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Abstract
A responsible use of energy resources is currently more important than ever. For the effective insulation of industrial plants, 
a three-camera measurement system was, therefore, developed. With this system, the as-built geometry of pipelines can 
be captured, which is the basis for the production of a precisely fitting and effective insulation. In addition, the digital twin 
can also be used for Building Information Modelling, e.g. for planning purposes or maintenance work. In contrast to the 
classical approach of processing the images by calculating a point cloud, the reconstruction is performed directly on the 
basis of the object edges in the image. For the optimisation of the, initially purely geometrically calculated components, an 
adjustment approach is used. In addition to the image information, this approach takes into account standardised parameters 
(such as the diameter) as well as the positional relationships between the components and thus eliminates discontinuities at 
the transitions. Furthermore, different automation approaches were developed to facilitate the evaluation of the images and 
the manual object recognition in the images for the user. For straight pipes, the selection of the object edges in one image 
is sufficient in most cases to calculate the 3D cylinder. Based on the normalised diameter, the missing depth can be derived 
approximately. Elbows can be localised on the basis of coplanar neighbouring elements. The other elbow parameters can 
be determined by matching the back projection with the image edges. The same applies to flanges. For merging multiple 
viewpoints, a transformation approach is used which works with homologous components instead of control points and 
minimises the orthogonal distances between the component axes in the datasets.

Keywords Industrial plant · BIM · Pipes · Computer vision · Cylinder detection · Transformation

1 Introduction

In the industrial environment, steps are taken to increase 
energy efficiency. This also includes the insulation of pro-
duction facilities (pipelines, fittings, vessels, etc.) to prevent 
heat but also cold losses. While a large part of the compo-
nents is already insulated, more complex shapes (e.g. valves) 
or parts that are difficult to reach (e.g. at greater heights or 

on the ceiling) in particular remain uninsulated. Accord-
ing to the European industrial insulation foundation (2021), 
uninsulated building components in Europe have an annual 
savings potential of 40 million tons of CO2 , the equivalent 
of 10 million households. One of the reasons for these prob-
lems is the fact that industrial insulator measure pipeline 
components still by hand, which is not only time-consum-
ing (especially when scaffolding or working platforms are 
needed to measure components on the ceiling or in greater 
heights) but also very imprecise.

In contrast to the insulators, the use of digital twins and 
Building Information Modelling (BIM) is more widespread 
among many plant owners and plant construction compa-
nies. Especially with regard to rebuilding work, mainte-
nance, documentation or even safety inspections, the use of 
BIM has become indispensable.

Laser scanners are usually used to create or update a BIM. 
However, this technology also brings some disadvantages. 
In addition to the high cost of the instrumentation, problems 
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occur on reflective or shiny surfaces (e.g. in food industry 
plants). Despite the great progress in research, modelling 
with commercial evaluation software based on the point 
clouds is still very time-consuming and, depending on your 
experience, also complex.

To speed up and simplify the work processes (especially 
in the insulation industry), a pre-calibrated three-camera 
measurement system (Fig. 1) was, therefore, developed to 
measure the necessary plant components. Modelling the 
objects on the basis of a photogrammetrically generated 
point cloud is not expedient, since the low texture of the 
pipes and pipe components usually results in a very sparse 
point cloud (Brief 2021).

In contrast, the object edges are used for the recon-
struction, whereby the first step forms the edge detection. 
Based on the edges, first straight pipes are reconstructed 
and then further components of the pipeline are calculated, 
using the 3D information of the already reconstructed pipes 
(Hart et al. 2022). The individually calculated objects are 
combined to a pipeline by a topological analysis and the 
geometry is recalculated and optimised in the context of 
an adjustment. Provided that it concerns larger construction 
units, which cannot be captured from a single point of view, 
a transformation can be applied for the merging of the points 
of view and the individual reconstructed parts, respectively. 
The as-built data are transferred to the planning software 
for the insulation via an interface. There, by specifying the 
insulation thickness and other parameters, the geometry of 
the insulation is calculated, which in turn can be transferred 
to the production machine via another interface. The digital 
work process increases the accuracy of fit of the insulation 
and reduces the need for rework. Even for objects that were 
previously too complex or components that were difficult to 

access, measurement or subsequent insulation can be made 
possible in this way.

In order to achieve simple handling of the measurement 
system including the associated reconstruction software with 
regard to the target group of insulators, various automation 
procedures were implemented to facilitate and accelerate 
manual reconstruction. Techniques from the field of com-
puter vision, photogrammetry as well as existing object 
knowledge from the standardisation context are used here.

At the beginning, the state of the art is discussed in 
Sect. 2. A short presentation of the measurement system 
as well as its calibration can be found in Sect. 3. Section 4 
and present calculation and automation approaches for 
the reconstruction of cylinders and elbows, respectively. 
Section 6 is devoted to the determination of the type and 
dimension of flanges (in accordance with the current stand-
ards). This is followed by the presentation of an adjustment 
approach for the optimisation of the component parameters 
in Sect. 7, whereby existing object knowledge (e.g. for the 
dimension of the components) can also be integrated for this 
purpose. Subsequently, in Sect. 8, a transformation method 
is presented, which is based on the reconstructed objects 
themselves instead of control points. Section 9 discusses 
and evaluates the results. The paper ends with a conclu-
sion as well as an outlook on AI-based object recognition 
in Sect. 10.

2  Related Work

Currently, laser scanners (LIDAR) are mainly used for the 
reconstruction of industrial plants and especially pipelines. 
Thus, we give a general overview of imaging and processing 
techniques, presenting LIDAR-based technologies as well 
as photogrammetric techniques and combined approaches.

2.1  LIDAR

Fidera et al. (2004) analyses the covered area of scan points 
on pipes for different materials. As a rule, this is less than 
50% of what is actually possible for all materials investi-
gated. Depending on the material, e.g. stainless steel or plas-
tic, larger deviations may occur after fitting a cylinder. In 
this context, photogrammetry again offers advantages, since 
a reconstruction based on the edges is possible independent 
of the material.

Kang et al. (2020) presents a general workflow for scan-
to-BIM applications for Mechanical, Electrical and Plumb-
ing. By choosing appropriate parameters, this can be adapted 
to different scenarios. The authors evaluate the approach 
for both a LIDAR point cloud and a photogrammetrically 
generated point cloud from a UAV survey. As a result, this 

Fig. 1  Three-camera measurement system (horizontal/vertical base: 
approx. 650 mm)
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approach is slightly superior to commercial software pack-
ages for modelling in terms of recognition rate.

For the automation of modelling based on the point cloud, 
various strategies have been developed in recent years, 
which can be divided as follows, according to Maalek et al. 
(2019).

2.1.1  Scan vs. BIM

Bosché et  al. (2013) use an existing as-designed BIM 
model for the segmentation of pipes or generally installa-
tions, whereby they assume an approximately as-designed-
conform construction. Bosché et al. (2015) determine cyl-
inder parameters by cross sectioning in the point cloud and 
the corresponding area of the BIM. In addition to pipes, 
Maalek et al. (2019) also model flanges in particular using 
an existing BIM, whereby they also work with a projection 
into the plane. In contrast to the mentioned authors, Son 
et al. (2015) detect, supported by pre-known component 
lists and dimensions, the objects and their position directly 
from the point cloud geometry. They execute the registration 
based on the as-designed model after the reconstruction. The 
other authors, however, perform this step first. All in all, 
these methods offer a simple automation option, but are only 
suitable if the corresponding prior knowledge is available. 
If an as-designed BIM cannot be provided or if it deviates 
strongly from the construction, these methods fail.

2.1.2  Local Curvature‑Base Methods

Kawashima et al. (2014) and Nguyen and Choi (2018) work 
with a surface normal based region-growing algorithm to 
segment the point cloud. For fitting the actual cylinder, 
Nguyen and Choi (2018) use the algorithm of Schnabel 
et al. (2007). Kawashima et al. (2014), on the other hand, 
use eigenvalue decomposition to determine the cylinder 
orientation and the axis as well as the radius by projecting 
the cylinder points into a plane orthogonal to the cylinder 
orientation. A similar procedure is also used by Tran et al. 
(2015). Dimitrov and Golparvar-Fard (2015), on contrast, 
use region-growing based on curvature and surface rough-
ness. However, they only focus on the segmentation of the 
point cloud. Chan et al. (2020) investigate the fitting of 
elbows of different types into a scanned point cloud and the 
effects of different coverage levels. In general, these meth-
ods are mainly suitable for simple geometric shapes, such 
as the cylinder. However, they are less suitable for more 
complex components or those that are composed of different 
shapes (e.g. the flange). Problems can be expected especially 
in those places where the surface and its normals change 
suddenly.

2.1.3  Hybrid Methods

Ahmed et al. (2013) or Liu et al. (2013) use prior knowledge 
and assume that the pipes are either parallel to the ground 
or the walls, respectively. They extract cylinders from point 
clouds by projecting them in 2D space. They use cross-
sections, so the problem reduces to finding 2D circles. The 
projection planes are parallel to the walls or the floor and 
orthogonal to each other. This assumption is certainly justi-
fied in some cases, but not generally valid. Thus, this proce-
dure is only applicable for some scenarios.

2.1.4  Machine Learning

Perez-Perez et al. (2021) present a method for semantic 
segmentation. First, the point cloud is segmented using the 
algorithm of Dimitrov and Golparvar-Fard (2015). This is 
followed by geometric and semantic labelling using different 
classifiers and assigning labels to segments using Markov 
Random Fields. However, the authors limit their approach 
to segmentation only. For a modelling of the pipelines, a 
subdivision into individual components as well as a geo-
metric fitting for the extraction of the associated parameters 
is also necessary.

2.2  Photogrammetry

In general, the reconstruction of cylindrical objects is 
already possible with a single image. Doignon and de Mathe-
lin (2007) present, if the radius is known, a closed form 
solution. Since in our case the diameter of the pipes is not 
known in advance, at least two images are needed. Calcula-
tion approaches with two or more images are provided by 
Navab and Appel (2006) using Plücker coordinates. Becke 
and Schlegl (2015) further present a least-square adjustment 
for image-based reconstruction of cylinders. Using multi-
ple cylinders, the orientation of cameras can also be solved 
(Navab and Appel 2006).

Veldhuis and Vosselman (1998) present an image-based 
computational approach for cylinders, which is an exten-
sion of the line feature introduced by Mulawa (1989). A 
least-squares fitting for pipes can be found in Ermes et al. 
(1998). The basis for the reconstruction are parameterised 
CAD models of the pipeline components. Tangelder et al. 
(2003) describe an extension of this system. They analyse 
the pipeline as a whole and integrate the neighbourhood 
relations between the components into the calculation. Also 
Bürger (1999) uses photogrammetry and a least-squares fit-
ting for the reconstruction of pipelines. In contrast to Ermes 
et al. (1998), Bürger (1999) minimises the deviations not 
in the image but in the object space. The photogrammet-
ric approaches discussed provide useful results, especially 
with respect to accuracy. However, the reconstruction is not 
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automated. The edges of the objects must be selected indi-
vidually in the images before the calculation.

An automated approach for extracting pipes from under-
water images is described by Rekik et al. (2018), which use 
an image descriptor and Support Vector Machine to per-
form a classification regarding the presence of pipes as well 
as a localisation using bounding boxes. The result of the 
approach is the object recognition. A further processing and 
the reconstruction of the pipes is missing.

Photogrammetric reconstruction of pipelines with a con-
sumer camera is explained by Ahmed et al. (2012). The 
authors calibrate the camera in advance. Control points are 
also placed to solve the orientation. Reconstruction is based 
on the generated point cloud, although direct reconstruction 
based on the images is also mentioned as an alternative. 
Similarly, Martin-Abadal et al. (2022) use photogrammet-
ric point clouds, which are calculated from the images of a 
stereo camera system. Using Deep Learning and a modified 
version of the PointNet model, the points can be classified 
(pipes, fittings or background) and then extracted together 
with the required information (position, orientation, length, 
diameter, etc.). We have also already investigated the pho-
togrammetric generation of a point cloud from images taken 
in industrial plants (Brief 2021). Depending on the surface 
texture, this sometimes resulted in very sparse point clouds 
and problems with the reconstruction.

A comparison of terrestrial laser scanning and photo-
grammetric reconstruction of pipelines can be found in 
Ahmed et al. (2011). While the acquisition time is similar 
for both methods, the authors see an increased time require-
ment for photogrammetric data processing. For the latter, 
the operator needs more prior knowledge, while on the 
other hand higher costs for the instrumentation should be 
calculated for laser scanning. Here, we see potential for our 
approach. By automating the photogrammetric reconstruc-
tion, we want to make it faster and simpler, whereby the 
advantages of photogrammetry then prevail.

Early approaches to an inspection system for underwa-
ter pipelines describe, for example, Tascini et al. (1996) or 
Narimani et al. (2009). Both use a camera-based system 
and localise pipes based on the edges in the image. The lat-
ter work with the Hough Transform (Hough 1962) for this 
purpose. This approach may be useful underwater because, 
apart from pipes, there are generally few linear structures. 
In industrial environments in particular, there are signifi-
cantly more linear objects. A reconstruction based purely 
on the Hough Transform, therefore, leads to many errors 
(cf. Sec. 4.1).

Calculation methods for the measurement and reconstruc-
tion of complex, curved tubes, e.g. on machines or motors, 
describe Guo et al. (2021) or Cheng et al. (2021). Guo et al. 
(2021) use images from a single camera for this purpose. 
To extract image edges for the reconstruction, the authors 

use a convolution neural network, which gives better results 
compared to classical edge operators. The pipeline geom-
etry is obtained by intersecting the edges with submillim-
eter accuracy. Cheng et al. (2021) also omit edge operators 
like Canny and use a modified fully convolutional network 
based on U-Net. The authors use HDR images as input data 
and use their own loss function for the training in order to 
consider redundant or missing edges in the return data of the 
network. At first glance, the field of application thus seems 
similar. Nevertheless, there are differences. In mechanical 
engineering, it is usually a matter of individually shaped 
tubes, which are described by a polyline and the diameter. 
Fittings (e.g. flanges or valves) do not usually occur there.

2.3  Hybrid Techniques (LIDAR 
and Photogrammetry)

Rabbani (2006) primarily uses laser scanner images for 
pipeline reconstruction, where hidden objects can be recon-
structed and added with the help of images. For automatic 
cylinder extraction, he uses a modified two-stage Hough 
Transform. Single images can be oriented using recon-
structed objects, and additional objects can be computed 
about these. The author also describes an object-based trans-
formation for registration.

The aerial survey using a drone is described by Guerra 
et al. (2018). Due to the disadvantages of photogrammetry 
in terms of automatic reconstruction and point cloud-based 
computation in terms of computation time, the authors use 
the drone in combination with a multisensor system. In the 
point cloud, cylinders are first detected using RANSAC. In 
the further process, the cylinders or pipes can be detected 
and fitted in the image based on the projection. This is possi-
ble over the rest of the flight. A further development towards 
automation is described by Guerra et al. (2020) by training a 
neural network to detect the pipes in the images. Also Cheng 
et al. (2020) use a neural network for automatic extraction 
of the components. After the classification and clustering 
of the measurement points, a graph-based analysis of the 
pipe axes follows. At the end, the components are fitted into 
the respective axis sections. A similar approach is used by 
Wang et al. (2022). In addition to the point cloud, images are 
also captured. With the help of a neural network, the images 
are semantically segmented. Subsequently, depth maps with 
semantic information can be generated from the images. The 
segmentation can then also be transferred to the LIDAR 
point clouds and the components extracted on this basis.

We currently do not see the combined use of photogram-
metry and LIDAR as an advantage. On the contrary, since 
this approach entails additional costs due to the double set of 
equipment. In addition, more data are generated and thus a 
greater effort for the processing (e.g. registration and orienta-
tion) is required. Nevertheless, object recognition using Deep 
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Learning is also a promising approach. However, the training 
process is complex due to the large amount of data.

3  Proposed Measurement System

The proposed measurement system was designed especially 
for use in the insulation industry, whereby, in accordance 
with the insulators, a measuring accuracy of 2–4 mm is 
required. In this sense, on the one hand, the comparatively 
cost effective camera measurement technology was selected. 
On the other hand, the system can also be used by amateurs 
due to a pre-calibration. However, the techniques presented 
in the following are also generally transferable for a photo-
grammetric evaluation, e.g. for hand-held images. In this 
context, a drone-based survey is planned for the future.

The measurement system (Fig. 1) consists of three indus-
trial cameras in combination with three ring lights, which 
are permanently mounted in a triangular arrangement on a 
holder. The cameras are calibrated using Pictran software 
(Technet GmbH 2023) within a common bundle block 
adjustment. A 3D calibration board with Inpho targets 
(Trimble 2023; Ahn and Schultes 1997) and known coor-
dinates is used for this purpose, including vertical images. 
The RMS of the corrections (for the observed control point 
coordinates) after adjustment is approximately 0.2 μ m or 
0.05Px. As a result, six distortion parameters (radial distor-
tion, decentration, scale and shear), the principal point and 
the camera constant are available for each camera. Based on 
the determined calibration parameters, the error influences 
caused by the camera and the lens can be removed compu-
tationally and a rectified image without lens distortions can 
be generated in the developed software. The parameters of 
the calibration or orientation are assumed to be stable dur-
ing the object acquisition. Provided that the upper camera 
has been removed for transport, the relative orientation can 
be determined in the field with at least 5 homologous points 
(Luhmann 2018). The distance between the horizontal two 
fixed cameras is used as scale information.

The system is designed for an acquisition distance of 
3–10 m, where the field of view of the cameras at 10 m is 
about 3 × 4 m. The system remains on the tripod during the 
measurement, while a swivelling bearing also allows the 
measurement of objects on the ceiling. We have illustrated 
the workflow from the recording followed by the reconstruc-
tion and finally the design and manufacturing of the insula-
tion in Fig. 2.

4  Reconstruction and Detection of Cylinders

Pipe objects can be calculated directly on the basis of the 
images and the object edges contained using the approach 
presented by, for example, Bösemann (1996) or Bürger and 

Busch (2000). This is possible due to the radial symmetry of 
the pipe geometries, so that the entire object can be recon-
structed on the basis of the object edges in the images.

A cylinder is represented in the image by two straight 
lines corresponding to the edges of the cylinder surface 
(Fig. 3). For the reconstruction, two planes ti,1 and ti,2 can be 
generated per image i on the basis of the two edges of the 
cylinder surface, which run through the projection centre of 
the camera. The cylinder thus results as a tangential element 
to the four planes ( t1,1 , t1,2 , t2,1 and t2,2 ). Strictly speaking, 
three planes are also sufficient for the reconstruction (Din-
gle 1998). However, since in this case there is an ambiguity 
(four solutions), in the images from which only one plane 
results, the side on which the cylinder lies with respect to 
the edge must be defined.

As a prerequisite for calculation, there must be at least 
one camera pair whose base is not in a common plane with 
the cylinder axis and the projection centre. This condition 

Fig. 2  Workflow for as-built reconstruction and manufacturing of 
insulation
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is fulfilled by the three-camera measurement system. Thus, 
first the planes e1 and e2 can be computed, which contain 
both the 3D axis of the cylinder and the projection of this 
axis in the image (Fig. 3). According to Navab (2002), 
the normal vector ne,i of the plane ei is computed from the 
normal vectors nt,1 and nt,2 of the tangent planes ti,1 and ti,2 , 
where these point away from the cylinder by definition:

The corresponding projection centre P0,i can be used as a 
point of the planes ei . The cylinder axis is then obtained by 
intersecting the two planes e1 and e2.

Thus, for the reconstruction of cylinders in conjunc-
tion with the presented measurement system and the 
associated processing software, as well as in the preced-
ing approaches of Bürger (1999), Dingle (1998), Hilgers 
et al. (1998), Mischke and Rieks (2001), Navab (2002) and 
Tangelder et al. (2000), a manual selection of the image 
edges (for spanning the tangential planes ti,j ) is necessary. 
A fully automatic reconstruction of cylinders and elbows 
based on image data is described by Bösemann (1996) or 
Jin et al. (2016). However, these techniques are used in 
special measurement systems with active background illu-
mination. Occlusions by other objects or disturbing light 
effects are thus not present, so that the possibility for auto-
mation is easily given there. These conditions are usually 

(1)ne,1 =
nt,1 + nt,2

2

not met for images in industrial plants, which makes auto-
mation more difficult.

4.1  Fully Automated Brute Force Approach

Nevertheless, a fully automatic reconstruction based on 
extracted lines was first investigated as part of this study. 
For the detection of lines in the image with classical 
operators like the Hough Transform (Hough 1962) or the 
Progressive Probabilistic Hough Transform (Matas et al. 
2000) the image edges are needed. However, they are also 
required in general for the further calculation steps. There-
fore, the image edges are calculated previously with sub-
pixel accuracy using the algorithm presented by Trujillo-
Pino et al. (2013). Overall, it has been shown that the lines 
extracted using the Hough Transform lead to many false 
detections, especially in the case of a noisy data basis, 
respectively, require a careful choice of parameters. There-
fore, the LineSegmentDetector (Gioi et al. 2012) was used 
instead, which requires no parameters and yields fewer 
false detections. Next, all line pairs with approximately the 
same direction were detected per image. These line pairs 
represent the edges of a potential cylinder. In a brute-force 
approach, the line pairs are now matched across images 
and intersected in object space.

The following filters are applied to eliminate incorrect 
combinations:

– Average depth of the cylinder: the reconstructed cylinder 
lies within the working range of the measurement system

– Diameter of the cylinder: the diameter of the recon-
structed cylinder is close to a normalised value from DIN 
(2003)

– Intersection quality: the planes generated from the edges 
in the image are tangent to the cylinder with as little devi-
ation as possible; the skew distance between the cylinder 
axis and the image rays based on the edges corresponds 
to the radius

Figure 4 shows the fully automatically detected cylinders 
with a majority horizontal course. All cylinders match the 
above filter criteria. Despite some correct pipes, many false 
detections are also included. In addition, due to the large 
number of possible line combinations, the calculation time 
is very long. In the present case, this amounted to approx. 15 
min with a single-thread implementation. 15 min more must 
be added for the calculation of the majority of vertical cylin-
ders. Compared to images from real industrial plants, Fig. 4 
tends to contain fewer line-shaped edges, so that with even 
more lines the quartic increase in computing time becomes 
enormously noticeable. Roughly, the number of possible 
combinations nk can be calculated as follows:

P0,1 P0,2

C

B1 B2

t1,1

r

t1,2

r

t2,1

t2,2

e1 e2

Fig. 3  Reconstruction of a Cylinder (Top View)
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Assuming approximately the same number of lines nL1 and 
nL2 in the first and second images, respectively, the equation 
simplifies to

In practice, however, nk turns out to be smaller, since some 
combinations can be discarded due to the pre-filtering based 
on the line direction.

In sum, however, it can be stated that this approach is 
not very practical due to the high computation time and the 
poor results.

4.2  Semi‑automatic Approach

In addition to full automation, however, a semi-automatic 
solution is also conceivable, in which the user manually 
selects a pair of lines in an image, i.e. the two edges of the 
cylinder. If one continues to pursue the approach presented 
in Sect. 4.1, only n2

L2
 possible combinations result from the 

preselection, whereby a performant computation is also not 
possible in this way.

However, the preselection in one image opens the pos-
sibility for another procedure: In analogy to the epipolar 
line, a search range for the cylinder can be defined in the 
second image. If the depth information of the cylinder is 
also available, the search range can be narrowed down even 
further. However, the depth information of the cylinder is 

(2)nk = nL1 ∗
(
nL1 − 1

)
∗ nL2 ∗

(
nL2 − 1

)

(3)nk ≈ n4
L1

not available when using one image. It is well known, how-
ever, that there is a dependency between depth and dimen-
sion. The cylinder can be very close to the image plane but 
of small dimension or far away and of large dimension. 
Therefore, if the dimension of the cylinder is known, the 
depth can consequently be derived. In this context, the DIN 
(2003), which specifies concrete values for the pipe diameter 
is helpful, i.e. for each diameter also a depth and thus also 
a concrete 3D cylinder can be calculated. From the set of 
3D cylinders, only the one with the correct diameter must 
finally be selected, whereby this is now easily possible via 
the comparison with the second image.

Under certain circumstances, before starting the calcula-
tion, it is useful to restrict the value range of the cylinder 
diameters first. While the DIN (2003) specifies diameters 
up to 2,5 m, these are rather rarely needed in full range. 
After the user selects the edges in one image, the possible 
cylinders are calculated according to the selected diameter 
range. The cylinder axis is obtained by intersecting the view 
planes t offset in parallel by the radius r.

The possible cylinders (Fig. 5) can be further narrowed 
down based on the working range of the measurement sys-
tem (3–10  m) according to Fig. 6.

In Figs. 7 and 8, starting from a manual selection of 
the cylinder edges in the left image of the measurement 
system, the other two images are shown with the projec-
tions of the possible cylinders (after filtering based on the 
working range). The correct cylinder or cylinder diameter 
(in red) can be easily identified visually. To make this deci-
sion by the computer, the distances or the degree of cor-
respondence between the projection of the cylinder and the 
object edges in the image are examined. For this purpose, 
the distances to the object edges in the image are deter-
mined in an arbitrary interval s along the backprojected 

Fig. 4  Detected (mostly horizontal) cylinders on the pipeline dummy 
using the fully automatic brute-force algorithm

Fig. 5  Calculated cylinders based on image edges and concrete diam-
eters
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edges (Fig. 9). The search is performed in orthogonal 
direction to the projection and, with respect to computa-
tion time, in a defined range b. If no edge pixel is found in 
the given search range b, the value of b or b

2
 is used as the 

value for the distance di . To generate a quality criterion qc 

for the respective cylinder c, the RMS of the n distances 
di is calculated:

Starting with the cylinder c with the smallest value qc , 
a ranking can then be made for the most likely cylinder.

Figures 7 and 8 show that the red cylinder corresponds 
best with the image data, but there are still deviations. The 
reason for this is the generally poor intersection geometry 
of the parallel offset tangential planes to the cylinder. In 
particular, for distant cylinders with small diameters, a 
very acute intersection angle results, so that the 3D geom-
etry of the resulting cylinder can only be understood as 
an approximate value. For a final calculation, therefore, 
the image information from the other two images should 
also be used.

For this purpose, on the basis of the projection of the 
approximate cylinder, the bounding box is calculated in the 
other two images and enlarged by a buffer in order to com-
pensate for the uncertainties of the position of the projec-
tion. The lines contained in the resulting image section are 
then detected. Here, the Progressive Probabilistic Hough 
Transform is applied. Due to the small image section, which 
is roughly localised in the area of the pipe, relatively few 
false detections usually appear. To find the correct line pair 
and eliminate false detections, the 3D section geometry is 
examined for all line combinations in the image section. The 
diameter of the calculated cylinder can also be used as a 
filter. If there are large deviations from the nearest standard 
diameter, the cylinder and the associated line combination 
can be discarded. If the correct edges were found in the 
images, the cylinder geometry can be adapted from this. For 
a final calculation, it is recommended to use the adjustment 
approach presented in Sect. 7.

(4)qc =

�∑n

i=0
d2
i

n

P0

B DN50

DN65

DN80

DN100

DN125

DN150

DN200

a

Fig. 6  Limitation of the possible diameters based on the working range

Fig. 7  Projections of the possible cylinders in the upper image of the 
measurement system, red: correct cylinder

Fig. 8  Projections of the possible cylinders in the right image of the 
measurement system, red: correct cylinder
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Particularly, in the case of pipes with a small diameter 
and at a large distance, but also in the case of uncertainties in 
the manual selection of the edges in the initial image, there 
are deviations to the parameters of the initial cylinder, which 
in turn influences the search range for the other edges in 
the remaining two images. If larger deviations occur during 
the calculation of the initial cylinder, the entire calculation 
procedure can fail under certain circumstances.

For predominantly vertical cylinders, however, a step-by-
step calculation can help. If the edges were selected manu-
ally in the left (or right) image, the initial cylinder should 
first be optimised using the image from the upper camera 
and then the third image should be evaluated. Figures 7 
and 8 prove this. In Fig. 7, the deviations between the red 
cylinder projection around the actual pipe in the image are 
much smaller than in Fig. 8. A nearly vertical cylinder was 
reconstructed, and in this case the parallax in the x-direction 
is crucial for the reconstruction (Hart et al. 2022). Since 
between the upper and the left camera the x-parallax is only 
half as large compared to the right and the left, the devia-
tions in Fig. 7 are much smaller than in Fig. 8. Consequently, 
the object edges can be detected more easily in the upper 
camera image (Fig. 7). Based on this, the geometry of the 
initial cylinder can be improved due to the better section 
geometry (compared to the reconstruction from the single 
image). This also reduces the deviations between the pro-
jection and the actual pipe in the right image and creates 
better conditions for the detection of the cylinder edges in 
the right image.

5  Detection of Elbows

While it is easy to select the linear edges in the images for 
the cylinder or flange, this is more difficult for elbows. The 
appearance of the elbow contours is manifold and depends 

on the perspective. However, since elbows usually do not 
occur alone, but are usually adjacent to straight pipe ele-
ments, the reconstruction can be facilitated by integrating 
the following information:

– Diameter of the pipe or elbow
– Start and end direction or axis

The only remaining unknown is the bending radius, on 
which in turn the start and end points of the elbow depend 
(Veldhuis and Vosselman 1998).

To determine the unknown bending radius, it can be 
modified until the projection of the reconstructed elbow 
coincides with the object edges in the image. The procedure 
can be facilitated by including standardised bending radii. 
In addition to the diameter, which is also specified for the 
elbow by DIN (2003), the bending radius is also specified 
in DIN (1999). Specifically, this is based on the diameter 
and is roughly 1, 1.5 or 2.5 times its diameter (D2, D3 and 
D5 elbows).

Automation is also possible for elbows. The prerequi-
site here is that the objects connecting at both ends have 
already been reconstructed. In the case of straight pipes, a 
connection through an elbow is only possible if both pipes 
or axes are (approximately) coplanar. In general, this means 
that there is coplanarity between the axes at the end points 
(resulting from the end point and the corresponding axis 
direction) of two existing objects. Thus, the search for poten-
tial positions for pipe elbows is also conceivable, for exam-
ple, between a straight pipe and an already reconstructed 
elbow.

In addition to these mandatory conditions, there are also 
optional conditions which are not always fulfilled, but which 
can be used to speed up the search and avoid possible false 
detections. These include the distance between the imagi-
nary intersection of the axes and the nearest pipe end point. 

Fig. 9  Image section with edge pixels (red) of a pipe, back projec-
tion of the approximate pipe (green) and the determined deviations 
d
i
 (blue) in the interval s and in the search range b around the back 

projection. In the upper left region, no edge pixels and thus distances 
d
i
 could be found due to a too small search range
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This distance should be only slightly larger than the radius 
of the elbow. In addition, there should be no other collinear 
objects near the intersection point. This would otherwise 
indicate a T-piece.

Assuming an elbow according to DIN (1999), there 
are three possibilities for the appearance of the elbow at a 
detected point (resulting from the three possible bending 
radii). In order to verify the detected location and to find the 
suitable bending radius, a quality value qb can be determined 
for each elbow (type) b (Fig. 10) in analogy to the proce-
dure for finding the suitable cylinder diameter. This quality 
value reflects the average distance between the projection 
and the object edges in the image according to Fig. 9 and 
Eq. 4. If the smallest value is below a threshold, the elbow 
is confirmed.

If no standard elbow with normalised radius is available, 
the radius can also be determined individually. More details 
will follow in Sect. 7.3.

6  Determination of Flange Parameters

The reconstruction of flanges is possible in the same way. 
Since the flange is essentially a (short) cylinder from a geo-
metrical point of view, a reconstruction analogous to Sect. 4 
would be conceivable. However, the reconstruction of the 
flange on the basis of the straight edges of the flange face 
usually leads to very poor results or, concretely, to a tilting 
of the flange axis, since it turns out to be very short. How-
ever, defining the flange axis based on an adjacent element 
improves the calculation. In this case, the flange can then be 
defined by selecting a point on the straight edge of the flange 

face. The diameter or radius of the flange face is obtained 
via the distance between the skewed straight lines resulting 
from the associated image ray and the predefined flange axis. 
To determine the position and length of the axis segment of 
the flange, the edge is traced and extracted starting from the 
manually selected edge point with the help of the existing 
knowledge about the edge direction. By projecting the edge 
end points onto the flange axis, the position of the flange 
face is then obtained. Similarly as for the appearance of the 
elbows, this is also regulated for the flanges. Figure 11 shows 
some frequently occurring flange types from DIN (2018).

In addition to the distinction according to flange types, 
a further distinction can be made on the basis of the pres-
sure class. The individual types are available in different 
pressure classes, whereby the pressure class determines the 
dimension (Fig. 12). Table 1 shows an extract of the flange 
dimensions using the example of a DN40 weld neck flange. 
Although DIN (1975a, b, c, d) are obsolete standards, com-
ponents according to these standards can still be found in 
plants or also on the market. This is problematic in that the 
dimensions of the individual flanges within the same pres-
sure class differ slightly in some cases, as Table 1 shows. 
This also shows that the dimensions of the flange do not 
necessarily allow conclusions to be drawn about its pressure 
class, as the dimensions are in some cases also identical 
across pressure classes.

The user can select the flange type and pressure class 
from an automatically generated list (based on the known 
outside diameter) and verify or adjust it using the associated 
live projection into the image. The position of the flange is 
adjusted when selecting type and pressure class so that the 
position of the flange face remains unchanged.

(a) (b) (c)

Fig. 10  Proposed standard elbows with different bending radii as a clamped element between two pipes
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As an alternative to the method just presented, the pos-
sibility of attaching flanges to existing objects has also been 
implemented in the reconstruction software. Here, the flange 
starts at the existing end point.

In addition to the manual selection of the correct flange 
type and pressure class, automation has also been integrated 
here. This is also based on the degree of correspondence 
between the projection of the flange f (specified by the type 
and the pressure class) and the edges in the image (Fig. 13). 
Numerically, this is captured in the value qf  , which is deter-
mined in analogy to the elbow and according to Eq. 4.

7  Adjustment Approach 
for the Optimisation of the Pipe 
Parameters

The calculation methods presented so far are of a purely geo-
metric nature. Here, no object knowledge can be integrated 
or if, then at most indirectly. Depending on the position and 
course of the edges in the image, the result is, for example, a 
cone instead of a cylinder. Also, the determined dimensions 
are usually not equal to the values from the standards (for 
example, for the pipe diameter according to DIN (2003)). To 
improve the reconstruction quality, however, this knowledge 
can be integrated into the calculation. This model knowledge 
is taken into account in the least-square adjustment proce-
dure according to Tangelder et al. (1999) described below.

7.1  Adjustment for Individual Objects

Within the adjustment, the parameters of the pipe objects 
(position, direction or rotation, and object-related param-
eters, such as the length or diameter) are estimated, where 
the result of the geometric reconstruction can serve as a ini-
tial value. Tangelder et al. (1999) fit the edges of the object 
to pixels with high grey value gradients. Therefore, they use 
a two-stage approach. First they use the distance to pixels 
with a high gradient in the range of the projected edge as 
observation, whereby they introduce the squared gradient 
values as weights. After that, they fit the prealigned edges 
of the object modelled as a Gaussian smoothed step edge to 
the image edges for the final iterations.

In contrast to Tangelder et al. (2000), we use only a one-
step approach. We form the observations using the orthogonal 
distances di between the edge of the object to the nearest edge 
pixel (at subpixel level) (Fig. 9). The calculation of the dis-
tances between the backprojected edges and the image edges 
is performed (similar to what has already been described in 
Sect. 4) in an arbitrary interval s along the backprojected edges 
(Fig. 9). However, if there is no edge pixel in the search area, 
the formation of an observation is omitted and the search 

(a)

(b)

(c)

Fig. 11  Selected flange types according to DIN (2018)

Fig. 12  Dimensions of the weld neck flange, from DIN (2018)

Table 1  Dimensions of a DN40 weld neck flange

PN Norm D C2 H2 H3

6 DIN (2018) 130 14 38 7
6 DIN (1975a) 130 14 38 7
10 DIN (2018) 150 18 45 7
10 DIN (1975b) 150 16 42 7
16 DIN (2018) 150 18 45 7
16 DIN (1975c) 150 16 42 7
25 DIN (2018) 150 18 45 7
25 DIN (1975d) 150 18 45 7
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continues at the next point on the backprojected edge at the 
interval s.

As a rule, the least-square adjustment can be terminated 
after 5–10 iterations and thus is faster compared to Tangelder 
et al. (1999), who quantify the number of iterations between 
10 and 20. Similar to Tangelder et al. (1999), we use pseudo-
observations to account for existing model knowledge. For 
example, we introduce the nearest pipe diameter according to 
DIN (2003) as an observation with a high weight.

The formulation of the functional model in closed form 
is difficult due to the complex and non-linear relationships. 
Among other things, this includes the calculation of the 3D 
points on the object geometry that create the visible edges in 
the image. Furthermore, also the mapping process into the 
image and finally the calculation of the distances in the image 
in orthogonal direction to the projection. However, due to the 
lack of an explicit functional relationship, the determination 
of the partial derivatives is also not possible in a direct way. 
Ermes et al. (1999), therefore, propose a stepwise, analytical 
calculation:

First, the change of an “edge-generating” point P (point on 
the 3D object that lies on a line with the projection centre and 
the associated edge pixel in the image) in the object space is 
considered. For example, an edge-generating point P on the 
cylinder experiences approximately the same displacement as 
the cylinder itself (Ermes et al. 1999). The shift vector � or the 
derivative �P

�tx
 for the point P with respect to the translation in 

x-direction tx is thus:

Similarly, for a point P on a cylinder whose axis corresponds 
to the z-axis, the derivative with respect to the radius r is 
obtained in the radial direction:

The projection of the shift vectors or derivatives from object 
space into the image plane with image coordinates u and v 
describes Lowe (1991):

Here, c is the camera constant and � is the shift vector cal-
culated in 3D space or the derivative �P

�pj
 after the parameter 
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(a)

(b)

(c)
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Fig. 13  Proposed flanges for axial reconstruction with manually set 
edge point
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pj . In the last step, Ermes et al. (1999) determine the part so 
of the derivatives �u

�pj
 and �u

�pj
 orthogonal to the projection:

with

e is the direction of projection in the image at the corre-
sponding image point. Thus, the derivatives �di

�pj
 for the 

observed distances di with respect to the (unknown) param-
eter pj after applying the sign functions results in:

7.2  Common Adjustment with Conditions Between 
the Objects

In addition to the image data and the normalised values for 
the object-specific parameters, observations can also be for-
mulated to maintain the conditions for the entire pipelines 
(Tangelder et al. 2003). This includes the component transition 
without axial offset as well as the directionally and diameter 
continuous transition (Ermes 2000). To model the transition 
without axial offset, the vector w is first determined using the 
end point E1 of component 1 and the start point S2 of the sub-
sequent component 2:

From the vector w result, separated by the coordinate axes, 
three observations ( wx,wy,wz ). These can be added to the 
observation vector alongside the “image-based” observa-
tions (cf. Sect. 7.1). The partial derivative �w

�t2,x
 with respect 

to the unknown translation t2,x of component 2 in the x-direc-
tion thus results exemplarily to

In addition, analogously the partial derivative �w
�t1,x

 for the 
component 1 can be set to

(9)sp =
|e ⋅ s|
||e||2 e

(10)so = s − sp

(11)s =

(
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�pi
,
�v
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(12)
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= sign(so,xey − so,yex)so

(13)w = S2 − E1
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�t2,x
=

⎛⎜⎜⎝
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(15)
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Similarly, the directional deviations between two compo-
nents are also formulated as observations. Depending on the 
weighting, the final geometry is oriented more towards the 
model concepts or the image information. For more informa-
tion and especially the derivations, we refer to Ermes (2000).

7.3  Determination of the Elbow Radius

The determination of the unknown radius of an elbow has 
already been discussed in Sect. . If the radius is not based 
on the standards and is instead completely free, it can also 
be determined within the scope of an adjustment. Analo-
gous to the Sect. , it is assumed that the connection elements 
of the elbow are known. Thus, it is obvious to remove the 
unnecessary elbow parameters (translation, rotation, bend-
ing angle and diameter) from the adjustment and to leave 
only the radius as unknown. However, this does not lead 
to the desired success, since in the default case the starting 
point S of the elbow is fixed, or can only be shifted via the 
translation parameters. Changing the radius would cause the 
end point E of the elbow to deviate from the reference axis 
( IP − E ) of the connection element, as shown in Fig. 14a. 
It shows the shift vectors � or the partial derivatives �P

�r
 of 

a point P (or its projection on the elbow axis) according 
to the radius r. Therefore, we modified the functional rela-
tion accordingly so that the intersection point IP does not 
undergo any displacement due to the radius change. As 
a result, the starting point S and the end point E are also 
shifted only along the axes of the connecting elements 
(Fig. 14b).

Alternatively, the elbow can also be introduced into the 
adjustment with a full set of parameters. For the bending 
angle and the diameter, pseudo-observations are formulated 
with the existing approximated values or the normalised 
bending angle and diameter. These observations are given 
a high weight so that the associated unknowns effectively 
undergo no change. The freedom of the remaining transla-
tion and rotation parameters, respectively, is constrained by 
formulating additional observations that keep the starting 
point S and the E on the associated axes IP − S and IP − E , 
respectively.

8  Automatic Transformation via Multiple 
Reconstructed Objects

Compared to laser scanners, which cover a 360◦ panorama 
and thus a very large area, the measurement range of the 
three-camera measurement system is limited by the field of 
view of the cameras. However, primarily the geometries of 
individual components of the plant or pipeline are of inter-
est (to manufacture the insulation). Nevertheless, especially 
in the case of larger plant components, it is necessary to 
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capture the object from several points of view, which must 
then be merged by applying a transformation.

Typically, the transformation is carried out on the basis 
of control points. In contrast, it is also possible to perform 
the transformation on the basis of reconstructed objects 
that are contained in both datasets. For example, two 
pipes can be used as a minimum configuration. Ideally, 
these should be perpendicular to each other, since it is 

then sufficient if the pipe axis was only reconstructed as 
a partial section. In this case, the reconstructed pipes do 
not necessarily have to extend to the actual end point of 
the pipe or have an identical length.

8.1  Assignment of Corresponding Components

Before calculating the transformation, the correspond-
ences between the two datasets or the objects they contain 
must first be established. In the simplest case, this is done 
manually by selecting identical objects.

Rabbani (2006) describes an automatic correspondence 
search based on reconstructed objects. He uses an assign-
ment by applying RANSAC and checks or rejects the result 
by the geometric relations among them. To verify the final 
assignment, he applies a transformation to the underlying 
point cloud and evaluates the distances between the points 
of the two datasets.

Since the presented measuring system contains a incli-
nation sensor, and the reconstructed objects are thus 
available in a roughly horizontal coordinate system, the 
transformation is essentially limited to the rotation around 
the vertical axis as well as the translation. The inclination 
values have to be corrected only minimally. For the assign-
ment of the components, the approach of Rabbani (2006) 
is adapted and simplified as follows: 

1. Random selection of a horizontally oriented pipe: a 
horizontal pipe is randomly selected in both datasets. 
The pipes must have the same diameter and the value of 
the direction vector in the “height component” must be 
approximately the same. If the pipes have connections 
at both end points, their length must also match.

2. Determination of the rotation around the vertical 
axis using both pipes: using the direction vectors of the 
pipes, the rotation around the vertical axis is determined.

3. Selection of another object pair: search for another 
pair of components (pipe, flange or elbow), where the 
axis or normal direction is approximately the same after 
applying the rotation. In addition, the direction should 
be as orthogonal as possible to the first pair.

4. Determining the translation: the translation of the 
transformation is determined based on the second pair 
of objects.

5. Final verification using other objects: more corre-
spondences are searched and used to verify the corre-
spondence and the transformation.

The procedure is repeated until the assignment is verified. 
If an assignment does not meet the criteria, the iteration 
is aborted.

r

r

S

EIP

C

r

r

S

E

IP

C

(a)

(b)

Fig. 14  Shift vectors for elbow points due to a change in radius r 
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To calculate the transformation, at least two (prefer-
ably orthogonal) objects must have been reconstructed and 
assigned.

8.2  Pre‑transformation

After matching the component axes, the next step is to cal-
culate a pre-transformation. This is based on two linked 
component pairs, whereby attention is paid to the largest 
possible extension or axis length in order to achieve a good 
approximation. In the case of rectilinear components, it must 
be noted that the end points of the component axis cannot 
be used directly, since these may represent only an axis sec-
tion of the component. Therefore, the transformation is per-
formed using artificially generated points. For this purpose, 
the two axes are intersected in particular in the reference 
dataset ( Ref  ) and the dataset to be transformed (T), respec-
tively. In the distance d from the intersection point s, two 
points t1 and t2 are then interpolated onto the axes (Fig. 15). 
The transformation is now calculated over the three points 
s, t1 and t2.

8.3  Final Transformation

The pre-transformation was only calculated on the basis of 
two components, each of which is affected by deviations 
due to the reconstruction process. These deviations in turn 
influence the transformation so that the pre-transformation 
can only be understood as a first approximation. Therefore, 
the transformation parameters are optimised within the 
scope of an adjustment, whereby now the information of 
all corresponding components is included. The goal of the 

adjustment is the minimisation of the distances between 
the component axes between both datasets.

The observations form the perpendicular distances dP1 
and dP2 of the pre-transformed component endpoints to the 
axis of the corresponding reference object in the second 
dataset. Here, distances dPi are again split into two vectors 
o1,Pi and o2,Pi to establish a linear relationship. The vectors 
o1,Pi and o2,Pi are perpendicular to each other as well as to 
the direction vector rRef  of the cylinder axis (Fig. 16).

The unknowns form the transformation parameters. 
Specifically, a translation vector and the rotation are 
estimated, the latter being represented singularity-free 
as a quaternion q(qx, qy, qz, qw) . While an Euler rotation 
involves rotation about the three coordinate axes, a qua-
ternion performs a rotation about only one (arbitrary) 
axis. To avoid overparameterisation, the quaternion is 
normalised:

For the partial derivatives with respect to the translation �oi,Pj
�tx

 
at point i in direction j the normalised distance vector ni,Pj is 
required (Eq. 18). For the x-direction of the translation, the 
partial derivative is obtained for example as follows:

with
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x
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Fig. 15  Generation of the points t1,  t2 for the pre-transformation by 
interpolation on the axes l1 and l2 at the distance d 
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Fig. 16  Determination of the distance vectors for an axis-based trans-
formation
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The calculation of the partial derivatives of the observations 
with respect to the elements of the quaternion qk is done suc-
cessively. First, the partial derivative of the endpoints Pj is 
determined with respect to the elements of the quaternion qk:

Subsequently, �Pj

�qk
 is projected onto the normalised distance 

vector ni,Pj (Eq. 18) to obtain the partial derivative of the 
observations:

9  Results and Evaluation

In the following, the presented approaches and methods are 
evaluated both for their accuracy and robustness in terms of 
detection rate. With respect to accuracy, there is quite less 
information to be found in previous work cited in Sect. 2. 
Primarily, they focus on automatic detection and detection 
rate. Therefore, for accuracy analysis, the comparison with 
the nominal geometry is performed. For this purpose, the 
test dummy (Fig. 17) was scanned using the Leica Absolute 
Tracker AT960 in combination with the T-Scan 5 (Hexa-
gon 2021), resulting in an MPE of 50� m for a measured 

(18)ni,Pj =
oi,Pj

||oi,Pj||

(19)
�Pj

�qk
=

�q

�qk
Pj

(20)
�oi,Pj

�qk
=

�Pj

�qk
ni,Pj

single point. The components were fitted into the point cloud 
using PolyWorks Inspector (InnovMetric 2023) and own 
algorithms. For the transition into the coordinate system of 
the camera measurement system, seven control points were 
scanned (Fiedler et al. 2019) and a transformation was cal-
culated based on these points. The mean 3D residual was 
0.4 mm.

9.1  Pipe Reconstruction

9.1.1  Reconstruction Accuracy

For the cylinder detection, the possible pipes are first cal-
culated based on a single image using the pipe diameters 
from the DIN (2003). In Table 2, the deviations of seven 
pipes from the nominal geometry (from the laser tracker 
measurement) are shown. The reconstruction is based on 
a single image. The object distance is about 3.6 m and the 
pipe diameter 48.3 mm. On average, the position deviation 
is 46 mm (relative deviation: 1.29%) and the direction devia-
tion is 3.6◦ . Similar values are achieved by Doignon and 
de Mathelin (2007), who also reconstruct cylinders with 
known radius based on a single image. In general, due to 
the poorer section geometry, the reconstruction of thin pipes 
at large distances is subject to larger deviations.

The deviations between the automatically reconstructed 
cylinders and the nominal geometry can be found in Table  
3. The cylinder parameters from the single image reconstruc-
tion were further improved by integrating the edges in the 
other two images, and the cylinder was then subjected to an 
adjustment according to Sect. 7.1. The improvement is also 
noticeable in the deviations. The mean position deviation 
is 2.3 mm (relative deviation: 0.06%) and the directional 
deviation is 1.1◦.

Another improvement is obtained after common adjust-
ment (cf. Sect. 7.2) of all objects of the pipeline (Table  4). 
The mean position deviation from the nominal geometry is 
1.1mm (relative deviation: 0.03%) and the direction devia-
tion is 0.3◦ . For comparison, Nguyen and Choi (2018) also 

Fig. 17  Measurement constellation with pipeline and control points 
for analysing the reconstruction accuracy and the transformation 
quality

Table 2  Deviations between the single image reconstruction and the 
nominal geometry

Pipe ID Position deviation 
[mm]

Relative deviation 
[%]

Direction 
deviation 
[ ◦]

0 42 1.16 9.2
1 28 0.78 1.7
2 59 1.64 5.1
3 73 2.03 2.3
4 52 1.44 1.2
5 34 0.94 5.5
6 37 1.03 0.4
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achieves directional deviations of 0.2◦-0.3◦ with a point 
cloud-based fitting. A similar result is obtained by Rab-
bani (2006) using a point cloud (standard deviation of axis 
direction: 0.24◦ ). In addition, the distance deviation is in 
the range of 1–2 mm. In contrast, in his case photogram-
metry with three images performs worse with respect to 
both parameters (direction & position) by about a factor of 
5. Tangelder et al. (1999) reaches accuracies of 1 mm and 
below for the position and 0.1–0.5◦ for the direction. In gen-
eral, the recording geometry should always be considered 
when comparing accuracy. Depending on the intersection 
angle and acquisition distances, different results will be 
obtained.

9.1.2  Recognition Rate

To analyse the detection rate, the method was applied to dif-
ferent images (from industrial plants and test environment) 
and pipes. In total, it was tested on 85 pipes. Table  5 pre-
sents the results. 76% of the pipes were correctly detected. 
Besides, there were also cases where no pipe or the wrong 
pipe was found. Especially in noisy or bad illuminated 
images the algorithm has problems. Accumulations of linear 
structures or objects are currently also a challenge. In such 
cases, false detections tend to occur. In connection with the 

poorer initial reconstruction on the basis of a single image 
in the case of thin, distant pipes, the extraction in such cases 
tends to be more difficult or more error-prone. The results, 
and thus also the detection rate and the proportion of false 
detections, can be influenced by the following parameters:

– Size of the search area for edge pixels in the other images 
after the single image reconstruction.

– Deviation between the reconstructed pipe diameter and 
the nearest standard diameter (reconstruction over three 
images)

– Maximum radius RMS (in object space) resulting from 
the edges in the images

However, these parameters were chosen in such a way that, 
despite some false detections, the highest possible number 
of pipes is correctly detected. Overall, the proportion of cor-
rectly detected pipes is significantly higher compared to the 
brute-force approach. Thus, this method is a considerable 
labour-saving solution. Object recognition based on machine 
learning can further increase the recognition rate (e.g. 95% 
according to Wang et al. (2022)) and fully automate the 
reconstruction. However, the training is much more time-
consuming. It may also be necessary to fine-tune the training 
data for the specific use case. The presented approach, on the 
other hand, can be used universally for cylindrical objects 
(with known diameter range).

9.2  Bow Reconstruction

In contrast to the reconstruction of pipes, the adjacent com-
ponents must already have been reconstructed for the detec-
tion of elbows. If this is the case, however, the detection 
works fully automatically. The extraction can be influenced 
by the following parameters:

– Maximum skew distance of the adjacent object axes
– Maximum deviations of the adjacent object axes from the 

standard angle (90◦,45◦ , etc.)
– Linear distance of the connecting objects to the intersec-

tion point

Table 3  Deviations between the automatically calculated pipes (using 
the three images) and the nominal geometry

Pipe ID Position deviation 
[mm]

Relative deviation 
[%]

Direction 
deviation 
[ ◦]

0 1.1 0.03 0.4
1 2.6 0.07 0.1
2 3.2 0.09 1.5
3 0.5 0.01 0.2
4 2.2 0.06 1.9
5 4.5 0.13 2.5
6 2.2 0.06 0.8

Table 4  Deviations between the pipes after common adjustment and 
the nominal geometry

Pipe ID Position deviation 
[mm]

Relative deviation 
[%]

Direction 
deviation 
[ ◦]

0 1.4 0.04 0.6
1 1.2 0.03 0.3
2 0.5 0.01 0.2
3 1.1 0.03 0.2
4 1.6 0.04 0.3
5 0.9 0.03 0.5
6 0.7 0.02 0.2

Table 5  Recognition rate of pipes

Number of pipes Pro-
portion 
[%]

Correct 65 76
Wrong 12 14
Detection failed 8 10
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The geometry of the elbow depends, except for the radius, 
exclusively on the neighbouring elements. A dependence 
between the recognition rate and the distance is, therefore, 
not given. The detection of the radius can be regarded as 
unproblematic due to the defined position of the elbow. 
Since the edge pixels are used to validate the presence of 
the arc at the corresponding position, there are significantly 
fewer false detections.

9.3  Flange Reconstruction

Similar to the pipes, the nominal geometry for the flanges 
was calculated based on the laser tracker measurement and 
compared with the photogrammetrically reconstructed 
flanges.

The flanges are first calculated axially to the automati-
cally extracted pipes. Thus, the flanges get the same devia-
tions orthogonal to the axis and with respect to the axial 
direction (mean value: 2.1 mm and 1.9◦ ) as the pipes (Table  
6). The axial deviation (mean: 0.9 mm) depends on the 
manually selected position.

After the common adjustment, the deviations are reduced 
by about 50% (Table 7). On average, the deviations are 
0.4 mm, 1.1 mm and 0.9◦ (axial, orthogonal, direction). 
Accuracy consideration for flange reconstruction is found 
very rarely in literature. Maalek et al. (2019) achieves devia-
tions from the nominal geometry of 2–4 mm with respect 
to position and 0.5◦ with respect to direction for a point 
cloud based fitting of the flange. However, they describe the 
modelling of the flange as a cylinder. They do not carry out 
a recognition of the flange type.

Detection of the correct flange type depends primarily 
on the visible edges in the image. The best constellation 
is, therefore, an orthogonal course of the flange axis to the 
imaging direction. It is more difficult in the case of occlu-
sions. If, for example, the neck of the weld neck flange is 
partially covered, no associated edges will be found in this 
area and the score for the weld neck flange will be lower. 
In addition, the position and alignment of the flange is also 
crucial. If any deviations occur here, the wrong flange type 
may be determined. Another complicating factor is that 
the appearance of the individual flange types differs only 

minimally. The differences in the various types of flanges 
and the associated projections are much smaller than in the 
case of elbows. Compared to the pipe and elbow detection, 
the flange detection works parameter-free with regard to the 
settings.

9.4  Automatic Transformation

Rabbani et al. (2007) also use a transformation based on 
reconstructed objects. However, they do not minimise the 
distances between the components, but directly the devia-
tions between the parameters of the objects. Thus, the indi-
vidual objects get the same weighting. By using the dis-
tances on the other hand, a weighting based on the object 
length takes place. Longer pipes get a higher weight. They 
also have a higher accuracy compared to shorter pipes. 
Alternatively in the approach of Rabbani et al. (2007), the 
cylinder lengths could be introduced as weights.

The result of the transformation of three viewpoints using 
the example of a dataset taken in an industrial plant can be 
seen in Fig. 18. A total of nine images were taken from three 
viewpoints. The reconstruction was done separately for each 
viewpoint. Subsequently, the reconstructed objects were 
merged by transforming two viewpoints. The red dataset 

Table 6  Deviations between the flanges calculated axially to the auto-
matically detected pipes and the nominal geometry

Flange ID Axial deviation 
[mm]

Orthogonal devia-
tion [mm]

Direction 
deviation 
[ ◦]

0 0.2 1.4 2.0
1 1.6 2.0 2.3
2 0.6 2.3 1.0
3 1.3 2.5 2.3

Table 7  Deviations between the flanges after common adjustment 
and the nominal geometry

Flange ID Axial deviation 
[mm]

Orthogonal devia-
tion [mm]

Direction 
deviation 
[ ◦]

0 0.2 0.8 0.8
1 1.3 2.6 2.1
2 0.2 0.7 0.5
3 0.0 0.5 0.3

Fig. 18  Reconstructed objects from three points of view after apply-
ing a transformation



331PFG (2023) 91:313–334 

1 3

served as a reference and did not undergo any transforma-
tion. For the green dataset, the transformation resulted in a 
maximum deviation (between the axes) of 5.5 mm and the 
corresponding RMS value to 2.5 mm. For the transforma-
tion of the blue dataset, analogous values of 4.2 mm and 
1.4 mm resulted.

Since the components themselves are affected by devia-
tions due to the reconstruction, the exclusive consideration 
of the residuals or the orthogonal distances after the trans-
formation is only of limited significance. For a more com-
prehensive analysis, the quality of the transformation was 
also evaluated on a second dataset using control points. The 
test object was captured and reconstructed from two view-
points. In addition to the pipeline, the images also contain 
control points (Fig. 17). These have not been changed with 
respect to the pipeline between the two point of views. The 
transformation was calculated based on the pipeline and the 
underlying objects, respectively, with a maximum deviation 
of 2.4 mm and a mean deviation of the axes of 0.8 mm. The 
reconstructed control point coordinates were not used for 
the transformation. Instead, the transformation was applied 
to the control points so that the residuals between the trans-
formed points from dataset A and the original control points 
from dataset B can be used to evaluate the quality of the 
transformation. The deviations at the control points (Table  
8) also confirm the expected accuracy level. As assumed, the 
deviations in the z-direction (depth) are significantly larger 
than in the x- or y-direction (transverse direction). The devi-
ations resulting from the reconstruction process, which are 
largest in the depth direction due to the height-to-base ratio 
at larger distances, thus propagate to the determination of 
the transformation parameters. In both cases, however, the 
deviations are quite acceptable or usable and comparable 
with a control point-based transformation.

For the sake of completeness, it should be mentioned 
that the calculation of the control points is of course also 
subject to deviations, whereby these in turn also influ-
ence the coordinate comparison and the accuracy analy-
sis. These deviations are, however, of subordinate order 
of magnitude (Table 9). Thus, a second transformation 

on the basis of the control points resulted in a mean 3D 
residual of 0.4 mm (Table  10). Here, a worse accuracy in 
depth direction (z) results from the intersection angle, too.

Generally, a more or less large extrapolation occurs dur-
ing the transformation. This depends on the acquisition 
configuration, the spatial extent of the doubly acquired 
objects that serves as the calculation basis for transforma-
tion and the dimension of the reconstruction and transfor-
mation area. Thus, in general, the accuracy of the trans-
formation can only be roughly estimated. However, the 
problem of extrapolation is generally also present with a 
control point-based transformation. Thus, longer pipelines 
may have larger deviations due to the error propagation. 
For the present application, however, this is generally 
less relevant. The focus is primarily on the geometry of 
the components and the positional relationship of neigh-
bouring components (for manufacturing the insulation). 
When applying the Level of Accuracy (LOA) according 
to U.S. Institute of Building Documentation US Institute 
of Building Documentation (2016), LOA40 (1–5mm) is 
to be selected in this context. The localisation in the plant 
is primarily interesting for logistic reasons or assembly, 
whereby a lower accuracy e.g. LOA20 (15–50 mm) or 
even LOA10 (> 50 mm) would be sufficient for this. Dur-
ing assembly, deviations caused by the transformation can 
be compensated by the tolerances of the manufactured 
insulation (sheet metal shell).

Provided that parts of the plant have already been 
recorded and stored in a BIM, the transition to a plant 
coordinate system can be carried out, transforming via 
these objects.

Table 8  Deviations between nominal and actual control point coordi-
nates after transformation based on the pipeline

Point No dX [mm] dY [mm] dZ [mm]

1 0.2 0.0 − 2.2
357 0.5 − 0.2 − 0.2
361 1.0 − 0.7 2.5
404 0.1 − 0.2 − 1.0
419 0.5 − 0.5 − 0.2
420 0.0 0.0 − 1.2
RMS 0.5 0.4 1.5

Table 9  Standard deviation of the reconstructed control point coordi-
nates

Point No dX [mm] dY [mm] dZ [mm]

1 0.06 0.04 0.36
357 0.04 0.04 0.34
361 0.09 0.04 0.33
404 0.04 0.04 0.35
419 0.09 0.06 0.33
420 0.06 0.05 0.35
RMS 0.07 0.05 0.34

Table 10  Mean residuals of the control point-based transformation

Point No dX [mm] dY [mm] dZ [mm]

RMS 0.1 0.1 0.4
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10  Conclusion and Outlook

In the paper, different techniques for the automation of 
edge-based reconstruction were presented. Depending on 
the object type (e.g. elbow) and if the general conditions 
are suitable (required neighbouring components available), 
a fully automatic reconstruction is possible. For straight 
pipes, which in contrast to pipe elbows are calculated inde-
pendently, a fully automatic extraction and calculation 
with the classical computer vision techniques is not very 
useful. Nevertheless, for reconstruction, manual object 
selection in a single image is sufficient in most cases, so 
that the workload is halved compared to a stereo evalua-
tion. Using standardised dimensions, the object parameters 
for dimension and appearance can usually be derived with-
out user assistance. This makes the software more user-
friendly and the technology as a whole accessible to less 
trained personnel.

If fully automatic reconstruction is desired for all object 
types and for any configurations, however, techniques 
from the field of deep learning should be focussed on. 
The selection of the individual components in the images 
could be performed using instance segmentation. For the 
reconstruction of the objects, the resulting image sec-
tions or masks are (in simplified terms) intersected three-
dimensionally. In contrast to the presented “classical” 
computer vision techniques; however, the training of the 
neural network is much more time-consuming. In addition 
to obtaining a large amount of training data, a lot of time 
is also required for pixel-precise labelling of the images. 
At the current time, it is also unclear how the recognition 
rate will turn out in the case of strong occlusions and/or 
poor lighting conditions and in what way partially detected 
objects can be used for reconstruction.

Extensive tests of the system in industrial plants could 
not yet be carried out. Nevertheless, the system also 
proved to be suitably robust in smaller field tests and under 
poor lighting conditions. Although the transformation is 
based on error-prone reconstruction data and thus subject 
to error propagation, the average residuals turn out to be 
very small and are quite comparable to those of a control 
point-based solution.

Acknowledgements The authors would like to thank the Schwart-
manns Maschinenbau GmbH for the cooperation within the project 
“PhoTo3D”.

Funding Open Access funding enabled and organized by Projekt 
DEAL. The project was funded by the German Federal Ministry of 
Economics and Technology (BMWK) as part of the Zentrales Inno-
vationsprogramm Mittelstand - ZIM (Central Innovation Program for 
Small and Medium-Sized Enterprises).

Data availability For data protection reasons, we cannot pass on the 
images from the industrial plants in particular. If required, we can 

provide the images of the pipeline dummy. Please contact the cor-
responding author.

Declarations 

Conflict of interest The authors declare no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Ahmed M, Guillemet A, Shahi A, Haas C, West J, Haas R (2011) 
Comparison of point-cloud acquisition from laser-scanning and 
photogrammetry based on field experimentation. vol 3

Ahmed M, Haas C, Haas R (2012) Using digital photogrammetry 
for pipe-works progress tracking. Can J Civ Eng 39:1062–1071. 
https:// doi. org/ 10. 1139/ l2012- 055

Ahmed M, Haas C, Haas R (2013) Autonomous modeling of pipes 
within point clouds. In: The 30th International Symposium on 
Automation and Robotics in Construction and Mining, Interna-
tional Association for Automation and Robotics in Construction 
(IAARC), https:// doi. org/ 10. 22260/ ISARC 2013/ 0120

Ahn SJ, Schultes M (1997) A new circular coded target for auto-
mation of photogrammetric 3d-surface measurements. In: 4th 
Conference on Optical 3D Measurement Techniques

Becke M, Schlegl T (2015) Least squares pose estimation of cylinder 
axes from multiple views using contour line features. IECON 
2015 - 41st Annual Conference of the IEEE Industrial Electron-
ics Society pp 1855–1861

Bosché F, Turkan Y, Haas C, Chiamone T, Vassena G, Ciribini A 
(2013) Tracking mep installation works. In: Proceedings of 
the 30th ISARC, Montréal, Canada, https:// doi. org/ 10. 22260/ 
ISARC 2013/ 0025

Bosché F, Ahmed M, Turkan Y, Haas CT, Haas R (2015) The value 
of integrating scan-to-bim and scan-vs-bim techniques for con-
struction monitoring using laser scanning and bim: The case of 
cylindrical mep components. Auto Const 49:201–213. https:// 
doi. org/ 10. 1016/j. autcon. 2014. 05. 014. (30th ISARC Special 
Issue)

Bösemann W (1996) The optical tube measurement system olm - 
photogrammetric methods used for industrial automation and 
process control. In: International archives of photogrammetry 
and remote sensing, vol XXXI, Part B5, pp 55–58

Brief C (2021) Untersuchung der Leistungsfähigkeit des Open-
Source-Tools MicMac zur photogrammetrischen Punktwolk-
enerzeugung. Bachelor thesis

Bürger T (1999) Entwicklung eines Systems für CAD-gerechte As-
Built Dokumentation verfahrenstechnischer Anlagen unter Nut-
zung der digitalen Nahbereichsphotogrammetrie. PhD thesis, 
TU Clausthal, Clausthal

Bürger T, Busch W (2000) Using knowledge about shape and position 
of plant elements in photogrammetric as-built-documentation. 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1139/l2012-055
https://doi.org/10.22260/ISARC2013/0120
https://doi.org/10.22260/ISARC2013/0025
https://doi.org/10.22260/ISARC2013/0025
https://doi.org/10.1016/j.autcon.2014.05.014
https://doi.org/10.1016/j.autcon.2014.05.014


333PFG (2023) 91:313–334 

1 3

In: Organising Committee of the XIX International Congress 
for Photogrammetry and Remote Sensing (ed) International 
Archives of Photogrammetry and Remote Sensing. Vol. XXX-
III, Part B5., Amsterdam, pp 107–113

Chan TO, Xia L, Lichti DD, Sun Y, Wang J, Jiang T, Li Q (2020) 
Geometric modelling for 3d point clouds of elbow joints in pip-
ing systems. Sensors 20(16), https:// doi. org/ 10. 3390/ s2016 4594

Cheng L, Wei Z, Sun M, Xin SQ, Sharf A, Li Y, Chen B, Tu C 
(2020) Deeppipes: Learning 3d pipelines reconstruction from 
point clouds. Graphical Models 111. https:// doi. org/ 10. 1016/j. 
gmod. 2020. 101079

Cheng X, Sun J, Zhou F (2021) A fully convolutional network-based 
tube contour detection method using multi-exposure images. 
Sensors 21(12), https:// doi. org/ 10. 3390/ s2112 4095

Dimitrov A, Golparvar-Fard M (2015) Segmentation of building 
point cloud models including detailed architectural/structural 
features and mep systems. Auto Const 51:32–45. https:// doi. 
org/ 10. 1016/j. autcon. 2014. 12. 015

DIN 2631 (1975) Vorschweißflansche - Nenndruck 6
DIN 2632 (1975) Vorschweißflansche - Nenndruck 10
DIN 2633 (1975) Vorschweißflansche - Nenndruck 16
DIN 2634 (1975) Vorschweißflansche - Nenndruck 25
DIN EN 10220 (2003) Nahtlose und geschweißte Stahlrohre - Allge-

meine Tabellen für Maße und längenbezogene Masse
DIN EN 10253-1 (1999) Formstücke zum Einschweißen - Teil 1: 

Unlegierter Stahl für allgemeine Anwendungen und ohne beson-
dere Prüfanforderungen

DIN EN 1092-1 (2018) Flansche und ihre Verbindungen – Runde 
Flansche für Rohre, Armaturen, Formstücke und Zubehörteile, 
nach PN bezeichnet – Teil 1: Stahlflansche;

Dingle MR (1998) Determining the parameter of cylinders using 
digital photogrammetry for application to pipe measurement in 
industrial plants. PhD thesis, University of Cape Town, Cape 
Town

Doignon C, de Mathelin M (2007) A degenerate conic-based method 
for a direct fitting and 3-d pose of cylinders with a single perspec-
tive view. In: Proceedings 2007 IEEE International Conference on 
Robotics and Automation, pp 4220–4225, https:// doi. org/ 10. 1109/ 
ROBOT. 2007. 364128

Ermes F Pierre und Heuvel, Vosselman G (1999) A photogrammetric 
measurement method using csg models

Ermes P (2000) Constraints in cad models for reverse engineering 
using photogrammetry. The XIXth Congress of the International 
Society for Photogrammetry and Remote Sensing pp 215–221

Ermes P, van den Heuvel FA (1998) Measurement of piping installa-
tions with digital photogrammetry. In: ISPRS (ed) International 
Archives of Photogrammetry and Remote Sensing. Vol. XXXII, 
Part 5., pp 217–220

European industrial insulation foundation (2021) The insulation con-
tribution to decarbonise industry

Fidera A, Chapman M, Hong J (2004) Terrestrial lidar for industrial 
metrology applications: Modelling, enhancement and reconstruc-
tion. The International Archives of Photogrammetry, Remote 
Sensing and Spatial Information Sciences, p 35

Fiedler S, Knoblach S, Werthmann H, Brunn A (2019) A novel method 
for digitalisation of test fields by laser scanning. PFG—J Photo-
grammetry Remote Sens Geoinform Sci 87(4):191–204. https:// 
doi. org/ 10. 1007/ s41064- 019- 00079-8

Gioi R, Jakubowicz J, Morel JM, Randall G (2012) LSD: A line seg-
ment detector. Image Process On Line 2:35–55

Guerra E, Munguía R, Bolea Y, Grau A (2018) Detection and position-
ing of pipes and columns with autonomous multicopter drones. 
Math Prob Eng 2018:1–13. https:// doi. org/ 10. 1155/ 2018/ 27580 21

Guerra E, Palacin J, Wang Z, Grau A (2020) Deep learning-based 
detection of pipes in industrial environments. Ind Robot—New 
Paradigms. https:// doi. org/ 10. 5772/ intec hopen. 93164

Guo X, Su X, Yuan Y, Suo T, Liu Y (2021) A novel method for the 
complex tube system reconstruction and measurement. Sensors 
21(6), https:// doi. org/ 10. 3390/ s2106 2207

Hart L, Knoblach S, Möser M (2022) PhoTo3D - 3D-Digitalisierung 
von Industrieanlagen zur Herstellung passgenauer Dämmlösun-
gen. In: Luhmann T, Schumacher C (eds) Photogrammetrie - 
Laserscanning - Optische 3D-Messtechnik. Wichmann, Berlin, 
pp 334–343

Hexagon (2021) T-scan 5 key features. https:// hexag on. com/ de/ produ 
cts/ leica-t- scan-5? accor dId= 9B612 B757C 1F4BD 48A4C B2E52 
61E97 21

Hilgers G, Przybilla HJ, Detlev W (1998) The digital photogrammetric 
evaluation system phaust for as-built documentation. In: ISPRS 
(ed) International Archives of Photogrammetry and Remote Sens-
ing. Vol. XXXII, Part 5., pp 226–229

Hough PVC (1962) Method and means for recognizing complex 
patterns

InnovMetric (2023) Polyworks inspector. https:// www. innov metric. 
com/ produ cts/ polyw orks- inspe ctor

Jin P, Liu JH, Liu SL, Wang X (2016) Automatic multi-stereo-vision 
reconstruction method of complicated tubes for industrial assem-
bly. Assembly Automation 36(4):362–375

Kang T, Patil S, Kang K, Koo D, Kim J (2020) Rule-based scan-to-
bim mapping pipeline in the plumbing system. Appl Sci 10(21), 
https:// doi. org/ 10. 3390/ app10 217422

Kawashima K, Kanai S, Date H (2014) As-built modeling of piping 
system from terrestrial laser-scanned point clouds using normal-
based region growing. J Comput Design Eng 1(1):13–26

Liu YJ, Zhang JB, Hou JC, Ren JC, Tang WQ (2013) Cylinder detec-
tion in large-scale point cloud of pipeline plant. IEEE Trans Visu-
alization Comput Graph 19:1700–1707

Lowe DG (1991) Fitting parameterized three-dimensional models to 
images. IEEE Trans Pattern Anal Mach Intell 13(5):441–450

Luhmann T (2018) Nahbereichsphotogrammetrie: Grundlagen - Meth-
oden - Beispiele, 4th edn. Wichmann, Berlin and Offenbach

Maalek R, Lichti DD, Walker R, Bhavnani A, Ruwanpura JY (2019) 
Extraction of pipes and flanges from point clouds for automated 
verification of pre-fabricated modules in oil and gas refinery pro-
jects. Aut Construct 135:150–167

Martin-Abadal M, Oliver-Codina G, Gonzalez-Cid Y (2022) Real-
time pipe and valve characterisation and mapping for autonomous 
underwater intervention tasks. Sensors 22(21), https:// doi. org/ 10. 
3390/ s2221 8141

Matas J, Galambos C, Kittler J (2000) Robust detection of lines using 
the progressive probabilistic hough transform. Comput Vis Image 
Understanding 78(1):119–137

Mischke A, Rieks HJ (2001) As-built-Anlagenvermessung in der 
chemischen Industrie. In: Photogrammetrie, Fernerkundung, Geo-
information, vol Jahrgang 2001 Heft 1, Schweizerbart, Stuttgart

Mulawa D (1989) Estimation and photogrammetric treatment of linear 
features. PhD thesis, Purdue

Narimani M, Nazem S, Loueipour M (2009) Robotics vision-based 
system for an underwater pipeline and cable tracker. In: OCEANS 
2009-EUROPE, pp 1–6, https:// doi. org/ 10. 1109/ OCEAN SE. 2009. 
52783 27

Navab N (2002) Canonical representation and three view geometry of 
cylinders. In: ISPRS (ed) Int. Archives of the Photogrammetry, 
Remote Sensing and Spatial Information Sciences, Commission 
III, Vol. XXXIV, Part 3A, pp 218–224

Navab N, Appel M (2006) Canonical representation and multi-view 
geometry of cylinders. Int J Comput Vis 70(2):133–149. https:// 
doi. org/ 10. 1007/ s11263- 006- 7935-4

Nguyen P, Choi Y (2018) Comparison of point cloud data and 3d cad 
data for on-site dimensional inspection of industrial plant pip-
ing systems. Auto Construct 91:44–52. https:// doi. org/ 10. 1016/j. 
autcon. 2018. 03. 008

https://doi.org/10.3390/s20164594
https://doi.org/10.1016/j.gmod.2020.101079
https://doi.org/10.1016/j.gmod.2020.101079
https://doi.org/10.3390/s21124095
https://doi.org/10.1016/j.autcon.2014.12.015
https://doi.org/10.1016/j.autcon.2014.12.015
https://doi.org/10.1109/ROBOT.2007.364128
https://doi.org/10.1109/ROBOT.2007.364128
https://doi.org/10.1007/s41064-019-00079-8
https://doi.org/10.1007/s41064-019-00079-8
https://doi.org/10.1155/2018/2758021
https://doi.org/10.5772/intechopen.93164
https://doi.org/10.3390/s21062207
https://hexagon.com/de/products/leica-t-scan-5?accordId=9B612B757C1F4BD48A4CB2E5261E9721
https://hexagon.com/de/products/leica-t-scan-5?accordId=9B612B757C1F4BD48A4CB2E5261E9721
https://hexagon.com/de/products/leica-t-scan-5?accordId=9B612B757C1F4BD48A4CB2E5261E9721
https://www.innovmetric.com/products/polyworks-inspector
https://www.innovmetric.com/products/polyworks-inspector
https://doi.org/10.3390/app10217422
https://doi.org/10.3390/s22218141
https://doi.org/10.3390/s22218141
https://doi.org/10.1109/OCEANSE.2009.5278327
https://doi.org/10.1109/OCEANSE.2009.5278327
https://doi.org/10.1007/s11263-006-7935-4
https://doi.org/10.1007/s11263-006-7935-4
https://doi.org/10.1016/j.autcon.2018.03.008
https://doi.org/10.1016/j.autcon.2018.03.008


334 PFG (2023) 91:313–334

1 3

Perez-Perez Y, Golparvar-Fard M, El-Rayes K (2021) Segmentation 
of point clouds via joint semantic and geometric features for 3d 
modeling of the built environment. Auto Construct 125:103584. 
https:// doi. org/ 10. 1016/j. autcon. 2021. 103584

Rabbani T (2006) Automatic reconstruction of industrial installations 
using point clouds and images. PhD thesis, TU Delft, Netherlands

Rabbani T, Dijkman S, van den Heuvel F, Vosselman G (2007) An 
integrated approach for modelling and global registration of point 
clouds. ISPRS J Photogrammetry Remote Sens 61(6):355–370. 
https:// doi. org/ 10. 1016/j. isprs jprs. 2006. 09. 006

Rekik F, Ayedi W, Jallouli M (2018) A trainable system for underwa-
ter pipe detection. Pattern Recognit Image Anal 28(3):525–536. 
https:// doi. org/ 10. 1134/ S1054 66181 80301 85

Schnabel R, Wahl R, Klein R (2007) Efficient ransac for point-cloud 
shape detection. Comput Graphics Forum 26(2):214–226. https:// 
doi. org/ 10. 1111/j. 1467- 8659. 2007. 01016.x

Son H, Kim C, Kim C (2015) 3D reconstruction of as-built indus-
trial instrumentation models from laser-scan data and a 3D CAD 
database based on prior knowledge. Auto Construct 49:193–200

Tangelder H, Vosselman G, Heuvel F (1999) Measurements of curved 
objects using gradient based fitting and csg models. International 
Archives of Photogrammetry and Remote Sensing 32

Tangelder H, Vosselman G, Heuvel F (2000) Object-oriented measure-
ment of pipe systems using edge matching and csg models with 
constraints

Tangelder H, Ermes P, Vosselman G, Heuvel F (2003) Cad-based pho-
togrammetry for reverse engineering of industrial installations. 
Comput-Aided Civ Infrastruct Eng 18:264–274

Tascini G, Zingaretti P, Conte G (1996) Real-time inspection by sub-
marine images. J Electron Image 5(4):432–442. https:// doi. org/ 
10. 1117/ 12. 245766

Technet GmbH (2023) https:// www. techn et- gmbh. com/
Tran TT, Cao VT, Laurendeau D (2015) Extraction of cylinders and 

estimation of their parameters from point clouds. Comput Graph 
46:345–357

Trimble (2023) Trimble Inpho. https:// de. geosp atial. trimb le. com/ produ 
cts- and- solut ions/ trimb le- inpho

Trujillo-Pino A, Krissian K, Alemán-Flores M, Santana-Cedrés D 
(2013) Accurate subpixel edge location based on partial area 
effect. Image Vis Comput 31(1):72–90. https:// doi. org/ 10. 1016/j. 
imavis. 2012. 10. 005

US Institute of Building Documentation (2016) USIBD Level of Accu-
racy (LOA) Specification Guide

Veldhuis H, Vosselman G (1998) The 3d reconstruction of straight and 
curved pipes using digital line photogrammetry. ISPRS J Photo-
grammetry Remote Sens 53(1):6–16

Wang B, Wang Q, Cheng JC, Song C, Yin C (2022) Vision-assisted 
bim reconstruction from 3d lidar point clouds for mep scenes. 
Auto Construct 133:103997. https:// doi. org/ 10. 1016/j. autcon. 
2021. 103997

https://doi.org/10.1016/j.autcon.2021.103584
https://doi.org/10.1016/j.isprsjprs.2006.09.006
https://doi.org/10.1134/S1054661818030185
https://doi.org/10.1111/j.1467-8659.2007.01016.x
https://doi.org/10.1111/j.1467-8659.2007.01016.x
https://doi.org/10.1117/12.245766
https://doi.org/10.1117/12.245766
https://www.technet-gmbh.com/
https://de.geospatial.trimble.com/products-and-solutions/trimble-inpho
https://de.geospatial.trimble.com/products-and-solutions/trimble-inpho
https://doi.org/10.1016/j.imavis.2012.10.005
https://doi.org/10.1016/j.imavis.2012.10.005
https://doi.org/10.1016/j.autcon.2021.103997
https://doi.org/10.1016/j.autcon.2021.103997

	Automation Strategies for the Photogrammetric Reconstruction of Pipelines
	Abstract
	1 Introduction
	2 Related Work
	2.1 LIDAR
	2.1.1 Scan vs. BIM
	2.1.2 Local Curvature-Base Methods
	2.1.3 Hybrid Methods
	2.1.4 Machine Learning

	2.2 Photogrammetry
	2.3 Hybrid Techniques (LIDAR and Photogrammetry)

	3 Proposed Measurement System
	4 Reconstruction and Detection of Cylinders
	4.1 Fully Automated Brute Force Approach
	4.2 Semi-automatic Approach

	5 Detection of Elbows
	6 Determination of Flange Parameters
	7 Adjustment Approach for the Optimisation of the Pipe Parameters
	7.1 Adjustment for Individual Objects
	7.2 Common Adjustment with Conditions Between the Objects
	7.3 Determination of the Elbow Radius

	8 Automatic Transformation via Multiple Reconstructed Objects
	8.1 Assignment of Corresponding Components
	8.2 Pre-transformation
	8.3 Final Transformation

	9 Results and Evaluation
	9.1 Pipe Reconstruction
	9.1.1 Reconstruction Accuracy
	9.1.2 Recognition Rate

	9.2 Bow Reconstruction
	9.3 Flange Reconstruction
	9.4 Automatic Transformation

	10 Conclusion and Outlook
	Acknowledgements 
	References




