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Abstract
This paper proposes a multiple CNN architecture with multiple input features, combined with multiple LSTM, along with 
densely connected convolutional layers, for temporal wind nature analyses. The designed architecture is called Multiple fea-
tures, Multiple Densely Connected Convolutional Neural Network with Multiple LSTM Architecture, i.e. MCLT. A total of 
58 features in the input layers of the MCLT are designed using wind speed and direction values. These empirical features are 
based on percentage difference, standard deviation, correlation coefficient, eigenvalues, and entropy, for efficiently describ-
ing the wind trend. Two successive LSTM layers are used after four densely connected convolutional layers of the MCLT. 
Moreover, LSTM has memory units that utilise learnt features from the current as well as previous outputs of the neurons, 
thereby enhancing the learning of patterns in the temporal wind dataset. Densely connected convolutional layer helps to 
learn features of other convolutional layers as well. The MCLT is used to predict dominant speed and direction classes in 
the future for the wind datasets of Stuttgart and Netherlands. The maximum and minimum overall accuracies for dominant 
speed prediction are 99.1% and 94.9%, (for Stuttgart) and 99.9% and 97.5% (for Netherlands) and for dominant direction 
prediction are 99.9% and 94.4% (for Stuttgart) and 99.6% and 96.4% (for Netherlands), respectively, using MCLT with 58 
features. The MCLT, therefore, with multiple features at different levels, i.e. the input layers, the convolutional layers, and 
LSTM layers, shows promising results for the prediction of dominant speed and direction. Thus, this work is useful for proper 
wind utilisation and improving environmental planning. These analyses would also help in performing Computational Fluid 
Dynamics (CFD) simulations using wind speed and direction measured at a nearby meteorological station, for devising a 
new set of appropriate inflow boundary conditions.

Keywords Wind flow · Prediction · Deep learning architectures · ResNet · Machine learning · Meteorological data · 
Energy · LSTM · Convolutional neural network · Wind forecasting

Zusammenfassung
Deep-Learning-Modell für Windvorhersagen: Klassifikationsanalysen für temporäre meteorologische Daten. In diesem 
Beitrag wird eine Architektur von mehreren dicht verbundenen CNN in Kombination mit zwei nachgelagerten Long Short-
Term Memory Verfahren zur Analyse von Windmessungen vorgeschlagen. Diese Architektur wird als “Multiple Features, 
Multiple Densely Connected Convolutional Neural Network with Multiple LSTM” (MCLT) bezeichnet. Insgesamt werden 
58 Merkmale in den Eingabeschichten des MCLT unter Verwendung von Windgeschwindigkeits- und -richtungswerten 
verwendet. Diese empirischen Merkmale basieren auf der prozentualen Differenz, der Standardabweichung, dem Kor-
relationskoeffizienten, den Eigenwerten und der Entropie. Den CNN werden zwei aufeinanderfolgende LSTM-Schichten 
nachgelagert. Diese LSTM-Schichten verwenden die gelernten Merkmale aus den aktuellen und früheren Ausgaben der 
CNN, wodurch das Lernen von Mustern im zeitlichen Winddatensatz verbessert wird. Die MCLT-Architektur wird zur Vor-
hersage dominanter Geschwindigkeits- und Richtungsklassen am Beispiel von gemessenen Winddatensätze von Stuttgart 
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und den Niederlanden verwendet und evaluiert. Die maximale und minimale Gesamtgenauigkeit für die Vorhersage der 
vorherrschenden Geschwindigkeit beträgt 99,1 % und 94,9 % (für Stuttgart) bzw. 99,9 % und 97,5 % (für die Niederlande) 
und für die Vorhersage der vorherrschenden Richtung 99,9 % und 94,4 % (für Stuttgart) bzw. 99,6 % und 96,4 % (für die 
Niederlande). Die vorgeschlagene MCLT-Architektur zeigt vielversprechende Ergebnisse für die Vorhersage der dominan-
ten Windgeschwindigkeit und -richtung. Damit trägt diese Arbeit dazu bei, Wind-Analysen in Umweltplanungen besser 
berücksichtigen zu können. Die Analysen helfen auch bei der Durchführung von CFD-Simulationen (Computational Fluid 
Dynamics), bei denen Windgeschwindigkeit und -richtung als Anströmungsrandbedingungen genutzt werden, um beispiels-
weise das Potential von Kleinwindkraftanlagen im urbanen Raum abzuschätzen.

List of Symbols
�  Mean
�  Standard deviation
LSTM  Long short-term memory
ADASYN  Adaptive synthetic sampling
ANN  Artificial neural network
M5P  M5 model trees
CFD  Computational fluid dynamics
ELUs  Exponential linear units
SMAPE  Symmetric mean absolute percentage error
LSSVM  Least squares support vector machine
NWP  Numerical weather prediction
CNN  Convolutional neural network
SVM  Support vector machine
ML  Machine learning
TA  Total accuracy
1DM  One-dimensional multiple convolutional 

neural network architecture
MCLT  Multiple features, multiple densely connected 

convolutional neural network with multiple 
LSTM architecture

1 Introduction

The green energy requirement is expanding day by day 
with increasing population growth, and development. One 
of the free, clean, renewable energy source with a limit-
less supply that is naturally available is wind (Lawan et al. 
2014; Marović et  al. 2017; Tarade and Katti 2011). In 
today’s world, mankind seeks to become more environmen-
tal friendly in its operations, and the wind is an important 
source of energy. To monitor, predict, and maintain weather 
patterns and global climate, wind speed and direction are 
essential components that need to be tracked (Colak et al. 
2012; Vargas et al. 2010). The future wind trends are influ-
enced by the past conditions of wind speed and direction. 
Moreover, to support the selection of new wind turbine 
installation sites, prior analysis of the wind nature, and its 
prediction is required (Aissou et al. 2015; Reed et al. 2011). 
There are four categories to group wind speed and direc-
tion prediction methods based on the time scale (Yesilbudak 
et al. 2013; Yesilbodak et al. 2017), viz (i) very short-term 
(these predictions cover a few seconds to 30 min ahead), 

(ii) short-term (include predictions from 30 min to 6 h), 
(iii) medium-term (predictions for 6 h to 1 day ahead) and, 
(iv) long-term (from 1-day to 1-week predictions). Machine 
Learning (ML) (Sapronova et al. 2016), Numerical Weather 
Prediction (NWP) models (Aslipour and Yazdizadeh 2019; 
Janssens et al. 2016; Louka et al. 2008), and models incor-
porating both NWP and ML (Vladislavleva et al. 2013) for 
wind prediction are presently the focus of research and com-
mercial applications.

The ML concepts such as fuzzy logic (Martínez-Arellano 
et al. 2014; Monfared et al. 2009), Artificial Neural Net-
works (ANN) with several hidden layers (Birenbaum and 
Greenspan 2017; Daraeepour and Echeverri 2014; El-Fouly 
et al. 2008; Vogado et al. 2018; Yesilbodak et al. 2017), and 
statistical models (Jursa and Rohrig 2008; Louka et al. 2008; 
Miranda and Dunn 2006; Yang and Chen 2019) are used to 
design such wind prediction frameworks. Techniques like 
particle swarm optimisation, wavelet transform (Liu et al. 
2018; Martínez-Arellano et al. 2014; Wang et al. 2017), REP 
tree, M5P tree, bagging tree, K-nearest neighbour algorithm 
(Jursa and Rohrig 2008; Kusiak et al. 2009a; Kusiak and 
Zhang 2010), principal component analysis, moving average 
models, Markov chain (Kusiak et al. 2009b; Treiber et al. 
2016; Vargas et al. 2010), combined with regression models 
using neural networks, have been used for wind analyses 
(Yang and Chen 2019). Moreover forecasting wind speed 
with Support Vector Machines (SVM) and its variation 
(Kang et al. 2017) such as Least Square Support Vector 
Machines (LSSVM) have also been proposed (De Giorgi 
et al. 2014, 2009; Harbola and Coors 2019a; Yuan et al. 
2015). These works used only limited features based on 
wind speed, direction and power as input. The ML concept 
of deep learning based on Convolutional Neural Networks 
(CNNs) has achieved higher accuracy for classification of 
Two-Dimensional (2D) images and Three-Dimensional (3D) 
point clouds (Krizhevsky et al. 2012; Long et al. 2015; Sze-
gedy et al. 2015). Convolutional layers in CNN learn a large 
number of features automatically so that they need not be 
designed manually (Jung et al. 2019; Kuo 2016; Qi et al. 
2016). Variations of CNNs like single CNN, multiple CNN, 
Residual Neural Network Architecture (ResNet) (He et al. 
2016; Huang et al. 2017; Xie et al. 2017) with several convo-
lutional layers have become popular for classification. Fur-
ther, One-Dimensional (1D) and 2D single CNNs have been 
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employed for wind power and wind speed predictions (Liu 
et al. 2018; Wang et al. 2017). However, these models either 
smooth and filter the wind dataset by applying techniques 
like wavelet or convert 1D wind dataset into 2D images (Liu 
et al. 2018; Wang et al. 2017). This leads to distortion of 
the original information present in temporal wind dataset. 
To overcome this problem, 1D single CNN (1DS) and 1D 
multiple CNN (1DM), working directly on the original 1D 
temporal wind dataset without using smoothening tech-
niques, were proposed by (Harbola and Coors 2019b). The 
1DM model showed better performance than the 1DS for 
prediction of the dominant class of wind speed and direction. 
However, only two features based on the speed and direction 
were included in the input layers of the 1DS and 1DM and a 
limited number of classes (eleven) were used for prediction.

This paper improves upon the 1DM model and pro-
poses a deep multiple CNN architecture with multiple input 
features, along with multiple Long Short-Term Memory 
(LSTM) and densely connected convolutional layers. More 
number of features in CNN architecture help in learning the 
various properties of a sample from finer to coarser levels 
(de Andrade 2019). Therefore, a large number of features are 
used in this study. The new architecture is called Multiple 
features, Multiple Densely Connected Convolutional Neural 
Network with Multiple LSTM Architecture, i.e. MCLT with 
the following novel contributions, (a) multiple features (58 
in total) are used in the input layers for better representation 
of the temporal wind dataset, (b) fully connected layers are 
replaced by LSTM layers to provide memory for a longer 
period and thereby improving the training of the model, (c) 
connecting convolutional layers similar to 2D ResNet (for 
images) (Duta et al. 2020) architecture so that each convolu-
tional layer learns features of previous convolutional layers 
as well, and (d) a higher number of classes (21) are used for 
analyzing detailed trend of the temporal wind dataset. The 
authors are unable to find any existing work that has used 
these four contributions for in-depth analyses and prediction 
of wind nature. The remaining paper is arranged as follows; 
Section 2.1 describes the MCLT architecture followed by 
Sect. 2.2 which gives detail of the wind datasets used in the 
experiments. Section 3 presents the results and Sect. 4 gives 
conclusion and future recommendations.

2  Methodology

The proposed MCLT architecture is an advanced deep learn-
ing architecture, which is a combination of multiple features, 
multiple LSTM, and densely connected convolutional layers 
in a multiple CNN model for the wind nature analysis. A 
total of 58 features are based on the various combinations 
of two important temporal wind properties, i.e. wind speed 
and direction. This ensures that several details of the wind 

features are learnt by the MCLT. These features are designed 
based on time series data from the past. The features form 
the input of the MCLT that has to predict a representative 
wind speed or direction value for a period of time imme-
diately after the last value of the input sample in the time 
series. The following sections discuss the design of these 
multiple features, along with the MCLT framework.

Further, the input to the MCLT is a time series (or tem-
poral) data of wind speed and direction for a certain geo-
graphic location (i.e. spatial location). These time series data 
need to be acquired at regular intervals. The time stamp in 
the data helps to arrange the data in the increasing order 
of time. More details of the data are available in Sect. 2.2. 
Further, several features are designed using the wind speed 
and direction that are explained in Sect. 2.1. The predic-
tion of the MCLT is the class label based on the dominant 
wind speed and direction. The multiple wind speed values 
for future points in time are grouped into 21 classes using 
the wind speed values. Amongst these classes, the class 
having maximum count, i.e. class of the speed values that 
occur most (viz. dominant speed amongst future points) in 
time forms the class label of the input sample (Harbola and 
Coors 2019b). Similarly, 21 classes for the wind direction 
are designed and the class label is assigned to the sample 
based on the class having maximum count of the wind direc-
tion values. It may be noted that grouping into 21 classes is 
a process of creating the class labels of training and testing 
samples, while the MCLT prediction represents one class 
label (for a given sample) that depicts wind speed or direc-
tion value for a certain period of time immediately follow-
ing the time represented by the input sample. Also, there 
are two trained MCLT models, one for the wind speed and 
another for the wind direction. The proposed method can 
be short term, medium term as well as long term depending 
on the choice of the number of future points in time that are 
grouped into 21 classes. This concept is discussed in detail 
in Sect. 2.1.

2.1  Designing Multiple Features

Wind speed (given in m/s) and the direction (in radians) are 
two input features (Harbola and Coors 2019b) to the pro-
posed architecture. Besides these two features, 56 additional 
features also form part of the input. Suppose, matrix Mi, j 
has r rows and 58 columns, where r equals to the number 
of temporal wind values present in the dataset (each row of 
Mi, j is a time instance for wind dataset comprising speed 
and direction values), and i, j denote row and column num-
ber of a cell, respectively, in the matrix. Moreover, each 
column denotes a feature. The first feature (first column), 
second feature (second column) comprise the wind speed 
and direction values, respectively. Mi, j=3 (third feature) is the 
percentage difference (per) between Mi, j=1 (speed values) 
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Fig. 1  Various designed features in MCLT
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and Mi−1, j=1 . Mi, j=4 (fourth feature) is the percentage dif-
ference between Mi, j=1 and Mi−2, j=1 . Similarly, the features 
from Mi, j=5 to Mi, j=58 are based on the percentage difference 
(per), standard deviation (std), correlation coefficient (cor-
coef), eigenvalues (Weinmann et al. 2015) (eig1, eig2) and 
entropy (entr) of wind speed and direction. These are shown 
in detail in Fig. 1, where values up to Mi−7, j are used only 
due to hardware constraints in the present study, it could 
be decreased or increased as per available hardware. Thus, 
each row of Mi, j has column (or feature) values that are 
dependent on the current and previous rows, i.e. i to i − 7 . 
In Fig. 1, for example std ( Mi, j=2 , Mi−1, j=2 , Mi−2, j=2 ) means 
standard deviation of three quantities inside the brackets. 
The explanation of other features in Fig. 1 is similar. These 
features are calculated using adjacent temporal values of 
wind speed and direction and help in describing trends like 
increase, decrease, stationary, deviation from the mean. The 
features can be varied depending on the available hardware 
for training the MCLT. This is discussed in more detail in 
section 4.3.2. The above constructed Mi, j matrix is further 
rescaled by dividing each cell’s value by the maximum value 
amongst all the cells. This rescaling helps in resizing values 
to a smaller range for better learning of the MCLT. This 
rescaled Mi, j matrix is used in below concepts.

Samples for training and testing the proposed architec-
ture are designed using Mi, j . A sample consists of input 
values and a corresponding class label. This class label is 
predicted by the MCLT. The sample’s input consists of a 
matrix of dimension KB * 58 using values from Mi, j=1..58 to 
Mi+KB, j=1..58

 , where KB is a scalar quantity that depends on 
the user. Therefore, rows from i to i + KB (and all columns 
of these rows) of Mi, j form the input of the sample. The 
columns of matrix KB * 58 are treated as separate features, 
each of one dimension in the input layers of the MCLT as 
discussed in the next section.

The corresponding class label of the sample is a class 
reflecting the wind speed or the wind direction value for 
the future KF (a scalar value) time values immediately after 
the last time value (i + KB ) in the sample’s input. The class 
label of the sample is designed using values of speed from 
Mi+KB+1, j=1

 to Mi+KB+KF , j=1
 , where KF is a scalar. Here, 

first column of Mi, j is used that is based on the wind speed 
values.

For this, mean ( � ) and standard deviation ( � ) of the given 
historical temporal wind dataset are calculated, separately 
for speed and direction. Then, 21 classes are designed using 
( � ) and ( � ), of wind speed values as shown in Table 1. The 
� and � concepts provide statistical segregation of classes 
(Ghilani 2010). ki , where i →1–10 as shown in Table 1, 
is decided empirically. Speed values from Mi+KB+1, j=1

 to 
Mi+KB+KF , j=1

 (these speed values without rescaling are used 
for classes construction) are grouped into these 21 classes, 
and count of values in each class is found. The class having 
maximum count is assigned to the class label of the sam-
ple. This maximum count represents the dominant speed 
amongst KF future points in time (i.e. class of the speed 
values that occur most) (Harbola and Coors 2019b). Like-
wise, the class label of the sample based on the direction 
is determined by finding the maximum count of direction 
values from Mi+KB+1, j=2

 to Mi+KB+KF , j=2
 (these direction 

values without rescaling are used for classes construction) 
among these 21 classes. The ( � ) and ( � ) based on the wind 
direction values are used for designing these 21 classes of 
the wind direction. Here, the second column of Mi, j is used 
that is based on the wind direction values. As stated earlier, 
the grouping into 21 classes is a method of creating the class 
labels of training and testing samples, while the MCLT pre-
diction represents one class label (for a given sample) that 
depicts wind speed or direction value for KF time period 
immediately after the last time value (i + KB ) in the sample’s 
input. Based on the definition of a sample, from a dataset 
consisting of matrix Mi, j with r rows, training samples can 
be generated by varying i from 1 to r − KF with an incre-
ment of 1. This helps in performing the temporal wind data 
analysis over wind speed and direction.

Table 1  Classes formed using the mean and standard deviation of the 
wind data

Class Lower range Upper range

1 � − k1� � + k1�

2 � + k1� � + k2�

3 � + k2� � + k3�

4 � + k3� � + k4�

5 � + k4� � + k5�

6 � + k5� � + k6�

7 � + k6� � + k7�

8 � + k7� � + k8�

9 � + k8� � + k9�

10 � + k9� � + k10�

11 � + k10� +∞    
12 � − k2� � − k1�

13 � − k3� � − k2�

14 � − k4� � − k3�

15 � − k5� � − k4�

16 � − k6� � − k5�

17 � − k7� � − k6�

18 � − k8� � − k7�

19 � − k9� � − k8�

20 � − k10� � − k9�

21 −∞ � − k10�
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2.2  MCLT Architecture

The MCLT architecture is shown in Fig. 2. There are five 
input layers corresponding to each view CNNi(CNN1 , CNN2 , 
CNN3 , CNN4 , and CNN5 ) as in the 1DM. For a given sam-
ple’s input, five views corresponding to each input layer in 
the MCLT are formed as follows: (a) first view takes all KB 
values of the sample’s input, i.e. rows from i to i + KB (and 
all columns of these rows) of Mi, j , (b) second view takes 
half of KB values of the sample’s input from rows i to i + KB 
at an interval of two (and all columns of these rows) of Mi, j , 
(c) third view also takes half of KB values of the sample’s 
input but from rows i + 1 to i + KB at an interval of two (and 
all columns of these rows) of Mi, j , (d) fourth view takes 
one-third of KB values of the sample’s input but from rows 
i to i + KB at an interval of three (and all columns of these 
rows) of Mi, j , and (e) fifth view again takes one-third of KB 
values of the sample’s input but from rows i + 1 to i + KB at 

an interval of three (and all columns of these rows) of Mi, j , 
(Harbola and Coors 2019b). The input layer of each view 
is followed by four successive convolutional layers ( C1 , C2 , 
C3 , C4 ). The densely connected convolutional layers simi-
lar to ResNet are realised as follows, (a) C3 directly takes 
as input features from both C2 and C1 (while in the 1DM 
model, C3 took input only from previous layer C2 ), and (b) 
C4 directly takes input features from C3 , C2 and C1 (while in 
traditional CNN models, C4 takes input only from C3 ) (Zhao 
et al. 2019).

The detailed pseudo code of MCLT implementation is 
given in Algorithm 1. All the feature maps from the last 
convolutional layer C4 of each view (total 5 views) are first 
flattened to 1D form (step 13 in Algorithm 1) and then 
appended one after another (step 14 Algorithm 1). This 
appended feature vector is then passed to a common LSTM 
layer called LSTM1 (step 16 Algorithm 1), which in turn is 
followed by the second LSTM layer called LSTM2 . In the 

Fig. 2  MCLT architecture. 
Red arrows denote connections 
between different convolutional 
layers and LSTM layers. All 
the feature maps from C4 of 
CNN1 , CNN2 , CNN3 , CNN4 and 
CNN5 are appended to form a 
vector and passed into LSTM1 . 
Multiple blue boxes in Input, C1 , 
C2 , C3 and C4 represent multiple 
features in that layer. Red circles 
in LSTM1 and LSTM2 represent 
neurons
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1DM model, fully connected layers were present in the place 
of LSTM1 and LSTM2 . The output layer (which is dense or 
fully connected layer) comes after LSTM2 . The output layer 
uses softmax function for classification, and the number of 
neurons in this layer would be the same as the number of 
classes in the dataset, i.e. 21 neurons corresponding to 21 
classes (step 18 Algorithm 1).

operation, that takes values such as number of features, 
stride (amount by which 1D kernel shifts), input from a 
CNN layer, activation function and dropout (Srivastava et al. 
2014) value. Concatenate in Algorithm 1 means that C1 and 
C2 (step 9), C1 , C2 and C3 (step 11), are joined together one 
after another and then treated as input for the next step i.e. 
making the densely connected convolutional layers. LSTM 

Fig. 3  LSTM unit. Black arrows 
denote connections between 
different intermediates layers, 
where blue color square box 
and cyan color ellipse represent 
point-wise operations and lay-
ers, respectively (Chollet 2017)

Algorithm 1 Architecture Pseudo-code
1: procedure MCLT(Input,Output) � Input ← MCLT multiple views
2: � Output ← MCLT output layer
3:
4: Merged ← [ ] � Merged ← Empty list
5: for i ← 1 to 5 do
6: CNNiprocessing
7: C1 ← Conv1D(features, stride, input = CNNiInput, ELU, dropout)
8: C2 ← Conv1D(features, stride, input = C1, ELU, dropout)
9: C2concat ← Concatenate(C1, C2)
10: C3 ← Conv1D(features, stride, input = C2concat, ELU, dropout)
11: C3concat ← Concatenate(C1, C2, C3)
12: C4 ← Conv1D(features, stride, input = C3concat, ELU, dropout)
13: C4 ← flatten(C4)
14: Merged.append(C4)
15: end for
16: LSTM1 ← LSTM(neurons, input = Merged, dropout)
17: LSTM2 ← LSTM(neurons, input = LSTM1, dropout)
18: Output ← Dense(neurons, input = LSTM2, softmax)
19: end procedure

Further, Merged in Algorithm 1, is initially defined as 
an empty list (step 4) and for each iteration inside for loop, 
flattened C4 is appended to it (step 14). CNNiInput in step 
7 means input corresponding to CNNi . Conv1D in Algo-
rithm 1 denotes a function representing 1D convolutional 

and Dense (steps 16–18 in Algorithm 1) denote LSTM and 
fully connected layers, respectively. LSTM units include a 
memory element that can maintain information in memory 
for long periods of time. Figure 3 shows the LSTM archi-
tecture in detail as available in (Chollet 2017; Hochreiter 
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and Schmidhuber 1997). A set of gates (input, output, for-
get (memory element)) is used to control when information 
enters LSTM units, when it leaves, and when it is forgot-
ten. Thus, these memory units aid in learning longer-term 
dependencies. The densely connected convolutional layers 
help C3 directly learn features from both C1 and C2 , unlike 
in 1DM, where C3 learnt features from C2 only. Likewise, C4 
directly learns features from C1 , C2 , and C3 , unlike traditional 
CNN where C4 considers input only from C3.

Each input layer of the MCLT, thus, takes multiple 1D 
features. In this study, there are 58 features in each input 
layer. A higher number of features in CNN architecture help 
in learning the various properties of a sample from finer 
to coarser levels. Therefore many features are used in this 
study. Thus, for a sample having input values from i to i + KB 
of Mi, j , each column of these rows form a 1D feature of the 
input layer. Thus, the MCLT incorporates multiple features 
and multiple views in the input layers, as well as each convo-
lutional layer takes input from several previous layers, with 
the presence of memory units in the LSTM layers. The out-
put layer of the MCLT uses the sample’s class label, either 
based on the wind speed or direction, for training and testing 
the architecture. The sample’s class label is designed using 
Mi+KB+1

 to Mi+KB+KF
 values as discussed in the above sec-

tion. Accordingly, there are two trained MCLT models, one 
for the wind speed and another for the wind direction. The 
samples’ inputs to these two models remain the same but the 
the class labels are based on the wind speed (when the model 
is trained to predict the wind speed) or the wind direction 
(when the model is trained to predict the wind direction). 
Further, the parameters determined in training comprise the 
weights and biases of neurons of convolutional and LSTM 
layers as well as the output layer.

3  Dataset

Historical temporal wind datasets of about more than 30 
years are considered as test cases for the proposed MCLT. 
The first case is the climate and air measuring station located 
in the corner of Hauptstaetter Strasse 70173 Stuttgart,1 Ger-
many, which is one of the sources for the wind data collected 
from 1987 to 2017 in Stuttgart. The temporal resolution of 
this dataset is thirty minutes as wind speed and direction 
values are measured at an interval of thirty minutes. The 
second case is the dataset of Netherlands from the station 
210 Valkenburg2 with 37 years of historical data from 1981 
to 2018. The datasets are split into subsets, each of them 

corresponding to the data for one month. This allows for 
an analysis of the data on a monthly basis. One matrix Mi, j 
(Sect. 2.1) is generated for each of these subsets.

4  Experiments and Results

This section explains the results of MCLT for Stuttgart 
and Netherlands datasets. Section 4.1 provides the details 
of the hardware and software configuration along with the 
organisation of the training and testing samples. Section 4.2 
presents the obtained accuracies for different datasets and 
features. Subsection 4.3 represents the qualitative discussion 
of the obtained results and comparison with other existing 
methods.

4.1  Test Setup

The proposed MCLT architecture has been coded in Python 
language using Keras library (Chollet 2017) with Tensor-
Flow in the backend and executed on Intel® Core TM i7- 4770 
CPU @3.40 GHz having four cores. The total samples for 
a month were randomly divided into training and testing 
samples, with 30% of the total samples as the testing sam-
ples. This procedure of random division of the total samples 
into training and testing samples, followed by the training 
and testing of the MCLT was repeated 20 times in order to 
determine the mean accuracy values. This procedure, thus, 
accounted for the randomness in splitting into training and 
testing. Moreover, the splitting technique was applied by 
ensuring that the input values of each testing sample should 
not overlap (i.e. disjoint) with the input values of the train-
ing samples.

Further, Adaptive Synthetic Sampling (ADASYN) tech-
nique (He et al. 2008) was used to enhance the number of 
training samples for better learning of the MCLT. ADASYN 
generates samples of the minority class according to their 
density distributions and avoids over-sampling. The number 

Fig. 4  Total accuracy comparison of 2 and 58 features MCLT, for dif-
ferent values of K

B

1 https:// www. stadt klima- stutt gart. de.
2 https:// www. proje cts. knmi. nl/ klima tolog ie/ onder zoeks gegev ens/ 
poten tiele_ wind/.

https://www.stadtklima-stuttgart.de
https://www.projects.knmi.nl/klimatologie/onderzoeksgegevens/potentiele_wind/
https://www.projects.knmi.nl/klimatologie/onderzoeksgegevens/potentiele_wind/
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of feature maps in C1 , C2 , C3 and C4 of each of CNN1 , CNN2 , 
CNN3 , CNN4 , and CNN5 , of the MCLT architecture are 16, 
28, 32 and 32, respectively, whereas the number of neurons 
in LSTM1 and LSTM2 are 200 and 200 respectively. Val-
ues of k1 , k2 , k3 , k4 , k5 , k6 , k7 , k8 , k9 and k10 (Table 1) were 
empirically determined as 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 
0.60, 0.70, 0.80 and 1.0, respectively (same for both speed 
and direction), so that sufficient number of samples occurs 
in each class (He et al. 2008), by observing the histograms 
comprising of 21 bins corresponding to 21 classes. Moreo-
ver, KB and KF were taken as 60. KF multiplied by the tempo-
ral resolution gives a time frame of future prediction as per 

user desire. Figure 4 shows the variations in total accuracy of 
the MCLT with 58 features by varying KB (here KF = KB ). In 
this work, KB is taken as 60 as accuracy increases till 60 and 
after that remains similar as shown in Fig. 4. Exponential 
Linear Units (ELUs) ((Clevert et al. 2017; Pedamonti 2018)) 
with � of 3.0 have been used as activation function in the 
MCLT. The higher value of � 3.0 was chosen to avoid dead 
neurons problem during training, with highly variable wind 
datasets (Clevert et al. 2017; Nair and Hinton 2010). Kernel 
size of three along with stride of one has been applied for 
all the convolutional layers. Batch normalisation (Jung et al. 
2019) and dropout (Srivastava et al. 2014) of 0.45 have been 

Fig. 5  Total accuracies in 
percentage for different months 
of Stuttgart for dominant speed 
prediction

Fig. 6  Total accuracies in per-
centage for different months of 
Stuttgart for dominant direction 
prediction

Fig. 7  Total accuracies in per-
centage for different months of 
Netherlands for dominant speed 
prediction
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employed after every convolution layer. This helps to prevent 
over-fitting, and the MCLT architecture learns better. The 
parameters comprise weights and biases of neurons of con-
volutional and LSTM layers that are learned during training. 
The neurons in a feature map in a convolutional layer share 
weights and biases. Adam optimisation (Chollet 2017) has 
been used that takes care of learning rate during training. 
Initially, weights and biases were initialised using (He et al. 
2015) method. Cross entropy loss function has been used 
during training of the MCLT (Chollet 2017; Nielsen 2015)

4.2  Model Accuracies

The total (overall) accuracy for different months of Stuttgart 
for the test samples, obtained using the MCLT is shown in 
Figs. 5 and 6. The total accuracy is the number of correct 

predictions divided by the total number of predictions (Con-
galton and Green 2010). In these figures, MCLT with 58 

Fig. 8  Total accuracies in 
percentage for different months 
of Netherlands for dominant 
direction prediction

Table 2  Maximum, minimum, mean and standard deviation total accuracies for dominant speed prediction

TA (%) Stuttgart Netherlands

1DM 2 features 1DM 58 
features

MCLT 2 
features

MCLT 58 
features

1DM 2 features 1DM 58 
features

MCLT 2 
features

MCLT 
58 fea-
tures

Maximum (%) 94.1 95.5 96.8 99.1 94.8 96.0 97.4 99.9
Minimum (%) 89.2 90.6 92.4 94.9 91.4 92.8 94.8 97.5
Mean (%) 92.2 93.5 95.1 97.2 93.6 94.9 96.5 98.9
Standard deviation (%) 0.9 0.8 1.2 0.9 1.2 1.6 1.3 0.7

Table 3  Maximum, minimum, mean, and standard deviation total accuracies for dominant direction prediction

TA (%) Stuttgart Netherlands

1DM 2 features 1DM 58 
features

MCLT 2 
features

MCLT 58 
features

1DM 2 features 1DM 58 
features

MCLT 2 
features

MCLT 
58 fea-
tures

Maximum (%) 96.4 97.6 98.8 99.9 95.6 96.6 97.9 99.6
Minimum (%) 90.1 91.2 92.5 94.4 91.6 93.1 95.1 96.4
Mean (%) 94.4 95.6 97.0 98.7 94.2 95.4 96.8 98.6
Standard deviation (%) 1.4 1.7 1.3 0.9 1.1 0.8 1.1 0.9

Fig. 9  Learning curves for MCLT with 2 and 58 features
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features means that all the columns (or features) of Mi, j have 
been used in the input layers of the MCLT, whereas MCLT 
with 2 features means only first two columns (of speed and 
direction) of Mi, j have been used in the input layers. Similar 
are the interpretations of 1DM with 58 features and 2 fea-
tures. Figures 5 and 6 represent total accuracies for dominant 
speed and direction prediction for different months of Stutt-
gart, respectively. Figures 7 and 8 represent total accuracies 
for dominant speed and direction prediction for different 
months of Netherlands, respectively.

The maximum, minimum, and mean total accuracies for 
dominant speed prediction (for Stuttgart) using the MCLT 
with 58 features are 99.1%, 94.9%, and 97.2%, respec-
tively, as shown in Table 2. The maximum, minimum, and 
mean total accuracies for dominant speed prediction (for 

Stuttgart) using the MCLT with 2 features are 96.8%, 92.4%, 
and 95.1%, respectively (Table 2). Similarly, the maximum, 
minimum, and mean total accuracies for dominant direction 
prediction (for Stuttgart) using MCLT with 58 features are 
99.9%, 94.4%, and 98.7%, respectively (Table 3). The maxi-
mum, minimum, and mean total accuracies for dominant 
direction prediction (for Stuttgart) using MCLT with 2 fea-
tures are 98.8%, 92.5%, and 97.0%, respectively (Table 3). 
Figures 5,  6,  7 and  8, Tables 2 and 3 also represent results 
when the 1DM architecture with 2 and 58 features is used for 
prediction. Learning curves and loss curves (for speed pre-
diction) of January month’s test samples of Stuttgart using 
the MCLT with 2 and 58 features are shown in Figs. 9 and 
10, respectively.

4.3  Discussion

The proposed MCLT architecture shows promising results 
for dominant wind speed and direction prediction of tem-
poral wind datasets from Stuttgart and Netherlands. Below 
subsections 4.3.1, 4.3.2 and 4.3.3 discuss the results with 
the help of rose plot, comparison among 2 and 58 features, 
and comparison with other suitable approaches, respectively.

4.3.1  Rose Plots

Wind rose plot helps in the visualisation of wind speed and 
direction in the same graph, in a circular format. The length 
of each spoke around the circle indicates the number of times 
(count) that the wind blows from the indicated direction. 

Fig. 10  Loss curves for MCLT with 2 and 58 features

Fig. 11  Wind rose plot for Mar 2020 (sensor’s measurements)

Fig. 12  Wind rose plot for Mar 2020 (model predictions)
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Colors along the spokes indicate classes of wind speed. The 
data of March (Mar) 2020 of Stuttgart are used to represent 
the real-world sensor’s measurements (ground-truth values) 
and prediction outcomes of the MCLT in Figs. 11 and 12, 
respectively. The high resemblance among Figs. 11 and 12, 
indicates that the prediction results are similar to the ground-
truth values. This augments visually the accuracies obtained 
previously in the results Sect. 4.2. In these figures, there are 
21 different color ranges denoting the wind speed divided 
into 21 classes with the wind rose circular format shows the 
direction the winds blew from. The varying spoke length 
around the circle shows how often the wind blew from that 
direction, highlighting the wind nature insight from the indi-
cated directions in this study.

4.3.2  Comparison Between 2 and 58 Features

The 58 multiple features in the input layers help the MCLT 
to learn the temporal variations in the samples. These fea-
tures are based on percentage difference, standard deviation, 
correlation coefficient, eigenvalues, and entropy, that are cal-
culated by taking into account some of the nearby temporal 
values. As the temporal values adjacent to a time instance 
change, the values of these features also adapt to these 
changes. Thus, these features help in comprehensive descrip-
tion of wind speed and direction, describing the trends like 
increase, decrease, stationary, sudden turbulence, rate of 
increase and decrease, deviation from the mean, behaviour 
of speed with respect to direction (i.e. correlation), energy 
(i.e. entropy) of the adjacent temporal values and its varia-
tion. Therefore, they provide additional information about 
samples. Moreover, the movements of the 1D kernels in 
the convolutional layers further help the convolutional lay-
ers to learn their own features in the form of weights and 
biases during the training phase of the MCLT. When only 
two features were used in the input layers of the MCLT, 
maximum total accuracy was 96.8% and 97.4% for Stuttgart 
and Netherlands, respectively, for speed (Table 2) and 98.8% 
and 97.9% for Stuttgart and Netherlands, respectively, for 
direction (Table 3). The maximum total accuracy for MCLT 
with 58 features is increased by 2.3% and 2.5% for Stuttgart 
and Netherlands, respectively, for speed (Table 2) and by 
1.1% and 1.6% for Stuttgart and Netherlands, respectively, 

for direction (Table 3) in comparison to MCLT with 2 fea-
tures. Similarly, the effect of these 58 features over 2 fea-
tures can also be seen in the case of 1DM (Table 2, Table 3) 
where maximum total accuracy for speed improved by 1.4% 
and 1.2% for Stuttgart and Netherlands, respectively, and by 
1.2% and 1.0% for Stuttgart and Netherlands, respectively, 
for direction. Learning of the MCLT with 58 features is bet-
ter than 2 features as shown by respective learning curves in 
Fig. 9 and by the loss curves in Fig. 10.

Convolutional layers ( C1 , C2 ) near the input layers learn 
the features in smaller neighbourhood, while the convolu-
tional layers ( C3 , C4 ) near the output layer learn features in 
larger neighbourhood (He et al. 2016; Huang et al. 2017; 
Krizhevsky et al. 2012; Xie et al. 2017). C3 takes as input the 
learnt features from both C1 , and C2 , while C4 , takes as input 
the features from C1 , C2 , and C3 , therefore, the MCLT gets 
trained by learning features at different scales. Further, as the 
convolutional layers ( C3 , C4 ) are connected to all the previ-
ous convolutional layers, providing that gradient vanishing 
problem would not occur, i.e. MCLT learning does not slow 
down during training via back-propagation (He et al. 2016; 
Huang et al. 2017; Xie et al. 2017). Moreover, LSTM layers 
after the last convolutional layers ( C4 ), have memory units 
that retain the learnt features from previous output of the 
neurons and operate upon them with features learnt from the 
current output of the neurons. This gives better learning over 
the fully connected layers (present in traditional CNNs) that 
lack these memory units. Additionally, the memory units 
in the LSTM help in finding correlations between patterns 
learnt across different time, as a recent pattern is a function 
of pattern learnt at previous time.

4.3.3  Comparison with Existing Related Work

The proposed MCLT architecture is compared with the 
1DM. The MCLT with 2 features as well as 58 features 
performs better than the 1DM with 58 features, as shown 
in Figs. 5, 6, 7 and Fig. 8 for both Stuttgart and Nether-
lands. Minimum, maximum and mean total accuracies of 
the MCLT with 58 features are compared with 1DM with 2 
features in Table 4. Thus, the MCLT performs better than the 
1DM. Moreover, the MCLT with 58 features efficiently pre-
dicts for the larger time frame in future ( KF as 60, multiply 

Table 4  Difference in 
accuracies of MCLT with 
58 features and 1DM with 2 
features. Positive value denotes 
MCLT has higher accuracy than 
1DM

TA (%) Stuttgart Netherlands

Dominant wind 
speed prediction

Dominant wind direc-
tion prediction

Dominant wind 
speed prediction

Dominant wind 
direction predic-
tion

Maximum (%) 5.7 4.3 6.1 4.8
Minimum (%) 5.0 3.5 5.1 4.0
Mean (%) 5.0 4.3 5.3 4.4
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by the temporal wind dataset resolution) whereas the 1DM 
with 2 features could only predict for 50 values in future 
(Harbola and Coors 2019b). Furthermore, the MCLT is also 
compared with the methods in the existing literature that 
are near to the proposed architecture. 1D CNN algorithm 
proposed by (Liu et al. 2018) has used regression technique 
working on the smoothed and filtered data, thereby losing 
the originality of the wind dataset. The same samples com-
prising of KB = 60, input values without applying smoothen-
ing and filtering, that have been employed for the proposed 
MCLT, are also used to train and test the regression CNN 
architecture (Liu et al. 2018). In this case, Symmetric Mean 
Absolute Percentage Error (SMAPE) (Flores 1986) for wind 
speed in Stuttgart is 20.5% for KB = 8 and reaches up to 
25.5% for KB = 60, while 14.9% for KB = 15 and reaches 
up to 21.2% for KB = 60 for wind speed in Netherlands. 
SMAPE of wind direction were moreover similar to these 
patterns. It may be noted that, here, the labels of the samples 
are designed using the real values (i.e. regression); whereas, 
MCLT predictions are based on the class labels (i.e. classi-
fication). SMAPE was also calculated for MCLT prediction 
results. The center of the interval of each class (Table 1) 
was calculated by taking the average of lower range and 
upper range. The class predicted by the MCLT for a test 
sample along with the corresponding center of the inter-
val of the predicted class was noted. This was done for all 
the test samples. SMAPE was calculated using the center 
of the interval of the predicted class and the center of the 
interval of the ground-truth class for all the test samples. 
SMAPE for wind speed in Stuttgart was 3.5% for KB = 8, 
1.4% for KB = 35 and 0.4% for KB = 60. Similar were the 
SMAPE values for wind direction. As the future time frame 
of prediction increases, error also increases using the state-
of-the-art CNN-based regression method (Liu et al. 2018). 
However, the proposed MCLT based on classification shows 
high accuracy and mean total accuracy reaches up to 99.9% 
for KB = 60 (and SMAPE = 0.4%), without smoothening and 
filtering the original wind data. Thus, the proposed MCLT 
method gives satisfactory results for predicting dominant 
speed and direction for a greater time duration in the future 
unlike (Liu et al. 2018). The limitation of 58 input features 
is only due to hardware constraints and more features can be 
designed with more GPUs. The accuracies achieved using 
the designed MCLT can be further improved with better 
hardware resources using a greater number of feature maps, 
neurons, convolutional and LSTM layers. Thus, the use of 
multiple features at various levels in the MCLT, viz. (a) 58 
features in the input layers, (b) inputting a convolutional 
layer with features from all the previous convolutional lay-
ers, and (c) retaining the memory of learnt features by LSTM 
from previous outputs (of neurons) during training, helps the 
proposed architecture to predict the dominating speed and 
direction classes with good accuracy. Further, as the number 

of classes of the samples increases, detailed patterns of the 
nonlinear nature of the wind can be analyzed but at the same 
time ambiguity in classification also increases. However, the 
proposed MCLT architecture is able to overcome this ambi-
guity by learning multiple features and performs well even 
with 21 classes.

5  Conclusion

Wind speed and direction predictions are critical to new 
wind farm installations and for smart city planning in proper 
utilisation of green and freely available energy resources. 
In this paper, a deep learning architecture is successfully 
designed and demonstrated to predict the dominant speed 
and direction classes in the future for the temporal wind 
datasets. The proposed MCLT architecture uses 58 features 
in the input layers that are designed using wind speed and 
direction values. These features are based on percentage dif-
ference, standard deviation, correlation coefficient, eigen-
values, and entropy, for comprehensively and efficiently 
describing the wind trend and its variations. LSTM layers 
at the end of the last convolutional layers have memory units 
that employ features learnt during current as well as the 
previous output of the neurons. Further, densely connected 
convolutional layers in the MCLT help the convolutional 
layers to learn features of other convolutional layers as well. 
Two large wind datasets from Stuttgart and Netherlands are 
used for training and testing the MCLT. The maximum total 
accuracies for speed and direction prediction are 99.9% and 
99.9%, respectively. The average total accuracies reach up to 
98.9% and 98.7%, for speed and direction prediction, respec-
tively. The model’s real-world prediction demonstration 
analysis support the novelty of the work while explaining 
visually with the help of wind rose plots. Thus, the MCLT 
shows promising results for different wind datasets. The 
limited hardware resources restricted this study to using 58 
features in the input layers.

Accuracies achieved in this work could be further 
improved with better hardware resources using a greater 
number of feature maps, neurons, convolutional and LSTM 
layers. Most importantly, this analysis would help to devise a 
new set of inflow boundary conditions that are prerequisites 
for obtaining reasonable wind flow fields. Computational 
Fluid Dynamics (CFD) simulations use wind speed and 
direction measured at a nearby meteorological station as the 
inflow boundary conditions, which could be decided using 
the proposed work. The performed wind nature analysis has 
the potential for helping city development authorities and 
planner in identifying high wind areas with detailed tem-
poral wind information about its magnitude and dominat-
ing direction and for selecting the optimum wind energy 
conversion systems. In future, the authors will improve the 
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proposed algorithm and work for the visual analysis of the 
temporal wind dataset. Moreover, the proposed deep learn-
ing concept for temporal data could be implemented to other 
time-series datasets like finance, trends analysis, and sensor 
health monitoring applications.
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