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Abstract
Whilst mapping with UAVs has become an established tool for geodata acquisition in many domains, certain time-critical 
applications, such as crisis and disaster response, demand fast geodata processing pipelines rather than photogrammetric 
post-processing approaches. Based on our 3D-capable real-time mapping pipeline, this contribution presents not only an 
array of optimisations of the original implementation but also an extension towards understanding the image content with 
respect to land cover and object detection using machine learning. This paper (1) describes the pipeline in its entirety, (2) 
compares the performance of the semantic labelling and object detection models quantitatively and (3) showcases real-world 
experiments with qualitative evaluations.
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1 Introduction

Unmanned aerial vehicles (UAVs) have become an essential 
asset for acquiring geoinformation for various purposes and 
in many domains. UAVs have democratised geodata acquisi-
tion by being affordable, versatile and offering ease-of-use. 
Due to this role as a low-threshold technology, UAVs did not 
only enter the consumer market quickly but achieved a high 
maturity in a short amount of time. This makes their use 
attractive but also feasible for risky and difficult applications 
with a high demand for reliable and robust solutions, such 
as crisis and disaster management. Here, UAVs can serve as 

a support tool for decision-making of first responders rely-
ing on quick data capture, processing and eventually (auto-
mated) interpretation (Erdelj et al. 2017). UAV photogram-
metry as a whole can be considered a mature technology 
but lacks real-time performance. Disaster relief, however, 
requires timely data availability—ideally in real-time. To 
make this possible, an array of technologies and methods 
needs to work hand in hand, from industrial imaging sensors, 
navigation instruments and high-bandwidth communication 
links to real-time capable state estimation and reconstruction 
algorithms as well as object detection and semantic labelling 
models. This contribution summarises our efforts towards a 
real-time capable UAV mapping solution with direct data 
interpretation.
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2  Related Work

Our research work intersects various fields, most promi-
nently represented by efforts to achieve rapid geometric 
transformations of image data and their respective inter-
pretation. To summarise these major research directions, 
this literature review discusses rapid mapping approaches 
and machine learning in this context separately.

2.1  Rapid Mapping

Creating orthomosaics of an area whilst the acquiring 
UAV is still in the air is a challenging problem com-
bining techniques from geodesy, robotics and computer 
vision as it involves self-localisation of a moving cam-
era, dense scene reconstruction in real-time whilst fulfill-
ing geographical accuracy constraints. Early approaches 
simplified the underlying assumptions by applying tradi-
tional image stitching techniques as described by Szeliski 
(2007). There, image alignment is treated as a 2D prob-
lem computing the affine transformation or homography 
between consecutive frames based on feature extraction 
and matching. This strategy neglects surface elevation, but 
is computationally efficient and was utilised for aerial map 
creation by various authors (Botterill et al 2010; Kekec 
et al. 2014). The results of such frameworks, however, 
are erroneous especially in low altitudes. Distortions in 
the image induced by perspective variations accumulate 
and lead to drift in the global mosaic. Additionally, no 
3D surface information is extracted which highly benefits 
a variety of use cases, such as situational awareness in a 
disaster relief scenario.

Consequently, research has been carried out over the 
last decades to overcome these limitations and allow for 
the generation of true orthomosaics in real-time. Hein 
et al. (2019) use a priori Digital Elevation Models (DEMs) 
to account for surface elevation. However, availability of 
accurate and up-to-date DEMs is limited and even com-
pletely infeasible when the observed scene drastically 
changed (due to, e.g. an earthquake). Bu et al. (2016) uti-
lise a visual SLAM for camera pose estimation and pro-
ject the images into a common reference frame to create 
the global mosaic. This does not account for distortions 
through surface elevation, yet it is more robust in low alti-
tudes by modelling the true 3D camera motion. Hinzmann 
et al. (2018) were the first to our knowledge to combine 
both the pose estimation and the dense scene reconstruc-
tion into a real-time framework. By multi-sensor fusion 
of an inertial measurement unit (IMU), a Global Naviga-
tion Satellite receiver (GNSS) and optical flow estimates 
of a KLT-tracker, the resulting pose and image was fed 

into a stereo reconstruction pipeline. The surface was 
recovered through computation and fusion of depth maps 
for the creation of an elevation map to eventually rectify 
the image data. Based on this work, another pipeline for 
orthomosaicing was developed called OpenREALM (Kern 
et al. 2020a). It modularises the design of Hinzmann et al., 
so that each individual processing stage can be computed 
either in the air or on the ground. Additionally, the sen-
sor fusion was replaced by an extendable visual SLAM 
interface, so that state of the art implementations [e.g. 
ORB SLAM2 (Mur-Artal and Tardós 2017)] could be used 
for camera pose estimation. Since then, other publications 
have pushed the state of the art even further. Zhao et al. 
(2021) tackled the problem of low overlapping image 
sequences as it is often the case in aerial imagery through 
tighter incorporation of GNSS data into the underlying 
visual SLAM. A similar strategy was followed by Miller 
et al. (2022) who employ a pose graph optimisation back-
end to fuse visual and GNSS measurements. In addition, 
each new keyframe of their pipeline is passed through a 
semantic segmentation framework to assign basic labels 
such as road, vegetation or building to ground segments. 
Combining aerial data with scene understanding is also a 
key target of our research within this paper.

2.2  Machine Learning

Recent advances in artificial intelligence and graphics-
accelerated parallel computing lead to faster and more effi-
cient machine learning techniques. These techniques can be 
applied in a broad spectrum of fields, including computer 
vision (Lin et al. 2014). In this realm, Convolutional Neural 
Networks (CNNs) (Krizhevsky et al. 2017; Yu et al. 2017) 
demonstrated to be an outstanding method for inferring 
semantic information and object detection in RGB images 
with a relatively low time taxation. In contrast, more recently 
emerging techniques like Vision Transformers (Zheng et al. 
2021; Dosovitskiy et al. 2020) achieve promising results 
for classification problems but not without a higher time 
expense. Performance and low time consumption make 
CNNs more desirable for our real-time mapping use case. 
Going into detail, CNN architectures for object detection are 
divided into one- and two-stage approaches with the former 
expediting real-time performance (Zou et al. 2019) at the 
expense of extra accuracy. Given our use case, we focus on 
one-stage detectors. One of the most popular was first intro-
duced in 2016 as YOLO (Redmon et al. 2016). Low com-
putational complexity and relatively high accuracy quickly 
established YOLO as one of the go-to one-step detectors. 
Since then, newer iterations further improved the model’s 
performance. The current model iteration is YOLOv7, pub-
lished in 2022 (Wang et al. 2022).
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Remote  sensing applications represent a challenging 
domain for all the data-driven machine learning algo-
rithms, since the available case-specific training data are 
commonly scarce. For instance, the nadir view for our case 
scenario does not match the vast majority of publicly avail-
able machine learning datasets. The current limitations for 
the tasks of semantic labelling and object detection are dis-
cussed in the following sections.

2.2.1  Semantic Labelling

In contrast to popular all-purpose (Lin et al. 2014; Kuznets-
ova et al. 2020) or driving (Cordts et al. 2016; Neuhold et al. 
2017) datasets, which typically offer a front facing view, 
remote sensing datasets usually employ a nadir perspective.

A handful of datasets with semantic labelling annotations 
compatible with our use case became available in recent 
years. For instance, FloodNet (Rahnemoonfar et al. 2021), 
which has gained a lot of popularity recently, consists of 
almost 0.4 k images and according pixel-wise annotations. 
Similarly, SemanticDrone (TU Graz (ICG) 2022) consists 
of 0.4 k images captured at an altitude of 5–30 m above 
ground and is especially relevant due to the high number of 
included scene participants. However, since most images 
were recorded over a small settlement of newly built pre-
fabricated houses, the low variability of the included data 
limits its generalisation to more challenging scenarios. 
Closely, LandCoverAI (Boguszewski et al. 2021) provides 
41 orthorectified high-resolution aerial images captured in 
Poland. Similarly, Ruralscapes (Marcu et al. 2020) includes 
20 UAV-based videos depicting a typical rural setting with 
1 k manually annotated images with segmentation masks.

2.2.2  Object Detection

Front-facing camera object detection datasets are common. 
Examples like Pascal VOC (Everingham et al. 2010) or MS 
COCO (Lin et al. 2014) contain relevant categories such as 
pedestrians or motorised vehicles. However, the perspec-
tives from which images were acquired in these cases are not 
compatible with the mapping application. In comparison, 
the DOTA dataset (Xia et al. 2018) is based on satellite and 
aerial images from Google Earth. Its latest version includes 
11 k images and nearly 1800 k instances of 18 common 
categories. Nonetheless, the dataset does not contain annota-
tions of small classes such as pedestrians. The most suitable 
dataset for our use case is VisDrone (Du et al. 2019), which 
comprises 8.6 k images captured by multiple drone types 
in 14 Chinese cities containing different weather, lighting 
and environmental conditions. Additionally, the recordings 
show a compromise between top and front viewing angles 
at different flight altitudes.

3  Methodology

Two complementary development lines were followed: 
First, implementation of a pipeline capable of real-time 
mapping, semantic segmentation and object detection. 
Second, the establishment of a benchmark dataset to meas-
ure the performance of the machine learning models on 
our use case and the corresponding dataset selection for 
model training.

3.1  Semantic Orthorectification Pipeline

The pipeline is implemented as a modular series of down-
stream stages or nodes, each one receiving, processing and 
forwarding a proprietary Robot Operating System (ROS) 
message named Frame. A Frame message contains the 
information generated at each step (including data capture) 
and facilitates communication between nodes. At its core, 
the mapping task is based on OpenREALM (Kern et al. 
2020a, 2021), which was first published as an open source 
project on Github (Kern et al. 2020b). In comparison to 
the original, this version features a separation into air and 
ground modules. The former is comprised of the data 
acquisition and pose-estimation nodes and runs on the tar-
get UAV. The latter includes the remaining nodes, some of 
which were modified to achieve real-time performance and 
runs on a separate computer, referred to as ground station.

Communication between the air and ground modules 
is achieved using an LTE wireless connection router. 
A detailed description of the hardware is available in 
Sect. 4.1.1.

The complete pipeline comprises eight distinctive pro-
cessing stages in the following order: data acquisition 
3.1.1, pose estimation 3.1.2, densification 3.1.3, surface 
generation 3.1.4, segmentation 3.1.5, orthorectification 
3.1.6, tileing 3.1.7 and object detection 3.1.8. The work-
flow of the pipeline is depicted in Fig. 1.

Additionally, a Geoserver node was added for data visu-
alisation and further use of the data products in a GIS 3.2. 
However, this does not impact the performance of any of 
the previous nodes.

3.1.1  Data Acquisition

Readings are gathered from the available sensors on the 
UAV and encapsulated in our proprietary Frame message 
for easy transportation and data control. In general, this 
interface is agnostic to the mode of input, e.g. ROS topics/
messages (as in our case) or a folder containing graphic 
formats such as JPG files with EXIF headers both work as 
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long as the required image topic and its respective intrinsic 
and extrinsic orientation elements can be parsed.

3.1.2  Pose Estimation

Camera pose estimation is essential to determine the cor-
rect position of each image at a global scale. Accuracy is 
essential in this node as inaccuracies cannot be compen-
sated afterwards. To support the state estimation, the UAV 
image stream is used in conjunction with a visual SLAM 
approach. To this end, a vSLAM interface was implemented 
to integrate different frameworks, for instance ORB SLAM2 
(Mur-Artal and Tardós 2017), which for the most part fol-
lows the traditional structure of feature extraction, match-
ing and optimisation through bundle adjustment. Because 
monocular cameras are not able to recover the scene scale 
without additional information, the next step is to align the 
vSLAM trajectory with measurements of other sensors. By 
combining GNSS information with the relative altitude of 
the onboard barometer, we can extract a 3D trajectory with 
a metric scale. The similarity transformation between the 
two trajectories, the metric and visual one, can be extracted 
through least-squares estimation. Whilst the procedure is 
straightforward, it comes with some disadvantages. The esti-
mation neglects the actual sensor orientation and assumes 
the position of the GNSS receiver and the camera’s focal 
point to be approximately the same. Consequently, a min-
imum trajectory length is required for reasons of robust-
ness and to estimate the azimuth angle. In our framework, 
the trajectory alignment is performed iteratively for every 
keyframe and once the estimation error converges below a 
certain threshold, the computed similarity transformation 
is used as a georeference for all frames and the pipeline 
initialisation is complete.

Only the georeferenced RGB keyframes and the cor-
responding acquisition information (UAV heading, speed, 
coordinates, etc.) are forwarded to the ground station to exe-
cute the following pipeline steps as a Frame message using 
the wireless connection. The exclusive use of keyframes 

provides enough information for a good reconstruction 
whilst reducing the bandwidth requirement between the 
UAV and the ground station.

Although modifiable, in our use case, the vSLAM is oper-
ating at 15 frames per second as this is the ideal compromise 
between onboard processing capabilities and reconstruction 
quality.

3.1.3  Densification

After collecting at least two overlapping frames viewed from 
different viewpoints, depth maps are computed. By observ-
ing each respective 3D point, only those whose estimated 
position is consistent across multiple depth maps are flagged 
as valid. As a result of this stage, each Frame carries a 3D 
estimate of its observed scene. Similar to the pose estimation 
stage, external frameworks for stereo reconstruction can be 
incorporated via an interface. The presented pipeline utilises 
the Plane Sweep Library (Häne et al. 2014).

3.1.4  Surface Generation

The filtered depth maps then enter the surface generation 
node. By projecting the depth maps into 3D space, a point 
cloud of the currently observed scene is reconstructed. To 
reduce computational costs in the following steps, a georef-
erenced grid map is created with its cells assigned an eleva-
tion value depending on the nearest points in the point cloud. 
Potential holes in the grid are filled through interpolation. 
Consequently, each Frame now holds a watertight update to 
the global digital surface model (DSM).

3.1.5  Semantic Labelling

Semantic segmentation for terrain labelling is applied to the 
RGB information in the georeferenced Frame at this point, 
since the best results can be achieved on full-resolution key-
frames prior to rectification. Models are specifically trained 
for the target application, as described in Sect. 3.3.2 and 

Fig. 1  Pipeline workflow overview. The blue block refers to the UAV onboard node. Orange blocks outline the ground station pipeline nodes. 
Yellow blocks refer to the Geoserver processes. Most relevant data transferred from node to node is shown in green blocks
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deployed by converting them from PyTorch to the Open 
Neural Network Exchange (ONNX) standard (Bai et al. 
2019). ONNX is a platform-independent open source for-
mat used to achieve suitable performance for the pipeline 
using optimisation tools and different compilers. The result-
ing segmentation masks are then embedded in the Frame 
message forwarded to subsequent nodes, allowing for an 
efficient transformation of the labels along with the RGB 
data throughout the remaining pipeline in real-time.

3.1.6  Orthorectification

The surface information is utilised to remove perspective 
distortions from the original RGB image data as well as 
the semantic layer. To this end, a backprojection from grid 
proposed by Hinzmann et al. (2018) was implemented. By 
iterating through each cell of the DSM and projecting its 
3D point into the camera plane, perspective distortions in 
the RGB data are minimised and orthogonality is enforced. 
The corrected data are added to the grid map as an additional 
layer resulting in an incremental, multi-layered grid update 
for the global mosaic. The same rectification transformations 
are subsequently applied to the segmentation mask.

3.1.7  Tileing

Excluding the pose estimation, all previous stages can 
be considered stateless. Consequently, the resources per 
Frame only depend on the current input data and there is 
no increase in resource requirements over time. This, how-
ever, does not hold true during visualisation. The growing 
number of rectified mosaics generated during mapping rep-
resents an increasing load on memory when visualising the 
map. During long sessions, this resource is prone to run out. 
Moreover, this factor may also represent an obstacle when 
performing a real-time reconstruction. 

Hence, a resource-efficient and real-time tileing stage that 
combines two concepts is implemented. First, in a similar 
fashion to the Tiled Map Service (Open Source Geospatial 
Foundation 2022d) for tiled web maps, the global map is 
treated as a grid and the incoming map is tiled to fill in 
the cells accordingly. The incremental grid maps from the 
orthorectification node are divided into 256 × 256 pixels tiles 
and individually georeferenced to address the geographical 
coordinates shift that arises from the division (tiles further 
away from the upper left corner of the mosaic have a coordi-
nate shift correction equivalent to 256[px]*GSD[px/m]*tile 
shift). If a smaller portion of the mosaic does not totally 
cover the corresponding tile area, the missing pixels are 
filled in by setting the transparency to 100%, as shown in 
Fig. 2. In this way, there is no interference when a partial tile 
overlaps a full tile. Tiles are then fused with the correspond-
ing cell content (if already existing) or first initialised in the 

global grid map and stored to disc (Fig. 3). Tileing runs for 
as long as the mapping process does, meaning that areas 
can be revisited and remapped during the same flight. This 
is achieved with continuous caching, which increases the 
workload on the CPU, but enables creating and displaying 
maps whose size is only limited by the available hard drive 
storage in real-time. Concerning applications, such as coop-
erative multi-UAV mapping, this would theoretically allow 
for covering large areas in high resolution in a matter of 
minutes with fixed-wing UAVs. Tileing reduces the memory 
requirements when displaying as only the necessary tiles 
are loaded.

Second, most web tile systems use the WGS 84-based 
Pseudo-Mercator coordinate system (EPSG 3857) (Map-
Tiler 2022) for index-based tile georeferencing. However, 
the pipeline uses UTM and does not rely on index-based 
referencing based on PNG files but writes TIF files with 
corresponding headers (Open Source Geospatial Foundation 
2022b). Combining these two approaches decreases memory 
consumption whilst displaying the map and eradicates the 
need of intermediate coordinate transformation, resulting in 
a reduced overall tileing time of around 100 ms. Moreover, 
resorting to TIF files enables high compatibility to existing 
geodata infrastructures.

3.1.8  Object Detection

Object detection is performed on the final RGB tiles using 
the specifically trained CNN described in Sect. 3.3.3. To 
obtain a trained model with increased robustness against 
image transformations, data augmentation techniques are 
used. For example, mosaic augmentation (Bochkovskiy 
et al. 2020), which creates a synthetic input image consisting 
of four randomly transformed images of the training data. 
Since object detection requires more complex pre-processing 
and post-processing of images than semantic labelling, the 
corresponding processing stage builds upon the TensorRT 
framework for deployment to achieve real-time performance. 
The resulting bounding boxes and object labels are georef-
erenced based on the input tile’s information and integrated 
into the final map. 

Fig. 2  Examples of incomplete and full tiles
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3.2  Server Segment and Data Infrastructure

The resulting georeferenced tiles with the highest 
resolution (i.e. up to 6.5 cm ground sample distance 
at 100 m altitude with the camera used in our setup 
described in Sect.  4.1.1) are collected in a geospa-
tial data management server based on GeoServer, an 
open source server that enables geospatial data shar-
ing, processing and editing with support for PostGIS 
(PostGIS 2022) as a spatial database extension for an 
object-relational PostgreSQL (The PostgreSQL Global 
Development Group 2022) database. The tiles are pro-
cessed using the GeoServer’s image mosaic plugin 
(Open Source Geospatial Foundation 2022c) allow-
ing for the creation of composite images from a set of 
georeferenced rasters with one query. The database is 
organised to process the raster file location, geospa-
tial information, time information and flight mission to 
enable the processing of time series of flights and mis-
sions. To ensure the real-time visualisation capability 
of the GIS, new tiles are inserted directly into the Post-
greSQL database to ensure the highest performance. 
To query composite images from the server, a Web 
Map Service (WMS) with a Common Query Language 
(CQL) extension (Open Source Geospatial Foundation 
2022a) is used to filter the bounding box, time interval 
and flight mission. This further minimises the compu-
tational performance for the server to ensure real-time 
capability.

3.3  Machine Learning

Multiple experiments were performed to produce suitable 
CNN-based models for semantic terrain labelling and object 
detection, the best performing of which are integrated in 
the corresponding pipeline stages. The following sections 
provide details regarding our custom benchmark dataset and 
the experimental setup.

3.3.1  Benchmark Dataset

Quantifying the performance of machine learning tasks 
for the intended application scenarios and sensor setups 
requires specific test data. As the open source datasets show 
strong differences in their acquisition altitude, the bench-
mark dataset is divided into three different altitudes with 
different image scales. Multiple sequences are recorded with 
the target UAV platform at altitudes of 80, 100 and 120 m 
to measure their impact on model performance and show 
their degree of generalisation over multiple resolution levels. 
From these recordings, we manually sampled a representa-
tive set of 273 images which sufficiently cover all altitudes 
and relevant classes. Each sample is manually annotated 
with per-pixel masks, differentiating between the semantic 
categories of Grass, Tree, Building, Road, Vehicle and Per-
son, as visualised in Fig. 4. To evaluate object detection, 
corresponding bounding boxes for the latter two categories 
are automatically derived. Due to the characteristics of the 
captured area and intended application scenario, the vegeta-
tion classes are significantly more frequent than man-made 

Fig. 3  Incremental grid maps 
generated by the orthorectifica-
tion stage consist of several 
layers, e.g. the rectified RGB 
data or the observed surface 
elevation. The grid maps are 
sliced into individual tiles. 
These multi-layered tiles are 
fused with the existing data 
in the global mosaic and then 
saved to the hard drive

Fig. 4  Representative pairs of images and semantic masks annotated in the benchmark dataset containing the categories Grass (light green), Tree 
(dark green), Building (light grey), Road (dark grey) and Vehicle (orange)
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structures, whilst vehicles and persons are underrepresented. 
Whilst these data gaps can be addressed when extending the 
benchmark dataset for future applications, the data still pro-
vide relevant insights, since it was recorded with the target 
platform and sensor setup.

3.3.2  Semantic Labelling

The segmentation models are trained using multiple pub-
licly available datasets. Of those discussed in Sect. 2.2.1, 
we selected FloodNet, SemanticDrone and LandCoverAI 
due their recording altitudes and class distributions roughly 
resembling the given application scenario. Prior to training 
and evaluation, the labels of each source dataset are mapped 
to the benchmark categories of Grass, Tree, Building and 
Road, as listed in Table 1. Unused labels are excluded for 
training and validation. The resulting label distribution of 
each training dataset after mapping is visualised in Fig. 5. 
Whilst the labels Gras and Trees mainly appear in FloodNet 
and LandCoverAI, they have a lack of Building and Road 
instances compared to the SemanticDrone dataset which 
contains 50% Road and over 10% Building areas. LandCov-
erAI has an image size of 9000 × 9500 and 4200 × 4700 
pixels with a per-pixel resolution of 25 cm and 50 cm GSD. 
To make the dataset comparable to the others and adapt it 
to our use case, the ortho images are split into pieces with a 
resulting image size of 1280 × 1280 pixels, whilst FloodNet 

and SemanticDrone images are downscaled to 1920 × 1280 
pixels to achieve a similar per-pixel resolution.

For all experiments, we apply a split between training 
and validation data of 90:10 to the source dataset and test 
on the entire benchmark dataset. During training, each sam-
ple is randomly resized and cropped to a final input size 
of 640 × 640 pixels to meet performance and memory con-
straints, whilst validation and test images are constantly 
scaled to 1920 × 1280 pixels. We selected the efficient 
architecture dla-34 (Yu et al. 2018) to facilitate real-time 
processing on the target platform. All models are trained 
from scratch on a system containing two NVIDIA 3090 
RTX GPUs using a learning rate of 0.001 with a step size of 
50 and a batch size of 20. The best-performing models are 
selected based on validation results after 200 epochs. For 
quantitative evaluations, we use the established intersection-
over-union (IoU) metric (Everingham et al. 2010).

3.3.3  Object Detection

Since small foreground classes, such as vehicles and per-
sons, are typically highly underrepresented in aerial seg-
mentation datasets, their robust identification requires the 
additional task of object detection. After analysing several 
available datasets, we selected MS COCO (Lin et al. 2014) 
and VisDrone (Du et al. 2019), since both provide a suf-
ficient amount of relevant samples captured from various 
altitudes resulting in different GSDs and especially the lat-
ter one partially provides nadir views. The source labels are 
aggregated into two target classes, one for pedestrians and 
one for motorised and non-motorised vehicles. We quan-
tify the results using the average precision (AP) metric as 
defined by the COCO benchmark (Lin et al. 2014), which 
is more challenging than those used by Pascal VOC (Ever-
ingham et al. 2010), since it represents averaged results over 
multiple IoU thresholds. For training an object detector, we 
used the framework of YOLOv5 (Jocher et al. 2020), as it 
performs better than YOLOv6. Whilst the newest release, 
YOLOv7, would provide slightly superior performance, the 
selected version offers the best trade-off between accuracy, 
computational complexity and training time. All experi-
ments are conducted by fine-tuning a model pre-trained on 
all categories of the COCO dataset to the relevant target 
classes Vehicle and Person. Models are trained on the same 
hardware described in Sect. 3.3.2 using the default training 
configuration and standard data augmentation techniques, 
such as random scaling, mosaic augmentation and crop-
ping to focus on tiny objects up to 10 × 10 pixels. We use 
the network architecture YOLOv5m of release 6.0 with an 
input size of 1280 × 1280 pixels and a batch size of 8. We 
select the best-performing model after 37 epochs for further 
evaluations.

Table 1  Listing of all target benchmark categories and their corre-
sponding category denominations in the mapped source datasets

Category Id LandCoverAI FloodNet SemanticDrone

Grass 0 Background Grass Dirt
Grass

Tree 1 Woodland Tree Vegetation
Tree
Bald tree

Building 2 Building Roof
Building flooded Wall
Building non-flooded Window

Door
Road 3 Road Road non-flooded Paved area

Gravel

Fig. 5  Normalised label distribution of source datasets
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4  Experiments

Although the artificial intelligence models and the ortho-
rectification pipeline are integrated into in a single pipeline, 
each module can be evaluated separately. As a first step, 
benchmark experiments are conducted for creating suitable 
models for semantic labelling and object detection. After 
integrating them into the corresponding modules, the entire 
pipeline is evaluated in a real-time setup. 

4.1  Semantic Orthorectification Pipeline 
Experiments

4.1.1  Setup and Data Acquisition

Flight experimentation is divided into real-time (online) 
and post-processing (offline). Online implies a split pipe-
line, i.e. the data-acquisition and pose-estimation nodes are 
running on an UAV, whilst the remaining nodes run on the 
ground station. The connection is established using a wire-
less telecommunication node. In comparison, offline means 
that the UAV recorded data, later to be retrieved and fed 
into the pipeline running entirely on the ground station. The 
main differences between these approaches are the real-time 
execution in online mode and the higher computing capacity 
as well as bandwidth in offline mode. The densification node 
is disabled for the experiments.

In both cases, flights are performed using a fixed-wing 
Skywalker EVE-2000 UAV (2240 mm wingspan, 1270 mm 
fuselage length and 4600  g maximum take-off mass) 
equipped with a Pixhawk 2 as Flight Management System 
(FMS) and running the Arduplane flight controller stack in 
autonomous configuration (Fig. 6). GNSS measurements 
for flight control and pose estimation are captured using a 
Here3 from Cube Pilot with real-time kinematics (RTK) 
enabled. Flight recordings and UAV pipeline nodes run on 
a NVIDIA Jetson Xavier NX. Imagery was acquired using 
a 2.3 megapixel global shutter CMOS colour camera with a 
resolution of 1920 × 1200 pixels based on a Sony IMX249 
sensor mounted on a cardanic suspension system for roll 

compensation. Images are compressed before sending and 
processing.

Communication is addressed by establishing a private 
connection over the local 4G network using a Teltonika 
RUT240 LTE router on the UAV to a Teltonika RUTX11 
LTE router on the ground station. This configuration grants 
a good bandwidth, which translates to a stable connection 
and no substantial amount of lag observed during experi-
mentation. Alternatively, the setup can be operated with an 
autonomous tracking antenna system running a Wi-Fi net-
work (802.11n) or proprietary datalink to be independent of 
local telecommunication infrastructure.

The ground station features a dual 10-core XEON pro-
cessor and four NVIDIA RTX 2080 TI graphic cards. The 
station acts as a control station to send/receive information 
to/from the UAV and process the acquired data (pipeline and 
machine learning). A total of three flights were executed for 
testing and/or recording. Each followed the same flight path 
with a fixed height of 100 m to correspond with the target 
scenario (large coverage at minimal time) and avoid motion 
blur and consequent tracking loss at lower altitudes due to 
the relatively high speed above ground of around 75 km/h. 
(please note that this height refers to the data acquisition 
only, not the benchmark dataset recordings):

• Flight 1: Exclusive data recording for offline experi-
ments.

• Flight 2: Data recording plus online rapid mapping (split 
pipeline running) and no artificial intelligence nodes.

• Flight 3: Exclusive online rapid mapping and artifi-
cial intelligence nodes running for semantic segmenta-
tion and object detection.

Fig. 6  Fixed-wing UAV used in the experiments Fig. 7  Online vs offline map reconstruction (Flight 2)
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4.1.2  Qualitative Analysis of Reconstructed Data Products 
and Real‑Time Capabilities

As visible in Figs. 7 and 8, the online flight (left) is more 
prone to high frequency tile shifting or misalignment com-
pared to the offline approach (right). This effect, however, is 
not limited to well-defined structures like roads. Tile shifting 
is also visible in flat surfaces as colour changes and seam 
lines on smooth surfaces. In spite of the more significant tile 
shifting visible in the online setup, the whole reconstruction 
took place in real-time.

Previous experiments (Kern et al. 2021) focussed on 
understanding the impact of different SLAM approaches 
[ORB-SLAM3 (Campos et al. 2021), OV2SLAM (Ferrera 
et al. 2021), OpenVSLAM (Sumikura et al. 2019)] on the 
reconstruction quality as well as on the absolute accuracy. In 
our past experiment, a total of 27 ground control points were 
surveyed to determine the RSME in X, Y and Z. Depend-
ing on the acquisition altitude and the underlying SLAM 
approach, absolute accuracies of around 1 m in the horizon-
tal and vertical dimension were achieved. To ascertain the 
difference in accuracy between offline and online processing, 
20 checkpoints were measured in a reference orthomosaic 
processed using Pix4D without the use of ground control 
(Table 2).

Besides a visually more consistent reconstruction (Figs. 7 
right and 8 right), the offline reconstruction also yields a 
more accurate data product overall. However, Flight 1 is 
the only flight without an active pose reconstruction node 
running in parallel entailing that all the available onboard 
computing resources are assigned to data recording. Against 
this background, the decreased accuracy of Flight 2 offline 
can likely be attributed to performance limitations of the 
onboard processing unit since computing resources are 
distributed between recording and pose estimation. The 
recording node, however, does not impact the accuracy to 
a great degree, since the online data products of Flight 2 
and Flight 3 share a similar accuracy. The error distribution 
(see Fig. 9) shows degrading accuracy towards the edges of 
the orthomosaic. Although this may be usual behaviour in 
traditional photogrammetric workflows due to fewer across-
track image overlaps, this pattern is likely to be caused by a 
more difficult tracking scenario for the underlying SLAM. 
In particular, repetitive patterns, as they occur in fields and 
meadows, are difficult for feature matching approaches and 

consequently affect the pose estimation, especially in non-
inertial SLAM implementations.

Regarding the real-time capability, the delay between 
image acquisition and the reception of a keyframe on the 
ground station is between 1 and 2 s. On top of this, the 
ground station processing time increases the total process-
ing time including tile generation to around 5–6 s.

It is expected that the frame reception on the ground 
station from the UAV may vary on different factors, such 
as telecommunication infrastructure, bandwidth usage, 
obstruction (e.g. trees), physical distance between sender 
and receiver nodes and/or pipeline buffers usage. Nonethe-
less, we did not experience any substantial variation during 
the experiments. The frequency of tile generation remained 
constant during the flights.

Table 2  Relative accuracy 
between orthomosaics of Flight 
1 (offline), Flight 2 (offline and 
online) and Flight 3 (online) 
with Pix4D orthomosaic as 
reference

RMSE X [m] RMSE Y [m] Mean X [m] Mean Y [m] Min error [m] Max error [m]

Flight 1 offline 1.03 1.97 0.47 −0.39 0.08 5.09
Flight 2 offline 2.39 5.19 −1.51 −3.84 0.06 8.66
Flight 2 online 4.07 3.47 −0.05 0.44 0.08 8.88
Flight 3 online 3.92 3.86 −2.17 −0.19 0.01 9.28

Fig. 8  Close up of online vs offline shifted tiles (Flight 2)

Fig. 9  Locations of checkpoints with mean difference error in X, Y
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4.1.3  Qualitative Analysis of Semantic Labelling and Object 
Detection

Evaluating the online experiments confirmed that the seman-
tic labelling module provides sufficient performance for real-
time application of the entire pipeline on the target platform. 
Figure 10 shows a selection of the results as orthorectified 
tiles. They demonstrate that the segmentation results are 
largely consistent across overlapping input frames, as there 
are hardly any label switches along borders between stitched 
source images.

Apart from the integration of the semantic labelling mod-
ule into our pipeline to process unaltered RGB images at an 
early stage, the real-time evaluation also shows the model’s 
generalisation capability to the application scenario. Espe-
cially, the classes Grass and Tree can be distinguished with 
high accuracy despite varying visual appearance, as visible 
in first two images from the left in Fig. 10. Buildings are 
more challenging and more scarce in the test data, but still 
correctly assigned in many cases. Performance for roads 
strongly depends on their visual appearance as visible in 
the two images on the right, where overexposed or underex-
posed instances are often missed, whilst those resembling 
the training data are usually correctly classified. Overall, the 
results resemble those from offline tests on the benchmark 
data, indicating that the model is suitably integrated in the 
processing pipeline and generalises well to the changes in 
environmental conditions and camera settings between the 
recordings. A visualisation of the complete segmented map 
of Flight 2 is shown in Fig. 12.   

The object detection module is evaluated on the pro-
cessed tiles for the Vehicles category, since the flight altitude 
(100 m) and resulting resolution (0.15 m/px) are considered 
insufficient for robustly detecting persons from a nadir view. 
The cars present in the evaluated scenarios are consistently 

Fig. 10  Representative tiled results of online semantic labelling (bottom row) for the categories Grass (light green), Tree (dark green), Building 
(light grey) and Road (dark grey), along with corresponding RGB tiles (top row)

Fig. 11  On the left image, the input image tile is shown, whereby 
the image on the right side shows the representative object detection 
results on the tiling output for the Vehicle category (orange)

Fig. 12  Visualisation of Flight 2 reconstructed RGB map (left) and 
segmentation map generated from key frames (right)
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detected, even if they coincide with tileing artefacts, as vis-
ible in Fig. 11. Furthermore, the model did not produce any 
false detections across the entire recording and proved to 
provide real-time performance on the target platform.

4.2  Benchmark Experiments

To create suitable models for the intended application sce-
nario, we conducted multiple experiments for both valida-
tion sets corresponding to the selected training data and our 
custom evaluation benchmark. The quantitative results for 
the tasks of semantic labelling and object detection are pre-
sented in the following subsections.

4.2.1  Semantic Labelling

The three models described in Sect.  3.3.2 were evalu-
ated both on their own respective validation sets and the 
benchmark dataset defined in Sect. 3.3.1, as summarised in 

Tables 3 and  4. The former results do not provide a meas-
ure for the overall performance of models, but rather indi-
cate how challenging each source dataset is for the given 
semantic labelling tasks. Generalisation capability can then 
be derived by comparing the results with those on the bench-
mark dataset. Although the measured performance decrease 
of SemanticDrone and FloodNet in overall IoU is only 2.0 
and 5.5, respectively, LandCoverAI outperforms them by 
a large margin in most categories. All models are highly 
robust against changes in altitude, which only marginally 
impacts performance. The relatively low performance of 
SemanticDrone is not surprising, since the image data have 
a stronger bias towards man-made structures and therefore 
only a small overlap to the given application scenario.

Based on the quantitative results, we decided to use the 
model trained on LandCoverAI for further evaluation and 
integration in our rapid mapping pipeline. A selection of 
qualitative results is shown in Fig. 13.

4.2.2  Object Detection

The two detection models trained on the VisDrone and MS 
COCO datasets reach overall AP values of 42.6% and 52.7% 
on their corresponding validation sets. However, applying 
the same models to our benchmark dataset reverses the rank-
ing with 70% and 59.7%, respectively, for the Vehicle class. 
Whilst the MS COCO model performs better on its own 
validation set, the advantages of the VisDrone model are 

Table 3  Segmentation performance as IoU per category for each 
training dataset on the corresponding validation sets

Grass Tree Road Building Overall

FloodNet 70.7 45.3 40.2 43.1 49.8
LandCoverAI 79.5 72.1 54.1 39.9 61.4
SemanticDrone 79.0 65.6 51.4 85.0 70.2

Table 4  Segmentation 
performance as IoU per 
category and flight altitude 
for each trained model on the 
benchmark dataset

The highest IoUs are highlighted for each category

Grass Tree Road Building 80 m 100 m 120 m Overall

FloodNet 85.0 39.1 5.9 3.3 52.1 49.8 49.8 50.9
LandCoverAI 91.0 36.1 23.4 12.7 54.7 56.1 56.2 55.4
SemanticDrone 19.4 22.6 4.3 2.5 13.3 17.9 15.1 15.1

Fig. 13  Representative segmentation results of the model trained on LandCoverAI on the benchmark dataset for the categories Grass (light 
green), Tree (dark green), Building (light grey) and Road (dark grey)
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shown on the benchmark data with more than 10% increased 
AP due to the higher inherent variability of vehicles captured 
from non-canonical views. The class Person is evaluated 
only qualitatively due to a lack of annotated persons within 
the benchmark data. Based on the results, the model trained 
on the VisDrone dataset is used for the final pipeline. In 
Fig. 14, three examples of predictions from the resulting 
model for both classes are shown.

5  Discussion

Our experiments show that real-time mapping with AI-
based scene understanding is feasible. In a disaster sce-
nario, our target scenario for this setup, fast coverage is 
the most important factor for geodata collection. Our sys-
tem maps and interprets a scene in real-time offering first 
results within the first 5–6 s after acquisition and cover-
ing an area of 45 ha in about 7.5 min. To achieve this, 
we employed a fixed-wing UAV during experimentation, 
allowing for higher speed, longer lasting flights in com-
parison to average copter UAVs. This, however, neces-
sitates a higher camera frame rate to avoid tracking loss 
due to smaller image overlaps. Consequently, more power-
ful computing capabilities on the UAV and higher band-
width for communication to ground become mandatory. 
In this setup, most hardware and software components 
can be swapped and adapted to the respective use case. 
For instance, the semantic labelling and object detection 
nodes can be efficiently extended towards other categories 
depending on the scenario (e.g. forest fires, floods, land-
slides), whilst images of a thermal camera can be rectified 
alongside the RGB input. By combining object detection 
and semantic labelling, small classes such as vehicles and 
persons can be identified in addition to larger semantic 
regions. Our future developments will target multiple 
system components. First, the reconstruction quality and, 
consequently, the overall accuracy will most likely benefit 
from a pose estimation based on visual-inertial SLAM. 

This will not only stabilise the estimated trajectory but 
also mitigate tracking loss. Second, although the pipeline 
allows for multi-UAV setups, true collaborative mapping 
will involve a joint reconstruction pipeline for further 
improving the reconstruction accuracy. Third, extending 
the AI nodes to other classes and objects will facilitate 
the application in other (disaster) scenarios. This will be 
achieved by adding new datasets from future releases as 
well as creating and developing our own dataset, in par-
ticular for flooding scenarios.

6  Conclusion

This contribution outlines the methodology as well as the 
implementation and application of a real-time orthomo-
saicing pipeline with AI-based terrain segmentation and 
domain-specific object detection. Our quantitative and 
qualitative experiments on reconstruction and model qual-
ity demonstrated the applicability of our system for rapid 
mapping tasks, in particular within the framework of time-
critical applications, such as disaster response. Especially 
in the fields of photogrammetry and remote sensing, real-
time capability comes at the expense of accuracy. To this 
end, future iterations of the pipeline will involve optimisa-
tions of pose estimation, an extension towards multi-UAV 
joint reconstruction and the inclusion of other classes and 
objects in the AI models.

Acknowledgements This research has been funded by the Aus-
trian security research programme KIRAS of the Federal Minis-
try of Finance (BMF). In addition, we would like to thank Marlene 
Glawischnig and Vanessa Klugsberger, who manually annotated the 
benchmark dataset.

Funding Open access funding provided by AIT Austrian Institute of 
Technology GmbH.

Data availability The data used for this paper cannot be released pub-
licly. We, however, published the majority of the source code of our 
pipeline (see GitHub reference).

Fig. 14  Representative detection results on the benchmark dataset of 
the model trained on the VisDrone dataset for the categories Vehicle 
(orange) and Person (blue). On the right image, a detected person is 

visible in the centre of the image and the other two images show a 
single prediction of a parking and a driving vehicle



169PFG (2023) 91:157–170 

1 3

Declarations 

Conflict of Interest The authors declare that they have no conflict of 
interest.

Code Availability Rapid mapping code to be available in https:// github. 
com/ laxnp ander/ OpenR EALM.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Bai J, Lu F, Zhang K et al (2019) Onnx: Open neural network exchange. 
https:// github. com/ onnx/ onnx

Bochkovskiy A, Wang CY, Liao HYM (2020) Yolov4: optimal speed 
and accuracy of object detection. arXiv preprint arXiv: 2004. 10934

Boguszewski A, Batorski D, Ziemba-Jankowska N et al (2021) Land-
cover. ai: Dataset for automatic mapping of buildings, woodlands, 
water and roads from aerial imagery. In: Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition, pp 
1102–1110. https:// doi. org/ 10. 1109/ CVPRW 53098. 2021. 00121

Botterill T, Mills S, Green R (2010) Real-time aerial image mosaic-
ing. Int Conf Image Vis Comput New Zealand. https:// doi. org/ 10. 
1109/ IVCNZ. 2010. 61488 50

Bu S, Zhao Y, Wan G et al (2016) Map2dfusion: Real-time incremental 
uav image mosaicing based on monocular slam. In: 2016 IEEE/
RSJ International Conference on Intelligent Robots and Systems 
(IROS), pp 4564–4571. https:// doi. org/ 10. 1109/ IROS. 2016. 77596 
72

Campos C, Elvira R, Rodrıguez JJG et al (2021) Orb-slam3: an accu-
rate open-source library for visual, visual-inertial, and multimap 
slam. IEEE Trans Rob 37(6):1874–1890. https:// doi. org/ 10. 1109/ 
TRO. 2021. 30756 44

Cordts M, Omran M, Ramos S et al (2016) The cityscapes dataset 
for semantic urban scene understanding. In: Proceedings of the 
IEEE conference on computer vision and pattern recognition. pp 
3213–3223. https:// doi. org/ 10. 1109/ CVPR. 2016. 350

Dosovitskiy A, Beyer L, Kolesnikov A et al (2020) An image is worth 
16x16 words: transformers for image recognition at scale. arXiv 
preprint https:// doi. org/ 10. 48550/ arXiv. 2010. 11929

Du D, Zhu P, Wen L et al (2019) Visdrone-det2019: The vision meets 
drone object detection in image challenge results. In: Proceedings 
of the IEEE/CVF international conference on computer vision 
workshops. https:// doi. org/ 10. 1109/ ICCVW. 2019. 00030

Erdelj M, Natalizio E, Chowdhury KR et al (2017) Help from the sky: 
leveraging uavs for disaster management. IEEE Pervasive Comput 
16(1):24–32. https:// doi. org/ 10. 1109/ MPRV. 2017. 11

Everingham M, Van Gool L, Williams CK et al (2010) The pascal 
visual object classes (voc) challenge. Int J Comput Vis 88(2):303–
338. https:// doi. org/ 10. 1007/ s11263- 009- 0275-4

Ferrera M, Eudes A, Moras J et al (2021) Ovslam: a fully online and 
versatile visual slam for real-time applications. IEEE Robot 

Autom Lett 6(2):1399–1406. https:// doi. org/ 10. 48550/ arXiv. 
2102. 04060

Häne C, Heng L, Lee GH et al (2014) Real-time direct dense match-
ing on fisheye images using plane-sweeping stereo. In: 2014 2nd 
International Conference on 3D Vision, pp 57–64. https:// doi. org/ 
10. 1109/ 3DV. 2014. 77

Hein D, Kraft T, Brauchle J et al (2019) Integrated uav-based real-time 
mapping for security applications. ISPRS Int J Geo Inf 8(5):219. 
https:// doi. org/ 10. 3390/ ijgi8 050219

Hinzmann T, Schönberger JL, Pollefeys M et al (2018) Mapping on 
the fly: real-time 3d dense reconstruction, digital surface map and 
incremental orthomosaic generation for unmanned aerial vehicles. 
In: Hutter M, Siegwart R (eds) Field Service Robot. Springer 
International Publishing, Cham, pp 383–396. https:// doi. org/ 10. 
1007/ 978-3- 319- 67361-5_ 25

Jocher G, Nishimura K, Mineeva T et al (2020) yolov5. https:// github. 
com/ ultra lytics/ yolov5

Kekec T, Yildirim A, Unel M (2014) A new approach to real-time 
mosaicing of aerial images. Robot Auton Syst 62(12):1755–1767. 
https:// doi. org/ 10. 1016/j. robot. 2014. 07. 010

Kern A, Fanta-Jende P, Glira P et al (2021) An accurate real-time 
Uav mapping solution for the generation of Orthomosaics and 
surface models. ISPRS - Int Arch Photogramm Remote Sens 
Spatial Inf Sci 43B1:165–171. https:// doi. org/ 10. 5194/ isprs- 
archi ves- XLIII- B1- 2021- 165- 2021

Kern A, Bobbe M, Khedar Y et al (2020a) Openrealm: real-time 
mapping for unmanned aerial vehicles. In: 2020 International 
Conference on Unmanned Aircraft Systems (ICUAS), pp 902–
911. https:// doi. org/ 10. 1109/ ICUAS 48674. 2020. 92139 60

Kern A, Bobbe M, Khedar Y et al (2020b) Openrealm: real-time 
mapping for unmanned aerial vehicles. In: 2020 International 
Conference on Unmanned Aircraft Systems (ICUAS), pp 902–
911. https:// doi. org/ 10. 1109/ ICUAS 48674. 2020. 92139 60

Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classifica-
tion with deep convolutional neural networks. Commun ACM 
60(6):84–90. https:// doi. org/ 10. 1145/ 30653 86

Kuznetsova A, Rom H, Alldrin N et al (2020) The open images data-
set v4. Int J Comput Vis 128(7):1956–1981. https:// doi. org/ 10. 
1007/ s11263- 020- 01316-z

Lin TY, Maire M, Belongie S et al (2014) Microsoft coco: com-
mon objects in context. In: European conference on computer 
vision. Springer, pp 740–755. https:// doi. org/ 10. 1007/ 978-3- 
319- 10602-1_ 48

MapTiler (2022) EPSG 3857. https:// epsg. io/ 3857, accessed: 
2022-11-20

Marcu A, Licaret V, Costea D et al (2020) Semantics through time: 
semi-supervised segmentation of aerial videos with iterative 
label propagation. In: Proceedings of the Asian Conference on 
Computer Vision. https:// doi. org/ 10. 1007/ 978-3- 030- 69525-5_ 
32

Miller ID, Cladera F, Smith T et al (2022) Stronger together: air-ground 
robotic collaboration using semantics. IEEE Robot Autom Lett 
7(4):9643–9650. https:// doi. org/ 10. 1109/ LRA. 2022. 31911 65

Mur-Artal R, Tardós JD (2017) Orb-slam2: an open-source slam sys-
tem for monocular, stereo, and rgb-d cameras. IEEE Trans Rob 
33(5):1255–1262. https:// doi. org/ 10. 1109/ TRO. 2017. 27051 03

Neuhold G, Ollmann T, Rota Bulo S et al (2017) The mapillary vistas 
dataset for semantic understanding of street scenes. In: Proceed-
ings of the IEEE international conference on computer vision. pp 
4990–4999. https:// doi. org/ 10. 1109/ ICCV. 2017. 534

Open Source Geospatial Foundation (2022a) CQL and ECQL. https:// 
docs. geose rver. org/ stable/ en/ user/ tutor ials/ cql/ cql_ tutor ial. html, 
accessed: 2022-11-20

Open Source Geospatial Foundation (2022b) GDAL. https:// gdal. org, 
accessed: 2022-11-20

https://github.com/laxnpander/OpenREALM
https://github.com/laxnpander/OpenREALM
http://creativecommons.org/licenses/by/4.0/
https://github.com/onnx/onnx
http://arxiv.org/abs/2004.10934
https://doi.org/10.1109/CVPRW53098.2021.00121
https://doi.org/10.1109/IVCNZ.2010.6148850
https://doi.org/10.1109/IVCNZ.2010.6148850
https://doi.org/10.1109/IROS.2016.7759672
https://doi.org/10.1109/IROS.2016.7759672
https://doi.org/10.1109/TRO.2021.3075644
https://doi.org/10.1109/TRO.2021.3075644
https://doi.org/10.1109/CVPR.2016.350
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.1109/ICCVW.2019.00030
https://doi.org/10.1109/MPRV.2017.11
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.48550/arXiv.2102.04060
https://doi.org/10.48550/arXiv.2102.04060
https://doi.org/10.1109/3DV.2014.77
https://doi.org/10.1109/3DV.2014.77
https://doi.org/10.3390/ijgi8050219
https://doi.org/10.1007/978-3-319-67361-5_25
https://doi.org/10.1007/978-3-319-67361-5_25
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://doi.org/10.1016/j.robot.2014.07.010
https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-165-2021
https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-165-2021
https://doi.org/10.1109/ICUAS48674.2020.9213960
https://doi.org/10.1109/ICUAS48674.2020.9213960
https://doi.org/10.1145/3065386
https://doi.org/10.1007/s11263-020-01316-z
https://doi.org/10.1007/s11263-020-01316-z
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://epsg.io/3857
https://doi.org/10.1007/978-3-030-69525-5_32
https://doi.org/10.1007/978-3-030-69525-5_32
https://doi.org/10.1109/LRA.2022.3191165
https://doi.org/10.1109/TRO.2017.2705103
https://doi.org/10.1109/ICCV.2017.534
https://docs.geoserver.org/stable/en/user/tutorials/cql/cql_tutorial.html
https://docs.geoserver.org/stable/en/user/tutorials/cql/cql_tutorial.html
https://gdal.org


170 PFG (2023) 91:157–170

1 3

Open Source Geospatial Foundation (2022c) GeoServer ImageMosaic 
Plugin. https:// docs. geose rver. org/ stable/ en/ user/ data/ raster/ image 
mosaic, accessed: 2022-11-20

Open Source Geospatial Foundation (2022d) Tiled map service specifi-
cations. https:// wiki. osgeo. org/ wiki/ Tile_ Map_ Servi ce_ Speci ficat 
ion, accessed: 2022-10-13

PostGIS (2022) PostGIS. https:// postg is. net, accessed: 2022-11-20
Rahnemoonfar M, Chowdhury T, Sarkar A et al (2021) Floodnet: a 

high resolution aerial imagery dataset for post flood scene under-
standing. IEEE Access 9:89,644-89,654. https:// doi. org/ 10. 1109/ 
ACCESS. 2021. 30909 81

Redmon J, Divvala S, Girshick R et al (2016) You only look once: uni-
fied, real-time object detection. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition. pp 779–788. 
https:// doi. org/ 10. 1109/ CVPR. 2016. 91

Sumikura S, Shibuya M, Sakurada K (2019) Openvslam: a versatile 
visual slam framework. In: Proceedings of the 27th ACM Inter-
national Conference on Multimedia. pp 2292–2295. https:// doi. 
org/ 10. 1145/ 33430 31. 33505 39

Szeliski R et al (2007) Image alignment and stitching: a tutorial. Found 
Trends ® Comput Graph Vis 2(1):1–104. https:// doi. org/ 10. 1561/ 
06000 00009

The PostgreSQL Global Development Group (2022) PostgreSQL. 
https:// www. postg resql. org, accessed: 2022-11-20

TU Graz (ICG) (2022) Semantic drone dataset v1.1. https:// drone datas 
et. icg. tugraz. at, accessed: 2022-11-20

Wang CY, Bochkovskiy A, Liao HYM (2022) Yolov7: Trainable bag-
of-freebies sets new state-of-the-art for real-time object detectors. 
arXiv preprint https:// doi. org/ 10. 48550/ arXiv. 2207. 02696

Xia GS, Bai X, Ding J et al (2018) Dota: a large-scale dataset for object 
detection in aerial images. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp 3974–3983. 
https:// doi. org/ 10. 1109/ CVPR. 2018. 00418

Yu F, Koltun V, Funkhouser T (2017) Dilated residual networks. In: 
Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pp 472–480. https:// doi. org/ 10. 1109/ CVPR. 
2017. 75

Yu F, Wang D, Shelhamer E, et al (2018) Deep layer aggregation. In: 
Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pp 2403–2412. https:// doi. org/ 10. 1109/ CVPR. 
2018. 00255

Zhao Y, Chen L, Zhang X et al (2021) Rtsfm: real-time structure 
from motion for mosaicing and dsm mapping of sequential aerial 
images with low overlap. IEEE Trans Geosci Remote Sens 60:1–
15. https:// doi. org/ 10. 1109/ TGRS. 2021. 30902 03

Zheng S, Lu J, Zhao H et al (2021) Rethinking semantic segmentation 
from a sequence-to-sequence perspective with transformers. In: 
Proceedings of the IEEE/CVF Conference on Computer Vision 
and Pattern Recognition, pp 6881–6890. https:// doi. org/ 10. 1109/ 
CVPR4 6437. 2021. 00681

Zou Z, Shi Z, Guo Y et al (2019) Object detection in 20 years: a survey. 
arXiv preprint https:// doi. org/ 10. 48550/ arXiv. 1905. 05055

https://docs.geoserver.org/stable/en/user/data/raster/imagemosaic
https://docs.geoserver.org/stable/en/user/data/raster/imagemosaic
https://wiki.osgeo.org/wiki/Tile_Map_Service_Specification
https://wiki.osgeo.org/wiki/Tile_Map_Service_Specification
https://postgis.net
https://doi.org/10.1109/ACCESS.2021.3090981
https://doi.org/10.1109/ACCESS.2021.3090981
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1145/3343031.3350539
https://doi.org/10.1145/3343031.3350539
https://doi.org/10.1561/0600000009
https://doi.org/10.1561/0600000009
https://www.postgresql.org
https://dronedataset.icg.tugraz.at
https://dronedataset.icg.tugraz.at
https://doi.org/10.48550/arXiv.2207.02696
https://doi.org/10.1109/CVPR.2018.00418
https://doi.org/10.1109/CVPR.2017.75
https://doi.org/10.1109/CVPR.2017.75
https://doi.org/10.1109/CVPR.2018.00255
https://doi.org/10.1109/CVPR.2018.00255
https://doi.org/10.1109/TGRS.2021.3090203
https://doi.org/10.1109/CVPR46437.2021.00681
https://doi.org/10.1109/CVPR46437.2021.00681
https://doi.org/10.48550/arXiv.1905.05055

	Semantic Real-Time Mapping with UAVs
	Abstract
	1 Introduction
	2 Related Work
	2.1 Rapid Mapping
	2.2 Machine Learning
	2.2.1 Semantic Labelling
	2.2.2 Object Detection


	3 Methodology
	3.1 Semantic Orthorectification Pipeline
	3.1.1 Data Acquisition
	3.1.2 Pose Estimation
	3.1.3 Densification
	3.1.4 Surface Generation
	3.1.5 Semantic Labelling
	3.1.6 Orthorectification
	3.1.7 Tileing
	3.1.8 Object Detection

	3.2 Server Segment and Data Infrastructure
	3.3 Machine Learning
	3.3.1 Benchmark Dataset
	3.3.2 Semantic Labelling
	3.3.3 Object Detection


	4 Experiments
	4.1 Semantic Orthorectification Pipeline Experiments
	4.1.1 Setup and Data Acquisition
	4.1.2 Qualitative Analysis of Reconstructed Data Products and Real-Time Capabilities
	4.1.3 Qualitative Analysis of Semantic Labelling and Object Detection

	4.2 Benchmark Experiments
	4.2.1 Semantic Labelling
	4.2.2 Object Detection


	5 Discussion
	6 Conclusion
	Acknowledgements 
	References




