
Vol.:(0123456789)1 3

PFG (2023) 91:157–170
https://doi.org/10.1007/s41064-023-00242-2

ORIGINAL ARTICLE

DGPF

Semantic Real‑Time Mapping with UAVs

Phillipp Fanta‑Jende1  · Daniel Steininger1 · Alexander Kern2 · Verena Widhalm1 · Javier G. Apud Baca1 ·
Markus Hofstätter1 · Julia Simon1 · Felix Bruckmüller1 · Christoph Sulzbachner1

Received: 16 December 2022 / Accepted: 13 April 2023 / Published online: 11 May 2023
© The Author(s) 2023

Abstract
Whilst mapping with UAVs has become an established tool for geodata acquisition in many domains, certain time-critical
applications, such as crisis and disaster response, demand fast geodata processing pipelines rather than photogrammetric
post-processing approaches. Based on our 3D-capable real-time mapping pipeline, this contribution presents not only an
array of optimisations of the original implementation but also an extension towards understanding the image content with
respect to land cover and object detection using machine learning. This paper (1) describes the pipeline in its entirety, (2)
compares the performance of the semantic labelling and object detection models quantitatively and (3) showcases real-world
experiments with qualitative evaluations.

Keywords  UAV · Real-time mapping · Semantic labelling · Object detection · vSLAM

1  Introduction

Unmanned aerial vehicles (UAVs) have become an essential
asset for acquiring geoinformation for various purposes and
in many domains. UAVs have democratised geodata acquisi-
tion by being affordable, versatile and offering ease-of-use.
Due to this role as a low-threshold technology, UAVs did not
only enter the consumer market quickly but achieved a high
maturity in a short amount of time. This makes their use
attractive but also feasible for risky and difficult applications
with a high demand for reliable and robust solutions, such
as crisis and disaster management. Here, UAVs can serve as

a support tool for decision-making of first responders rely-
ing on quick data capture, processing and eventually (auto-
mated) interpretation (Erdelj et al. 2017). UAV photogram-
metry as a whole can be considered a mature technology
but lacks real-time performance. Disaster relief, however,
requires timely data availability—ideally in real-time. To
make this possible, an array of technologies and methods
needs to work hand in hand, from industrial imaging sensors,
navigation instruments and high-bandwidth communication
links to real-time capable state estimation and reconstruction
algorithms as well as object detection and semantic labelling
models. This contribution summarises our efforts towards a
real-time capable UAV mapping solution with direct data
interpretation.

Phillipp Fanta-Jende, Daniel Steininger and Alexander Kern have
contributed equally to this work.

 *	 Phillipp Fanta‑Jende
	 phillipp.fanta-jende@ait.ac.at

	 Daniel Steininger
	 daniel.steininger@ait.ac.at

	 Alexander Kern
	 a.kern@tu-braunschweig.de

	 Verena Widhalm
	 verena.widhalm@ait.ac.at

	 Javier G. Apud Baca
	 Javier.Apud-Baca@ait.ac.at

	 Markus Hofstätter
	 markus.hofstaetter@ait.ac.at

	 Julia Simon
	 julia.simon@ait.ac.at

	 Felix Bruckmüller
	 felix.bruckmueller@ait.ac.at

	 Christoph Sulzbachner
	 christoph.sulzbachner@ait.ac.at

1	 Center for Vision, Automation & Control, AIT Austrian
Institute of Technology GmbH, Giefinggasse 4,
Vienna 1220, Austria

2	 Institute of Flight Guidance, Technische Universität
Braunschweig, Universitätsplatz 2, 38106 Braunschweig,
Lower Saxony, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s41064-023-00242-2&domain=pdf
http://orcid.org/0000-0001-8733-5425

158	 PFG (2023) 91:157–170

1 3

2 � Related Work

Our research work intersects various fields, most promi-
nently represented by efforts to achieve rapid geometric
transformations of image data and their respective inter-
pretation. To summarise these major research directions,
this literature review discusses rapid mapping approaches
and machine learning in this context separately.

2.1 � Rapid Mapping

Creating orthomosaics of an area whilst the acquiring
UAV is still in the air is a challenging problem com-
bining techniques from geodesy, robotics and computer
vision as it involves self-localisation of a moving cam-
era, dense scene reconstruction in real-time whilst fulfill-
ing geographical accuracy constraints. Early approaches
simplified the underlying assumptions by applying tradi-
tional image stitching techniques as described by Szeliski
(2007). There, image alignment is treated as a 2D prob-
lem computing the affine transformation or homography
between consecutive frames based on feature extraction
and matching. This strategy neglects surface elevation, but
is computationally efficient and was utilised for aerial map
creation by various authors (Botterill et al 2010; Kekec
et al. 2014). The results of such frameworks, however,
are erroneous especially in low altitudes. Distortions in
the image induced by perspective variations accumulate
and lead to drift in the global mosaic. Additionally, no
3D surface information is extracted which highly benefits
a variety of use cases, such as situational awareness in a
disaster relief scenario.

Consequently, research has been carried out over the
last decades to overcome these limitations and allow for
the generation of true orthomosaics in real-time. Hein
et al. (2019) use a priori Digital Elevation Models (DEMs)
to account for surface elevation. However, availability of
accurate and up-to-date DEMs is limited and even com-
pletely infeasible when the observed scene drastically
changed (due to, e.g. an earthquake). Bu et al. (2016) uti-
lise a visual SLAM for camera pose estimation and pro-
ject the images into a common reference frame to create
the global mosaic. This does not account for distortions
through surface elevation, yet it is more robust in low alti-
tudes by modelling the true 3D camera motion. Hinzmann
et al. (2018) were the first to our knowledge to combine
both the pose estimation and the dense scene reconstruc-
tion into a real-time framework. By multi-sensor fusion
of an inertial measurement unit (IMU), a Global Naviga-
tion Satellite receiver (GNSS) and optical flow estimates
of a KLT-tracker, the resulting pose and image was fed

into a stereo reconstruction pipeline. The surface was
recovered through computation and fusion of depth maps
for the creation of an elevation map to eventually rectify
the image data. Based on this work, another pipeline for
orthomosaicing was developed called OpenREALM (Kern
et al. 2020a). It modularises the design of Hinzmann et al.,
so that each individual processing stage can be computed
either in the air or on the ground. Additionally, the sen-
sor fusion was replaced by an extendable visual SLAM
interface, so that state of the art implementations [e.g.
ORB SLAM2 (Mur-Artal and Tardós 2017)] could be used
for camera pose estimation. Since then, other publications
have pushed the state of the art even further. Zhao et al.
(2021) tackled the problem of low overlapping image
sequences as it is often the case in aerial imagery through
tighter incorporation of GNSS data into the underlying
visual SLAM. A similar strategy was followed by Miller
et al. (2022) who employ a pose graph optimisation back-
end to fuse visual and GNSS measurements. In addition,
each new keyframe of their pipeline is passed through a
semantic segmentation framework to assign basic labels
such as road, vegetation or building to ground segments.
Combining aerial data with scene understanding is also a
key target of our research within this paper.

2.2 � Machine Learning

Recent advances in artificial intelligence and graphics-
accelerated parallel computing lead to faster and more effi-
cient machine learning techniques. These techniques can be
applied in a broad spectrum of fields, including computer
vision (Lin et al. 2014). In this realm, Convolutional Neural
Networks (CNNs) (Krizhevsky et al. 2017; Yu et al. 2017)
demonstrated to be an outstanding method for inferring
semantic information and object detection in RGB images
with a relatively low time taxation. In contrast, more recently
emerging techniques like Vision Transformers (Zheng et al.
2021; Dosovitskiy et al. 2020) achieve promising results
for classification problems but not without a higher time
expense. Performance and low time consumption make
CNNs more desirable for our real-time mapping use case.
Going into detail, CNN architectures for object detection are
divided into one- and two-stage approaches with the former
expediting real-time performance (Zou et al. 2019) at the
expense of extra accuracy. Given our use case, we focus on
one-stage detectors. One of the most popular was first intro-
duced in 2016 as YOLO (Redmon et al. 2016). Low com-
putational complexity and relatively high accuracy quickly
established YOLO as one of the go-to one-step detectors.
Since then, newer iterations further improved the model’s
performance. The current model iteration is YOLOv7, pub-
lished in 2022 (Wang et al. 2022).

159PFG (2023) 91:157–170	

1 3

Remote sensing applications represent a challenging
domain for all the data-driven machine learning algo-
rithms, since the available case-specific training data are
commonly scarce. For instance, the nadir view for our case
scenario does not match the vast majority of publicly avail-
able machine learning datasets. The current limitations for
the tasks of semantic labelling and object detection are dis-
cussed in the following sections.

2.2.1 � Semantic Labelling

In contrast to popular all-purpose (Lin et al. 2014; Kuznets-
ova et al. 2020) or driving (Cordts et al. 2016; Neuhold et al.
2017) datasets, which typically offer a front facing view,
remote sensing datasets usually employ a nadir perspective.

A handful of datasets with semantic labelling annotations
compatible with our use case became available in recent
years. For instance, FloodNet (Rahnemoonfar et al. 2021),
which has gained a lot of popularity recently, consists of
almost 0.4 k images and according pixel-wise annotations.
Similarly, SemanticDrone (TU Graz (ICG) 2022) consists
of 0.4 k images captured at an altitude of 5–30 m above
ground and is especially relevant due to the high number of
included scene participants. However, since most images
were recorded over a small settlement of newly built pre-
fabricated houses, the low variability of the included data
limits its generalisation to more challenging scenarios.
Closely, LandCoverAI (Boguszewski et al. 2021) provides
41 orthorectified high-resolution aerial images captured in
Poland. Similarly, Ruralscapes (Marcu et al. 2020) includes
20 UAV-based videos depicting a typical rural setting with
1 k manually annotated images with segmentation masks.

2.2.2 � Object Detection

Front-facing camera object detection datasets are common.
Examples like Pascal VOC (Everingham et al. 2010) or MS
COCO (Lin et al. 2014) contain relevant categories such as
pedestrians or motorised vehicles. However, the perspec-
tives from which images were acquired in these cases are not
compatible with the mapping application. In comparison,
the DOTA dataset (Xia et al. 2018) is based on satellite and
aerial images from Google Earth. Its latest version includes
11 k images and nearly 1800 k instances of 18 common
categories. Nonetheless, the dataset does not contain annota-
tions of small classes such as pedestrians. The most suitable
dataset for our use case is VisDrone (Du et al. 2019), which
comprises 8.6 k images captured by multiple drone types
in 14 Chinese cities containing different weather, lighting
and environmental conditions. Additionally, the recordings
show a compromise between top and front viewing angles
at different flight altitudes.

3 � Methodology

Two complementary development lines were followed:
First, implementation of a pipeline capable of real-time
mapping, semantic segmentation and object detection.
Second, the establishment of a benchmark dataset to meas-
ure the performance of the machine learning models on
our use case and the corresponding dataset selection for
model training.

3.1 � Semantic Orthorectification Pipeline

The pipeline is implemented as a modular series of down-
stream stages or nodes, each one receiving, processing and
forwarding a proprietary Robot Operating System (ROS)
message named Frame. A Frame message contains the
information generated at each step (including data capture)
and facilitates communication between nodes. At its core,
the mapping task is based on OpenREALM (Kern et al.
2020a, 2021), which was first published as an open source
project on Github (Kern et al. 2020b). In comparison to
the original, this version features a separation into air and
ground modules. The former is comprised of the data
acquisition and pose-estimation nodes and runs on the tar-
get UAV. The latter includes the remaining nodes, some of
which were modified to achieve real-time performance and
runs on a separate computer, referred to as ground station.

Communication between the air and ground modules
is achieved using an LTE wireless connection router.
A detailed description of the hardware is available in
Sect. 4.1.1.

The complete pipeline comprises eight distinctive pro-
cessing stages in the following order: data acquisition
3.1.1, pose estimation 3.1.2, densification 3.1.3, surface
generation 3.1.4, segmentation 3.1.5, orthorectification
3.1.6, tileing 3.1.7 and object detection 3.1.8. The work-
flow of the pipeline is depicted in Fig. 1.

Additionally, a Geoserver node was added for data visu-
alisation and further use of the data products in a GIS 3.2.
However, this does not impact the performance of any of
the previous nodes.

3.1.1 � Data Acquisition

Readings are gathered from the available sensors on the
UAV and encapsulated in our proprietary Frame message
for easy transportation and data control. In general, this
interface is agnostic to the mode of input, e.g. ROS topics/
messages (as in our case) or a folder containing graphic
formats such as JPG files with EXIF headers both work as

160	 PFG (2023) 91:157–170

1 3

long as the required image topic and its respective intrinsic
and extrinsic orientation elements can be parsed.

3.1.2 � Pose Estimation

Camera pose estimation is essential to determine the cor-
rect position of each image at a global scale. Accuracy is
essential in this node as inaccuracies cannot be compen-
sated afterwards. To support the state estimation, the UAV
image stream is used in conjunction with a visual SLAM
approach. To this end, a vSLAM interface was implemented
to integrate different frameworks, for instance ORB SLAM2
(Mur-Artal and Tardós 2017), which for the most part fol-
lows the traditional structure of feature extraction, match-
ing and optimisation through bundle adjustment. Because
monocular cameras are not able to recover the scene scale
without additional information, the next step is to align the
vSLAM trajectory with measurements of other sensors. By
combining GNSS information with the relative altitude of
the onboard barometer, we can extract a 3D trajectory with
a metric scale. The similarity transformation between the
two trajectories, the metric and visual one, can be extracted
through least-squares estimation. Whilst the procedure is
straightforward, it comes with some disadvantages. The esti-
mation neglects the actual sensor orientation and assumes
the position of the GNSS receiver and the camera’s focal
point to be approximately the same. Consequently, a min-
imum trajectory length is required for reasons of robust-
ness and to estimate the azimuth angle. In our framework,
the trajectory alignment is performed iteratively for every
keyframe and once the estimation error converges below a
certain threshold, the computed similarity transformation
is used as a georeference for all frames and the pipeline
initialisation is complete.

Only the georeferenced RGB keyframes and the cor-
responding acquisition information (UAV heading, speed,
coordinates, etc.) are forwarded to the ground station to exe-
cute the following pipeline steps as a Frame message using
the wireless connection. The exclusive use of keyframes

provides enough information for a good reconstruction
whilst reducing the bandwidth requirement between the
UAV and the ground station.

Although modifiable, in our use case, the vSLAM is oper-
ating at 15 frames per second as this is the ideal compromise
between onboard processing capabilities and reconstruction
quality.

3.1.3 � Densification

After collecting at least two overlapping frames viewed from
different viewpoints, depth maps are computed. By observ-
ing each respective 3D point, only those whose estimated
position is consistent across multiple depth maps are flagged
as valid. As a result of this stage, each Frame carries a 3D
estimate of its observed scene. Similar to the pose estimation
stage, external frameworks for stereo reconstruction can be
incorporated via an interface. The presented pipeline utilises
the Plane Sweep Library (Häne et al. 2014).

3.1.4 � Surface Generation

The filtered depth maps then enter the surface generation
node. By projecting the depth maps into 3D space, a point
cloud of the currently observed scene is reconstructed. To
reduce computational costs in the following steps, a georef-
erenced grid map is created with its cells assigned an eleva-
tion value depending on the nearest points in the point cloud.
Potential holes in the grid are filled through interpolation.
Consequently, each Frame now holds a watertight update to
the global digital surface model (DSM).

3.1.5 � Semantic Labelling

Semantic segmentation for terrain labelling is applied to the
RGB information in the georeferenced Frame at this point,
since the best results can be achieved on full-resolution key-
frames prior to rectification. Models are specifically trained
for the target application, as described in Sect. 3.3.2 and

Fig. 1   Pipeline workflow overview. The blue block refers to the UAV onboard node. Orange blocks outline the ground station pipeline nodes.
Yellow blocks refer to the Geoserver processes. Most relevant data transferred from node to node is shown in green blocks

161PFG (2023) 91:157–170	

1 3

deployed by converting them from PyTorch to the Open
Neural Network Exchange (ONNX) standard (Bai et al.
2019). ONNX is a platform-independent open source for-
mat used to achieve suitable performance for the pipeline
using optimisation tools and different compilers. The result-
ing segmentation masks are then embedded in the Frame
message forwarded to subsequent nodes, allowing for an
efficient transformation of the labels along with the RGB
data throughout the remaining pipeline in real-time.

3.1.6 � Orthorectification

The surface information is utilised to remove perspective
distortions from the original RGB image data as well as
the semantic layer. To this end, a backprojection from grid
proposed by Hinzmann et al. (2018) was implemented. By
iterating through each cell of the DSM and projecting its
3D point into the camera plane, perspective distortions in
the RGB data are minimised and orthogonality is enforced.
The corrected data are added to the grid map as an additional
layer resulting in an incremental, multi-layered grid update
for the global mosaic. The same rectification transformations
are subsequently applied to the segmentation mask.

3.1.7 � Tileing

Excluding the pose estimation, all previous stages can
be considered stateless. Consequently, the resources per
Frame only depend on the current input data and there is
no increase in resource requirements over time. This, how-
ever, does not hold true during visualisation. The growing
number of rectified mosaics generated during mapping rep-
resents an increasing load on memory when visualising the
map. During long sessions, this resource is prone to run out.
Moreover, this factor may also represent an obstacle when
performing a real-time reconstruction.

Hence, a resource-efficient and real-time tileing stage that
combines two concepts is implemented. First, in a similar
fashion to the Tiled Map Service (Open Source Geospatial
Foundation 2022d) for tiled web maps, the global map is
treated as a grid and the incoming map is tiled to fill in
the cells accordingly. The incremental grid maps from the
orthorectification node are divided into 256 × 256 pixels tiles
and individually georeferenced to address the geographical
coordinates shift that arises from the division (tiles further
away from the upper left corner of the mosaic have a coordi-
nate shift correction equivalent to 256[px]*GSD[px/m]*tile
shift). If a smaller portion of the mosaic does not totally
cover the corresponding tile area, the missing pixels are
filled in by setting the transparency to 100%, as shown in
Fig. 2. In this way, there is no interference when a partial tile
overlaps a full tile. Tiles are then fused with the correspond-
ing cell content (if already existing) or first initialised in the

global grid map and stored to disc (Fig. 3). Tileing runs for
as long as the mapping process does, meaning that areas
can be revisited and remapped during the same flight. This
is achieved with continuous caching, which increases the
workload on the CPU, but enables creating and displaying
maps whose size is only limited by the available hard drive
storage in real-time. Concerning applications, such as coop-
erative multi-UAV mapping, this would theoretically allow
for covering large areas in high resolution in a matter of
minutes with fixed-wing UAVs. Tileing reduces the memory
requirements when displaying as only the necessary tiles
are loaded.

Second, most web tile systems use the WGS 84-based
Pseudo-Mercator coordinate system (EPSG 3857) (Map-
Tiler 2022) for index-based tile georeferencing. However,
the pipeline uses UTM and does not rely on index-based
referencing based on PNG files but writes TIF files with
corresponding headers (Open Source Geospatial Foundation
2022b). Combining these two approaches decreases memory
consumption whilst displaying the map and eradicates the
need of intermediate coordinate transformation, resulting in
a reduced overall tileing time of around 100 ms. Moreover,
resorting to TIF files enables high compatibility to existing
geodata infrastructures.

3.1.8 � Object Detection

Object detection is performed on the final RGB tiles using
the specifically trained CNN described in Sect. 3.3.3. To
obtain a trained model with increased robustness against
image transformations, data augmentation techniques are
used. For example, mosaic augmentation (Bochkovskiy
et al. 2020), which creates a synthetic input image consisting
of four randomly transformed images of the training data.
Since object detection requires more complex pre-processing
and post-processing of images than semantic labelling, the
corresponding processing stage builds upon the TensorRT
framework for deployment to achieve real-time performance.
The resulting bounding boxes and object labels are georef-
erenced based on the input tile’s information and integrated
into the final map.

Fig. 2   Examples of incomplete and full tiles

162	 PFG (2023) 91:157–170

1 3

3.2 � Server Segment and Data Infrastructure

The resulting georeferenced tiles with the highest
resolution (i.e. up to 6.5 cm ground sample distance
at 100 m altitude with the camera used in our setup
described in Sect. 4.1.1) are collected in a geospa-
tial data management server based on GeoServer, an
open source server that enables geospatial data shar-
ing, processing and editing with support for PostGIS
(PostGIS 2022) as a spatial database extension for an
object-relational PostgreSQL (The PostgreSQL Global
Development Group 2022) database. The tiles are pro-
cessed using the GeoServer’s image mosaic plugin
(Open Source Geospatial Foundation 2022c) allow-
ing for the creation of composite images from a set of
georeferenced rasters with one query. The database is
organised to process the raster file location, geospa-
tial information, time information and flight mission to
enable the processing of time series of flights and mis-
sions. To ensure the real-time visualisation capability
of the GIS, new tiles are inserted directly into the Post-
greSQL database to ensure the highest performance.
To query composite images from the server, a Web
Map Service (WMS) with a Common Query Language
(CQL) extension (Open Source Geospatial Foundation
2022a) is used to filter the bounding box, time interval
and flight mission. This further minimises the compu-
tational performance for the server to ensure real-time
capability.

3.3 � Machine Learning

Multiple experiments were performed to produce suitable
CNN-based models for semantic terrain labelling and object
detection, the best performing of which are integrated in
the corresponding pipeline stages. The following sections
provide details regarding our custom benchmark dataset and
the experimental setup.

3.3.1 � Benchmark Dataset

Quantifying the performance of machine learning tasks
for the intended application scenarios and sensor setups
requires specific test data. As the open source datasets show
strong differences in their acquisition altitude, the bench-
mark dataset is divided into three different altitudes with
different image scales. Multiple sequences are recorded with
the target UAV platform at altitudes of 80, 100 and 120 m
to measure their impact on model performance and show
their degree of generalisation over multiple resolution levels.
From these recordings, we manually sampled a representa-
tive set of 273 images which sufficiently cover all altitudes
and relevant classes. Each sample is manually annotated
with per-pixel masks, differentiating between the semantic
categories of Grass, Tree, Building, Road, Vehicle and Per-
son, as visualised in Fig. 4. To evaluate object detection,
corresponding bounding boxes for the latter two categories
are automatically derived. Due to the characteristics of the
captured area and intended application scenario, the vegeta-
tion classes are significantly more frequent than man-made

Fig. 3   Incremental grid maps
generated by the orthorectifica-
tion stage consist of several
layers, e.g. the rectified RGB
data or the observed surface
elevation. The grid maps are
sliced into individual tiles.
These multi-layered tiles are
fused with the existing data
in the global mosaic and then
saved to the hard drive

Fig. 4   Representative pairs of images and semantic masks annotated in the benchmark dataset containing the categories Grass (light green), Tree
(dark green), Building (light grey), Road (dark grey) and Vehicle (orange)

163PFG (2023) 91:157–170	

1 3

structures, whilst vehicles and persons are underrepresented.
Whilst these data gaps can be addressed when extending the
benchmark dataset for future applications, the data still pro-
vide relevant insights, since it was recorded with the target
platform and sensor setup.

3.3.2 � Semantic Labelling

The segmentation models are trained using multiple pub-
licly available datasets. Of those discussed in Sect. 2.2.1,
we selected FloodNet, SemanticDrone and LandCoverAI
due their recording altitudes and class distributions roughly
resembling the given application scenario. Prior to training
and evaluation, the labels of each source dataset are mapped
to the benchmark categories of Grass, Tree, Building and
Road, as listed in Table 1. Unused labels are excluded for
training and validation. The resulting label distribution of
each training dataset after mapping is visualised in Fig. 5.
Whilst the labels Gras and Trees mainly appear in FloodNet
and LandCoverAI, they have a lack of Building and Road
instances compared to the SemanticDrone dataset which
contains 50% Road and over 10% Building areas. LandCov-
erAI has an image size of 9000 × 9500 and 4200 × 4700
pixels with a per-pixel resolution of 25 cm and 50 cm GSD.
To make the dataset comparable to the others and adapt it
to our use case, the ortho images are split into pieces with a
resulting image size of 1280 × 1280 pixels, whilst FloodNet

and SemanticDrone images are downscaled to 1920 × 1280
pixels to achieve a similar per-pixel resolution.

For all experiments, we apply a split between training
and validation data of 90:10 to the source dataset and test
on the entire benchmark dataset. During training, each sam-
ple is randomly resized and cropped to a final input size
of 640 × 640 pixels to meet performance and memory con-
straints, whilst validation and test images are constantly
scaled to 1920 × 1280 pixels. We selected the efficient
architecture dla-34 (Yu et al. 2018) to facilitate real-time
processing on the target platform. All models are trained
from scratch on a system containing two NVIDIA 3090
RTX GPUs using a learning rate of 0.001 with a step size of
50 and a batch size of 20. The best-performing models are
selected based on validation results after 200 epochs. For
quantitative evaluations, we use the established intersection-
over-union (IoU) metric (Everingham et al. 2010).

3.3.3 � Object Detection

Since small foreground classes, such as vehicles and per-
sons, are typically highly underrepresented in aerial seg-
mentation datasets, their robust identification requires the
additional task of object detection. After analysing several
available datasets, we selected MS COCO (Lin et al. 2014)
and VisDrone (Du et al. 2019), since both provide a suf-
ficient amount of relevant samples captured from various
altitudes resulting in different GSDs and especially the lat-
ter one partially provides nadir views. The source labels are
aggregated into two target classes, one for pedestrians and
one for motorised and non-motorised vehicles. We quan-
tify the results using the average precision (AP) metric as
defined by the COCO benchmark (Lin et al. 2014), which
is more challenging than those used by Pascal VOC (Ever-
ingham et al. 2010), since it represents averaged results over
multiple IoU thresholds. For training an object detector, we
used the framework of YOLOv5 (Jocher et al. 2020), as it
performs better than YOLOv6. Whilst the newest release,
YOLOv7, would provide slightly superior performance, the
selected version offers the best trade-off between accuracy,
computational complexity and training time. All experi-
ments are conducted by fine-tuning a model pre-trained on
all categories of the COCO dataset to the relevant target
classes Vehicle and Person. Models are trained on the same
hardware described in Sect. 3.3.2 using the default training
configuration and standard data augmentation techniques,
such as random scaling, mosaic augmentation and crop-
ping to focus on tiny objects up to 10 × 10 pixels. We use
the network architecture YOLOv5m of release 6.0 with an
input size of 1280 × 1280 pixels and a batch size of 8. We
select the best-performing model after 37 epochs for further
evaluations.

Table 1   Listing of all target benchmark categories and their corre-
sponding category denominations in the mapped source datasets

Category Id LandCoverAI FloodNet SemanticDrone

Grass 0 Background Grass Dirt
Grass

Tree 1 Woodland Tree Vegetation
Tree
Bald tree

Building 2 Building Roof
Building flooded Wall
Building non-flooded Window

Door
Road 3 Road Road non-flooded Paved area

Gravel

Fig. 5   Normalised label distribution of source datasets

164	 PFG (2023) 91:157–170

1 3

4 � Experiments

Although the artificial intelligence models and the ortho-
rectification pipeline are integrated into in a single pipeline,
each module can be evaluated separately. As a first step,
benchmark experiments are conducted for creating suitable
models for semantic labelling and object detection. After
integrating them into the corresponding modules, the entire
pipeline is evaluated in a real-time setup.

4.1 � Semantic Orthorectification Pipeline
Experiments

4.1.1 � Setup and Data Acquisition

Flight experimentation is divided into real-time (online)
and post-processing (offline). Online implies a split pipe-
line, i.e. the data-acquisition and pose-estimation nodes are
running on an UAV, whilst the remaining nodes run on the
ground station. The connection is established using a wire-
less telecommunication node. In comparison, offline means
that the UAV recorded data, later to be retrieved and fed
into the pipeline running entirely on the ground station. The
main differences between these approaches are the real-time
execution in online mode and the higher computing capacity
as well as bandwidth in offline mode. The densification node
is disabled for the experiments.

In both cases, flights are performed using a fixed-wing
Skywalker EVE-2000 UAV (2240 mm wingspan, 1270 mm
fuselage length and 4600 g maximum take-off mass)
equipped with a Pixhawk 2 as Flight Management System
(FMS) and running the Arduplane flight controller stack in
autonomous configuration (Fig. 6). GNSS measurements
for flight control and pose estimation are captured using a
Here3 from Cube Pilot with real-time kinematics (RTK)
enabled. Flight recordings and UAV pipeline nodes run on
a NVIDIA Jetson Xavier NX. Imagery was acquired using
a 2.3 megapixel global shutter CMOS colour camera with a
resolution of 1920 × 1200 pixels based on a Sony IMX249
sensor mounted on a cardanic suspension system for roll

compensation. Images are compressed before sending and
processing.

Communication is addressed by establishing a private
connection over the local 4G network using a Teltonika
RUT240 LTE router on the UAV to a Teltonika RUTX11
LTE router on the ground station. This configuration grants
a good bandwidth, which translates to a stable connection
and no substantial amount of lag observed during experi-
mentation. Alternatively, the setup can be operated with an
autonomous tracking antenna system running a Wi-Fi net-
work (802.11n) or proprietary datalink to be independent of
local telecommunication infrastructure.

The ground station features a dual 10-core XEON pro-
cessor and four NVIDIA RTX 2080 TI graphic cards. The
station acts as a control station to send/receive information
to/from the UAV and process the acquired data (pipeline and
machine learning). A total of three flights were executed for
testing and/or recording. Each followed the same flight path
with a fixed height of 100 m to correspond with the target
scenario (large coverage at minimal time) and avoid motion
blur and consequent tracking loss at lower altitudes due to
the relatively high speed above ground of around 75 km/h.
(please note that this height refers to the data acquisition
only, not the benchmark dataset recordings):

•	 Flight 1: Exclusive data recording for offline experi-
ments.

•	 Flight 2: Data recording plus online rapid mapping (split
pipeline running) and no artificial intelligence nodes.

•	 Flight 3: Exclusive online rapid mapping and artifi-
cial intelligence nodes running for semantic segmenta-
tion and object detection.

Fig. 6   Fixed-wing UAV used in the experiments Fig. 7   Online vs offline map reconstruction (Flight 2)

165PFG (2023) 91:157–170	

1 3

4.1.2 � Qualitative Analysis of Reconstructed Data Products
and Real‑Time Capabilities

As visible in Figs. 7 and 8, the online flight (left) is more
prone to high frequency tile shifting or misalignment com-
pared to the offline approach (right). This effect, however, is
not limited to well-defined structures like roads. Tile shifting
is also visible in flat surfaces as colour changes and seam
lines on smooth surfaces. In spite of the more significant tile
shifting visible in the online setup, the whole reconstruction
took place in real-time.

Previous experiments (Kern et al. 2021) focussed on
understanding the impact of different SLAM approaches
[ORB-SLAM3 (Campos et al. 2021), OV2SLAM (Ferrera
et al. 2021), OpenVSLAM (Sumikura et al. 2019)] on the
reconstruction quality as well as on the absolute accuracy. In
our past experiment, a total of 27 ground control points were
surveyed to determine the RSME in X, Y and Z. Depend-
ing on the acquisition altitude and the underlying SLAM
approach, absolute accuracies of around 1 m in the horizon-
tal and vertical dimension were achieved. To ascertain the
difference in accuracy between offline and online processing,
20 checkpoints were measured in a reference orthomosaic
processed using Pix4D without the use of ground control
(Table 2).

Besides a visually more consistent reconstruction (Figs. 7
right and 8 right), the offline reconstruction also yields a
more accurate data product overall. However, Flight 1 is
the only flight without an active pose reconstruction node
running in parallel entailing that all the available onboard
computing resources are assigned to data recording. Against
this background, the decreased accuracy of Flight 2 offline
can likely be attributed to performance limitations of the
onboard processing unit since computing resources are
distributed between recording and pose estimation. The
recording node, however, does not impact the accuracy to
a great degree, since the online data products of Flight 2
and Flight 3 share a similar accuracy. The error distribution
(see Fig. 9) shows degrading accuracy towards the edges of
the orthomosaic. Although this may be usual behaviour in
traditional photogrammetric workflows due to fewer across-
track image overlaps, this pattern is likely to be caused by a
more difficult tracking scenario for the underlying SLAM.
In particular, repetitive patterns, as they occur in fields and
meadows, are difficult for feature matching approaches and

consequently affect the pose estimation, especially in non-
inertial SLAM implementations.

Regarding the real-time capability, the delay between
image acquisition and the reception of a keyframe on the
ground station is between 1 and 2 s. On top of this, the
ground station processing time increases the total process-
ing time including tile generation to around 5–6 s.

It is expected that the frame reception on the ground
station from the UAV may vary on different factors, such
as telecommunication infrastructure, bandwidth usage,
obstruction (e.g. trees), physical distance between sender
and receiver nodes and/or pipeline buffers usage. Nonethe-
less, we did not experience any substantial variation during
the experiments. The frequency of tile generation remained
constant during the flights.

Table 2   Relative accuracy
between orthomosaics of Flight
1 (offline), Flight 2 (offline and
online) and Flight 3 (online)
with Pix4D orthomosaic as
reference

RMSE X [m] RMSE Y [m] Mean X [m] Mean Y [m] Min error [m] Max error [m]

Flight 1 offline 1.03 1.97 0.47 −0.39 0.08 5.09
Flight 2 offline 2.39 5.19 −1.51 −3.84 0.06 8.66
Flight 2 online 4.07 3.47 −0.05 0.44 0.08 8.88
Flight 3 online 3.92 3.86 −2.17 −0.19 0.01 9.28

Fig. 8   Close up of online vs offline shifted tiles (Flight 2)

Fig. 9   Locations of checkpoints with mean difference error in X, Y

166	 PFG (2023) 91:157–170

1 3

4.1.3 � Qualitative Analysis of Semantic Labelling and Object
Detection

Evaluating the online experiments confirmed that the seman-
tic labelling module provides sufficient performance for real-
time application of the entire pipeline on the target platform.
Figure 10 shows a selection of the results as orthorectified
tiles. They demonstrate that the segmentation results are
largely consistent across overlapping input frames, as there
are hardly any label switches along borders between stitched
source images.

Apart from the integration of the semantic labelling mod-
ule into our pipeline to process unaltered RGB images at an
early stage, the real-time evaluation also shows the model’s
generalisation capability to the application scenario. Espe-
cially, the classes Grass and Tree can be distinguished with
high accuracy despite varying visual appearance, as visible
in first two images from the left in Fig. 10. Buildings are
more challenging and more scarce in the test data, but still
correctly assigned in many cases. Performance for roads
strongly depends on their visual appearance as visible in
the two images on the right, where overexposed or underex-
posed instances are often missed, whilst those resembling
the training data are usually correctly classified. Overall, the
results resemble those from offline tests on the benchmark
data, indicating that the model is suitably integrated in the
processing pipeline and generalises well to the changes in
environmental conditions and camera settings between the
recordings. A visualisation of the complete segmented map
of Flight 2 is shown in Fig. 12.

The object detection module is evaluated on the pro-
cessed tiles for the Vehicles category, since the flight altitude
(100 m) and resulting resolution (0.15 m/px) are considered
insufficient for robustly detecting persons from a nadir view.
The cars present in the evaluated scenarios are consistently

Fig. 10   Representative tiled results of online semantic labelling (bottom row) for the categories Grass (light green), Tree (dark green), Building
(light grey) and Road (dark grey), along with corresponding RGB tiles (top row)

Fig. 11   On the left image, the input image tile is shown, whereby
the image on the right side shows the representative object detection
results on the tiling output for the Vehicle category (orange)

Fig. 12   Visualisation of Flight 2 reconstructed RGB map (left) and
segmentation map generated from key frames (right)

167PFG (2023) 91:157–170	

1 3

detected, even if they coincide with tileing artefacts, as vis-
ible in Fig. 11. Furthermore, the model did not produce any
false detections across the entire recording and proved to
provide real-time performance on the target platform.

4.2 � Benchmark Experiments

To create suitable models for the intended application sce-
nario, we conducted multiple experiments for both valida-
tion sets corresponding to the selected training data and our
custom evaluation benchmark. The quantitative results for
the tasks of semantic labelling and object detection are pre-
sented in the following subsections.

4.2.1 � Semantic Labelling

The three models described in Sect. 3.3.2 were evalu-
ated both on their own respective validation sets and the
benchmark dataset defined in Sect. 3.3.1, as summarised in

Tables 3 and 4. The former results do not provide a meas-
ure for the overall performance of models, but rather indi-
cate how challenging each source dataset is for the given
semantic labelling tasks. Generalisation capability can then
be derived by comparing the results with those on the bench-
mark dataset. Although the measured performance decrease
of SemanticDrone and FloodNet in overall IoU is only 2.0
and 5.5, respectively, LandCoverAI outperforms them by
a large margin in most categories. All models are highly
robust against changes in altitude, which only marginally
impacts performance. The relatively low performance of
SemanticDrone is not surprising, since the image data have
a stronger bias towards man-made structures and therefore
only a small overlap to the given application scenario.

Based on the quantitative results, we decided to use the
model trained on LandCoverAI for further evaluation and
integration in our rapid mapping pipeline. A selection of
qualitative results is shown in Fig. 13.

4.2.2 � Object Detection

The two detection models trained on the VisDrone and MS
COCO datasets reach overall AP values of 42.6% and 52.7%
on their corresponding validation sets. However, applying
the same models to our benchmark dataset reverses the rank-
ing with 70% and 59.7%, respectively, for the Vehicle class.
Whilst the MS COCO model performs better on its own
validation set, the advantages of the VisDrone model are

Table 3   Segmentation performance as IoU per category for each
training dataset on the corresponding validation sets

Grass Tree Road Building Overall

FloodNet 70.7 45.3 40.2 43.1 49.8
LandCoverAI 79.5 72.1 54.1 39.9 61.4
SemanticDrone 79.0 65.6 51.4 85.0 70.2

Table 4   Segmentation
performance as IoU per
category and flight altitude
for each trained model on the
benchmark dataset

The highest IoUs are highlighted for each category

Grass Tree Road Building 80 m 100 m 120 m Overall

FloodNet 85.0 39.1 5.9 3.3 52.1 49.8 49.8 50.9
LandCoverAI 91.0 36.1 23.4 12.7 54.7 56.1 56.2 55.4
SemanticDrone 19.4 22.6 4.3 2.5 13.3 17.9 15.1 15.1

Fig. 13   Representative segmentation results of the model trained on LandCoverAI on the benchmark dataset for the categories Grass (light
green), Tree (dark green), Building (light grey) and Road (dark grey)

168	 PFG (2023) 91:157–170

1 3

shown on the benchmark data with more than 10% increased
AP due to the higher inherent variability of vehicles captured
from non-canonical views. The class Person is evaluated
only qualitatively due to a lack of annotated persons within
the benchmark data. Based on the results, the model trained
on the VisDrone dataset is used for the final pipeline. In
Fig. 14, three examples of predictions from the resulting
model for both classes are shown.

5 � Discussion

Our experiments show that real-time mapping with AI-
based scene understanding is feasible. In a disaster sce-
nario, our target scenario for this setup, fast coverage is
the most important factor for geodata collection. Our sys-
tem maps and interprets a scene in real-time offering first
results within the first 5–6 s after acquisition and cover-
ing an area of 45 ha in about 7.5 min. To achieve this,
we employed a fixed-wing UAV during experimentation,
allowing for higher speed, longer lasting flights in com-
parison to average copter UAVs. This, however, neces-
sitates a higher camera frame rate to avoid tracking loss
due to smaller image overlaps. Consequently, more power-
ful computing capabilities on the UAV and higher band-
width for communication to ground become mandatory.
In this setup, most hardware and software components
can be swapped and adapted to the respective use case.
For instance, the semantic labelling and object detection
nodes can be efficiently extended towards other categories
depending on the scenario (e.g. forest fires, floods, land-
slides), whilst images of a thermal camera can be rectified
alongside the RGB input. By combining object detection
and semantic labelling, small classes such as vehicles and
persons can be identified in addition to larger semantic
regions. Our future developments will target multiple
system components. First, the reconstruction quality and,
consequently, the overall accuracy will most likely benefit
from a pose estimation based on visual-inertial SLAM.

This will not only stabilise the estimated trajectory but
also mitigate tracking loss. Second, although the pipeline
allows for multi-UAV setups, true collaborative mapping
will involve a joint reconstruction pipeline for further
improving the reconstruction accuracy. Third, extending
the AI nodes to other classes and objects will facilitate
the application in other (disaster) scenarios. This will be
achieved by adding new datasets from future releases as
well as creating and developing our own dataset, in par-
ticular for flooding scenarios.

6 � Conclusion

This contribution outlines the methodology as well as the
implementation and application of a real-time orthomo-
saicing pipeline with AI-based terrain segmentation and
domain-specific object detection. Our quantitative and
qualitative experiments on reconstruction and model qual-
ity demonstrated the applicability of our system for rapid
mapping tasks, in particular within the framework of time-
critical applications, such as disaster response. Especially
in the fields of photogrammetry and remote sensing, real-
time capability comes at the expense of accuracy. To this
end, future iterations of the pipeline will involve optimisa-
tions of pose estimation, an extension towards multi-UAV
joint reconstruction and the inclusion of other classes and
objects in the AI models.

Acknowledgements  This research has been funded by the Aus-
trian security research programme KIRAS of the Federal Minis-
try of Finance (BMF). In addition, we would like to thank Marlene
Glawischnig and Vanessa Klugsberger, who manually annotated the
benchmark dataset.

Funding  Open access funding provided by AIT Austrian Institute of
Technology GmbH.

Data availability  The data used for this paper cannot be released pub-
licly. We, however, published the majority of the source code of our
pipeline (see GitHub reference).

Fig. 14   Representative detection results on the benchmark dataset of
the model trained on the VisDrone dataset for the categories Vehicle
(orange) and Person (blue). On the right image, a detected person is

visible in the centre of the image and the other two images show a
single prediction of a parking and a driving vehicle

169PFG (2023) 91:157–170	

1 3

Declarations 

Conflict of Interest  The authors declare that they have no conflict of
interest.

Code Availability  Rapid mapping code to be available in https://​github.​
com/​laxnp​ander/​OpenR​EALM.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Bai J, Lu F, Zhang K et al (2019) Onnx: Open neural network exchange.
https://​github.​com/​onnx/​onnx

Bochkovskiy A, Wang CY, Liao HYM (2020) Yolov4: optimal speed
and accuracy of object detection. arXiv preprint arXiv:​2004.​10934

Boguszewski A, Batorski D, Ziemba-Jankowska N et al (2021) Land-
cover. ai: Dataset for automatic mapping of buildings, woodlands,
water and roads from aerial imagery. In: Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition, pp
1102–1110. https://​doi.​org/​10.​1109/​CVPRW​53098.​2021.​00121

Botterill T, Mills S, Green R (2010) Real-time aerial image mosaic-
ing. Int Conf Image Vis Comput New Zealand. https://​doi.​org/​10.​
1109/​IVCNZ.​2010.​61488​50

Bu S, Zhao Y, Wan G et al (2016) Map2dfusion: Real-time incremental
uav image mosaicing based on monocular slam. In: 2016 IEEE/
RSJ International Conference on Intelligent Robots and Systems
(IROS), pp 4564–4571. https://​doi.​org/​10.​1109/​IROS.​2016.​77596​
72

Campos C, Elvira R, Rodrıguez JJG et al (2021) Orb-slam3: an accu-
rate open-source library for visual, visual-inertial, and multimap
slam. IEEE Trans Rob 37(6):1874–1890. https://​doi.​org/​10.​1109/​
TRO.​2021.​30756​44

Cordts M, Omran M, Ramos S et al (2016) The cityscapes dataset
for semantic urban scene understanding. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. pp
3213–3223. https://​doi.​org/​10.​1109/​CVPR.​2016.​350

Dosovitskiy A, Beyer L, Kolesnikov A et al (2020) An image is worth
16x16 words: transformers for image recognition at scale. arXiv
preprint https://​doi.​org/​10.​48550/​arXiv.​2010.​11929

Du D, Zhu P, Wen L et al (2019) Visdrone-det2019: The vision meets
drone object detection in image challenge results. In: Proceedings
of the IEEE/CVF international conference on computer vision
workshops. https://​doi.​org/​10.​1109/​ICCVW.​2019.​00030

Erdelj M, Natalizio E, Chowdhury KR et al (2017) Help from the sky:
leveraging uavs for disaster management. IEEE Pervasive Comput
16(1):24–32. https://​doi.​org/​10.​1109/​MPRV.​2017.​11

Everingham M, Van Gool L, Williams CK et al (2010) The pascal
visual object classes (voc) challenge. Int J Comput Vis 88(2):303–
338. https://​doi.​org/​10.​1007/​s11263-​009-​0275-4

Ferrera M, Eudes A, Moras J et al (2021) Ovslam: a fully online and
versatile visual slam for real-time applications. IEEE Robot

Autom Lett 6(2):1399–1406. https://​doi.​org/​10.​48550/​arXiv.​
2102.​04060

Häne C, Heng L, Lee GH et al (2014) Real-time direct dense match-
ing on fisheye images using plane-sweeping stereo. In: 2014 2nd
International Conference on 3D Vision, pp 57–64. https://​doi.​org/​
10.​1109/​3DV.​2014.​77

Hein D, Kraft T, Brauchle J et al (2019) Integrated uav-based real-time
mapping for security applications. ISPRS Int J Geo Inf 8(5):219.
https://​doi.​org/​10.​3390/​ijgi8​050219

Hinzmann T, Schönberger JL, Pollefeys M et al (2018) Mapping on
the fly: real-time 3d dense reconstruction, digital surface map and
incremental orthomosaic generation for unmanned aerial vehicles.
In: Hutter M, Siegwart R (eds) Field Service Robot. Springer
International Publishing, Cham, pp 383–396. https://​doi.​org/​10.​
1007/​978-3-​319-​67361-5_​25

Jocher G, Nishimura K, Mineeva T et al (2020) yolov5. https://​github.​
com/​ultra​lytics/​yolov5

Kekec T, Yildirim A, Unel M (2014) A new approach to real-time
mosaicing of aerial images. Robot Auton Syst 62(12):1755–1767.
https://​doi.​org/​10.​1016/j.​robot.​2014.​07.​010

Kern A, Fanta-Jende P, Glira P et al (2021) An accurate real-time
Uav mapping solution for the generation of Orthomosaics and
surface models. ISPRS - Int Arch Photogramm Remote Sens
Spatial Inf Sci 43B1:165–171. https://​doi.​org/​10.​5194/​isprs-​
archi​ves-​XLIII-​B1-​2021-​165-​2021

Kern A, Bobbe M, Khedar Y et al (2020a) Openrealm: real-time
mapping for unmanned aerial vehicles. In: 2020 International
Conference on Unmanned Aircraft Systems (ICUAS), pp 902–
911. https://​doi.​org/​10.​1109/​ICUAS​48674.​2020.​92139​60

Kern A, Bobbe M, Khedar Y et al (2020b) Openrealm: real-time
mapping for unmanned aerial vehicles. In: 2020 International
Conference on Unmanned Aircraft Systems (ICUAS), pp 902–
911. https://​doi.​org/​10.​1109/​ICUAS​48674.​2020.​92139​60

Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classifica-
tion with deep convolutional neural networks. Commun ACM
60(6):84–90. https://​doi.​org/​10.​1145/​30653​86

Kuznetsova A, Rom H, Alldrin N et al (2020) The open images data-
set v4. Int J Comput Vis 128(7):1956–1981. https://​doi.​org/​10.​
1007/​s11263-​020-​01316-z

Lin TY, Maire M, Belongie S et al (2014) Microsoft coco: com-
mon objects in context. In: European conference on computer
vision. Springer, pp 740–755. https://​doi.​org/​10.​1007/​978-3-​
319-​10602-1_​48

MapTiler (2022) EPSG 3857. https://​epsg.​io/​3857, accessed:
2022-11-20

Marcu A, Licaret V, Costea D et al (2020) Semantics through time:
semi-supervised segmentation of aerial videos with iterative
label propagation. In: Proceedings of the Asian Conference on
Computer Vision. https://​doi.​org/​10.​1007/​978-3-​030-​69525-5_​
32

Miller ID, Cladera F, Smith T et al (2022) Stronger together: air-ground
robotic collaboration using semantics. IEEE Robot Autom Lett
7(4):9643–9650. https://​doi.​org/​10.​1109/​LRA.​2022.​31911​65

Mur-Artal R, Tardós JD (2017) Orb-slam2: an open-source slam sys-
tem for monocular, stereo, and rgb-d cameras. IEEE Trans Rob
33(5):1255–1262. https://​doi.​org/​10.​1109/​TRO.​2017.​27051​03

Neuhold G, Ollmann T, Rota Bulo S et al (2017) The mapillary vistas
dataset for semantic understanding of street scenes. In: Proceed-
ings of the IEEE international conference on computer vision. pp
4990–4999. https://​doi.​org/​10.​1109/​ICCV.​2017.​534

Open Source Geospatial Foundation (2022a) CQL and ECQL. https://​
docs.​geose​rver.​org/​stable/​en/​user/​tutor​ials/​cql/​cql_​tutor​ial.​html,
accessed: 2022-11-20

Open Source Geospatial Foundation (2022b) GDAL. https://​gdal.​org,
accessed: 2022-11-20

https://github.com/laxnpander/OpenREALM
https://github.com/laxnpander/OpenREALM
http://creativecommons.org/licenses/by/4.0/
https://github.com/onnx/onnx
http://arxiv.org/abs/2004.10934
https://doi.org/10.1109/CVPRW53098.2021.00121
https://doi.org/10.1109/IVCNZ.2010.6148850
https://doi.org/10.1109/IVCNZ.2010.6148850
https://doi.org/10.1109/IROS.2016.7759672
https://doi.org/10.1109/IROS.2016.7759672
https://doi.org/10.1109/TRO.2021.3075644
https://doi.org/10.1109/TRO.2021.3075644
https://doi.org/10.1109/CVPR.2016.350
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.1109/ICCVW.2019.00030
https://doi.org/10.1109/MPRV.2017.11
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.48550/arXiv.2102.04060
https://doi.org/10.48550/arXiv.2102.04060
https://doi.org/10.1109/3DV.2014.77
https://doi.org/10.1109/3DV.2014.77
https://doi.org/10.3390/ijgi8050219
https://doi.org/10.1007/978-3-319-67361-5_25
https://doi.org/10.1007/978-3-319-67361-5_25
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://doi.org/10.1016/j.robot.2014.07.010
https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-165-2021
https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-165-2021
https://doi.org/10.1109/ICUAS48674.2020.9213960
https://doi.org/10.1109/ICUAS48674.2020.9213960
https://doi.org/10.1145/3065386
https://doi.org/10.1007/s11263-020-01316-z
https://doi.org/10.1007/s11263-020-01316-z
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://epsg.io/3857
https://doi.org/10.1007/978-3-030-69525-5_32
https://doi.org/10.1007/978-3-030-69525-5_32
https://doi.org/10.1109/LRA.2022.3191165
https://doi.org/10.1109/TRO.2017.2705103
https://doi.org/10.1109/ICCV.2017.534
https://docs.geoserver.org/stable/en/user/tutorials/cql/cql_tutorial.html
https://docs.geoserver.org/stable/en/user/tutorials/cql/cql_tutorial.html
https://gdal.org

170	 PFG (2023) 91:157–170

1 3

Open Source Geospatial Foundation (2022c) GeoServer ImageMosaic
Plugin. https://​docs.​geose​rver.​org/​stable/​en/​user/​data/​raster/​image​
mosaic, accessed: 2022-11-20

Open Source Geospatial Foundation (2022d) Tiled map service specifi-
cations. https://​wiki.​osgeo.​org/​wiki/​Tile_​Map_​Servi​ce_​Speci​ficat​
ion, accessed: 2022-10-13

PostGIS (2022) PostGIS. https://​postg​is.​net, accessed: 2022-11-20
Rahnemoonfar M, Chowdhury T, Sarkar A et al (2021) Floodnet: a

high resolution aerial imagery dataset for post flood scene under-
standing. IEEE Access 9:89,644-89,654. https://​doi.​org/​10.​1109/​
ACCESS.​2021.​30909​81

Redmon J, Divvala S, Girshick R et al (2016) You only look once: uni-
fied, real-time object detection. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition. pp 779–788.
https://​doi.​org/​10.​1109/​CVPR.​2016.​91

Sumikura S, Shibuya M, Sakurada K (2019) Openvslam: a versatile
visual slam framework. In: Proceedings of the 27th ACM Inter-
national Conference on Multimedia. pp 2292–2295. https://​doi.​
org/​10.​1145/​33430​31.​33505​39

Szeliski R et al (2007) Image alignment and stitching: a tutorial. Found
Trends ® Comput Graph Vis 2(1):1–104. https://​doi.​org/​10.​1561/​
06000​00009

The PostgreSQL Global Development Group (2022) PostgreSQL.
https://​www.​postg​resql.​org, accessed: 2022-11-20

TU Graz (ICG) (2022) Semantic drone dataset v1.1. https://​drone​datas​
et.​icg.​tugraz.​at, accessed: 2022-11-20

Wang CY, Bochkovskiy A, Liao HYM (2022) Yolov7: Trainable bag-
of-freebies sets new state-of-the-art for real-time object detectors.
arXiv preprint https://​doi.​org/​10.​48550/​arXiv.​2207.​02696

Xia GS, Bai X, Ding J et al (2018) Dota: a large-scale dataset for object
detection in aerial images. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp 3974–3983.
https://​doi.​org/​10.​1109/​CVPR.​2018.​00418

Yu F, Koltun V, Funkhouser T (2017) Dilated residual networks. In:
Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pp 472–480. https://​doi.​org/​10.​1109/​CVPR.​
2017.​75

Yu F, Wang D, Shelhamer E, et al (2018) Deep layer aggregation. In:
Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pp 2403–2412. https://​doi.​org/​10.​1109/​CVPR.​
2018.​00255

Zhao Y, Chen L, Zhang X et al (2021) Rtsfm: real-time structure
from motion for mosaicing and dsm mapping of sequential aerial
images with low overlap. IEEE Trans Geosci Remote Sens 60:1–
15. https://​doi.​org/​10.​1109/​TGRS.​2021.​30902​03

Zheng S, Lu J, Zhao H et al (2021) Rethinking semantic segmentation
from a sequence-to-sequence perspective with transformers. In:
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp 6881–6890. https://​doi.​org/​10.​1109/​
CVPR4​6437.​2021.​00681

Zou Z, Shi Z, Guo Y et al (2019) Object detection in 20 years: a survey.
arXiv preprint https://​doi.​org/​10.​48550/​arXiv.​1905.​05055

https://docs.geoserver.org/stable/en/user/data/raster/imagemosaic
https://docs.geoserver.org/stable/en/user/data/raster/imagemosaic
https://wiki.osgeo.org/wiki/Tile_Map_Service_Specification
https://wiki.osgeo.org/wiki/Tile_Map_Service_Specification
https://postgis.net
https://doi.org/10.1109/ACCESS.2021.3090981
https://doi.org/10.1109/ACCESS.2021.3090981
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1145/3343031.3350539
https://doi.org/10.1145/3343031.3350539
https://doi.org/10.1561/0600000009
https://doi.org/10.1561/0600000009
https://www.postgresql.org
https://dronedataset.icg.tugraz.at
https://dronedataset.icg.tugraz.at
https://doi.org/10.48550/arXiv.2207.02696
https://doi.org/10.1109/CVPR.2018.00418
https://doi.org/10.1109/CVPR.2017.75
https://doi.org/10.1109/CVPR.2017.75
https://doi.org/10.1109/CVPR.2018.00255
https://doi.org/10.1109/CVPR.2018.00255
https://doi.org/10.1109/TGRS.2021.3090203
https://doi.org/10.1109/CVPR46437.2021.00681
https://doi.org/10.1109/CVPR46437.2021.00681
https://doi.org/10.48550/arXiv.1905.05055

	Semantic Real-Time Mapping with UAVs
	Abstract
	1 Introduction
	2 Related Work
	2.1 Rapid Mapping
	2.2 Machine Learning
	2.2.1 Semantic Labelling
	2.2.2 Object Detection

	3 Methodology
	3.1 Semantic Orthorectification Pipeline
	3.1.1 Data Acquisition
	3.1.2 Pose Estimation
	3.1.3 Densification
	3.1.4 Surface Generation
	3.1.5 Semantic Labelling
	3.1.6 Orthorectification
	3.1.7 Tileing
	3.1.8 Object Detection

	3.2 Server Segment and Data Infrastructure
	3.3 Machine Learning
	3.3.1 Benchmark Dataset
	3.3.2 Semantic Labelling
	3.3.3 Object Detection

	4 Experiments
	4.1 Semantic Orthorectification Pipeline Experiments
	4.1.1 Setup and Data Acquisition
	4.1.2 Qualitative Analysis of Reconstructed Data Products and Real-Time Capabilities
	4.1.3 Qualitative Analysis of Semantic Labelling and Object Detection

	4.2 Benchmark Experiments
	4.2.1 Semantic Labelling
	4.2.2 Object Detection

	5 Discussion
	6 Conclusion
	Acknowledgements
	References

