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Abstract
Convolutional Neural Networks (CNN) consist of various hyper-parameters which need to be specified or can be altered 
when defining a deep learning architecture. There are numerous studies which have tested different types of networks (e.g. 
U-Net, DeepLabv3+) or created new architectures, benchmarked against well-known test datasets. However, there is a lack 
of real-world mapping applications demonstrating the effects of changing network hyper-parameters on model performance 
for land use and land cover (LULC) semantic segmentation. In this paper, we analysed the effects on training time and clas-
sification accuracy by altering parameters such as the number of initial convolutional filters, kernel size, network depth, 
kernel initialiser and activation functions, loss and loss optimiser functions, and learning rate. We achieved this using a 
well-known top performing architecture, the U-Net, in conjunction with LULC training data and two multispectral aerial 
images from North Queensland, Australia. A 2018 image was used to train and test CNN models with different parameters 
and a 2015 image was used for assessing the optimised parameters. We found more complex models with a larger number 
of filters and larger kernel size produce classifications of higher accuracy but take longer to train. Using an accuracy-time 
ranking formula, we found using 56 initial filters with kernel size of 5 × 5 provide the best compromise between training 
time and accuracy. When fully training a model using these parameters and testing on the 2015 image, we achieved a kappa 
score of 0.84. This compares to the original U-Net parameters which achieved a kappa score of 0.73.

Keywords Convolutional neural network · Deep learning · Semantic segmentation · Land use · Land cover · Aerial imagery

1 Introduction

Image classification for analysis of land use and land cover 
(LULC) was one of the earliest fundamental remote-sens-
ing methods (Jensen 2005). There have been many studies 
exploring classification techniques for LULC mapping, but 
identifying the ideal classifier for any given application is 
still unclear (Pandey et al. 2021). Traditional approaches, 
such as maximum likelihood, fuzzy logic, and object-ori-
ented classifications, are referred to as shallow learning. 
These methods extract data based on spatial, spectral, tex-
tural, morphological, and other cues (Ball et al. 2017). In 
contrast, deep learning is multi-layered, learns from the data 

itself, and results can be significantly more accurate than 
shallow learning (Deng 2014) and can outperform manual 
human editing (Zhang et al. 2016).

For LULC classification within high-resolution imagery, 
the most accurate classification algorithms are Decision 
Trees (DT), Support Vector Machines (SVM), Random 
Forest (RF), and CNN (Ma et  al. 2019). Many studies 
have compared deep learning techniques to shallow learn-
ing algorithms such as RF and SVM. Kussul et al. (2017) 
found an ensemble of CNN outperformed fully connected 
multilayer perceptrons and RF classifiers for land cover and 
crop types using Landsat 8 and Sentinel-2 imagery. Stoian 
et al. (2019) compared an altered U-Net with RF for map-
ping various land uses with a time-series of Sentinel-2 data. 
They found that U-Net had a similar or better accuracy than 
RF but took longer to train; however, the study did not use 
a Graphics Processing Unit (GPU) which would have made 
the training of the U-Net more efficient (Krizhevsky et al. 
2012). Freudenberg et al. (2019) trained U-Net using a GPU 
to detect palm tree plantations in Worldview imagery and 
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found U-Net to be > 10% more accurate and 100 times more 
efficient than AlexNet.

The integration of textural properties through object-
based segmentation techniques has significantly improved 
classification results for remote-sensing applications 
(Blaschke et al. 2015). Classifications that use spatial as well 
as spectral information outperform those based on purely on 
pixels (Pandey et al. 2021). As a result, CNN classifications 
assisted by enhanced computing power in recent years (Ma 
et al. 2016) have higher accuracy compared to SVM and RF 
(Ma et al. 2019).

Deep learning is a subset of machine learning and a 
learning algorithm based on neural networks (Schmidhuber 
2015). These networks consist of many layers which can 
transform images into categories through learning high-
level features (Litjens et al. 2017). Neural networks are 
described as networks which simulate the processes of the 
human brain—interconnected neurons which process incom-
ing information (Jensen 2005). The solution is obtained by 
nonalgorithmic and unstructured methods by adjustment of 
weights connecting the neurons in the network (Rao & Rao 
2003). They have the advantage of not requiring normal 
distributed data and can adaptively simulate complex and 
non-linear patterns (Jensen 2005; Zhu et al. 2017) such as 
found in high-resolution aerial photography.

Convolutional Neural Networks (CNN) are situated at 
the fringe between machine learning and computer vision, 
combining the power of deep learning with contextual image 
analysis. CNN have gained momentum for image classifi-
cation, since the AlexNet architecture won the ImageNet 
contest by a wide margin in 2012 (Krizhevsky et al. 2012).

CNN have been used in applications, such as number plate 
reading (Mondal et al. 2017), facial recognition (Almabdy 
& Elrefaei 2019), and aerial image classification (Khalel & 
El-Saban 2018; Othman et al. 2016). Many previous studies 
applying deep learning to earth observation data have focused 
on the classification or categorisation of image chips but do 
not address the problem of per-pixel classification (Castel-
luccio et al. 2015; Cheng et al. 2015; Penatti et al. 2015). 
Although an advancement in computer vision for earth obser-
vation, these classifications are not useful in natural resource 
management applications as they do not define precise spatial 
location and extent of LULC features. More recent studies 
have addressed this problem, and per-pixel classifications 
using deep learning seem to be outperforming the traditional 
approaches in high-resolution imagery (Ma et al. 2019).

CNN are best suited to higher resolution imagery and a 
number of studies have found U-Net performs better using 
this imagery compared to medium resolution sensors such 
as Sentinel-2 (Liu et al. 2019; Wurm et al. 2019). Medium-
resolution images (10–30 m) lack the fine structural com-
ponents found in higher resolution imagery; it is difficult to 
apply CNN classification without this additional information 

on texture (Sharma et al. 2017). Wurm et al. (2019) found 
higher accuracy when using Quickbird imagery compared 
to lower resolution Sentinel-2 imagery for the detection of 
slums in Mumbai, India. Romero et al. (2016) found deep 
CNN architectures performed significantly better than shal-
low CNN, kernel-based Principal Component Analysis and 
spectral classification for land-use classification in aerial 
photography, multispectral and hyperspectral imagery.

As the benefits of CNN are realised within the earth obser-
vation community, the drive to find the optimal configuration 
for LULC classification has resulted in many suggested archi-
tectures for a wide range of applications (Huang et al. 2018; 
Zhang et al. 2018). Adding further complexity to the subject, 
existing architectures such as Inception (Szegedy et al. 2015) 
and ResNet (He et al. 2016) used for traditional photography 
classification have also been successfully adapted for mapping 
LULC using multispectral remote-sensing imagery (Ghosh 
et al. 2020; Liu et al. 2019; Mahdianpari et al. 2018).

The most important issue with some CNN architectures 
is they contain large receptive fields and evaluation of con-
textual information over multiple scales can result in clas-
sifications at a lower resolution than the original image. A 
remote-sensing and deep learning review article by Ma et al. 
(2019) suggested that creating symmetric architectures using 
unconvoluted layers and skip connections, such as U-Net 
(Ronneberger et al. 2015), results in classifications with the 
same spatial resolution as the input.

Originally developed for biomedical imaging (Ron-
neberger et al. 2015), U-Net has been adopted for use with 
optical earth observation data and has become one of the 
most popular architectures (Neupane et al. 2021) with over-
all accuracies of > 90% (Du et al. 2019; Flood et al. 2019; 
Gurumurthy et al. 2019; Kestur et al. 2019; Khryashchev 
et al. 2018; Wagner et al. 2019; Wei et al. 2019). There are 
numerous studies which have redesigned the U-Net spe-
cifically for extracting features from earth observation data 
(Kim et al. 2019; Ren et al. 2020); however, this has further 
complicated the issue as to which architecture is best to use 
for general earth observation applications.

Additional complexities exist when applying the U-Net 
architecture to earth observation data with selection of 
appropriate algorithmic options for kernel initialisation, 
activation, loss, loss optimiser, and learning rate. Further 
to this, the U-Net architecture can be defined with different 
numbers of initial filters, kernel size, and depth (number 
of layers); all of which can have profound impacts on how 
well a model learns the training data, if it is able to learn at 
all. For example, CNNs can experience a vanishing gradi-
ent problem when using certain activation functions with a 
small range of values (e.g., sigmoid) resulting in insufficient 
learning (Sun et al. 2019).

Globally consistent archives of regularly updated moder-
ate-to-high spatial resolution satellite imagery are becoming 
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increasingly available (e.g., Google Earth Engine Amazon 
Web Services and Microsoft Planetary Computer data 
stores). The data are only one part of the mapping solu-
tion—appropriate mapping methods, data storage, and 
computational platforms at scale are all required to con-
duct useful data analysis within the field “big data analy-
sis” (Hey et al. 2009). Users have recognised the need for 
supply of imagery and increased their demand for spatial 
information accordingly (i.e., larger areas of interest, more-
rapid response, and more-detailed classifications), but how 
the imagery relates to big data analysis is an open research 
question.

The objective of this study is to assist in the development 
of a framework to use existing LULC information from one 
year to automatically classify LULC features from another 
point in time. Developing a framework to automatically map 
LULC would be of benefit to mapping programs globally. 
The automated and efficient classification of LULC features 
from high spatial resolution imagery will be extremely valu-
able to inform response to natural disasters or biosecurity 
incidents, as well as studies on agricultural productivity and 
sustainability, land-use planning, monitoring of and invest-
ment in natural resources, biodiversity conservation, and 
improving water availability and quality.

In this paper, we provided some clarity on the use of 
U-Net for earth observation applications by running a series 

of trials with varying parameters of the U-Net to determine 
the optimal architecture configuration and algorithmic 
choice for LULC classification in aerial photography. Opti-
mising the U-Net architecture for LULC mapping improves 
understanding and application of CNN for operational 
LULC mapping across large regions and assists in address-
ing the increased demand for rapid large-area classification 
using high spatial resolution imagery.

2  Method

2.1  Project Area

The project area focused on an agricultural region on 
the Atherton Tablelands in North Queensland, Australia 
(Fig. 1). The area consists of the World Heritage listed Wet 
Tropics rainforests in the east and encompasses the towns of 
Mareeba in the north, Atherton in the south, and Dimbulah 
to the west.

The major land uses of the area include production from 
relatively natural environments, conservation and natural 
environments, and production from irrigated agriculture and 
plantations (Table 1) (DSITI 2017).

Fig. 1  Project area located in north Queensland, Australia. Basemap provided by ESRI
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2.2  Multispectral Aerial Imagery

Orthorectified aerial images of the study area are periodi-
cally captured through the Queensland Government Spa-
tial Imagery Subscription Plan. For this project, we used 
the 2018 orthorectified mosaic with a spatial resolution of 
20 cm for training the models and referred to as the 2018 
training image (Fig. 2b). The image was acquired between 
1st and 27th August 2018 mostly using a Vexcel Ultracam 
Eagle camera except for the southwestern corner which was 
captured by and A3 Edge camera. The two cameras have 
different spectral properties which can be seen in Fig. 2b.

To test the accuracy and transferability of the models, a 
2015 mosaic captured between 17th July and 14th October 
using an A3 Edge camera at a spatial resolution of 25 cm 
was used and referred to as the 2015 test image (Fig. 2a).

Both images consisted of three bands (red, green, and blue) 
and were resampled to 50 cm using cubic convolution for spa-
tial resolution consistency between the images and to minimise 
the amount of data required for training and inference.

2.3  Training Data Collection

The nine LULC classes selected for this project included 
banana plantations, sugarcane crops, mature tree crops, young 
tree crops, tea tree plantations, forestry plantations, berry 
crops, and vineyards with all remaining areas classified as 
other uses. These classes were chosen based on the ability to 
identify the class within the RGB imagery and in the field, and 
existing data from previous work (Clark & McKechnie 2020). 
These data were manually digitised using the 2015 test image 
and 2018 training image within a Geographic Information 
System (GIS). Table 2 lists the total class area and proportion 
of the project area for 2015 and 2018. The data were stored 
as polygons within an ESRI shapefile format.

A field verification trip to the project area was under-
taken in January 2020 and collected 1,582 observations 
on LULC for the eight main classes along with other land 
uses. The data collected in the field were used to ensure 
that the training data were accurate with the temporal dif-
ference between the image acquisition and field observa-
tion (17 months) taken into consideration.

2.4  Training Data Generation

Semantic segmentation using CNNs involves a patch-based 
training approach where image chips of a certain size are 
fed to the model and convolutional filters attempt to extract 
abstract information from the data to ultimately define fea-
tures according to colour, texture, and other contextual infor-
mation. The purpose of the training data generation stage 
was to provide the model with many different examples of 
LULC features.

LULC data intrinsically contain an imbalance in class 
area which was evident within our project (Table 2). As a 
result, any systematic approach (e.g., grid based) to data 
sampling will contain a disproportion of data between large 
and small area classes. To counteract this imbalance, a strati-
fied random sampling approach was implemented.

To achieve this, we calculated the number of patches per 
class by multiplying the total number of patches by the log 
of the class area divided by the sum of the log of the project 
area. The result was rounded up to the nearest integer (Eq. 1)

where Ncp is the number of class patches, Np is the total 
number of required training patches, and ac is the class area.

For each feature, we distributed the number of class 
patches based on the proportion of the area that the feature 
represents rounded up to the nearest integer (Eq. 2)

where Nfp is the number of feature patches, Ncp is the number 
of class patches, af is the feature area, and  ac is the class area.

Once we calculated the number of patches per feature, we 
randomly generated patch locations ensuring that the centre 
of the patch was located within the feature. Table 3 shows 
the distribution of training patches per class. Although the 
centre of each class patch was within the target feature, 
patches also contained other surrounding class features.
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Table 1  Project area primary 
land uses (DSITI 2017)

Primary land use Hectares Proportion (%)

Production from relatively natural environments 201,625 67.3
Conservation and natural environments 40,404 13.5
Production from irrigated agriculture and plantations 37,939 12.7
Intensive uses 10,133 3.4
Water 7219 2.4
Production from dryland agriculture and plantations 2143 0.7
Total 299,463 100.0
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Fig. 2  Project orthorectified aerial imagery for 2015 (a) and 2018 (b). Data were supplied by the Queensland Government

Table 2  Class area and 
proportion of the project area 
for each class for 2015 and 2018

Class 2015 Area (ha) 2015 Area (%) 2018 Area (ha) 2018 Area (%)

Banana plantation 1898 0.63 1860 0.62
Berry crops 48 0.02 92 0.03
Forestry plantation 284,015 94.84 281,344 93.95
Sugarcane crop 875 0.29 981 0.33
Tea tree plantation 6102 2.04 7621 2.54
Tree crop—mature 133 0.04 188 0.06
Tree crop—young 5624 1.88 6249 2.09
Vineyards 655 0.22 988 0.33
Other 119 0.04 146 0.05
Total 299,469 100 299,469 100
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This approach counteracts class imbalances, improving 
the overall classification accuracy particularly for under-
represented classes of small area. For our project, we have 
chosen a patch size of 512 × 512 pixels. The patches were 
stored as polygons within an ESRI shapefile format.

Figure 3 illustrates the geographical distribution of the 
patches and demonstrates the effect of the stratified sampling 
approach, creating a more balanced distribution between 
larger and smaller area classes.

During the training process, a data generator uses the 
spatial extent of each patch to generate the training image 
chip and corresponding labels on demand. The labels are a 

rasterised version of the training data in a one-hot represen-
tation of the data where each band represents one of the nine 
classes. Within each band, 1 represents the presence of the 
class and 0 absence.

The data generator can optionally scale each batch of 
image chips between 0 and 255 and apply random augmenta-
tions to the data. Data scaling and augmentation is useful in 
capturing atmospheric, climatic, seasonal, and sensor vari-
ations present within earth observation data (Wieland et al. 
2019), prevents overfitting of the data (Diakogiannis et al. 
2020; Shorten and Khoshgoftaar 2019), and creates more 
generalised models (Kattenborn et al. 2021).

To apply the random augmentations to the patches, the 
python package imgaug v0.4.0 (Alexander Jung, 2020) was 
used. Augmentations were chosen based on their suitability 
to earth observation data. The augmentations included:

1. contrast and colourations manipulation (gamma, sig-
moid, AllChannelsCLASHE, linear, multiply, allChan-
nelsHistogramEqualization).

2. noise addition (salt and pepper, multiply element wise, 
additive Gaussian, additive poisson, multiply—different 
for each channel).

3. geometric and scale alterations (affine, elastic transfor-
mation, vertical and horizontal flips).

4. image blur and adding artificial clouds/fog/smoke.

Table 3  Distribution of training patches per class generated for the 
2018 training data

Class Area (ha) Number of patches

Banana plantation 1860 2371
Berry crops 92 1876
Forestry plantation 981 2224
Sugarcane crop 7621 2716
Tea tree plantation 188 1957
Tree crop—mature 6249 3986
Tree crop—young 988 2311
Vineyards 146 1920
Other uses 281,344 3474
Total 299,471 22,835

Fig. 3  Project training patches 
distribution for the 2018 train-
ing data generation
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One of the contrast, noise and geometric distortions, were 
applied; each time, the image chip was created and 50% of 
the time either blur or artificial clouds/fog were applied.

Figure 4 shows examples of the augmentations applied to 
each patch. Note that the examples provided do not represent 
the patch size used in this study but are intended to demon-
strate examples of the augmentations applied to each patch.

2.5  Training

The objective of the training was to produce a model label-
ling each pixel in the image as a class. To achieve this, the 
U-Net was chosen as the base architecture. The U-Net is a 
symmetrical encoder–decoder architecture and the resulting 
classification has the same resolution as the input data.

The training involved creating a model and iteratively 
providing it with batches of image chips and correspond-
ing labels. This allowed the model to determine the rele-
vant colour, texture, and contextual attributes of each class 
(Zhang et al. 2016) that maximised the overall accuracy of 
the classification.

Figure 5 is a graphical representation of the U-Net archi-
tecture from Clark and McKechnie (2020) showing the main 
components.

2.6  Prediction

During the prediction stage, the model was applied to the 
whole aerial image to produce pixel wise inference and 
classification. Similar to the input training data, the model 
attempted to classify each pixel as a 1 or 0 for each class. 
As the models are not perfect, the output predictions contain 
values between 0 and 1 and each class is represented by 
the raster bands. We simply used the class with the highest 
predictive value to classify each pixel resulting in a thematic 
classification with values between 1 and 9 representing each 
LULC class.

One of the limitations of a patch-based learning approach 
is that the edge of the patch had a lower accuracy than the 
centre (Sun et al. 2019). This created edge effects between the 
patches evident when the resulting classification was compiled. 
To counteract this issue, we employed a two-pass ensemble 
inference strategy. The strategy involved systematically iterat-
ing through the aerial image, extracting patches in a grid pat-
tern. The inference was applied to the original patch and three 
rotated versions (90, 180, and 270 degrees) with the resulting 
classifications averaged. Once the model had been applied to 
the project area, we repeated the process with a half patch off-
set (256 pixels) to the grid, so the centre of each patch in the 
second pass was the join between four patches from the first. 
We applied a weighted average based on the distance from the 
centre to combine the classifications. Pixels classified towards 
the centre of the patch were given a higher weight than those 
generated at the edge. The resulting classification was a much 
smoother which can result in higher accuracy.

2.7  Deep Learning Trials

The objective of this study was to determine the optimal 
U-Net architecture configuration for earth observation 
applications. To achieve this objective, we performed a grid 
search on: the number of filters; kernel sizes; number of 
layers; kernel initialisations; convolution and class activa-
tions; loss functions; optimisation functions; and learning 
rates. There are two overall aspects in these trials which 
include altering the architecture (number of initial filters, 
filter kernel size, and number of layers) and algorithmic tri-
als which are related to the training of the model (kernel 
initialisation, convolution activation function, loss function, 
loss optimiser, learning rate, and class activation).

Table 4 lists the different parameters, the test values, 
and the default value used when the parameter was not 
being tested. The only parameters altered within each 
test were the ones being trialled. All other parameters 
remained constant for the training. No data scaling or aug-
mentations were applied to the parameter trials to mini-
mise the random effects these would cause.

Fig. 4  Example of augmentations over an area consisting of a mature 
tree crop including the original image (top left) and three augmenta-
tions versions. Note that these examples do not represent the patch 
size used in this study but are for demonstration of the augmentations 
used for each patch
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Within each parameter trial, five models were trained for 
20 epochs for each test value resulting in 385 models. It 
was decided that repeating each test five times captured the 
random variance intrinsic to the training process. Twenty 
iterations of the training data were not sufficient to create 
fully trained models; however, this provides an indication 

of how well the parameter values fit the data while reducing 
resource requirements. Further to this, as data augmentations 
were not applied, the models were not generalised and can-
not be transferred to the 2015 test image. At this stage of the 
project, we compared the learning performance on the train-
ing image as an indication of effectiveness of the parameter. 

Fig. 5  The U-Net architecture (Clark & McKechnie 2020; Ronneberger et al. 2015)

Table 4  Parameter values and defaults for the deep learning trials

The loss functions, activations, initialisers, and optimisers are part of the TensorFlow (Abadi et al. 2016) and the Jaccard Loss was adopted from 
(Eelbode et al. 2020). See Appendix 1 for a list of abbreviations

Parameter Test values Default

Architecture trials Number of filters 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96 32
Kernel size 3, 5, 7, 9 3
Number of layers 3, 4, 5, 6, 7 5

Algorithmic
trials

Kernel initialiser Glorot Normal, Glorot Uniform, He Normal, He Uniform, Lecun Normal, 
Lecun Uniform, Orthogonal, Random Normal, Random Uniform, Trun-
cated Normal

Glorot
Uniform

Convolution 
activation func-
tion

ELU, Hard Sigmoid, Linear, RELU, SELU, Sigmoid, Softmax, Softplus, 
Softsign, Swish, Hyperbolic tangent

Rectified Linear Unit

Loss function BCE, CCE, CH, Hinge, Huber, Jaccard Loss, KLD, logcosh, MAE, MAPE, 
MSE, MSLE, Poisson, Squared Hinge

Categorical Cross-Entropy

Optimiser Adadelta, Adagrad, Adam, Adamax, Ftrl, Nadam, RMSprop, SGD NAdam
Learning rate 1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8, 1e-9 1e-5
Class activation Hard Sigmoid, Sigmoid, Softmax Softmax
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Applying the model on the test image occurred after the 
parameter trails results had been compiled and a model was 
fully trained using the optimised parameters.

For the deep learning trials, we produced the classifica-
tion in a single pass without augmentations to avoid any data 
smoothing the two pass inference strategy causes. As with 
excluding the random augmentations in the training stage, 
we wanted to evaluate parameter performance without any 
post processing steps.

2.8  Accuracy Assessment

To evaluate the output classifications, we employed an inde-
pendent accuracy assessment using 10,000 randomly gener-
ated points. Each point was assigned one of the nine classes 
for the 2018 training image and 2015 test image. A random 
sampling strategy was employed to simplify the sampling 
strategy, and to remove reliance on prior knowledge of class 
distribution.

Figure 6 shows the randomly generated points over the 
project area coloured according to the 2018 class.

The disadvantage of using a random sampling strategy in 
a landscape where classes have disproportionate areas was 
most of the points fell within classes with the largest area 
and few within those with small areas. As a result, 94% of 
our validation points fell within the ‘other uses’ class and 
some of the smaller classes consisted of 5 or 6 points. How-
ever, as the models are trained and assessed five times, this 
resulted in a minimum of 25 observations in each class for 
each parameter trial. Although it would be ideal to assess the 
accuracy using additional points, time and resource consid-
erations limited this capacity and previous work has shown 

that with this number of sample points, a random sampling 
strategy showed no significant differences between sampling 
methods (Ramezan et al. 2019).

Using the random points, we assessed the accuracy of 
each parameter trial by calculating Cohen's kappa coeffi-
cient, Jaccard Index, user accuracy (precision), producer 
accuracy (recall), and F1-Score for each class. The results 
were ranked from one to the total number of parameter tests. 
This was done by ranking the average user and producer 
accuracies and the length of time it took to complete twenty 
epochs rounded to the nearest 15 min for each trial test. The 
parameter trials were scored by adding the user, producer, 
and time ranks with a final parameter rank based on this 
score.

2.9  Extended Training

Once the top performing parameters were determined, an 
optimised U-Net model was trained using these values. 
In addition, a model was trained using the original U-Net 
parameters for comparison to the optimised version. The 
original U-Net parameters are the same as the default param-
eters show in Table 4 with the exception of number of initial 
filters which was 64 to match the original U-Net architecture 
published in Ronneberger et al. (2015). The models were 
trained until the model improvement was < 0.05% over three 
epochs (63 epochs for the optimised model and 67 epochs 
for the original model). The prediction was applied to the 
2015 test image to produce a classification on unseen data.

The accuracy of the optimised U-Net classification was 
compared to the original U-Net classification to determine 
if the performance of the U-Net for earth observation data 

Fig. 6  Validation points used 
to assess the accuracy of the 
output model classifications 
coloured according to the 2018 
observation value
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was increased. This was achieved through analysis of the 
kappa, Jaccard Index, user (precision), producer (recall), and 
F1-Score statistics along with confusion matrices.

2.10  Computing Infrastructure and Software

The training of the models was performed on Nvidia Tesla 
V100 GPUs. The processing of vector and image data was 
conducted using the Geospatial Data Abstraction Library 
(GDAL) version 3.1.0 (https:// gdal. org/) and the deep learn-
ing part of the project used TensorFlow 2.1.0 (Abadi et al. 
2016). Image augmentations were done using the python 
library imgaug 0.4.0 (https:// imgaug. readt hedocs. io/ en/ 
latest/).

3  Results and Discussion

Appendix 2 contains the full results and lists the trials, trial 
parameters, average training time, kappa, F1-Score, user (pre-
cision), producer (recall) rank, and corresponding confidence 
intervals. Table 5 shows a summary of the results and lists the 
top performing models for each of the parameter trials.

3.1  Architecture Trials

When using CNNs on earth observation data, we tried to learn 
the attributes of the target features such as colour and rough-
ness of the class using convolutions or filters. These filters 
attempt to extract abstract data from the imagery through lin-
ear operations using kernels. The number of convolutional 
filters, kernel size, and the number of overall convolutions 
or network depth are defined when building the architecture.

Results revealed more complex models with more con-
volution filters, larger kernel size, and a deeper architecture 
improve the output classification accuracy, but they take 
longer to train. The optimal number of initial filters when 
taking training time into account (Appendix 2) was found to 
be 56 with a kappa score of 0.87 (Table 5). Although a larger 
number of initial filters slightly improved the model accu-
racy (Fig. 7), for example 80 filters with an average kappa 
score of 0.89, it dramatically increased the training time over 
20 epochs (56 filters: 5.2 h; 80 filters: 8.7 h) (Appendix 2). 
The original U-Net architecture contained 64 filters which 
achieved a kappa score of 0.86 and took an average of 0.9 h 
longer to train over 20 epochs.

For our data, we found a kernel size of 5 × 5 to be optimal 
(Table 5) with a kappa score of 0.87. Increasing the com-
plexity of the filters beyond 5 × 5 did not have a substantial 
effect on accuracy (Fig. 8) but substantially increased train-
ing time from 3.9 h for a 5 × 5 kernel to 9 h for a 9 × 9 kernel 
(Appendix 2). The original U-Net architecture contained a 
kernel size of 3 × 3 and for our data achieved a kappa score Ta
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Fig. 7  Kappa statistic box and whisker plots for the initial number of 
filter trials. Each filter number includes the accuracy for each of the 
five trained models

Fig. 8  Kappa statistic box and whisker plots for kernel size trials. 
Each kernel size includes the accuracy for each of the five trained 
models

Fig. 9  Kappa statistic box and whisker plots for U-Net architecture 
depth trials. Each layer depth includes the accuracy for each of the 
five trained models

of 0.79. As a result, we recommend the use of a 5 × 5 kernel 
size for earth observation data.

Experiments varying the number of layers or architecture 
depth indicated that the original U-Net architecture consist-
ing of five layers was optimal. There were slight accuracy 
gains by increasing the depth of the architecture to six or 
seven layers (Fig. 9); however, these were not substantial 
(Appendix 2) as well as increasing training time.

3.2  Algorithmic Trials

Within CNNs, we are attempting to fit an algorithm to com-
plex non-linear data by setting the optimal weight values to 
thousands or millions of neurons. The weight values deter-
mine if the neuron should activate and pass the data to the 
next, with the magnitude of the output calculated using an 
activation function. The output prediction was compared to 
the labelled data provided by measuring the classification 
error using a loss function. The optimisation function was 
used to alter the weight values through backward propaga-
tion with the learning rate determining the extent the weight 
values can be changed.

The initial values of the kernel weights, the core of the 
convolution filters, are determined by an initialiser function. 
For the kernel initialiser trials, our results showed the trun-
cated normal function achieved a slightly higher accuracy 
score in all metrics (Appendix 2). However, many initialisers 
produced similar results with only he normal, he uniform, 
and random normal performing poorly (Fig. 10).

For the activation function trials, our results showed that 
there were numerous functions which achieved similar accu-
racies and, as a result, the same rank using the user, pro-
ducer, and time-based score (Appendix 2). Analysing further 
using the kappa statistic, results shown graphically in Fig. 11 
indicated the scaled exponential linear unit (selu) had the 
highest accuracy. However, this function was penalised as 
it had an average time slightly higher than the top ranked 
results (Appendix 2).
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Fig. 10  Kappa statistic box and whisker plots for the kernel weights 
initialiser trials. Each kernel initialiser includes the accuracy for each 
of the five trained models

Fig. 11  Kappa statistic box and whisker plots for the activation func-
tion trials. Each activation function includes the accuracy for each of 
the five trained models

Fig. 12  Kappa statistic box and whisker plots for the loss function 
trials. Each loss function includes the accuracy for each of the five 
trained models

Based on these results, there are numerous activation 
functions which can successfully train a deep learning model 
for earth observation applications and, as time was quite 
similar between the top performing models, we recommend 
the use of selu.

Similar to the kernel matrix weights initialiser, many loss 
functions performed well as shown in our data (Appendix 2). 
Our results found the Huber loss function (kappa: 0.8) mar-
ginally outperformed the other functions, but there are many 
potential options (Fig. 12). The functions which resulted in 
the lowest accuracy included hinge, categorical hinge, MAE, 
and MAPE.

The RMSprop optimiser was the top ranked and had 
an average kappa score of 0.77. Adam (kappa: 0.79) 
and NAdam (kappa: 0.77) also performed similarly 
to RMSProp (Fig. 13) but took slightly longer to train 
(Appendix 2). Any of these three optimisers could be used 
for earth observation applications, but we recommend the 
RMSprop optimiser.

The learning rate was a substantial factor in the model’s 
ability to learn the training data (Fig. 14; Appendix 2). We 
found a learning rate of 1e-4 to be optimal and choosing an 



137PFG (2023) 91:125–147 

1 3

incorrect learning rate resulted in some trials failing to train. 
Learning rates larger than 1e-4 result in too large a change 
in the weights to find the optimal values, whereas reduced 

learning rates resulted in slower learning and, as a result, a 
lower accuracy after 20 epochs of training.

As our data consisted of multiple classes, the softmax 
class activation function was best suited and recommended 
for similar earth observation applications (Fig. 15; Appen-
dix 2). However, for binary classifications, future studies 
should consider sigmoid or hard sigmoid functions.

3.3  Optimised U‑Net and Original U‑Net

Using the top performing trials, we compared an optimised 
U-Net architecture against the original U-Net architecture, 
and found the optimised version achieved a higher accu-
racy (kappa: + 0.12; F1-Score: + 0.08; user: + 0.06; pro-
ducer: + 0.04). Table 6 shows the overall and class results for 
the two models along with a human-derived classification for 
the same image. Tables 7 and 8 show the confusion matrix 
for the optimised model and original model, respectively.

For the optimised model, there were substantial improve-
ments in some individual classes (Table 6) such as planta-
tion forestry (user: + 0.63), berry crops (producer: + 0.25) 
and banana crops (producer: + 0.19). However, not all 
classes improved with user accuracy for vineyards and tea 
tree plantations decreasing by 0.12 and 0.06, respectively. 

Fig. 13  Kappa statistic box and whisker plots for the loss optimiser 
trials. Each optimiser includes the accuracy for each of the five 
trained models

Fig. 14  Kappa statistic box and whisker plots for the learning rate 
trials. Each learning rate includes the accuracy for each of the five 
trained models

Fig. 15  Kappa statistic box and whisker plots for the class activation 
function trials. Each class activation includes the accuracy for each of 
the five trained models
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In some cases, the U-Net models were more accurate than 
the human-derived classification (mature tree crops) which 
indicates that CNN models can account for some level of 
error in the training data to a certain extent (Mnih 2013). 
Other studies such as (Burke et al. 2021) have noted that 
these errors can potentially result in the model result being 
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Table 7  Optimised U-Net model confusion matrix

Table 8  Original U-Net model confusion matrix



139PFG (2023) 91:125–147 

1 3

penalised for achieving a higher accuracy than data used to 
assess its performance.

Despite the changes in overall accuracies, the confusion 
matrices (Tables 7 and 8) showed similar confusion in the 
two models. The main confusion was between mature and 
young tree crops and misclassification of targeted classes 
with the other uses class, particularly for sugarcane and for-
estry plantation.

Although some studies found deep neural networks are 
quite tolerant of noise in the training data (Mnih 2013), we 
found confusion in the training data propagated through to 
the model’s ability to classify classes. Table 9 shows the 

accuracy assessment for the 2018 human-derived train-
ing data and Table 10 shows the corresponding confusion 
matrix. The tables demonstrate the confusion between young 
tree and mature tree crops and with various classes and other 
uses classes, such as sugarcane crops, young tree crops, and 
plantation forestry. This demonstrates that collection of 
some LULC classes for both training and evaluation can be 
subjective, for example, the threshold between young and 
mature tree crops, and at what stage can a newly planted 
sugar crop be detected as such within the image resolution.

As a comparison, Table 11 presents the confusion matrix 
for the 2015 human-derived classification and demonstrated 

Table 9  Accuracy assessment 
for the 2018 human-derived 
training data used to train all 
models

Class Jaccard Index F1-Score User (precision) Producer (recall)

Banana plantations 1.000 1.000 1.000 1.000
Berry crops 1.000 1.000 1.000 1.000
Plantation forestry 0.724 0.840 0.955 0.750
Sugarcane crops 0.968 0.984 1.000 0.968
Tea tree plantation 1.000 1.000 1.000 1.000
Tree crop—mature 0.923 0.960 0.936 0.986
Tree crop—young 0.575 0.730 0.871 0.628
Vineyards 1.000 1.000 1.000 1.000
Other 0.996 0.998 0.997 0.999
Total 0.946 0.9732 0.9256
Kappa 0.962

Table 10  Confusion matrix for 2018 human-derived training data Table 11  Confusion matrix for 2015 human classification
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the same confusion existed in the 2015 classification as in 
the 2018 training data.

Figure 16 shows the project area output classifications 
for the optimised U-Net (Fig.  16a) and original U-Net 
(Fig. 16b). At this scale, the confusion between sugarcane 
crops and other land uses is evident in both classifications. 
Whereas the confusion between plantation forestry and other 
land uses can be seen in the original U-Net classification.

Figure 17 shows the outputs for the human-derived clas-
sification along with the optimised and original U-Net 

classifications and visually show the errors discussed. The 
2018 training image was captured in August, early in the 
sugarcane harvest season when fields were either fully 
mature or in fallow. The 2015 test image was captured as 
late as October and, in some areas, fields harvested earlier 
in the year contained young sugarcane. Digitising the data 
for 2015 was consistent with the 2018 training data and only 
mature sugarcane was included. However, for the accuracy 
assessment points, we decided to call the validation point 
sugarcane if the canopy of the crop was predominantly 

Fig. 16  Model classification 
comparison for the project 
area for human classification 
(a), optimised U-Net (b), and 
original U-Net (c)
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closed. Although no fields of young sugarcane were present 
in the training data, the models successfully classified these 
areas within the 2015 image (Fig. 17).

Further to this, due to human error, some tree crop fea-
tures were missed in the human classification but were suc-
cessfully identified by the models (Fig. 17).

3.4  Limitations and Future Research

All hyper-parameter trials were tested independently to iden-
tify the top performing architectural configuration and learn-
ing algorithms. However, we did not test for interdependen-
cies between the parameters. Conducting this analysis would 

Fig. 17  I2015 test image, 2015 
human-derived, optimised 
U-Net, and Original U-Net clas-
sifications. The circles indicate 
the location of the accuracy 
assessment points with the 
colour in the imagery column 
representing the class according 
to the legend
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take a considerable amount of time and was beyond the 
scope of this study. Future research could build upon these 
findings and restrict such an analysis to a smaller sample of 
parameters. It is recommended to avoid a simple grid search 
and to use an optimisation framework such as KerasTuner 
(https:// keras. io/ keras_ tuner/).

This study restricted the analysis to three band 50 cm 
imagery. These results may not be applicable for training 
a model for earth observation applications for different 
spatial and spectral resolutions. Furthermore, this study 
was conducted over the same geographic area with similar 
LULC features present in each image. Transferring the 
models to a different region will present challenges par-
ticularly where there are unseen LULC features which will 
likely confuse the model. Future research should focus on 
scaling this study up to include a broader geographical 
area and test the ability of the models to transfer to a dif-
ferent region with varying LULC features.

In addition to the trials, we have conducted in this study, 
and there are additional hyper-parameters and tests which 
could be considered for future research. These include 
(but not limited to) the inclusion of regularisation such 
as dropouts and batch normalisation layers in the U-Net 
architecture.

Additional research could investigate different approaches 
to producing the output classifications. In this study, we have 
used overlapping patches and a weighted mean to counteract 
patch edge effects when producing the output classification; 
however, there are alternatives such as trimming of edge 
pixels and ensuring the patches overlap by the same number 
of pixels as presented in Flood et al. (2019).

4  Conclusion

In this paper, we trialled the effectiveness of different param-
eters for defining and training deep learning models based 
on the U-Net architecture. We found more complex models 
containing a larger number of convolutional filters and ker-
nel size achieved higher accuracies. Based on our results, we 
recommend the use of 56 convolutional filters with a ker-
nel size of 5 × 5 while maintaining the original depth of the 
U-Net of five layers for earth observation LULC applications 
at this scale. We also recommend the use of truncated nor-
mal kernel weights initialiser, a selu activation function, the 

Huber loss function, RMSprop loss optimiser, and a learning 
rate of 1e-4. The combination of these parameters increased 
the original U-Net model kappa score from 0.73 to 0.84 for 
the optimised model. The equivalent human-derived classi-
fication obtained a kappa score of 0.93, and the subjectivity 
of classifying some LULC classes caused some confusion 
and resulted in the propagation of errors through to model 
classification.

Appendix 1

Abbreviation Description

BCE Binary cross entropy
CCE Categorical cross entropy
CH Categorical hinge
CNN Convolutional neural network
DT Decision tree
ELU Exponential linear unit
GPU Graphics processing unit
KLD Kullback–Leibler divergence
logcosh Log hyperbolic cosine
LULC Land use and land cover
MAE Mean absolute error
MAPE Mean absolute percentage error
MSE Mean squared error
MSLE Mean squared logarithmic error
RELU Rectified linear unit
RF Random forest
SELU Scaled exponential linear unit
SVM Support vector machine
tanh Hyperbolic tangent
Adadelta Adaptive learning rate method
Adagrad Adaptive gradient algorithm
Adam Adaptive moment estimation
AdaMax Adaptive moment estimation (infinity norm)
ftrl Follow the regularised leader
Nadam Nesterov-accelerated adaptive moment estimation
RMSprop Root-mean-squared propagation
SGD Stochastic gradient descent

https://keras.io/keras_tuner/
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