
Computational Visual Media
https://doi.org/10.1007/s41095-019-0144-1 Vol. 5, No. 3, September 2019, 257–265

Research Article

Fast raycasting using a compound deep image for virtual point
light range determination

Jesse Archer1 (�), Geoff Leach1, and Pyarelal Knowles1

c© The Author(s) 2019.

Abstract The concept of using multiple deep images,
under a variety of different names, has been explored
as a possible acceleration approach for finding ray-
geometry intersections. We leverage recent advances
in deep image processing from order independent
transparency for fast building of a compound deep image
(CDI ) using a coherent memory format well suited for
raycasting. We explore the use of a CDI and raycasting
for the problem of determining distance between virtual
point lights (VPLs) and geometry for indirect lighting,
with the key raycasting step being a small fraction of
total frametime.

Keywords deep image; indirect lighting; raycasting

1 Introduction
Recently, the use of multiple deep images has been
explored as an alternative to a bounding volume
hierarchy, the most common acceleration approach
for raycasting. Deep images store multiple per-pixel
fragments which include color and depth information,
compared to 2D flat images which store only a single
color value. Deep images are a view-dependent
discretized representation of scene geometry, and a
complete, nearly view-independent representation for
the purpose of raycasting can be achieved using many
deep images from different directions—which we call
a compound deep image (CDI ).
Previous approaches have found that building few

deep images is fast but slow to raycast due to the
need to step between different deep image pixels and
directions. Fast raycasting requires many deep images

1 School of Science, RMIT University, Melbourne, 3000,
Australia. E-mail: J. Archer, jesse.archer@rmit.edu.au (�);
G. Leach, geoff.leach@rmit.edu.au.

Manuscript received: 2019-03-04; accepted: 2019-05-06

from different directions, which allows a ray to be
contained in a single pixel with fragments representing
geometry intersections. While raycasting such a CDI
is fast, previous approaches to building the deep
images have been relatively slow and non-realtime,
typically using memory incoherent per-pixel linked
lists. We present a realtime approach for building
a CDI using per-pixel linearised arrays, a memory
coherent alternative to linked lists which offers faster
raycasting.
This paper explores fast CDI building and

raycasting for the problem of range determination
using ray-geometry intersections for indirect lighting
using virtual point lights (VPLs), as shown in Fig. 1.
The primary challenge for realtime rendering of VPLs
is determining which VPL applies to what geometry.
Recent realtime VPL techniques either assume lights
have infinite range and restrict their contribution
to geometry using imperfect shadow maps, or limit
ranges randomly as unshadowed stochastic VPLs.
Restricting the range of each light allows rapid
building of a light grid which can be applied to
geometry. We show that ranges can be estimated
by casting multiple rays per-VPL to nearby geometry.
This approach is fast for thousands to millions of
VPLs, with realtime raycasting of up to tens of
millions of rays.
While range determination has potential to improve

visual quality over randomly assigned light ranges,
this work omits detailed visual comparisons with
other VPL techniques. We instead provide a basic
visual comparison with ground-truth path tracing
showing that our work gives similar results to
single bounce path tracing but with some visual
artifacts. The primary focus of this work is improved
performance of the CDI building and raycasting steps.
We show that, while slower than assigning random

257



258 J. Archer, G. Leach, P. Knowles

Fig. 1 Indirect lighting using VPLs with a small indoor Atrium scene and large outdoor Rungholt scene.

light sizes, the raycasting step is only approximately
1% of total frametime.

2 Related work
Deep images are primarily used in compositing and
transparency, but have recently been applied to
various lighting problems. Raycasting using deep
images with three deep image directions is presented
in Refs. [1, 2] but requires rays to step between pixels.
CDIs have been explored for global illumination
[3, 4] but with non-realtime results, or requiring
precomputing which is unsuitable for dynamic scenes.
In general, using fewer directions is faster to build
while using more directions reduces the need to step
between pixels and thus is faster to raycast.
The use of screen-space deep images [5] and

unstructured surfel clouds [6] for raycasting has also
been presented. However, our focus is raycasting deep
images of full object-space scene geometry.
Advances in fast building of deep images in

real time have primarily been presented for order
independent transparency, requiring both a capture
and a sorting stage. Capture using linked lists and
linearised arrays has been compared [7, 8]. Linked
lists have smaller capture time while arrays are faster
to sort and process. Fast sorting of full fragment list
data relies on using blocks of GPU registers [9, 10]
and more recently GPU instruction caching [11].
Indirect lighting is a well known problem; instant

radiosity [12] was the first proposed fast VPL
technique. Single bounce VPLs are generated from
reflective shadow maps (RSMs) [13] which record light
bounces from a primary light source. Restricting the
contribution of each VPL to nearby visible geometry

is achieved in real time either using imperfect shadow
maps [14–16], or approximated stochastically by
assigning random light ranges or randomly culling
unshadowed VPLs for diffuse [17, 18] and glossy
lighting [19].
Light grids are a well established approach for

rendering scenes with many lights where the range of
each light is known and finite. Various approaches for
building both 2D [20–22] and 3D [23, 24] grids have
been explored. This work uses the hybrid lighting
approach [25] for building a 3D grid; linearised arrays
were similarly found to offer faster processing of light
data than linked lists.

3 CDI building and raycasting

3.1 CDI building
A compound deep image (CDI) is a collection of deep
images from different directions with each deep image
stored sequentially using linearised arrays. Many
approaches exist for determining unique deep image
directions, with previous work sampling using a unit
cube from three or more directions, or uniformly
distributing directions on a unit sphere. This work
samples deep image directions from a hemisphere
using spherical coordinates as shown in Fig. 2. Only
the top hemisphere is needed as the bottom is
indexed by reversing a given ray’s direction. Other
sampling approaches have previously been used such
as recursive zonal equal-area partitioning [4] and
uniformly sampling a unit cube [3].
Each pixel in a deep image represents a specific ray

in that deep image’s direction. The fragment list for
the pixel then gives all the geometry intersected by
the ray. The ray for a given object-space position is



Fast raycasting using a compound deep image for virtual point light range determination 259

Fig. 2 Direction vector using spherical coordinates.

determined by computing the deep image’s screen-
space pixel.
A brute force approach for building a CDI re-

rasterizes geometry for each unique direction as in
previous work. However, this approach is expensive
for hundreds of directions. We instead use a well
known approach for geometry voxelization by
rasterizing geometry once and saving fragment data
for many directions.
Geometry is rasterized with the camera oriented

along the z axis. The normal vector of each
triangle is checked in the geometry shader and x, y, z

components are swizzled for triangles primarily
facing along the x or y axes to ensure each triangle is
instead primarily facing along the z axis. Unswizzled
object-space positions are passed to the fragment
shader. Per-direction orthographic modelview-
projection matrices are iterated and multiplied with
the fragment’s position, yielding unique per-direction
fragments which are added to the appropriate deep
images. See Fig. 3.
Many geometry voxelization approaches require

conservative rasterization to ensure all geometry is
represented. We find that for the problem of VPL

Fig. 3 Computing unique per-direction fragments in the fragment
shader from object space positions.

range determination, a non-conservative representation
suffices, reducing both memory usage and deep image
build time. Any missing geometry can cause some
VPLs to have larger ranges than needed, which is
offset by taking an average length of multiple ray
directions.
Sampling geometry primarily facing along the z axis

maximises the number of geometry samples generated
in the fragment shader. This causes redundant
fragment data to be added for deep image directions
where geometry is side-on or at an angle where fewer
samples are needed, increasing overall CDI memory
usage by up to 25%.
Fast raycasting using deep images relies on reading

fragment data coherently, so arranging fragment
data into appropriate coherent buffers in memory is
critical for fast processing on the GPU. Two possible
approaches are linked lists and linearised arrays.
Previous deep image raycasting techniques typically

used per-pixel linked lists where fragment data can
be written in-place as geometry is rasterized. This
approach offers fast build time as fragment data is
written sequentially during rasterization, but at the
expense of slower raycasting, as following the next
pointers for each linked list leads to scattered memory
reads.
Linearised arrays require two buffers as shown in

Fig. 4. Unlike linked lists, in which fragment data
can be anywhere, fragment data in linearised arrays
for a given pixel is coherent, with all fragments for
a given pixel stored contiguously. Linearised arrays
are slower to build than linked lists but faster to
raycast.
Building a deep image in this format is summarised

as follows, based on Ref. [26]:
• Initialise a buffer of per-pixel counts to zero.
• Render geometry and atomically increment counts
in the fragment shader.

Fig. 4 Per-pixel blue/red/green, blue/green, and blue/red fragment
colors stored in linearised arrays.



260 J. Archer, G. Leach, P. Knowles

• Compute per-pixel offsets from counts using
parallel prefix sums.

• Allocate fragment data buffer of size given by final
offset.

• Re-render geometry, storing fragments in locations
determined by atomically incrementing offsets.
Traversing a pixel’s fragment data requires reading

the index offset and number of fragments, then
reading the fragment data sequentially. Example
code is given in Fig. 5 for the three main steps of
computing per-pixel counts, adding fragment data to,
and traversing the linearised array. The same buffer
is used for both fragment counts and offsets. Not
shown is computing offsets using a parallel prefix sum
scan, which is described in Ref. [27].
A limitation of using linearised arrays is that

geometry must be rasterized twice as opposed to
linked lists where it is rasterized once. For complex
scenes where rasterization is a bottleneck, this can
cause capture time for arrays to be up to twice as
long as for linked lists. Despite this, linearised arrays
have better overall performance, as the CDI is built
only once but read many times, and the coherent
memory reads of linearised arrays are much faster
than the scattered memory reads of linked lists.
Fast raycasting requires each pixel’s fragment list

to be in depth sorted order. Fast per-pixel fragment
sorting depends on maximising use of registers, the
fastest available GPU memory. Using registers
requires hard coding a sort network with all compare-
and-swap operations explicitly defined [10]. We use
an unrolled bitonic sort network which also provides
improved instruction caching [11].
As available per-thread registers are limited, long

lists are sorted in blocks. Each block is sorted using
a hard-coded sort network followed by a k-way merge
in local memory of the sorted blocks [9].
Finally, fragment data is written back to global

Fig. 5 Adding a fragment to and traversing a pixel’s linearised array.

memory after sorting. This sort approach is very fast,
with reading from and writing back to global memory
being up to 90% of the total sort time. Sorting is
thus primarily dominated by memory bandwidth.
An example of part of the final CDI rendered

transparently is shown in Fig. 6 where the Atrium
scene is shown from many different directions, each
represented as a separate deep image. Note that
extra fragments are present for some geometry in
different directions, leading to overlapping triangles.
As geometry is captured from a single rasterization,
the same viewport size is used for all deep images,
which is large enough to contain the entire scene from
any direction.

3.2 VPL range determination
We apply a CDI to the problem of range deter-
mination of VPLs using broadly the following steps.
• Capture and sort the CDI.
• Render g-buffer from camera’s perspective.
• Render RSM from primary light’s perspective,
giving VPL positions.

• Build buffer of unique VPLs, raycasting using the
CDI to determine VPL ranges.

• Build light grid from the VPL buffer.
• Apply the light grid to the g-buffer, giving the final
result.
After building the CDI, a global buffer of unique

VPLs is built. Scene geometry is rendered from the
light’s perspective to an RSM, giving VPL positions
and colors. To avoid oversampling geometry close
to the light, we use a mipmapped RSM and choose
positions from higher mipmap levels based on distance
to light source. Other approaches for choosing
optimal VPL positions from an RSM have been
explored but this issue is not the focus of this work.
As VPL positions are calculated, the distance to

nearby geometry is determined by raycasting through
the previously built CDI. The primary VPL direction
is given either by the reflected light direction or the
surface normal. Six rays per-VPL are cast, one in
the primary direction and five oriented around it.
Each ray indexes the CDI using the closest

matching direction. The light’s position then
determines the pixel matching that specific ray.
Distance from the light to geometry is found by
stepping through the pixel’s fragment list from the
beginning until a fragment after the light’s position
is reached. This linear stepwise search is used as a



Fast raycasting using a compound deep image for virtual point light range determination 261

Fig. 6 Part of a CDI showing the Atrium scene as multiple deep images in different directions.

binary search was found to be slower. The difference
in depth between the fragment and the light gives
an approximate range for the given ray. Fragments
are stepped in reverse order for rays in the matching
opposite direction. After raycasting, a sphere for the
VPL is created with radius of the either the average
or maximum distance to geometry.
Scenes typically require many small lights and few

large lights. We keep most small lights, discarding
those too small to noticeably affect the scene and most
large lights. Each non-discarded VPL is atomically
added to a global VPL buffer storing position, color,
and size.
After building the CDI and determining light sizes

we use hybrid lighting [25] as mentioned in Section 2
to build and apply the light grid from the global
VPL buffer. 2D light outlines are rasterized at
coarse resolution with front and back per-tile depths
determined using a line–sphere intersection test. The
light’s data is then added to all 3D grid cells between
the front and back depths for the 2D tile. Light grid
data is stored using the same linearised array format
as for the deep image, which was similarly found to
be faster than using linked lists. A depth mask is
built from the g-buffer to avoid adding lights to grid
cells that contain no geometry.
As VPLs are not necessarily uniformly distributed

in the scene, to prevent some parts of the scene
appearing too dim or too bright, per-pixel lighting is
adjusted proportionally to the number of applicable
VPLs. Lighting is applied using the Cook–Torrance
BRDF [28] which is suitable for diffuse and glossy
materials.

Other techniques for spawning and applying VPLs
with and without light grids have been discussed
but are not our primary focus, instead being left
for future work. Shadows from the primary light
source are calculated separately and not included in
performance measurements.

4 Results
We compare performance of indirect lighting using
VPLs for the two scenes shown in Fig. 1. The
first scene is the Sponza Atrium with approximately
280,000 triangles and the second is the Rungholt
outdoor town scene with approximately 7 million
triangles. These scenes are available from Ref. [29].
The test platform was an NVIDIA GeForce GTX
1060, driver version 390.25. Scenes were rendered
at HD (1920×1080) resolution. Time is reported in
millisecond.
The primary focus of this work is determining the

cost of building and raycasting the CDI for VPL range
determination in the context of indirect lighting, with
chosen VPLs being added to a light grid. As stated
previously, other techniques for choosing and applying
VPLs both with and without light grids have been
presented and combining range determination with
these techniques is left for future work.
Results for the full VPL rendering approach are

shown in Table 1 where raycasting is shown in bold
and is the fastest VPL rendering step. The CDI uses
169 directions at 64×64 resolution which represents a
hemisphere of 13×13 stacks and slices. Raycasting is
performed when building the global VPL buffer shown



262 J. Archer, G. Leach, P. Knowles

Table 1 Time for each step of VPL rendering

Atrium Rungholt
Capture deep images 3.5 ms 18.8 ms
Sort deep images 2.0 ms 3.3 ms
Render g-buffer 1.3 ms 8.0 ms
Render RSM 0.5 ms 5.9 ms
Build VPL buffer 0.15 ms 0.4 ms
Build light grid 0.7 ms 0.5 ms
Apply lighting 12.0 ms 6.1 ms
Total 20.6 ms 43.5 ms

in bold to estimate light sizes and takes approximately
1% of the total frametime. The RSM is rendered at
256 × 256 resolution and contains 65,536 potential
VPLs. Only 20,000 VPLs are typically used to avoid
oversampling geometry close to the light source, which
after raycasting and discarding based on size are
reduced to 2000 and 8000 VPLs for the Atrium and
Rungholt scenes respectively.
There is little overhead for computing many

directions, as shown in Table 2, which compares
building the CDI with an increasing number of
directions. The Atrium scene is dominated by
memory writes but processing remains fast even for
more than one hundred directions. There is little
difference in performance for the Rungholt scene
which is dominated by geometry rasterization being
performed twice, once for per-pixel counts and once
to write the fragments. For both scenes, total build
time scales linearly with the number of directions.
Our CDI approach that builds all directions

simultaneously is 20× to 100× faster than a brute
force approach that builds directions separately. For
169 directions our approach takes 5.5 and 22.1 ms to
build the CDI for the Atrium and Rungholt scenes
respectively, while a brute force approach takes 121.3
and 2295.8 ms, with no difference in the final indirect
lighting result.
Table 3 shows the cost of raycasting for an

increasing number of lights. Time to cast six rays per-
VPL to estimate size for the Atrium and Rungholt
scenes is compared with time to assign a random size

Table 2 CDI build time

Directions Atrium Rungholt
8 1.5 ms 18.0 ms
16 1.8 ms 18.4 ms
32 2.0 ms 18.6 ms
64 3.2 ms 19.7 ms
128 4.7 ms 21.3 ms

Table 3 Raycasting time for Atrium and Rungholt scenes, versus
assigning random size VPLs

RSM resolution
Atrium Rungholt

Random
raycast raycast

256 × 256 0.5 ms 0.6 ms 0.04 ms
512 × 512 1.8 ms 2.1 ms 0.14 ms
1024 × 1024 6.0 ms 6.9 ms 0.5 ms
2048 × 2048 20.2 ms 23.5 ms 2.1 ms

to each light. Lights are spawned for all RSM pixels
and none are discarded.
Raycasting time increases nearly linearly with the

number of rays, and is approximately 10× slower
than assigning random ranges. While this difference
is significant, it remains fast for thousands to millions
of VPLs and as shown in Table 1, it is only a small
percentage of total frametime. While slower than
randomly assigning light ranges, raycasting allows
indirect lighting using fewer lights than stochastic
approaches where many more lights are required to
ensure enough VPLs cover the necessary geometry.
Complexity of geometry has little impact on

raycasting performance, with the Rungholt scene
being no more than 10% slower to raycast than the
Atrium. While the Rungholt scene has more than
20× the number of triangles, CDIs for the two scenes
are approximately the same size, at 18 MB for 169
directions, which is insignificant compared to the total
memory available on most modern GPUs. Fragment
list lengths for the Rungholt scene are typically only
slightly longer than the Atrium and thus only slightly
slower to raycast.
At the highest tested resolution of 2048 × 2048,

approximately 25 million raycasts are performed in
20 ms, equivalent to raytracing an HD (1920 × 1080)
image with 12 rays per-pixel.
For the Atrium scene, it takes 5.5 ms to capture

and sort the CDI, which compares favourably with
other CDI techniques. For the Atrium scene, the
deterministically layered depth maps approach [4]
takes 373 ms for both building and computing
ambient occlusion, and more than 1000 ms for
computing indirect lighting, although they do not
specify how much time is specifically dedicated to
building and raycasting. Their results were reported
using a GTX780 Ti to render at 800× 800 resolution
with 512 deep images of 50 × 50 resolution. Older
CDI work [3] reports 60 ms for calculating indirect
lighting of the Atrium with a precomputed CDI.



Fast raycasting using a compound deep image for virtual point light range determination 263

Multiview and multilayer interactive ray tracing [2]
renders three directions rather than many and takes
10 ms build time for the Atrium using a GTX780 Ti
at 720× 480 resolution with deep images rendered at
480 × 480 resolution. Again, our build approach is
faster given the difference in hardware.
The ground-truth Rungholt outdoor town scene

rendered using path tracing with 128 per-pixel
samples is shown in Fig. 7, with zero bounce and
one bounce respectively. Our approach gives similar
results to one bounce path tracing but with visual
artifacts where some areas of the scene are darker or
brighter than the ground-truth rendering.
Brighter areas are caused by light bleeding from

unshadowed VPLs that affect more geometry than
necessary while darker areas are caused by parts
of the scene being undersampled from the light’s
perspective in the RSM. Addressing these artifacts
requires calculating shadows using imperfect shadow
maps and a better sampling approach for spawning
VPLs. Range determination of VPLs should improve
performance of existing shadow map approaches
by reducing the number of maps that need to be

Fig. 7 Rungholt scene rendered using path tracing with zero and
one bounce.

tested per-pixel.

5 Conclusions
This work has presented a CDI approach that offers
fast build time with little memory overhead. The
linearised array format used is ideally suited for
raycasting due to fragment list memory coherence,
even for millions of VPLs.
We use CDIs specifically for building a VPL grid.

Previous papers have explored CDIs for ray and path
tracing, and applying our coherent CDI structure
should similarly improve performance.
Using the CDI to build a light grid shows similar

results to one bounce path tracing but with some
visual artifacts. Addressing these requires combining
imperfect shadow maps and a better sampling
approach for spawning VPLs.

Electronic Supplementary Material Supplementary
material is available in the online version of this article
at https://doi.org/10.1007/s41095-019-0144-1.

References

[1] Hu, W.; Huang, Y. Y.; Zhang, F.; Yuan, G. D.; Li, W.
Ray tracing via GPU rasterization. The Visual Computer
Vol. 30, Nos. 6–8, 697–706, 2014.

[2] Vardis, K.; Vasilakis, A. A.; Papaioannou, G. A multiview
and multilayer approach for interactive ray tracing. In:
Proceedings of the 20th ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games, 171–178, 2016.

[3] Nießner, M.; Schäfer, H.; Stamminger, M. Fast indirect
illumination using layered depth images. The Visual
Computer Vol. 26, Nos. 6–8, 679–686, 2010.

[4] Aalund, F. P.; Frisvad, J. R.; Bærentzen, J. A.
Interactive global illumination effects using deter-
ministically directed layered depth maps. In: Proceedings
of the 26th Eurographics Symposium on Rendering-
Experimental Ideas and Implementations, 2015.

[5] Mara, M.; McGuire, M.; Nowrouzezahrai, D.; Luebke,
D. Fast global illumination approximations on deep
g-buffers. NVIDIA Technical Report NVR-2014-001.
2014.

[6] Nalbach, O.; Ritschel, T.; Seidel, H.-P. Deep screen
space. In: Proceedings of the 18th Meeting of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics
and Games, 79–86, 2014.

[7] Maule, M.; Comba, J. L. D.; Torchelsen, R.; Bastos,
R. Memory-efficient order-independent transparency
with dynamic fragment buffer. In: Proceedings of the



264 J. Archer, G. Leach, P. Knowles

25th SIBGRAPI Conference on Graphics, Patterns and
Images, 134–141, 2012.

[8] Knowles, P.; Leach, G.; Zambetta, F. Efficient layered
fragment buffer techniques. In: OpenGL Insights. Cozzi,
P.; Riccio, C. Eds. CRC Press, 279–292, 2012.

[9] Knowles, P.; Leach, G.; Zambetta, F. Backwards
memory allocation and improved OIT. In: Proceedings
of Pacific Graphics, Vol. 2013, 59–64, 2013.

[10] Knowles, P.; Leach, G.; Zambetta, F. Fast sorting for
exact OIT of complex scenes. The Visual Computer Vol.
30, Nos. 6–8, 603–613, 2014.

[11] Archer, J.; Leach, G. Further improvements to OIT sort
performance. In: Proceedings of Computer Graphics
International, 147–152, 2018.

[12] Keller, A. Instant radiosity. In: Proceedings of the
24th Annual Conference on Computer Graphics and
Interactive Techniques, 49–56, 1997.

[13] Dachsbacher, C.; Stamminger, M. Reflective shadow
maps. In: Proceedings of the Symposium on Interactive
3D Graphics and Games, 203–231, 2005.

[14] Ritschel, T.; Grosch, T.; Kim, M. H.; Seidel, H.-P.;
Dachsbacher, C.; Kautz, J. Imperfect shadow maps
for efficient computation of indirect illumination. ACM
Transactions on Graphics Vol. 27, No. 5, 1, 2008.

[15] Ritschel, T.; Eisemann, E.; Ha, I.; Kim, J. D. K.; Seidel,
H.-P. Making imperfect shadow maps view-adaptive:
High-quality global illumination in large dynamic scenes.
Computer Graphics Forum Vol. 30, No. 8, 2258–2269,
2011.

[16] Barák, T.; Bittner, J.; Havran, V. Temporally
coherent adaptive sampling for imperfect shadow maps.
Computer Graphics Forum Vol. 32, No. 4, 87–96, 2013.

[17] Laurent, G.; Delalandre, C.; de La Rivière, G.;
Boubekeur, T. Forward light cuts: A scalable approach
to real-time global illumination. Computer Graphics
Forum Vol. 35, No. 4, 79–88, 2016.

[18] Tokuyoshi, Y.; Harada, T. Stochastic light culling.
Journal of Computer Graphics Techniques Vol. 5, No.
1, 35–60, 2016.

[19] Tokuyoshi, Y.; Harada, T. Stochastic light culling
for VPLs on GGX microsurfaces. Computer Graphics
Forum Vol. 36, No. 4, 55–63, 2017.

[20] Olsson, O.; Assarsson, U. Tiled shading. Journal of
Graphics, GPU, and Game Tools Vol. 15, No. 4, 235–
251, 2011.

[21] Harada, T.; McKee, J.; Yang, J. C. Forward+: Bringing
deferred lighting to the next level. In: Proceedings of
the Eurographics-Short Papers, 5–8, 2012.

[22] Bezrati, A. Real-time lighting via light linked list. GPU
Pro Vol. 6, 183, 2015.

[23] Olsson, O.; Billeter, M.; Assarsson, U. Clustered
deferred and forward shading. In: Proceedings of the 4th
ACM SIGGRAPH/Eurographics Conference on High-
Performance Graphics, 87–96, 2012.

[24] Ortegren, K.; Persson, E. Clustered shading: Assigning
lights using conservative rasterization in directx 12.
GPU Pro Vol. 7, 43, 2016.

[25] Archer, J.; Leach, G.; Knowles, P.; van Schyndel, R.
Hybrid lighting for faster rendering of scenes with many
lights. The Visual Computer Vol. 34, Nos. 6–8, 853–862,
2018.

[26] Archer, J.; Leach, G.; van Schyndel, R. GPU based
techniques for deep image merging. In: Proceedings of
the SIGGRAPH Asia Technical Briefs, Article No. 19,
2017.

[27] Harris, M.; Sengupta, S.; Owens, J. D. Parallel prex
sum (scan) with CUDA. GPU Gems Vol. 3, No. 39,
851–876, 2007.

[28] Cook, R. L.; Torrance, K. E. A reflectance model for
computer graphics. ACM Transactions on Graphics Vol.
1, No. 1, 7–24, 1982.

[29] McGuire, M. Computer graphics archive. 2017.
Available at https://casual-effects.com/data/.

Jesse Archer is a Ph.D. student at
RMIT University, Melbourne. His
research interests are real-time computer
graphics and GPU computing. He
completed his Bachelor of Computer
Science degree in 2008, Bachelor of
IT (Games and Graphics Programming)
degree in 2010, and Honours in Computer

Science in 2015 at RMIT.

Geoff Leach is a lecturer in the
School of Science at RMIT University.
His major research interests include
computer graphics, computational
science, and GPU computing. He
teaches mostly computer graphics, and
has been using OpenGL since version
1.1. He holds a M.App.Sci. degree from

RMIT.

Pyarelal Knowles is a senior software
engineer at nVidia. He completed his
Ph.D. degree in computer science at
RMIT University in 2015, and has
research interests in real-time computer
graphics and a background in games
programming.



Fast raycasting using a compound deep image for virtual point light range determination 265

Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduc-
tion in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes
were made.
The images or other third party material in this

article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s

Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the
copyright holder.

To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Other papers from this open access journal are available
free of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.


