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Abstract In pattern recognition, the task of image set
classification has often been performed by representing
data using symmetric positive definite (SPD) matrices,
in conjunction with the metric of the resulting
Riemannian manifold. In this paper, we propose a
new data representation framework for image sets
which we call component symmetric positive definite
representation (CSPD). Firstly, we obtain sub-image
sets by dividing the images in the set into square
blocks of the same size, and use a traditional SPD
model to describe them. Then, we use the Riemannian
kernel to determine similarities of corresponding sub-
image sets. Finally, the CSPD matrix appears in the
form of the kernel matrix for all the sub-image sets;
its i, j-th entry measures the similarity between the
i-th and j-th sub-image sets. The Riemannian kernel
is shown to satisfy Mercer’s theorem, so the CSPD
matrix is symmetric and positive definite, and also lies
on a Riemannian manifold. Test on three benchmark
datasets shows that CSPD is both lower-dimensional
and more discriminative data descriptor than standard
SPD for the task of image set classification.

Keywords symmetric positive definite (SPD) matrices;
Riemannian kernel; image classification,
Riemannian manifold

1 Introduction
Image set classification has received wide attention
in the domains of artificial intelligence and pattern

1 School of IoT Engineering, Jiangnan University, Wuxi 214122,
China. E-mail: K.-X. Chen, kaixuan chen jnu@163.com;
X.-J. Wu, xiaojun wu jnu@163.com (�).

2 Jiangsu Provincial Engineering Laboratory of Pattern
Recognition and Computational Intelligence, Jiangnan
University, Wuxi 214122, China.

Manuscript received: 2017-12-13; accepted: 2018-05-02

recognition [1–8]. An image set contains a large
number of images taken under different conditions,
allowing more robust discrimination than use of single-
shot images [9–13]. Representations of image sets used
for the task of image classification commonly include
Gaussian mixture models [14], linear subspaces [1],
and covariance descriptors (CovDs) [7, 8, 15]. The
latter have been widely applied, e.g., in virus
recognition [13], object detection [4], and gesture
classification [5]. The traditional SPD model is based
on CovDs, and SPD matrices lie on a non-linear
manifold called the SPD manifold.

The dimensionality of traditional SPD matrices
[2, 4–8] used for representing image sets is relatively
high, which results in excessive computation
and low efficiency of algorithms. Dimensionality
reduction is always important in computer vision
and machine learning. Classical methods, such
as principal component analysis (PCA) [16] and
linear discriminant analysis (LDA) [17] are widely
used in various applications. However, as SPD
matrices lie on a non-linear Riemannian manifold,
these methods are unsuitable for analyzing SPD
matrices. Recently, the work extending dimensionality
reduction to Riemannian manifolds has received
wide attention. Bidirectional covariance matrices
(BCM) [8] and SPDML [2] are dimensionality
reduction methods which can be used with the
SPD manifold. BCM [8] applies two-directional two-
dimensional PCA [18] directly to the SPD matrices
to obtain low-dimensional descriptors. SPDML [2]
embeds the high-dimensional SPD matrices into a
lower-dimensional, more discriminative SPD manifold
through projection.

In this paper, we propose a new framework to
obtain low-dimensional, discriminative descriptors
for representing image sets. Figure 1 shows pipelines
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Fig. 1 Processing an image set using the traditional SPD approach and our CSPD approach. Above: traditional SPD. The SPD matrix is
computed using a covariance descriptor; it lies on a non-linear SPD manifold. Below: our CSPD approach. It firstly divides images in the
set into square blocks of the same size. The i-th sub-image set Bi is represented by a traditional SPD model. The Riemannian kernel is
then used to describe the similarity between the sub-image sets. The final CSPD appears in the form of the Riemannian kernel matrix of the
representations of sub-image sets.

for producing descriptors of image sets, for both our
framework and the traditional SPD model. Given
an image set with n images, in traditional SPD, the
images are vectorized to obtain an image set matrix
S = [s1, . . . , sn] (see Fig. 1(b)), where si ∈ RD

represents the i-th image in the image set. Using
CovDs results in a D × D SPD matrix (see Fig. 1(c))
for the representation of the entire image set. Its i, j-
th element is the covariance between the i-th and j-th
rows of the image set matrix S (see Fig. 1(b)). Unlike
the traditional SPD model, we describe the image set
by measuring similarities between sub-image sets. We
firstly divide the images in the set into d × d blocks
of the same size, and obtain d2 sub-image sets. We
then vectorize the sub-images (see Fig. 1(d)) and use
covariance descriptors to represent them (Fig. 1(e)).
Finally, the CSPD (Fig. 1(f)) takes the form of the
Riemannian kernel matrix; its i, j-th element denotes
the similarity between the i-th and j-th sub-image
sets. The dimensionality of the CSPD matrix is
d2 × d2, which depends on the number of sub-image
sets.

The rest of this paper is organized as follows.
In Section 2, briefly overview the geometry of the
SPD manifold and some related classical Riemannian
metrics. In Section 3, we present the traditional
SPD model and our CSPD model, and introduce
some SPD manifold-based classification algorithms

used in our experiments. In Section 4, we present
experimental results, which show that CSPD is
a lower-dimensional and more discriminative data
descriptor than standard SPD for the task of image
set classification. In Section 5, we consider the effects
of block size. In Section 6, we present our conclusions
and discuss future directions.

2 Related work
In this section, we overview the geometry of the
SPD manifold and some related classical Riemannian
metrics. We adopt the following notation: S+

n is the
space spanned by real n × n SPD matrices, Sn is
the tangent space spanned by real n × n symmetric
matrices at the point of the identity matrix In ∈
Rn×n, and TP S+

n is the tangent space spanned by
real n × n symmetric matrices at the point P ∈ S+

n .

2.1 SPD manifold

As described in Ref. [2], the SPD manifold spanned by
SPD matrices is a non-linear Riemannian manifold,
and does not satisfy the scalar multiplication axiom
of a vector space. For example, the matrix resulting
by multiplying an SPD matrix by a negative scalar
does not lie on S+

n [11]. Thus, similarity of two SPD
matrices cannot be meaningfully computed using the
Euclidean metric, and instead, Riemannian metrics
are a better tool for analyzing SPD matrices.
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A variety of Riemannian metrics have been
proposed for SPD manifolds. In particular, the affine
invariant Riemannian metric (AIRM) [2, 8, 19] is the
most widely studied Riemannian metric, and has the
property of affine invariance. The Stein divergence
and Jeffrey divergence [2, 10, 20], which are efficient
metrics to measure geodesic distance on the SPD
manifold, are equivalent to Bregman divergence for
some special seed function. The log-Euclidean metric
(LEM) [7, 8] gives the similarity between two SPD
matrices by computing their distance in tangent space.
We now consider AIRM and LEM in detail, as these
two metrics are used in our experiments.

2.2 Affine invariant Riemannian metric

S+
n is the Riemannian manifold spanned by SPD

matrices; it can be viewed as a convex cone in n(n +
1)/2 dimensional Euclidean space [2]. The similarity
between two SPD matrices on the manifold can be
described by the length of the geodesic curve linking
them, which is analogous to the straight line between
two points in vector space. For point P on the SPD
manifold, the affine invariant Riemannian metric can
be defined through two tangent vectors u, v ∈TP S+

n

as
〈u, v〉 P �

〈
P − 1

2 uP − 1
2 , P − 1

2 vP − 1
2

〉
=tr

(
P −1uP −1v

)
(1)

The AIRM geodesic distance dAIRM between two
points Spi and Spj on the SPD manifold can be
written as

d AIRM(Spi, Spj) = ‖ log
(

Sp
− 1

2
i SpjSp

− 1
2

i

)
‖F (2)

where ‖ · ‖F denotes the Frobenius norm, log(·) is
the matrix logarithm operator.

2.3 Log-Euclidean metric

The Log-Euclidean metric [4, 7, 8, 11] is a bi-
variant Riemannian metric coming from Lie group
multiplication on SPD matrices [11]. The distance
dLogED between two points Spi and Spj on the SPD
manifold computed by this metric can be written as

dLogED = ‖ log (Spi) − log (Spj) ‖F (3)
The LEM can be viewed as the distance between
points in the domain of the matrix logarithm, which
is the tangent space of the SPD manifold obtained
by logarithmic mapping [7, 8]:

ϕlog : S+
n → Sn, Sp → log(Sp), Sp ∈ S+

n (4)
where Sn is a vector space. Figure 2 illustrates
the concept of logarithm mapping. Furthermore,

Fig. 2 Logarithmic mapping.

the associated Riemannian kernel function can be
computed by the inner product of points in the
tangent space [7, 11]:

k LogE(Spi, Spj) = 〈Spi, Spj〉LogE

= tr(log(Spi) log(Spj)) (5)
For the all points Sp1, . . . , SpN ∈ S+

n , kLogE is
a symmetric function because kLogE(Spi, Spj) =
kLogE(Spj , Spi). From Ref. [7], we have∑

i,jaiajkLogE(Spi, Spj)

=
∑

i,jaiajtr(log(Spi), log(Spj))

= tr
[(∑

iai log(Spi)
)2

]

=
∥∥∥∑

iai log(Spi)
∥∥∥2

F � 0, ai ∈ R, ∀i ∈ N (6)

Equation (6) shows that the Log-Euclidean kernel
guarantees the positive definiteness of the Riemannian
kernel which thus satisfies Mercer’s theorem.

3 SPD and CSPD models
In this section, we briefly describe the traditional
SPD model [7, 8] and then introduce our proposed
CSPD model in detail. We also discuss classification
algorithms based on these approaches.

3.1 Traditional SPD model

For an image set matrix S = [s1, . . . , sn] with n

images, let si ∈ RD be a feature vector obtained
by vectorizing the i-th image in the set. The final
descriptor of the image set is a D × D SPD matrix
[2, 7, 8] computed from covariance descriptors:

C =
1
n

n∑
i=1

(si − s̄)(si − s̄)T =
1
n

SJnST (7)

where s̄ = 1
n

∑
n
i=1si is the mean vector of S. Jn =

In− 1
n1n1T

n is the centering matrix, and 1n is a column
vector of n ones [2]. Jn is a symmetric matrix with
rank n−1, and J2

n = Jn. In general, the number of the
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images is often smaller than the dimensionality of the
feature vector, so we need to add a small perturbation
to avoid covariance matrix singularity [7]:

C
∗ = C + λI (8)

where λ is set to 10−3tr(C) and I is the identity
matrix [7].

In this way, the image sets are represented as SPD
matrices, which lie on the SPD manifold.

3.2 Component SPD model

Our proposed framework, which describes the
similarities between sub-image sets, offers lower-
dimensional and more discriminative descriptors for
image sets than SPD. We firstly divide the images
in the set into d × d square blocks of the same size,
and each sub-image set is described by covariance
descriptors (see Eq. (7)). This results in d2 SPD
matrices representing sub-image sets. The final CSPD
matrix is the Riemannian kernel matrix of these SPD
matrices, and its dimensionality is d2 × d2.

See Fig. 1(below) again. In this figure, the images
were divided into 2 × 2 square blocks to form 4 sub-
image sets: B1, . . . , B4. There are 4 corresponding
covariance descriptors: C1, . . . , C4. The CSPD lies
in ∈ R4×4, and is a matrix describing the similarity
between these 4 sub-image sets. In order to measure
similarity between the sub-image sets, we use the Log-
Euclidean kernel (Eq. (5)) to compute the similarity
of the covariance descriptors (Fig. 1(f)):

CSPDi,j = kLogE(Ci, Cj) = tr(log(Ci) log(Cj)) (9)
where CSPDi,j measures the similarity between the i-
th and j-th sub-image sets. Note that as Eq. (6) shows
that the log-Euclidean kernel guarantees positive
definiteness of the Riemannian kernel, the CSPD
matrix also lies on the SPD manifold.

3.3 Classification algorithms based on the
SPD manifold

The nearest neighbor (NN) algorithm is one of the
simplest methods for classification and regression
used in computer vision and pattern recognition.
Nearest neighbour classification algorithms based
on AIRM and LEM have been utilized with the
SPD manifold [8], and these simple classification
algorithms clearly show the advantages of our CSPD
model (see later).

Covariance discriminative learning (CDL) has
been proposed for image set classification [7], and
classical classification algorithms are directly based

on the SPD manifold. They derive a kernel function
that maps the SPD matrices from the Riemannian
manifold to Euclidean space through the LEM
metric. This allows classical classification algorithms
operating on a linear space to be exploited in the
kernel formulation. Linear discriminant analysis
(LDA) and partial least squares (PLS) in this linear
space have been used for the task of classification [7].

We also consider the Riemannian sparse coding
algorithm LogEKSR [11], which takes the
Riemannian geometry of the SPD manifold into
account and applies sparse representation and
dictionary learning to SPD matrices by mapping the
SPD matrices into reproducing kernel Hilbert space
(RKHS). Note that the log-Euclidean kernels in this
algorithm, which are the derivatives of those in
Eq. (7) and meet Mercer’s theorem, are respectively
the polynomial kernel, exponential kernel, and
Gaussian kernel.

4 Results and discussion
4.1 Preliminaries

In order to verify the effectiveness of our model, we
have carried out experiments on three tasks: object
categorization, hand gesture recognition, and virus
cell classification using the three datasets ETH-80 [4],
the Cambridge hand gesture dataset (CG) [5], and the
virus dataset [13] respectively. In our experiments, we
compared the accuracies resulting from our proposed
CSPD model with those from the traditional SPD
model using the same classification algorithms. To
do so, we used the most common nearest neighbor
classifiers based on AIRM [2, 8] and LEM [4, 8, 11], as
described earlier. As well as these two NN classifiers,
we made use of classical Riemannian classification
algorithms LogEKSR [11] and CDL [7], which are the
efficient methods on SPD manifolds. In the following,
we use the following notation:
• NN-AIRMSPD: AIRM-based nearest neighbor

classifier on the SPD manifold spanned by
traditional SPD matrices.

• NN-AIRMCSPD: AIRM-based nearest neighbor
classifier on the SPD manifold spanned by our
proposed CSPD matrices.

• NN-LogEDSPD: LEM-based nearest neighbor
classifier on the SPD manifold spanned by
traditional SPD matrices.
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• NN-LogEDCSPD: LEM-based nearest neighbor
classifier on the SPD manifold spanned by our
proposed CSPD matrices.

• CDLSPD: CD on the SPD manifold spanned by
traditional SPD matrices.

• CDLCSPD: CDL on the SPD manifold spanned
by our proposed CSPD matrices.

• LogEKSRSPD: LogEKSR on the SPD manifold
spanned by traditional SPD matrices.

• LogEKSRCSPD: LogEKSR on the SPD manifold
spanned by our proposed CSPD matrices.

In our experiments, we re-sized all the images to
24 × 24, allowing them to be divided into 2 × 2, 3 × 3,
4×4, 6×6, 8×8, and 12×12 blocks. With this image
size, the dimensionality of the traditional SPD is 576×
576. Instead, the dimensionality of the CSPD will be
4 × 4, 9 × 9, 16 × 16, 36 × 36, 64 × 64, and 144 × 144.
It is thus clear that our approach provides a lower-
dimensional data representation. Next, we use the
results of the experiments to verify the discriminative
power of our model.

4.2 Object categorization

The ETH-80 dataset has eight categories of images:
apples, pears, tomatoes, cows, dogs, horses, cups,
and cars. Each class has 10 image sets, and each
image set comprises 41 images from different angles.
Figure 3(top) shows some images in the ETH-80
dataset. For each class, we randomly chose 2 image
sets as training data, and the remaining image sets
were used as test data. We give average accuracies
and standard deviations of the 10 cross validation
experiments. Table 1 shows the performance of both
our proposed CSPD model and the traditional SPD
model using four classification algorithms. The results
for our CSPD model here use 6 × 6 blocks.

Fig. 3 Images from the three datasets. Top: ETH-80 [4]. Middle:
CG [5]. Bottom: virus [13].

Table 1 Recognition rates with standard deviations, ETH-80 dataset

Method Accuracy

NN-AIRMSPD 58.22 ± 6.35

NN-AIRMCSPD 84.92 ± 4.54

NN-LogEDSPD 64.48 ± 6.25

NN-LogEDCSPD 87.52 ± 3.85

CDLSPD 78.66 ± 7.07

CDLCSPD 88.92 ± 3.95

LogEKSRSPD 86.94 ± 4.58

LogEKSRCSPD 89.92 ± 3.84

4.3 Hand gesture recognition

The Cambridge hand gesture dataset consists of a
set of high resolution color sequences acquired by a
Senz3D sensor showing an image sequence of hand
gestures defined by 3 primitive hand shapes and
3 primitive motions. This dataset has 900 image
sets in 9 classes with 100 image sets in each class
(see Fig. 3(middle)). For the task of hand gesture
recognition, 20 image sets of each class were randomly
selected as training data, and the remaining image
sets were used as test data. Ten-fold cross validation
experiments were carried out on this dataset. We
give the average accuracies with standard deviations
for the ten experiments in Table 2. The results for
our CSPD model are again based on 6 × 6 blocks.

4.4 Virus cell classification

The virus dataset contains 15 categories, each
category having 5 image sets, each with 20 pictures
taken from different angles (see Fig. 3(bottom)). We
arbitrarily chose 3 for training and the rest for testing.
Table 3 shows the results using our proposed CSPD
model and the traditional SPD model using four
classification algorithms. The results for our CSPD
model are this time based on 4 × 4 blocks.

Table 2 Recognition rates with standard deviations, hand gesture
dataset

Method Accuracy

NN-AIRMSPD 51.77 ± 2.47

NN-AIRMCSPD 76.39 ± 1.81

NN-LogEDSPD 67.49 ± 1.60

NN-LogEDCSPD 80.60 ± 1.48

CDLSPD 89.23 ± 2.00

CDLCSPD 90.84 ± 1.20

LogEKSRSPD 89.69 ± 1.19

LogEKSRCSPD 91.02 ± 1.54
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Table 3 Recognition rates with standard deviations, virus cell dataset

Method Accuracy
NN-AIRMSPD 27.57 ± 4.34
NN-AIRMCSPD 33.67 ± 6.33
NN-LogEDSPD 25.97 ± 4.62
NN-LogEDCSPD 41.07 ± 6.10
CDLSPD 45.30 ± 5.65
CDLCSPD 54.50 ± 7.38
LogEKSRSPD 47.13 ± 4.58
LogEKSRCSPD 53.77 ± 6.44

4.5 Analysis

For all three datasets, the results for all four
classifiers show that our proposed CSPD can
provide more discriminative and robust features
than traditional SPD. Especially for the ETH-80
dataset, the recognition rates of the two NN classifiers
based on our proposed CSPD, NN-AIRMCSPD and
NN-LogEDCSPD, are higher than for the two state-of-
the-art classification algorithms CDL and LogEKSR,
based on traditional SPD. Also, the accuracies
of the two classifiers CDL and LogEKSR show
that our proposed CSPD is more discriminative,
and LogEKSRCSPD achieves the best result with
an accuracy of 89.92% and standard deviation of
3.84. For the hand gesture and virus datasets,
the advantages are not as obvious as for ETH-80.
Nevertheless, LogEKSRCSPD still achieves the best
result with an accuracy of 91.02% and standard
deviation of 1.54 for the hand gesture dataset, while
CDLCSPD achieves the best result with an accuracy
of 54.50% and standard deviation of 7.38 on the virus
dataset.

5 Effect of block size
Next, we will present the effects of varying block
size on accuracy and running for a fixed classification
algorithm. We show results using the ETH-80 dataset
as an example. The notation used is as follows:
• SPDTR: traditional SPD data representation.
• CSPDn×n: CSPD descriptor obtained by dividing

the image into n × n blocks.

5.1 Effects of block size on accuracy

In order to display the effects of block size, we give
the average accuracies achieved for traditional SPD
as well as for 6 different CSPD descriptors arising
from different block sizes. Table 4 shows the average

Table 4 Effect of block size on average accuracy

Method NN-AIRM NN-LogED CDL LogEKSR
SPDTR 58.22 64.48 78.66 86.94
CSPD2×2 56.72 63.48 62.98 59.58
CSPD3×3 73.73 79.89 81.02 81.63
CSPD4×4 82.31 85.52 86.45 86.44
CSPD6×6 84.92 87.52 88.92 89.92
CSPD8×8 85.83 86.66 88.03 89.34
CSPD12×12 86.86 84.19 87.52 88.69

accuracies achieved with different data descriptors
and NN-AIRM, NN-LogED, CDL, and LogEKSR
classification algorithms. The data in each row
are the average recognition rates using the same
data descriptor and different classification algorithms;
the columns give the average recognition rates for
the same classification algorithm with different data
descriptors. The recognition rates using the CSPD
model are lower than for the traditional SPD model
when using 2 × 2 blocks. However, the algorithms
have better recognition rates than for SPD when
using our proposed CSPD model and larger blocks.

In order to show the robustness of our proposed
CSPD model, we give average standard deviations
of ten experiments in Table 5. The data in the
row are the standard deviations of accuracy using
the same data descriptor with different classification
algorithms, while columns give standard deviations
of accuracy for the same classification algorithm
with different data descriptors. The results show
that standard deviations from our CSPD model are
generally lower than for the traditional SPD model,
for the same classification algorithm, especially for
larger block sizes.

The results in these two tables show that, typically,
our CSPD model works best when the images were
divided into 6 × 6 blocks, justifying the use of this
size in the results in Tables 1 and 2. The results of
classification algorithms based on the CSPD model
in Table 3 were obtained by dividing the images in

Table 5 Effect of block size on standard deviation of accuracy

Method NN-AIRM NN-LogED CDL LogEKSR
SPDTR 6.35 6.25 7.07 4.58
CSPD2×2 5.66 5.67 6.66 5.99
CSPD3×3 5.47 4.18 4.40 4.37
CSPD4×4 4.91 4.78 4.27 3.74
CSPD6×6 4.54 3.85 3.95 3.84
CSPD8×8 4.00 4.31 3.82 4.12
CSPD12×12 4.24 4.23 4.18 3.72
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the virus cell dataset into 4 × 4 blocks, which also
works well.

5.2 Effects of block size on run time

CSPD matrices have lower dimensionality than
traditional SPD matrices. This property saves run
time. We consider the efficiency of our CSPD model
in two ways: (i) the run time using different data
representation models while using the same classifier,
and (ii) the time needed to compute data descriptors
(SPD or CSPD).

Table 6 shows the time needed to compute data
descriptors (SPD or CSPD). Clearly, the time needed
for CSPD is less than for traditional SPD when the
image set is divided into 2 × 2, 3 × 3, 4 × 4, and 6 × 6
blocks. In general, all descriptors take comparable
time.

Secondly, we compare classification time using
different data descriptors in Table 7. Each row gives
run time for the same data descriptor while using
different classification algorithms, while columns give
run time using the same classification algorithm with
different data descriptors.

These two tables show that our CSPD model
takes least time when the images were divided into
2 × 2 blocks. Even with 12 × 12 blocks, our CSPD
model takes far less time than traditional SPD while
using the same classification algorithm. We can thus

Table 6 Time needed to compute data descriptors

Method Time

SPDTR 3.03 s

CSPD2×2 2.80 s

CSPD3×3 2.73 s

CSPD4×4 2.47 s

CSPD6×6 2.98 s

CSPD8×8 3.17 s

CSPD12×12 3.64 s

Table 7 Time taken by different data descriptors with the same
classification algorithm

Method NN-AIRM NN-LogED CDL LogEKSR

SPDTR 31063.0 ms 4168.9 ms 348.6 ms 877.5 ms

CSPD2×2 13.6 ms 3.4 ms 8.1 ms 2.6 ms

CSPD3×3 20.6 ms 3.9 ms 9.2 ms 4.6 ms

CSPD4×4 37.9 ms 5.5 ms 10.0 ms 5.9 ms

CSPD6×6 137.8 ms 15.6 ms 10.9 ms 6.0 ms

CSPD8×8 422.0 ms 42.2 ms 13.0 ms 12.9 ms

CSPD12×12 1634.1 ms 211.6 ms 33.4 ms 58.0 ms

conclude that our CSPD model improves the efficiency
of algorithms significantly.

6 Conclusions and future work
In this paper, we have proposed the component
symmetric positive definite (CSPD) model as a
novel descriptor for image sets. Its superior time
performance is due to its lower dimensionality, and
it also shows better discriminative ability, providing
higher recognition rates than those from traditional
SPD when using the same classification algorithm.
The latter is clearly demonstrated by results from two
nearest neighbor classification algorithms. In future,
we hope to devise further data descriptors for image
set classification.

References

[1] Huang, Z.; Wang, R.; Shan, S.; Chen, X. Projection
metric learning on Grassmann manifold with
application to video based face recognition. In:
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 140–149, 2015.

[2] Harandi, M.; Salzmann, M.; Hartley, R. Dimensionality
reduction on SPD manifolds: The emergence of
geometry-aware methods. IEEE Transactions on
Pattern Analysis and Machine Intelligence Vol. 40, No.
1, 48–62, 2017.

[3] Chang, F.-J.; Nevatia, R. Image set classification
via template triplets and context-aware similarity
embedding. In: Computer Vision–ACCV 2016. Lecture
Notes in Computer Science, Vol. 10115. Lai, S. H.;
Lepetit, V.; Nishino, K.; Sato, Y. Eds. Springer Cham,
231–247, 2016.

[4] Huang, Z.; Wang, R.; Shan, S.; Li, X.; Chen, X.
Log-Euclidean metric learning on symmetric positive
definite manifold with application to image set
classification. In: Proceedings of the 32nd International
Conference on Machine Learning, Vol. 37, 720–729,
2015.

[5] Faraki, M.; Harandi, M. T.; Porikli, F. Image
set classification by symmetric positive semi-definite
matrices. In: Proceedings of the IEEE Winter
Conference on Applications of Computer Vision, 1–8,
2016.

[6] Chen, Z.; Jiang, B.; Tang, J.; Luo, B. Image
set representation and classification with attributed
covariate-relation graph model and graph sparse
representation classification. Neurocomputing Vol. 226,
262–268, 2017.



252 K.-X. Chen, X.-J. Wu

[7] Wang, R.; Guo, H.; Davis, L. S.; Dai, Q. Covariance
discriminative learning: A natural and efficient
approach to image set classification. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 2496–2503, 2012.

[8] Ren, J.; Wu, X. Bidirectional covariance matrices:
A compact and efficient data descriptor for image
set classification. In: Intelligence Science and Big
Data Engineering. Image and Video Data Engineering.
Lecture Notes in Computer Science, Vol. 9242. He, X.
et al. Eds. Springer Cham, 186–195, 2015.

[9] Cherian, A.; Sra, S. Riemannian dictionary learning
and sparse coding for positive definite matrices. IEEE
Transactions on Neural Networks and Learning Systems
Vol. 28, No. 12, 2859–2871, 2017.

[10] Harandi, M. T.; Hartley, R.; Lovell, B.; Sanderson, C.
Sparse coding on symmetric positive definite manifolds
using Bregman divergences. IEEE Transactions on
Neural Networks and Learning Systems Vol. 27, No.
6, 1294–1306, 2016.

[11] Li, P.; Wang, Q.; Zuo, W.; Zhang, L. Log-Euclidean
kernels for sparse representation and dictionary
learning. In: Proceedings of the IEEE International
Conference on Computer Vision, 1601–1608, 2013.

[12] Wang, Q.; Li, P.; Zuo, W.; Zhang, L. RAID-G:
Robust estimation of approximate infinite dimensional
Gaussian with application to material recognition. In:
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 4433–4441, 2016.

[13] Faraki, M.; Harandi, M. T.; Porikli, F. Approximate
infinite-dimensional region covariance descriptors for
image classification. In: Proceedings of the IEEE
International Conference on Acoustics, Speech and
Signal Processing, 1364–1368, 2015.

[14] Arandjelovic, O.; Shakhnarovich, G.; Fisher, J.;
Cipolla, R.; Darrell, T. Face recognition with image sets
using manifold density divergence. In: Proceedings of
the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, Vol. 1, 581–588, 2005.

[15] Tuzel, O.; Porikli, F.; Meer, P. Region covariance:
A fast descriptor for detection and classification.
In: Computer Vision–ECCV 2006. Lecture Notes in
Computer Science, Vol. 3952. Leonardis, A.; Bischof,
H.; Pinz, A. Eds. Springer Berlin Heidelberg, 589–600,
2006.

[16] Moore, B. Principal component analysis in linear
systems: Controllability, observability, and model

reduction. IEEE Transactions on Automatic Control
Vol. 26, No. 1, 17–32, 1981.

[17] Izenman, A. J. Linear discriminant analysis. In:
Modern Multivariate Statistical Techniques. Springer
Texts in Statistics. Springer New York, 237–280, 2013.

[18] Zhang, D.; Zhou, Z.-H. (2D)2PCA: Two-directional
two-dimensional PCA for efficient face representation
and recognition. Neurocomputing Vol. 69, Nos. 1–3,
224–231, 2005.

[19] Pennec, X.; Fillard, P.; Ayache, N. A Riemannian
framework for tensor computing. International Journal
of Computer Vision Vol. 66, No. 1, 41–66, 2006.

[20] Harandi, M.; Salzmann, M. Riemannian coding
and dictionary learning: Kernels to the rescue. In:
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 3926–3935, 2015.

Kai-Xuan Chen is a student in the
School of IoT Engineering at Jiangnan
University. His research interests
are in machine learning and pattern
recognition.

Xiao-Jun Wu is a professor in the
School of IoT Engineering at Jiangnan
University. He has his Ph.D. degree
in pattern recognition and intelligent
systems. He has published more than 150
papers on pattern recognition, computer
vision, fuzzy systems, neural networks,
and intelligent systems.

Open Access The articles published in this journal
are distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original
author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Other papers from this open access journal are available
free of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.


