular depth estimation methods: Monodepth2 [12], Guizilini et al. [18], Johnston and
Carneiro [36], and WaveletMonodepth [56], using the Cityscapes test dataset [57].

datasets have some differences. Our model only
trained on the KITTI dataset was used to predict
depths on the Cityscapes dataset. Our predicted
depth maps are better than those from the methods
in Refs. [12, 18, 36, 56], whose predicted depths
exhibit texture-copy, depth drift, and incomplete
structure problems, in areas such as cars, persons,
and landmarks.

The benefits of the depth refinement model are
shown in Table 2 and Fig. 7. Compared to the coarse
depth estimation model, the results of the depth
refinement model are further improved. In Fig. 7,
we show qualitative results of the coarse and refined
depth estimation models. Refined depths provide
better results on thin structures such as poles. Table
2 and Fig. 7 show that our depth refinement network
is effective, and can refine the coarse depth.

We have compared our method to Monodepth2 [12]
and Johnston and Carneiro [36] using a variety of

encoder networks, including ResNet-18, ResNet-50,
and ResNet-101. Table 3 shows the quantitative results.
Our results are quantitatively better than those of
these two methods. Figure 8 shows a qualitative
comparison between our method and Monodepth2
[12] with the ResNet-18 encoder and input image
size of 1024 × 320. Unlike Monodepth2 [12], our
depth estimation model can deal with the texture-
copy problem and produce a clear depth for a sharp
object in the image. Figure 9 shows a comparison
between our method and the results of Johnston and
Carneiro [36] using the ResNet-101 encoder network.
Our approach can predict depths of delicate structures.

4.4 Depth evaluation on Make3D dataset

In Table 4, we provide quantitative evaluation results
on the Make3D dataset [61] using our models trained
on the KITTI dataset. We used the same testing
protocol as Monodepth2 [12] and the evaluation
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Fig. 7 Comparisons between the coarse depth and refined depth. Some depth maps of sharp objects were refined using the depth refinement
network.

Table 3 Comparisons to Monodepth2 [12] and Johnston and Carneiro [36], with encoder network ResNet-18, ResNet-50, and ResNet-101.
High denotes the input image resolution is 1024 × 320

Encoder Method
Error (lower is better) Accuracy (higher is better)

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

ResNet-18

Monodepth2 [12] 0.115 0.903 4.863 0.193 0.877 0.959 0.981

Johnston and Carneiro [36] 0.110 0.872 4.714 0.189 0.878 0.958 0.980

Ours 0.101 0.811 4.674 0.179 0.890 0.962 0.983

Monodepth2 [12] (High) 0.115 0.882 4.701 0.190 0.879 0.961 0.982

Ours (High) 0.101 0.807 4.635 0.173 0.891 0.962 0.983

ResNet-50
Monodepth2 [12] 0.110 0.831 4.642 0.187 0.883 0.962 0.982

Ours 0.098 0.795 4.631 0.171 0.890 0.963 0.983

ResNet-101
Johnston and Carneiro [36] 0.110 0.872 4.714 0.189 0.878 0.958 0.980

Ours 0.097 0.788 4.623 0.170 0.892 0.963 0.984

Fig. 8 Comparisons to Monodepth2 [12] on an image with 1024 × 320 resolution. Our method can overcome the texture-copy problem and
produce clear depths for sharp objects in the image.

Fig. 9 Comparison to results from Johnston and Carneiro [36] using the ResNet-101 encoder network. Our method can estimate accurate
depths of thin structures.
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criteria from Monodepth [11]. For the Make3D
dataset, we evaluated on a center crop of 2 × 1 ratio
and used median scaling [12] because the ground truth
depth and corresponding input image were not well
aligned. Table 4 shows that our method can produce
better results than previous self-supervision methods.
Figure 10 shows our depth prediction results on the
Make3D test dataset. These results demonstrate that
the estimated depth is credible even though depth
estimation model training did not use the Make3D
dataset.

4.5 Odometry evaluation

We evaluated the pose model to validate the
effectiveness of the NCBAM model on pose. Following
Monodepth2 [12], the training set of our pose network
model was sequences 0–8 of the KITTI odometry
dataset [58], and the test dataset was sequences 9
and 10. Generally, the pose network takes five frames
as input [13, 16] and predicts transformations. Our
pose network baseline is Monodepth2 [12]: the input

Table 4 Evaluation results on the Make3D test dataset [61]

Method Train
Error (lower is better)

Abs Rel Sq Rel RMSE log10

Karsch et al. [62] D 0.425 4.948 8.290 0.151

Liu et al. [63] D 0.476 6.611 10.030 0.167

Laina et al. [64] D 0.205 1.724 5.578 0.086

Monodepth [11] S 0.544 10.94 11.760 0.193

Zhou et al. [13] M 0.383 5.321 10.470 0.478

DDVO [42] M 0.387 4.720 8.090 0.204

Monodepth2 [12] M 0.322 3.589 7.417 0.163

Johnston and Carneiro [36] M 0.306 3.100 7.126 0.160

Ours M 0.285 2.798 6.950 0.147

Ours-refine M 0.283 2.974 6.949 0.146

to the pose network comprises two frame images, and
the output is a relative pose transformation between
that pair of frames. To evaluate the two-frame model
on the five-frame test sequences, Monodepth2 [12]
makes separate predictions for each of the four pairs of
frame transformations for each set of five frames and
combines them to form local trajectories. We follow
the Monodepth2 [12] testing protocol to evaluate our
pose network. Here, our pose model was trained for
11 epochs. Evaluation results are shown in Table 5:
the accuracy of our pose model is better than that
of Monodepth2 [12], and show that the NCBAM can
enhance the results of the pose model.

4.6 Ablation study

To better validate the effectiveness of NCBAM in
coarse depth estimation, we have performed an
ablation study. Table 6 shows the results. We
start from the baseline Monodepth2 [12] + DDV
with ResNet-18 encoder network (1st row). Then,
we incorporate the NCBAM module into the depth
estimation network (2nd row), pose estimation

Table 5 Odometry evaluation results on testing sequences 9 and
10 of the KITTI odometry dataset. Results are average absolute
trajectory error and standard deviation in meters

Method Seq. 09 Seq. 10 Frames

ORB-Slam [65] 0.014 ± 0.008 0.012 ± 0.001 —

DDVO [42] 0.045 ± 0.108 0.033 ± 0.074 3

Zhou et al. [13] 0.050 ± 0.039 0.034 ± 0.028 5→2

Zhou et al. [13] 0.021 ± 0.017 0.020 ± 0.015 5

Mahjourian et al. [29] 0.013 ± 0.010 0.012 ± 0.011 3

GeoNet [24] 0.012 ± 0.007 0.012 ± 0.009 5

Ranjian et al. [16] 0.012 ± 0.007 0.012 ± 0.008 5

Monodepth2 [12] 0.017 ± 0.008 0.015 ± 0.010 2

Ours 0.015 ± 0.001 0.012 ± 0.004 2

Fig. 10 Examples of our approach on the Make3D dataset [61].



642 Y Li, F. Luo, X. Xiao

Table 6 Ablation study. Evaluation of the depth estimation model with CBAM and NCBAM on the Eigen split test dataset [22]. First, we
evaluate the performance of the NCBAM module used in the depth network (NCBAM-D) and pose network (NCBAM-P). The baseline is
Monodepth2 [12] with ResNet-18 + DDV. Then, we compare the effectiveness of the CBAM and NCBAM attention modules. The best results
are marked in bold

Method
Error (lower is better) Accuracy (higher is better)

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Baseline 0.112 0.893 4.843 0.190 0.879 0.961 0.982

Baseline + NCBAM-D 0.104 0.835 4.705 0.182 0.884 0.960 0.982

Baseline + NCBAM-P 0.106 0.838 4.709 0.185 0.883 0.961 0.981

Baseline + (full) 0.101 0.811 4.674 0.179 0.890 0.962 0.983

Baseline + (full), CBAM 0.103 0.812 4.678 0.181 0.890 0.960 0.981

network (3rd row), and depth and pose estimation
networks (4th row). In each part of our method
NCBAM improves evaluation measures. The results
are significantly improved when adding the NCBAM
module to both depth and pose networks. For
comparison, we incorporate the CBAM module
into the depth + pose network (5th row). The
depth estimation model with NCBAM in row 4
is better than the one with CBAM on the seven
evaluation metrics. NCBAM can better aggregate
deep features and extract correlations between the

object and surrounding environment to improve depth
estimation accuracy.

Figure 11 shows qualitative results of the ablation
study. The best results are those in which we in-
corporate NCBAM into depth and pose networks.
In Fig. 12, we compare depth estimation models
with NCBAM and CBAM modules. Better results
are provided by the version with NCBAM. Table 6,
Fig. 11, and Fig. 12 show that the proposed NCBAM
model is effective.

In Table 7, we illustrate the effectiveness of the

Fig. 11 Ablation study. Incorporating NCBAM into both the depth and pose networks produces the best results.

Fig. 12 Comparison of CBAM and NCBAM. Incorporating NCBAM into the depth and pose networks produces better results than CBAM.
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Table 7 Improvements due to two improvements in CBAM. The best results are marked in bold

Method
Error (lower is better) Accuracy (higher is better)

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

CBAM 0.103 0.812 4.678 0.181 0.890 0.960 0.981

CBAM Tanh 0.102 0.811 4.676 0.180 0.890 0.960 0.982

CBAM softplus 0.103 0.811 4.675 0.179 0.889 0.961 0.982

NCBAM 0.101 0.811 4.674 0.179 0.890 0.962 0.983

CBAM sigmoid 0.104 0.812 4.677 0.183 0.890 0.959 0.981

CBAM sigmoid softplus 0.103 0.812 4.676 0.181 0.891 0.961 0.982

improvements made to CBAM. The first converts
the input feature to the range (−1, 1) using the tanh
function in the channel and spatial attention modules
(CBAM Tanh). The second is to use the activation
function softplus instead of relu in the shared network
of the channel sub-module and the convolution layer
of the spatial sub-module (CBAM softplus). We
can see that both changes to CBAM improve depth
estimation, and the best results are those when
we utilize both improvements simultaneously, i.e.,
NCBAM.

The normalization sigmoid activation sigmoid(x) =
1/(1 + e−x) maps the input to the range (0, 1).
Table 7 compares use of tanh and sigmoid functions
for normalization, and shows that tanh function
produces better results.

4.7 Limitations

Although our method can overcome the above three
targeted problems, our approach also has some
limitations in common with other methods. One
is that it cannot effectively predict the depths of
moving objects. Figure 13 presents an example
generated by our approach and other state-of-the-art
self-supervised monocular depth estimation methods.
Unfortunately, all methods fail to predict the person’s
depth since the training set KITTI dataset is collected
in scenes nearly completely lacking in humans.

Fig. 13 Limitation. Our approach and other state-of-the-art methods
fail to predict the depths of moving persons.

5 Conclusions
In this paper, we have presented a new self-supervised
monocular depth estimation method. Previous
methods typically produce predicted depth maps
with incomplete structures, texture-copy issues, and
depth drift problems. We improved the attention
model CBAM, to provide NCBAM, incorporated
it into networks, and proposed a coarse-to-fine
approach to address the above problems. We have
performed extensive experiments to compare our
method to state-of-the-art methods which validate
its effectiveness. In future, we will further investigate
depth estimation in complex scenes containing motion
objects.
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