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Abstract
Efficient monitoring of crop traits such as biomass and nitrogen uptake is essential for an optimal application of nitrogen 
fertilisers. However, currently available remote sensing approaches suffer from technical shortcomings, such as poor area 
efficiency, long postprocessing requirements and the inability to capture ground and canopy from a single acquisition. To 
overcome such shortcomings, LiDAR scanners mounted on unmanned aerial vehicles (UAV LiDAR) represent a promis-
ing sensor technology. To test the potential of this technology for crop monitoring, we used a RIEGL Mini-VUX-1 LiDAR 
scanner mounted on a DJI Matrice 600 pro UAV to acquire a point cloud from a winter wheat field trial. To analyse the 
UAV-derived LiDAR point cloud, we adopted LiDAR metrics, widely used for monitoring forests based on LiDAR data 
acquisition approaches. Of the 57 investigated UAV LiDAR metrics, the 95th percentile of the height of normalised LiDAR 
points was strongly correlated with manually measured crop heights (R2 = 0.88) and with crop heights derived by monitoring 
using a UAV system with optical imaging (R2 = 0.92). In addition, we applied existing models that employ crop height to 
approximate dry biomass (DBM) and nitrogen uptake. Analysis of 18 destructively sampled areas further demonstrated the 
high potential of the UAV LiDAR metrics for estimating crop traits. We found that the bincentile 60 and the 90th percentile 
of the reflectance best revealed the relevant characteristics of the vertical structure of the winter wheat plants to be used as 
proxies for nitrogen uptake and DBM. We conclude that UAV LiDAR metrics provide relevant characteristics not only of 
the vertical structure of winter wheat plants, but also of crops in general and are, therefore, promising proxies for monitoring 
crop traits, with potential use in the context of Precision Agriculture.
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Zusammenfassung
Eine effiziente Überwachung von Pflanzenmerkmalen wie Biomasse und Stickstoffaufnahme ist essentiell für einen optima-
len Einsatz von Stickstoffdünger. Die derzeit verfügbaren Fernerkundungsmethoden weisen jedoch Mängel auf. In diesem 
Zusammenhang stellen LiDAR-Scanner, montiert auf unbemannten Luftfahrzeugen (UAV), eine vielversprechende Sensor-
technologie dar. Um das Potenzial von UAV LiDAR für das Monitoring von Feldfrüchten zu testen, wurde mit einem RIEGL 
Mini-VUX-1 LiDAR-Scanner, montiert auf dem UAV DJI Matrice 600 pro, ein Feldversuch mit Winterweizen überflogen. 
Zur Analyse der dabei aufgenommenen UAV LiDAR Punktwolke haben wir LiDAR-Metriken verwendet, die für Analysen 
von Waldbeständen weit verbreitet sind. Von den 57 untersuchten UAV LiDAR-Metriken korrelierte das 95. Perzentil der 
Höhe der normierten LiDAR-Punkte stark mit terrestrisch gemessenen Pflanzenhöhen (R2 = 0.88) und mit Pflanzenhöhen, die 
durch multitemporales Monitoring mit dem optischen UAV-System Phantom 4 RTK ermittelt wurden (R2 = 0.92). Weiterhin 
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haben wir bereits existierende Modelle angewandt, die die Pflanzenhöhe zur Abschätzung der trockenen Biomasse (DBM) 
und der Stickstoffaufnahme verwenden. Die Analyse von 18 destruktiv beprobten Flächen bestätigte weiterhin das hohe 
Potenzial der UAV LiDAR Metriken für die Abschätzung von Pflanzenmerkmalen. Das Bincentile 60 und das 90. Perzentil 
der Pflanzenreflexion stellten sich als relevante Merkmale heraus, um aus der 3D- Punktewolke der Winterweizenpflanzen 
die Stickstoffaufnahme und die DBM abzuleiten. Wir kommen zu dem Schluss, dass UAV LiDAR-Metriken relevante Merk-
male der vertikalen Struktur von Winterweizenpflanzen, aber auch von Nutzpflanzen im Allgemeinen, zeigen können und 
daher eine vielversprechende Anwendung für die Überwachung von Pflanzenmerkmalen sind, mit potentiellem Einsatz im 
Rahmen von Präzisionslandwirtschaft.

1 Introduction

In precision agriculture, remote sensing plays a crucial role 
in monitoring crop parameters to improve nitrogen fertili-
sation (Heege et al. 2008; Huang et al. 2015; Mulla 2013). 
An optimised application of nitrogen maximises yields and 
minimises environmental impacts such as eutrophication, 
nitrate leaching or greenhouse gas emissions (Ju et al. 2009; 
Wilson et al. 2015). Hence, the nitrogen nutrition index 
(NNI) was developed as a conceptual approach to identify 
optimum nitrogen application rates during crop growth to 
improve nitrogen use efficiency (Gastal and Lemaire 2002; 
Lemaire et al. 2008).

The NNI can be calculated using dry biomass and nitro-
gen concentration in a given phenological stage and knowing 
the nitrogen dilution effect by developing a critical nitrogen 
dilution curve for each crop (Huang et al. 2015). Therefore, 
remote sensing approaches target the non-destructive estima-
tion of both parameters, dry biomass and nitrogen concen-
tration. For nitrogen concentration, optical sensors (multi- 
or hyperspectral) can be utilised (Hansen and Schjoerring 
2003; Li et al. 2010). For the determination of crop biomass, 
Remote Sensing-derived crop height can be utilised (Ben-
dig et al. 2013, 2014; Hoffmeister et al. 2010). To derive 
crop height, three different remote sensing approaches are 
applied: (i) ultrasonic, (ii) Structure from Motion (SfM) and 
(iii) laserscanning.

(i) Ultrasonic devices, mainly mounted on tractors, are 
used as a remote sensing method to derive crop height and 
to estimate biomass. Crop height measured by ultrasonic 
devices has been shown to generate reliable estimates of 
biomass for many crops (Barmeier et al. 2016; Pittman et al. 
2015). However, ultrasonic sensors are to sense distances of 
up to five metre and are usually mounted on tractors for crop 
monitoring. In addition, ultrasonic sensors can only produce 
point measurements (Schirrmann et al. 2017) and cannot 
provide spatially continuous raster data.

(ii) In contrast, UAV-derived image data can be utilised 
for SfM providing continuous raster data of crop height. By 
subtracting a digital terrain model (DTM) from the digi-
tal surface model (DSM) of the crop canopy surface in a 

Geographic Information System (GIS) environment, abso-
lute crop height in metres, with centimetre precision can 
be derived. Numerous studies have demonstrated that UAV-
derived crop height is a robust estimator for crop biomass as 
shown, e.g. in the case of barley (Bendig et al. 2014), wheat 
(Jenal et al. 2021), maize (Niu et al. 2019), and poppy (Iqbal 
et al. 2017).

(iii) Finally, light detection and ranging (LiDAR) (also 
known as laserscanning) is an active remote sensing method. 
LiDAR directly generates 3D point clouds, which can be 
analysed to determine crop height. Crop height derived by 
terrestrial laserscanning (TLS) proved to be a robust estima-
tor for biomass (Hoffmeister et al. 2016; Tilly et al. 2014). 
Nevertheless, TLS is labour intensive, and the scanned area 
per day is less than 20 ha. Furthermore, airborne laserscan-
ning (ALS) campaigns using manned aircrafts are very 
costly and require extensive preparation. In contrast, UAV 
LiDAR is more flexible, cost- and area effective. Although 
the use of UAV LiDAR for crop monitoring is still in its 
infancy, existing studies indicate that this approach has 
a high potential for estimating crop traits such as density 
(Bates et al. 2021), biomass (ten Harkel et al. 2019), and 
height (Zhang et al. 2021).

The existing studies on UAV LiDAR crop trait estima-
tion use self-developed complex algorithms that have to be 
adapted to the respective application (e.g. 3DPI; ten Harkel 
et al. 2019). However, LiDAR has been very successfully 
used for forest studies and inventories (Bouvier et al. 2015). 
The state-of-the-art approach is to estimate LiDAR metrics 
(Shi et al. 2018), through which aspects of the vertical struc-
ture of the forest can be mapped.

Therefore, our study aims to examine 3D point clouds 
derived from UAV LiDAR to determine the winter wheat 
traits in the winter wheat field trial. Methodologically, we 
transfer the widely used LiDAR metrics in the forest sector 
to the analysis of crop traits. As a proof of concept, we ana-
lyse the data from a UAV LiDAR campaign in the growing 
season of 2020. We focus on five objectives:

(i) Determine the absolute crop height from one UAV 
LiDAR campaign.
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(ii) Estimate wheat biomass and nitrogen uptake using crop 
height derived from UAV LiDAR and LiDAR metrics.

(iii) Validate the results with manual height measurements.
(iv) Validate the trait estimations and the height of the crop 

with the crop heights derived from SfM/MVS using 
UAV-RGB imagery.

(v) Validate the estimated biomass and nitrogen uptake 
data against destructively sampled measurements.

2  Materials and Methods

2.1  Study Site and Field Sampling

The study site was situated on the Campus Klein-Altendorf 
(CKA, www. cka. uni- bonn. de), about 20 km southwest of 
Bonn. The region’s climate is warm temperate with mild 
summers and winters and a mean temperature of 9.3 °C. The 
dominance of polar fronts leads to unpredictable weather 
with frequent cloud cover. The mean annual precipitation 
is about 600 mm, with precipitation relatively constant 

throughout the year and a maximum in the summer months. 
Consequently, the region's climate is classified as warm 
temperate, fully humid with warm summer (Cfb) according 
to the Köppen–Geiger Climate Classification. Fertile soils 
and intensive agricultural use further characterise the region. 
The main crops grown are maize, sugar beet, barley, rape-
seed, and wheat.

The studied winter wheat field trial (50°37′12′′  N, 
6°59′50′′ E) was managed by the Institute of Crop Science 
and Resource Conservation (INRES, University of Bonn, 
Germany) (Fig. 1). It consisted of 120 plots arranged in five 
rows of 24, with each plot measuring 7 m × 1.5 m. There 
was one untreated buffer plot on the border of the field and 
two untreated plots between groups of treated plots to avoid 
border effects and mixing of nitrogen application. Each row 
contained three nitrogen treatments: 0, 120, and 240 kg  ha−1, 
and each treatment was applied to six neighbouring plots. 
For each treatment of each row, the following six winter 
wheat cultivars were grown: Heines II, Heines VII, Heines 
Rot, Jubilar, Sperber, and Tommi.

Fig. 1  Overview of the winter wheat field trial and location of the study site (Jenal et al. 2021)

http://www.cka.uni-bonn.de
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The field measurements took place on April 8 and 28, 
May 13 and 26, June 9, and July 2, 2020. On these days, 
destructively sampling of biomass was performed at each of 
the 18 experiment plots in row four. Three by three rows of 
plants, each 50 cm long, were cut close to the ground with 
conventional garden shears. The biomass of each of the three 
rows was measured separately, for the analysis the mean of 
three measurements was used. Then, part of the 54 samples 
for each day were oven dried at 105 °C for 24 h to measure 
the plant dry biomass (DBM). Next, a portion of the bio-
mass was further dried at 60 °C until no further decrease in 
sample weight was observed. This portion was then analysed 
for carbon and nitrogen concentrations using a C/N analyzer 
[EuroEA3000, EuroVector S.p.A. (Italy)].

In addition, the plant heights of all 90 plots considered in 
the experiment were measured manually. The buffer plots 
were again excluded. The height measurements were done 
unconventionally: First, a metre stick was held in the centre 
of the plot. The plants were then aimed from the further 
cross side of the plot. Finally, the measuring stick was aimed 
at the surface of the plant and the height visible on the stick 
was noted. Hence, those height measurements might be 
influenced by the size of the highest plants in the plot.

2.2  Data Acquisition and Structure from Motion 
(SfM) Analysis of Optical RGB Images using 
the Phantom 4 RTK UAV

A Phantom 4 RTK UAV (DJI, Shenzhen, China) was used 
on the following dates: March 26, April 7 and 28, May 13 
and 26, June 2 and 1, July 1 and 21, 2020. The flights were 
conducted 25 m above the ground using a double grid lawn-
mower pattern with 80% vertical and horizontal overlap. 
During approximately 20 min of flight time, about 400 pho-
tos with a 20 MP resolution were taken in Program Mode. A 
particularity of this system is the ability to correct estimates 
of the UAV position during the flight using GNSS correction 
data. This correction data were obtained from the DJI base 
station D-RTK 2, set up during each flight. As a result, the 
positional information of the obtained images has a vertical 
and horizontal accuracy of about 5 cm and 1 cm, respec-
tively (DJI 2022).

To verify this high positional accuracy, 12 permanent 
ground control points (GCP’s), each measuring 20  cm 
× 20 cm, were deployed. The positions of the markers were 
surveyed with a Topcon GR-5 positioning DGPS position-
ing system using a Base / Rover constellation with RTK 
correction.

The images taken by the UAV were analysed using the 
Structure from Motion (SfM) approach implemented in the 
software Metashape (Version 1.5.2, Agisoft LLC, St. Peters-
burg, Russia). Metashape allows a 3D reconstruction of the 
scene. First, image matching was performed on all images 

from one date on the full resolution images with a key point 
limit of 1,000,000 and a tie point limit of 40,000. Next, a 
dense cloud with high quality was computed with the filter-
ing intensity set to “aggressive” for the first date and “mild” 
for all later dates. The dense cloud in “high” setting was 
then used to create the digital elevation models (DEM) with 
a pixel spacing of 1.31 cm and a digital orthophoto (DOP) 
with a pixel spacing of 0.66 cm per pixel. The processing 
of the data from the P4 RTK campaign was performed on 
a higher-grade processing computer (Intel XEON CPU 
E5-2687 W v3, 256 GB RAM, 2 × NVIDIA Quadro M4000 
GPU) and lasted 5–6 h for each survey date.

The first DEM, from March 12, 2020, where the win-
ter wheat plants were very small, was used as the ground 
model. The later DEMs are interpreted as crop surface mod-
els (CSM), as they represent the surface of the plants. The 
ground model was subtracted from all later CSMs to esti-
mate crop height (CH) for all later dates (Bendig et al. 2013).

Based on the CSMs of the multitemporal P4 RTK data, 
season-long models were established. A linear model for 
DBM and a non-linear model for nitrogen uptake were cre-
ated from six dates of destructive plant measurements and 
the corresponding P4 RTK-based crop height measurements. 
More details of these models are described in the study by 
Jenal et al. (2021).

The analysis based on the P4 RTK dataset taken on June 2 
showed plant height values that were too low. The reason for 
that issue was the contribution of bottom points, triggered, 
most likely, due to unfavourable image acquisition condi-
tions for SfM, with bright, direct sunshine and moderate 
winds during the flight. Instead, we interpolated the plant 
heights from the dates prior (May 25) and post (June 12), 
where such problems did not occur (Jenal et al. 2021).

2.3  UAV LiDAR System and Campaign

The UAV LiDAR system used in this study was a Riegl Min-
iVUX-1-UAV laser scanner mounted on a DJI Matrice 600 
pro UAV with a take-off weight of about 11.2 kg (Fig. 2). 
The scanner can perform up to 100,000 measurements per 
second with an accuracy of 1.5 cm (Riegl 2022). In UAV 
laserscanning, the accurate determination of the UAV's posi-
tion and orientation is crucial for the subsequent accuracy 
of the recorded data. Therefore, the system was equipped 
with a highly precise inertial measurement unit (IMU), the 
APX-15 IMU. It measures the orientation of the UAV at any 
given time and records GNSS data for geolocation. GNSS 
correction data are also necessary to calculate the UAV's 
position during the data acquisition in the postprocessing. 
These GNSS correction data were logged by a TOPCON 
GR-5 DGPS with RTK correction during the flight, which 
was positioned next to the field.
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Accordingly, using the APX-15 allows estimation of the 
position at a positional accuracy of 2–5 cm. Roll and pitch 
can be estimated with a precision of 0.025° and heading with 
0.08° (Applanix, 2022).

The actual UAV LiDAR flight took place on June 2, 2020. 
The flight altitude was 40 m above ground, and the speed 
was 5 m  s−1. The total flight time was approximately 12 min 
using around 50% of battery charge. The field trial area of 
0.2 ha was overflown and scanned five times in approxi-
mately one minute (Fig. 3). To test the potential for scanning 
a larger area, any remaining flight time was used to scan 
approximately 16 ha around the trial site. The flight control 
software UgCS (Version 3.4. build 609) was running on a 

laptop computer, which was connected to an Android tab-
let running the UgCS for DJI Android app (Version 2.17), 
which in turn was connected to the UAV flight controller. 
Thus, the UAV flight was completely automated.

2.4  Generating and Processing of the 3D UAV LiDAR 
Point Cloud

The first step to generate the 3D LiDAR point cloud is esti-
mating the trajectory of the UAV, based on the data from 
IMU and the GNSS correction data. This step was carried 
out in the software POSpac UAV™ (Applanix, Richmond 
Hill, Ontario, Canada, Version 8.4., Service Pack1). The 
corrected trajectory was then imported into the RiProcess 
software (Version 1.9.2. RIEGL, Horn, Austria) to calculate 
the LiDAR point cloud. In a final step, the accuracy of the 
trajectory was further enhanced using RiPrecision (Version 
1.9.2. RIEGL, Horn, Austria). In that step, spatial reference 
objects were included, extracted from the DOP from the 
optical UAV. The steps to generate the LiDAR point cloud 
were performed on a laptop computer without significantly 
strong hardware equipment (Intel Core i5 835OU processor, 
8 GB RAM) in under 30 min.

The point density over the trial was approximately 
450–1250 points  m−2 and about 100–150 points  m−2 in 
the area around the trial. A total of 2.3 million points were 
acquired over the trial, and 27.2 million total points (see 
Fig. 4).

The UAV LiDAR point cloud was analysed using LAS-
Tools (Version: 210,720, rapidlasso GmbH, Gilching, 
Germany). First, outlier points were identified in the UAV 
LiDAR point cloud and removed as soon as five or fewer 
points were within one cubic metre. Next, only those points 
were further analysed, that either fell within the area of the 
plots or within the area that was to be harvested one week 
after the flight. All other points were excluded from further 
analysis. Out of the remaining points, the points representing 
the ground were classified using the lasground functional-
ity of LASTools to normalise the height of the points from 
ellipsoidal absolute heights to the height above ground. The 

Fig. 2  The system used in this study, which is a UAV DJI Matrice 
600 pro, with a Riegl Mini-VUX-1 LiDAR scanner

Fig. 3  Flight plan of the UAV LiDAR campaign, June 2, 2020

Fig. 4  3D view of the normalised point cloud of the 72 plots which 
were not destructively sampled, coloured by height (red: high crop 
height; blue: low crop height)
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"lasground_new" implementation was used with default val-
ues, but setting the offset value to 0. Finally, the point cloud 
metrics were calculated using the lascanopy functionality of 
LAStools. Those metrics have been successfully used as pre-
dictors in various LiDAR forest studies (Bouvier et al. 2015; 
Coops et al. 2021; Shi et al. 2018). However, we adopted the 
methodology to agricultural crops, as we set the height cut-
off, typically used in forest studies to neglect smaller trees 
and bushes, to 0.

The following metrics were calculated based on the ver-
tical distribution of the normalised point heights within 
each reference area (i.e. either plot or area to be harvested): 
average, maximum, percentiles (every 5%, plus 99%), the 
number of points in different height ranges (between 0 and 
10 cm, 10 and 20 cm, 20 and 30 cm, 40 and 50 cm, 50 and 
60 cm, 60 and 70 cm), and bincentiles (every 5 from 5 to 
95) (Stefanidou et al. 2020). A bincentile is the percentage 
of points above a reference height, with the reference height 
being the percentage of the maximum height, which is added 
to the end of the bincentile. Bicentiles can be considered 
as a canopy density measure (Stefanidou et al. 2020). The 
measure of the return energy of the emitted laser beam is the 
basis for generating the LiDAR intensity, which RiProcess 
then uses to calculate the reflectance of each LiDAR point. 
Based on the reflectance of the points from each reference 
area (i.e. either plot or area to be harvested), we calculated 
the reflectance's average, standard deviation, and percentiles 
of the reflectance (25, 50, 75, 80, 85, 90, 95). Furthermore, 
the number of points per reference area and the Height of 
Median Energy (HOME) (Drake et al. 2002) were calcu-
lated. The HOME combines reflectance and height. For its 
calculation, all LiDAR points of a plot are first sorted by 
height, and then the height is determined where the sums of 
reflection of all points above and below are equal.

Based on these UAV LiDAR metrics, linear models with 
manually measured plant heights, data from optical UAV 

flights, and destructive biomass data were established. We 
used the coefficient of determination  (R2) and the root mean 
square error (RMSE) as statistical measures to evaluate the 
potential of the UAV LiDAR metrics.

3  Results

In Table 1, the relevant correlations and the sections, in 
which the respective results are presented, are shown. In 
all results chapters, we mainly focus on three metrics: the 
95th percentile of the height, the bincentile 60, and the 90th 
percentile of the reflectance, as we see these three as the 
best representative of different categories of metrics with 
high correlations.

3.1  UAV LiDAR Metrics are Correlated with Manually 
Measured Crop Heights

We first evaluated the UAV LiDAR point cloud data using a 
dataset of manual height measurements from the 72 winter 
wheat plots that were not sampled destructively. The metrics, 
which were derived for each plot, showed a moderate to 
strong linear correlation with the manual height measure-
ments (Fig. 5). The metric showing the highest correlation 
was the 95th percentile of the normalised height (R2 = 0.86, 
p < 0.001, see Fig. 5) with an RMSE value of 4.1 cm. A 
lower correlation (R2 = 0.61, p < 0.001) was observed for 
the manually measured plant height with the LiDAR metric 
bincentile 60. Interestingly, all unfertilised plots, and only 
one of the plots fertilised with 120 kg  ha−1, have a bincentile 
60 of more than 85%.

The 90th percentile of the LiDAR reflectance shows a 
moderate negative linear correlation (R2 = 0.54, p < 0.001) 
with the manually measured plant heights. The RMSE is, 
with 7.5 cm, about twice as high as for the 95th percentile 

Table1  Linear correlations (R2) of the UAV LiDAR metrics with the reference data of the present study
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of the height. Especially the group with the highest ferti-
liser input (240 kg  ha−1) shows high residuals. In general, 
only the height percentiles of the UAV LiDAR-derived 
heights are in great agreement with the manually measured 
heights. However, the ability of the bincentile 60 to separate 
the unfertilized group of plots from the rest of the plots is 
noteworthy.

3.2  UAV LiDAR Metrics are Correlated with the P4 
RTK SfM Crop Heights

The correlations of the UAV LiDAR metrics with the crop 
heights from P4 RTK (Fig. 6) were similar to the correla-
tions of the UAV LiDAR with the manual measurements 
(Fig. 5). However, these correlations are stronger in mag-
nitude than those seen for the manual measurements. We 
observed the strongest correlation of P4 RTK-derived crop 
height with the UAV LiDAR metric 95th percentile of the 
height (R2 = 0.92, p < 0.001, n = 72), reaching an RMSE of 
only approx. 3 cm.

3.3  UAV LiDAR Metrics are Correlated with DBM 
and Nitrogen Uptake Modelled by P4 RTK SfM

The DBM modelled by the P4 RTK data showed the same 
strong correlation with the UAV LiDAR metrics data as the 
P4 RTK crop height alone (R2 = 0.92 for the 95th percentile 
of the height, 0.71 for the bincentile 60, and 0.64 for the 90th 
percentile of the reflectance).

The nitrogen uptake, on the contrary, was not modelled 
linearly, and therefore a slightly non-linear trend is observed 
in the comparison, leading to weaker linear correlations 
(R2 = 0.69 for 95th percentile of the height, 0.55 for the bin-
centile 60, and 0.55 for the 90th percentile of the reflec-
tance). Yet, the three diagrams in the lower part of Fig. 6 
show that there is also a relation of the LiDAR metrics to the 
modelled nitrogen uptake modelled by the optical system.

Fig. 5  Linear correlation of the manual height measurements with the UAV LiDAR metrics. The grey area around the red regression line indi-
cates the 95% confidence level interval

Fig. 6  Linear correlations of the P4 RTK Crop Surface Height (CSH) measurements with the UAV LiDAR metrics. The grey area around the red 
regression line indicates the 95% confidence level interval
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3.4  UAV LiDAR Metrics are Correlated 
with Destructively Measured DBM and Nitrogen 
Uptake

In the 18 destructively sampled plots, the dry biomass infor-
mation and nitrogen uptake were destructively measured one 
week before (May 26) and one week after the UAV LiDAR 
campaign (June 9). The interpolated crop traits from those 
samplings could be related to the LiDAR height metrics 
from those areas that were harvested one week after the 
LiDAR campaign.

Remarkably, the bincentile 60 UAV LiDAR metric out-
performed the average height in DBM as well as in nitrogen 
uptake estimation (Fig. 8). Especially encouraging is its very 
high correlation with nitrogen uptake (R2 = 0.85, p < 0.001). 
In general, we found a slightly higher correlation of UAV 
LiDAR metrics with the destructive samplings than in the 
analysis before, where P4 RTK-derived heights were used 
to model the crop traits.

4  Discussion

The present study's results demonstrate the possibility of 
estimating winter wheat crop traits from a single UAV 
LiDAR campaign using LiDAR metrics. Two main results 

support that finding. First, we observed a high correla-
tion of the UAV LiDAR data with the manual plant height 
measurements (R2 = 0.86, n = 72, p < 0.001). Second, we 
found a very high correlation of the LiDAR UAV data 
with the plant height measurements derived from the SfM 
analysis of the P4 RTK data (R2 = 0.92, n = 72, p < 0.001). 
This finding agrees with Bates et al. (2021), one of the 
few studies on the topic. Bates et al. (2021) also used the 
capability of UAV LiDAR to partially penetrate winter 
wheat and, thus, acquire a ground model and canopy infor-
mation from a single UAV LiDAR observation. They used 
the resulting ground and canopy information to estimate 
the Leaf Area Index (LAI). However, we used the ground 
model to normalise all LiDAR points, enabling the com-
putation of LiDAR metrics from the UAV LiDAR point 
cloud. Although these metrics were previously introduced 
in the context of forest inventory using LiDAR (Lim et al. 
2003), they provided accurate predictions of winter wheat 
traits in our study. To the authors knowledge, the applica-
tion of LiDAR forest metrics to derive crop traits has not 
been investigated before.

Based on the LiDAR metric 95th percentile of the height, 
the winter wheat plant heights were accurately estimated. 
We applied previously existing models from optical imaging 
UAV data and SfM analysis, which was performed season-
long. In this way, we successfully established models for 

Fig. 7  Linear correlations of the P4 RTK-derived crop trait measurements with UAV LiDAR metrics. The grey area around the red regression 
line indicates the 95% confidence level interval
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DBM and nitrogen uptake for the 72 plots of the winter 
wheat field trial that were not destructively sampled. Those 
models show the same correlation as the models with the P4 
RTK height. This is not surprising since the P4 RTK bio-
mass estimation is also based on a linear model, with the P4 
RTK-derived plant heights as input. However, the regression 
shown here indicates how the DBM can also be calculated 
from the LiDAR metrics. Those models created with the P4 
RTK season-long observations were similar to those estab-
lished with the 18 available destructive measurements. As 
shown in Figs. 6 and 7, the models for the DBM estimation, 
for example, are almost identical. The models for nitrogen 
uptake are also in the same range.

We argue that the potential of UAV LiDAR metrics for 
monitoring winter wheat extends to estimating other traits in 
addition to plant height. Of the 57 calculated UAV LiDAR 
metrics, we identified two metrics that estimated DBM from 
destructive sampling and nitrogen uptake variation with 
high accuracy. The first metric was the bincentile 60. It is 
calculated based on the vertical distribution of the LiDAR 
points. Of all metrics, it showed the strongest correlation 
with the destructively measured DBM (R2 = 0.81, P < 0.001, 
n = 18) (Fig. 8). Hence, we conclude that the bincentile 60 
revealed parts of the structure of the winter wheat plants, 
especially plot canopy density, that are relevant for estimat-
ing DBM. The second metric was the 60th percentile of the 

reflectance, which best described the variation in nitrogen 
uptake in the destructively measured samples (R2 = 0.88, 
P < 0.001, n = 18) (Fig. 8). Both LiDAR metrics, for DBM 
and nitrogen uptake, perform as good as optical estimators 
in the visible, near-infrared, and shortwave-infrared domain 
(VNIR/SWIR) as described by Jenal et al. (2021) for the 
same field experiment.

The LiDAR reflectance measures the amount of energy 
reflected to the sensor. Eitel et al. (2014) used a green Laser's 
reflectance to estimate winter wheat's nitrogen concentra-
tion. Hence, we expected that the reflectance could be used 
as a proxy for biophysical parameters of the winter wheat 
plants. Furthermore, the UAV LiDAR system of the present 
study works in the near-infrared region (809 nm), which 
is known from hyperspectral studies on winter wheat. For 
example, Wei et al. (2012) identified the wavelength region 
relevant for estimating leaf nitrogen accumulation. However, 
our expectation was not supported as we observed a nega-
tive correlation between the reflectance with DBM and plant 
height. We found that the LiDAR reflectance in our study 
was influenced mainly by interactions of the LiDAR with 
the ground, which has a higher reflectance than the plants. 
Hence, the higher reflectance of plots having plants of lower 
height and density is probably explained by the fact that 
more points originate from the ground because the LiDAR 
beam is more likely to reach the ground.

Fig. 8  Linear Correlations of the destructive measurements with the UAV LiDAR metrics. The grey area around the red regression line indicates 
the 95% confidence level interval
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However, as the plants' density and height heavily influ-
ence the LiDAR reflection, the 90th percentile of reflectance 
was the most relevant LiDAR metric for approximating the 
nitrogen uptake of the winter wheat plants.

UAV LiDAR systems are still quite costly. Although a 
detailed cost–benefit analysis of UAV LiDAR is beyond 
the scope of the present study, we found a considerable 
gain in productivity. Compared to much cheaper ultrasonic 
devices, which only provide point measurements, the UAV 
LiDAR provides spatially continuous data and can survey 
much larger areas in a given time. Terrestrial LiDAR can 
only survey up to 20 ha per day. However, in this study, we 
acquired more than 16 ha with the UAV LIDAR in about 
ten minutes. Compared to SfM analysis, based on RGB 
images, UAV LiDAR benefits from two advantages. First, 
the flight time to capture the RGB images with the P4 
RTK UAV was about 20 min, whereas it took only about 
one minute flight time to scan the area of the winter field 
trial. Second, SfM analysis of a single date required 5–6 h 
of computation time on a higher-grade computer, whereas 
LiDAR data can be made available within half an hour 
after the flight without significant processing. Addition-
ally, for the LiDAR UAV approach, we presented in this 
study, only one UAV campaign is necessary. In contrast, 
in the case of optical imaging, an additional campaign to 
survey the ground is needed early in the growing season.

Our study presents a proof-of-principle based on data 
from a single UAV LiDAR flight. Furthermore, some 
conclusions are drawn on the basis of the analysis of 18 
destructive measurements. Future studies should be based 
on a greater number of destructive measurements to rep-
licate our findings. Moreover, winter wheat fields change 
dramatically during the growing season. The UAV LiDAR 
metrics that worked in our study might not be equally 
accurate in other growing stages or for the whole growing 
season. We could not determine which of the UAV LIDAR 
metrics performs optimally for time-series analysis. There-
fore, the study should be repeated with more UAV LiDAR 
flights encompassing the whole growing period. Using 
datasets from different locations over several years should 
allow the established models to be validated and refined.

Another refinement results from deriving additional 
UAV LiDAR metrics used to predict winter wheat traits. 
The UAV LiDAR metrics calculated in this study are 
restricted to those implemented in the software LAStools. 
However, LiDAR metrics can also be derived using other 
approaches (e.g. Hackel et al. 2016). In particular, the 
workflow presented in our study can be easily adapted to 
integrate more LiDAR metrics.

In this study, we investigated linear models. More 
sophisticated approaches such as multivariate models, 
machine learning or deep learning algorithms usually have 
a higher prediction accuracy and can be used to combine 

several variables (i.e. metrics). However, we decided not 
to use these approaches for two reasons. First, our lin-
ear models and a resulting correlation coefficient for each 
LiDAR metric allowed us to demonstrate the different 
LiDAR metrics and their potential for estimating winter 
wheat crop traits. All regressions and data in this study are 
made freely available to allow replication of our results 
and comparison with future work. Second, machine learn-
ing approaches require independent test datasets to avoid 
overfitting, preferably from different growing seasons and 
multiple study sites.

Plant height is a proven proxy measure for DBM (Bendig 
et al. 2014; Tilly et al. 2014) and the vertical structure of 
plants can be used as a proxy for nitrogen uptake (Tilly and 
Bareth 2019). However, the correlation of plant height with 
nitrogen uptake is not as strong as that with DBM, as was 
also the case in the present study. We presented a workflow 
to calculate the height of the winter wheat plants. But more 
importantly, to derive additional information that is con-
tained in the UAV LiDAR point cloud by adapting LiDAR 
metrics, which have previously been used in forest studies, 
for crop trait estimation. Based on this additional informa-
tion from the UAV LiDAR metrics, we anticipate that a more 
accurate approximation of DBM, nitrogen uptake, and other 
traits of winter wheat crop should become feasible. Our 
approach could, of course, also be applied to other crops 
such as maize, barley, or rice. Furthermore, UAV LiDAR 
could be combined with other data for a more robust trait 
approximation, such as soil data (Argento et al. 2021) or 
multispectral imaging (Jenal et al. 2021).

Our findings may have implications for generating accu-
rate and faster site-specific data for nitrogen fertilisation. 
The presented approach lends itself to several potential 
applications in precision agriculture. In conventional fields, 
polygon grids (Bareth et al. 2016) would have to be estab-
lished to calculate the metrics. These grids would have a 
spatial resolution determined by the machinery performing 
the variable-rate nitrogen application. Such an approach 
could result in improved nitrogen fertilisation, thereby opti-
mising yields and minimising environmental impacts. Our 
application of UAV LiDAR-derived metrics to the evaluation 
of crop traits in winter wheat illuminates the huge potential 
of this technology to advance research into other crops and 
in precision agriculture in general.

5  Conclusion

Plant height and structural characteristics are essential 
parameters in the non-destructive determination of plant 
traits. However, the established remote sensing for collect-
ing plant structural data, such as SfM, ultrasonic devices, 
and conventional LiDAR (terrestrial and airborne), have 
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disadvantages that new UAV LiDAR systems can overcome. 
Therefore, this study aimed to demonstrate how single-date 
UAV LiDAR could be used to map winter wheat crop traits. 
We proposed using LiDAR metrics from LiDAR forest stud-
ies to calculate the crop traits. We demonstrated how the 
developed approach could successfully approximate plant 
height, DBM, and nitrogen uptake from a UAV LiDAR point 
cloud acquired over a winter wheat field trial. Further studies 
should aim to support our positive assessment over several 
years and repeated times during the growth period. Ideally, 
these studies would also include multi- and hyperspectral 
measurements with which the UAV LiDAR data could be 
combined and compared.
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