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Abstract The Arctic Ocean is undergoing rapid climatic

changes including higher ocean temperatures, reduced sea

ice, glacier and Greenland Ice Sheet melting, greater

marine productivity, and altered carbon cycling. Until

recently, the relationship between climate and Arctic bio-

logical systems was poorly known, but this has changed

substantially as advances in paleoclimatology, micropale-

ontology, vertebrate paleontology, and molecular genetics

show that Arctic ecosystem history reflects global and

regional climatic changes over all timescales and climate

states (103–107 years). Arctic climatic extremes include

25 �C hyperthermal periods during the Paleocene-Eocene

(56–46 million years ago, Ma), Quaternary glacial periods

when thick ice shelves and sea ice cover rendered the

Arctic Ocean nearly uninhabitable, seasonally sea-ice-free

interglacials and abrupt climate reversals. Climate-driven

biological impacts included large changes in species

diversity, primary productivity, species’ geographic range

shifts into and out of the Arctic, community restructuring,

and possible hybridization, but evidence is not sufficient to

determine whether or when major episodes of extinction

occurred.

Keywords Arctic Ocean � Paleoclimate � Marine

mammal phylogeny � Arctic ecosystems � Molecular clock

Introduction

Today’s Arctic climate is warming faster than most other

regions and losing summer sea-ice cover at historically

unprecedented rates [27, 186]. This pattern of ‘‘Arctic

amplification’’ is due to the changes in albedo [145], heat

exchange between the atmosphere and ocean and other

processes [146, 172] that are consistent with paleoclimate

evidence for elevated polar temperatures during past warm

periods [21, 126]. In addition to sea-ice decline, concerns

exist about other climate-related processes that affect

Arctic Ocean environments, such as submarine methane

release [166], glacier melting [70], greater riverine dis-

charge [147], marine ecosystem shifts [75], changes in

biological productivity [9, 198], habitat loss and extinction

[163], and carbon cycling [5, 180].

Instrumental and observational records are too short to

fully evaluate the long-term effects of climate change on

Arctic ecosystems, but two disparate fields—paleoclima-

tology and molecular genetics—now provide a unique

context for assessment of climate change in the Arctic. In

contrast to model simulations of future climatic and

ecosystem change, paleoclimatology and genetics look

back in time, using geochronology, physical, geochemical

and paleoecological proxy methods, and DNA-based

molecular clock analyses. Here we assess marine ecosys-

tem response to past climate changes using an integrated

approach based on Arctic sediment records of past intervals
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of warmth, orbital-scale glacial-interglacial cycles, and

abrupt climate transitions coupled with DNA-based phy-

logenetic reconstructions and fossil records of polar ver-

tebrate lineages. Although all parts of Arctic marine

ecosystems cannot be studied, our study involves a wide

variety of taxonomic groups and several key biological

metrics of Arctic ecosystems including biodiversity, pri-

mary productivity, biogeography (range expansion and

contraction) and hybridization. We address the funda-

mental question: does climate change cause large-scale loss

of biodiversity through species’ extinctions (a diversity) or

rearrangement of species abundances within local com-

munities, geographic range shifts (b diversity) [52, 65], or

ecosystem restructuring [28, 76].

Advances in Arctic paleoclimatology

Most early studies of the Arctic Ocean sedimentary record

were based on cores taken from research stations floating

on sea ice in the 1960s and 1970s, which provided

important discoveries but were geographically limited and

lacked sufficient stratigraphic and age control [183]. Since

the early 1990s, cruises led by German, Swedish, Cana-

dian, Russian, and US researchers expanded the spatial and

temporal coverage of Arctic sediment cores used for

paleoceanography [135] (Fig. 1, Supplementary Table 1).

In addition, greatly improved age control now allows a

more complete reconstruction of Arctic Cenozoic climate

history that, with exceptions, allows correlations with

paleoclimate records from extra-Arctic regions.

Rapid advances have also come from the development

of sediment proxy methods used to reconstruct environ-

mental conditions and biological, chemical and physical

processes influenced by climate (Supplementary Table 2).

Examples used in the following discussion of Arctic cli-

mate and ecosystem evolution include micropaleontologi-

cal records of benthic and pelagic communities, proxies of

sea-ice cover, sediment transport, marine biological pro-

ductivity, ocean temperature, salinity, dissolved oxygen

and circulation, and ice sheet and ice shelf activity.

Cenozoic climate in the Arctic

In 2004, the Arctic Coring Expedition (ACEX), part of the

Integrated Ocean Drilling Program (IODP Expedition 302),

recovered 428 m of sediment from the central Arctic

Lomonosov Ridge dating back to 56 million years (Ma)

[10, 129, 182]. For the first time, a unique, though

incomplete record of Arctic climatic and faunal evolution

can be compared to the Cenozoic greenhouse-to-icehouse

climate transition established on the basis of deep-sea

foraminiferal d18O records of sea level and temperature and

ice core records of atmospheric CO2 concentrations and

temperature (Fig. 2). Initial study of ACEX Paleocene-

Eocene micropaleontological records Expedition 302 [59]

identified numerous diatoms (*40 taxa), silicoflagellates

and ebridians (*40), palynomorphs (*58), agglutinated

benthic foraminifera (*40) and, due to poor pre-Miocene

preservation of calcareous shells, lesser numbers of cal-

careous nannoplankton, calcareous benthic and planktic

foraminifers, and ostracode taxa.

ACEX researchers also investigated key climatic and

ecosystem events including the Paleocene-Eocene Thermal

Maximum (PETM), an *170,000-year long warm period

about 56 Ma when sea-surface temperatures in the Arctic

(SST) reached 22 �C [174]. In addition, ACEX recovered

sediment from two younger hyperthermal periods—the

Eocene Thermal Maximum 2 (ETM2) at 53.5 Ma [175]

and the Azolla horizon *48.5 Ma [22]. During ETM2

TEX86-derived SST estimates indicate Arctic temperatures

reached 25 �C, dinoflagellate cysts document freshwater

influx and eutrophication, and palm pollen suggests winter

temperatures on adjacent continents exceeded 8 �C. The
dominance of the genus Azolla, a free-floating, freshwater

fern, and associated microfossils, characterized an

*800,000-year long interval of episodic fresh surface

water, a stratified ocean, endemism in silicoflagellates and

ebridians [134], SSTs of 10–14 �C [22], and intermittent

oxygen depletion [181] (Fig. 2d, f). During Paleocene-

Eocene hyperthermal events, marine primary productivity

in the central Arctic varied greatly with maximum values

reaching 50–100 C g m-2 year-1 [106, 181]. These values

are comparable to those from today’s highly productive

Arctic marginal ice zones [138] and higher than estimates

for the central Arctic Ocean over the last 18 Ma, including

today (Fig. 2c).

During the interval 48–45 Ma, Arctic SSTs fell by as

much as 5–10 �C depending on which proxy method is

used [182, 200]. This cooling is coincident with the

inception of a winter sea-ice regime seen in ice-rafted

debris (IRD) [179] and sea-ice diatom records [184]

(Fig. 2a). There is also lithological evidence for ephemeral

perennial sea ice at times between 47 and 44 Ma [42]

(Fig. 2b). Climate history of the late Eocene, Oligocene

and early Miocene is poorly known because one age model

calls for a major sedimentary unconformity from 44 to

18 Ma [11], and another for a condensed zone representing

the interval from 36 to 12 Ma [149]. This introduces

uncertainty in identifying key Cenozoic cooling events,

such as the Eocene/Oligocene transition *34 Ma, and

their biological impacts. There is, nonetheless, evidence for

stepwise cooling during the last 18 Ma of the Cenozoic

greenhouse-icehouse transition. For example, IRD, min-

eral, and radiogenic proxies record a shift from a mid-

Miocene climatic optimum (*15 Ma) toward a colder

climate since about 13 Ma [41, 66, 79, 179].
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Early- to mid-Pliocene global climate (5–3 Ma) serves

as an important benchmark for understanding modern

climate because Pliocene atmospheric CO2 concentra-

tions were near today’s level (400 ppmv, [139, 171]),

but global mean annual temperature (MAT) was about

2.5–3 �C higher [53] and peak sea level *22 m higher

[127]. Pliocene Arctic Ocean summer SSTs were

appreciably warmer than modern and seasonally sea-ice-

free conditions existed in some regions [108, 121]. Non-

marine proxy records from continental sections also

point to a warm Pliocene climate in the high latitudes of

the northern hemisphere. At Lake El’gygytgyn (Lake

‘‘E’’) in Siberia summer temperatures were 8 �C warmer

than modern [21] and at Ellesmere Island, Canada,

summer and MAT were 11.8 and 18.3 �C higher than

today [13]. In addition to periods of warmth, the Plio-

cene saw continued intensification of Northern Hemi-

sphere glaciations and crossing of climate thresholds at 4

and 2.75 Ma as ice sheets reached Arctic coastlines

[107]. Such warm Pliocene conditions allowed a major

trans-Arctic migration of mollusks [58, 195], ostracodes

[37], and other groups *4.5–3.8 Ma when the Bering

Strait opened [71, 194]. The direction of this migration

was mainly from Pacific-to-Atlantic and probably led to

the evolution of some of today’s endemic Arctic species.

Quaternary glacial-interglacial cycles

Climatic cycles driven by changes in earth’s orbital

geometry (eccentricity, tilt and precession) are known

throughout the geological record. Orbital cycles have been

recognized in early to mid Eocene Arctic sediments from

the ACEX core site [141, 167], but they are much better

known from Quaternary sediments deposited during the

last 600 ka across the entire Arctic Ocean. Quaternary

glacial-interglacial cycles (here we use marine oxygen

isotopic stage (MIS) terminology, [115]) signify changes in

global ice volume and ocean temperature inferred from
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Fig. 1 Map of selected

sediment core sites used for

paleoceanographic

reconstruction. The key symbols

designate the age of the record.

The black triangle is the

Cenozoic record from IODP

ACEX Project [10, 129].

‘‘Orbital’’ cores record multiple

glacial interglacial cycles.

‘‘Orbital, MIS 11’’ cores are

orbital records that include

warm interglacial Marine

Isotope Stage 11 *400 ka.

‘‘Holocene, Late Holocene’’

cores contain the last

1000–2000 years. Core sites

keyed as ‘‘Productivity’’ were

used in Arctic productivity

studies. Red lines show the

approximate margins of ice

sheets. The Laurentide-

Innuitian, Greenland and

Eurasian ice sheet margins are

maximum extent during the

Quaternary [97, 188]. The

Iceland ice sheet extent is the

LGM [89]. Following [97], red

crosshatched areas may or may

not have been covered by ice

sheets. NWR Northwind Ridge.

Supplementary Table 1

provides information about core

sites. Basemap is International

Bathymetric Chart of the Arctic

Ocean (IBCAO) [96]. See

O’Regan [135] and Stein et al.

[182] for additional core records
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deep-sea foraminiferal oxygen isotopes (Fig. 3a). These are

accompanied by changes in atmospheric temperature and

CO2 concentrations known from Antarctic ice cores and

other proxy records (Fig. 3b, c). In the Arctic Ocean, gla-

cial-interglacial cycles are seen in a variety of proxies:

manganese concentrations [92, 118, 148, 155, 156], sedi-

ment physical properties (grain size, bulk density) [136],

mineral assemblages and trace elements [61], organic

biomarkers [204], and stable isotopes [1, 153, 176]

(Fig. 3d–f). Variability in these proxies reflects massive

changes in ice cover, river runoff, and ocean circulation

during opposing extremes of interglacial warmth with

summer sea-ice-free conditions and glacial-age ice cover.

Although not gaining as much attention as past warm

periods, glacial periods in the Arctic and adjacent subarctic

deserve special attention because they provide a stark

environmental contrast with interglacials and concrete

evidence for the resiliency of marine ecosystems in the face

of large-scale climate oscillations. Records of the Last

Glacial Maximum (LGM, MIS 2, *24–19 ka) and the

penultimate glacial MIS 6 (*150 ka) have excellent age

control [150], broad spatial sediment core coverage,

extensive submarine geophysical surveys, and onshore

glacial geological mapping. At these times, the Arctic

Ocean was reduced to *50 % of its current area due to the

combined effects of a 125 m fall in global sea level (in-

creased ice-sheet volume), which exposed the vast Arctic

continental shelves, and the expansion of ice sheets and ice

shelves bordering the Arctic Ocean [43, 90, 91, 93, 94].

During glacial maxima, the cryosphere, including ice

sheets, ice shelves, glaciers and sea ice, was substantially

more extensive than what we see today (Fig. 1). The

Laurentide, Innuitian, Eurasian, Barents Sea-Svalbard, and

Icelandic Ice Sheets covered large parts of continental

regions adjacent to the Arctic Ocean [56, 188], but perhaps

as important, extensive ice shelves as thick as 1 km have

been identified from submarine glacial landforms mapped

using geophysical methods on the Chukchi margin and

Yermak Plateau [97, 98, 131, 196], the Lomonosov Ridge

and Chukchi Plateau [151], the Lomonosov Ridge [110],

and the Morris Jesup Rise [95]. During peak glacial con-

ditions, sea ice was so thick during glacial maxima that

little or no IRD could be transported to the central basin

from continental margins leaving a sediment-starved cen-

tral Arctic Ocean [150, 153]. Although the thickness of

glacial-age sea ice is not known precisely, multiyear sea

ice, called paleocrystic ice, thicker than today’s [40 m-

thick ice shelves off Ellesmere Island, may have dominated

the glacial Arctic Ocean before the main phase of

deglaciation began at 15 ka [20].

At the same time that the LGM Arctic Ocean proper was

dominated by thick sea ice and ice shelves, sea ice exten-

ded far southward into subarctic regions of the Nordic

Seas, the northern North Atlantic and the Bering Sea.

Using dinoflagellate cyst assemblages from more than 50

core sites, de Vernal et al. [48] reconstructed spatial pat-

terns of LGM sea ice, SST and sea-surface salinity from

mid-to-high latitudes across the Northern Hemisphere.

Among their findings were the presence of mid-latitude sea

ice, stronger seasonality, nearshore to offshore SST gra-

dients, and reduced surface salinities. Planktic for-

aminiferal assemblages and stable isotope values [132],

and epipelagic ostracodes [38] also indicate southward

migration of sea ice into the Nordic Seas and North

Atlantic during glacial periods MIS 2, 4, and 6. Similarly,

in the southern Bering Sea, LGM sea ice is evident from

diatom assemblages [24].

Biological response to glacial-interglacial cycles

Perhaps the most striking biological manifestations of

orbital cycles in the Arctic Ocean and surrounding seas are

patterns of microfossil density, species diversity, and

assemblage composition, which, when combined with

physical and geochemical proxies, provide compelling

evidence for ecosystem response to climate change. In

contrast to the pre-Miocene sediments in the Arctic, which

lack calcareous microfossils [see above], commonly pre-

served microfossil groups in the Quaternary include benthic

and planktic [153, 201]) foraminifera, calcareous nanno-

fossils [12], and ostracodes [39]. Along Arctic margins and

in the Nordic Seas, diatoms [16], tintinnids (planktic cili-

ates, [169]), and dinoflagellates [120] also occur. In addition

to faunal and floral remains, there are indirect proxies of

oscillating biological activity, notably organic biomarkers

of sea-ice diatoms and phytoplankton [60] and sediment

manganese oxyhydroxide content related to terrestrial

input, ice cover, and bioturbation [117, 118].

bFig. 2 Cenozoic climate history from central Arctic ACEX core (a–
e) compared with global ice volume and temperature (f, [30] and

atmospheric CO2 concentrations (g compilation from [17] (blue

curve) and alkenone-based pCO2 (red) from [208]. Major steps in

Cenozoic climate events are labeled (Paleocene-Eocene Thermal

Maximum (PETM), Eocene Climate Optimum, Eocene Thermal

Maximum 2 (ETM2), Eocene/Oligocene (E/O) cooling, mid-Miocene

Climate Optimum). a Cenozoic IRD, a sea ice proxy, based on

terrigenous coarse sand fraction [179]. b Iron-oxide grain record of

first perennial sea ice *44 Ma (260 m core depth) and subsequent

sea-ice variability [42]. c Paleoproductivity reconstruction from

nitrogen fraction showing low productivity (\20 g C m-2 a-1)

during the ice-covered Miocene and high productivity

(*50–100 g C m-2 a-1) during warm, ice-free, and biologically

productive Paleocene-early Eocene [106]. d Sea-ice diatom Syne-

dropsis spp. abundance [184]. e TEX86- derived SST showing the

PETM [174]
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The density of calcareous microfossils in sediments

from central Arctic ridges is directly linked to interglacial

and glacial climate regimes and changes in sea-ice cover,

surface productivity, sedimentation, and post-depositional

processes [12, 119]. It is well established that foraminifera

(benthic and planktic) and ostracodes are major compo-

nents of the sand-sized fraction in interglacial sediments in

contrast to near absence in glacial-age sediments [1, 80]

(Fig. 3d). In addition to density, microfossil biodiversity is

extremely variable in the eastern Arctic, where benthic

foraminiferal diversity measured by the Fisher a and

Shannon Wiener indices varied several-fold during the last

glacial cycle [203], and in the western Arctic over the last

few glacial-interglacial cycles [154]. Mechanisms driving

species diversity patterns within the Arctic include the

strength of inflowing warm Atlantic water, ice cover and

surface productivity.

Microfossil assemblage composition (e.g. b diversity),

measured by the relative abundances of environmentally

sensitive species and genera, is also a useful measure of

ecosystem dynamics. One striking example of climate-

driven migration is the Pacific diatom Neodenticula semi-

nae, a species that sediment records show disappeared in

the North Atlantic Ocean *800 ka. It has recently been

discovered that this species has migrated back into the

North Atlantic and Nordic Seas during the last 2 decades
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a Benthic oxygen isotope curve reflects global ice volume and

temperature, marine isotope stages are numbered [115], b EPICA
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curves [measured at Bern (green), Grenoble (blue), Taylor Dome

(gray) and Vostok (red)] [173]. Deuterium and CO2 values are on

EDC3 gas age scale, d Arctic ostracode density composite from five

western Arctic cores (Cronin et al. 2013), e Manganese content in

sediments from Oden 96-12 core [Lomonosov Ridge [92], f Sediment

density (Lomonosov Ridge IODP 302 ACEX core [136]). Green bars
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sea-ice free. These correspond to particularly warm marine isotope

stages 5e and 11. Gray bars denote glacial stages with thick Arctic sea

ice inferred from proxies corresponding to marine isotope stages 2, 6,

10, and 12
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almost certainly in response to higher ocean temperatures

allowing inter-oceanic migration [125, 161]. In Arctic

cores, biogeographic range shifts occur frequently due to

changes in climate and ocean circulation over various

timescales. One widely used benthic foraminifera, Epis-

tominella exigua, is a phytodetritus-eating, opportunistic

species that dominates modern oceanic frontal zones [73].

Microfossil assemblages with dominant E. exigua indicate

seasonally sea-ice-free and/or marginal ice zone conditions

that characterized the early-mid Quaternary (*1.5 Ma–

300 ka) prior to the development of perennial sea ice. This

species is common during warm interglacials MIS 5

(125 ka, the Eemian Interglacial) and MIS 11 (400 ka) but

absent during glacial periods [154].

As discussed above, ice shelves and thick sea ice cov-

ered the glacial Arctic Ocean, and, as a consequence,

species were forced to migrate southward into extra-Arctic

regions on a large scale. We can track the range expansion

and contraction of sea-ice and marginal ice zone species

because the ecology of several groups is well known from

large, pan-Arctic surface sediment databases. In the case of

dinoflagellates, fossil assemblages are used to estimate

months of sea ice cover in subarctic seas [48, 49]. The

epipelagic ostracode species Acetabulastoma arcticum,

which today lives as a parasite on sea-ice dwelling species

of the amphipod Gammarus, is also a useful sea-ice proxy

in the Arctic and adjacent seas [38]. As expected from its

ecology, this species occurs only in glacial age sediments

(MIS 2, 4 and 6) in cores from the Nordic Seas and North

Atlantic.

There is also evidence in the Arctic for two well-known

global climate transitions involving changes in the pattern

of orbital glacial-interglacial cycles—the Mid-Pleistocene

Transition between 1.2 Ma and 700 ka [26], and the mid-

Brunhes Event *450–400 ka [205]. Importantly, both

climate transitions involved changes in Arctic sea-ice

ecosystems. For example, the mid-Pleistocene transition, a

shift from 41 to 100-kyr glacial-interglacial cycles, is

characterized by faunal turnover (including regional

extinctions) in Arctic foraminifera and ostracodes and

reduced marine productivity. These signal a change from a

seasonally ice-free to mostly perennial sea-ice cover during

interglacial periods [154]. Globally, the mid-Brunhes

Event coincides with the glacial termination between MIS

12 and MIS 11 (*450–400 ka) after which interglacial

periods had smaller continental ice sheets, higher sea level,

warmer temperatures, and higher atmospheric CO2 con-

centrations. MIS 11 was an exceptionally warm inter-

glacial, notable because, whereas atmospheric CO2

concentrations (*280 ppmv) and orbital insolation were

similar to those of the Holocene interglacial, global sea

level was higher than today, perhaps due to the collapse of

parts of the Antarctic Ice Sheet [84, 160, 165]. Arctic

sediments from the Northwind, Mendeleev, and Lomono-

sov Ridges show that during MIS 11, there was no summer

sea ice and SSTs reached 8–10 �C [39]. Warm Arctic

Ocean summers during MIS 11 are also evident in the

Nordic seas and the subpolar North Atlantic [15, 100], in

Lake ‘‘E’’ sediments [123] and from terrestrial pollen in

cores off southern Greenland [50]. Subsequent interglacial

and interstadial periods (MIS 9, 7, 5 and 3) also experi-

enced, at least at times, summer sea-ice-free conditions

[133, 137].

In sum, the contrast between glacial and interglacial

oceanic environmental conditions in the Arctic and sub-

arctic reflects frequent biogeographic marine ecosystem

shifts of several thousand kilometers supporting the view

that climate change alters b diversity but does not cause the

systematic loss of species.

Abrupt, suborbital climate transitions

One pressing question is whether climate has reached a

‘‘tipping point’’ such that we are witnessing an abrupt cli-

mate reversal (over a century or less) [25]. The last deglacial

period (*19–11.7 ka) included several well-known mil-

lennial climate events whose onsets and terminations were

abrupt transitions. These include stadial periods called

Heinrich Event 1 (H1, 17–15 ka), theYoungerDryas climate

reversal (YD, 13–11.7 ka) and interstadials called the Bøl-

ling-Allerød (B/A, 14.6–13 ka), and the Preboreal period

(PB, 11.7–9 ka) (Fig. 4). Importantly, past abrupt climate

reversals had major impacts on Arctic marine ecosystems

over timescales much shorter than orbital cycles and they

provide a unique context for today’s changing Arctic. The

last glacial period from 60 to 15 ka included multiple

Heinrich Events, identified by ice-rafted sediment and sea-

surface cooling in the North Atlantic Ocean, and Dansgaard-

Oeschger (DO) cycles identified in Greenland ice core

oxygen isotopes and extra-Arctic proxy records.

Changes in the dominant species in benthic foraminifer

assemblages occurred on theYermak Plateau andBarents Sea

slope during stadial-interstadial events. These changes sug-

gest a more than twofold change inmarine productivity (from

30 to[60 g C m-2 year-1) (Fig. 4a) [202]. On the Laptev

Sea margin, changes in dominant benthic foraminiferal spe-

cies occur over a century or less at the onset and termination of

H1 and the YD. Decreases in planktic foraminiferal

stable isotope values during the YD up to 1 per mil are known

from the Beaufort and Laptev Seas and the Mendeleev Ridge

[6, 157, 177]. Faunal and isotopic proxies signify complex

hydrological changes in the surface and subsurface Arctic

Ocean caused by freshwater influx probably from multiple

catastrophic glacial lake drainage episodes [192] and changes

in the strength of inflowing Atlantic water. It is worth noting

that other types of catastrophic events disruptedArcticmarine
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ecosystems, such as mega-iceberg discharges caused by

Eurasian Ice Sheet surge and collapse, which scoured the

seafloor in the Kara-Barents Seas [95, 131, 152] and central

Arctic as far back as 500,000 ka [110]. Space limits our dis-

cussion to the Arctic Ocean proper, but suborbital millennial-

scale events also caused frequent marine ecosystem reorga-

nizations in theNordic Seas during the last glacial-interglacial

cycle [14, 78].

Holocene climate oscillations

Although smaller in scale than glacial-interglacial cycles,

climate variability during the Holocene interglacial period

had significant impacts on polar biological systems. There

is extensive evidence for an Early Holocene Thermal

Maximum (EHTM) *11–7 ka with regionally variable

seasonally sea-ice-free conditions based on circum-Arctic

lake and ice core records [101, 187], glacial geology [122],

ocean temperatures [62], IRD [44], dinoflagellate assem-

blages [112], and sea-ice biomarkers [130]. The EHTM

was followed by Neoglacial cooling, which witnessed the

development of what we know as the preindustrial,

perennial sea-ice-covered Arctic, culminating in the Little

Ice Age (LIA, 1400–1900 C.E.). Temporally and spatially

variable sea-ice cover throughout the Holocene is among

the most notable discoveries of the last decade [170, 193]

because it reflects an Arctic Ocean highly sensitive to

insolation and unforced climate variability.
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period including Bølling-Allerød and Preboreal interstadials and

Heinrich 1 (H1, 17–15 ka) and Younger Dryas (YD, 13–11.7 ka)

stadials. a Benthic foraminiferal record of marine productivity from

core PS2837-5 (1023 m water depth), Yermak Plateau, showing high

interstadial and low stadial (YD) productivity [202]. b–c. Two species
of benthic foraminifera from core PS51/154 (270 m water depth)

highlight ecosystem changes during abrupt stadial-interstadial oscil-

lations [190]. Absence of C. neoteretis (dark blue) and dominance of

C. reniforme (light blue, y axis reversed) at 15 and 13 ka signify

ocean circulation changes related to freshwater influx at the end of H1

and the YD. d Oxygen isotope values of planktic foraminifer

Neogloboquadrina pachyderma (sin) in core PS2458 from Laptev Sea

continental margin (983 m water depth) show abrupt decline at 13 ka

due to fresh water influx during YD [177]. Higher d18O values reflect

ice sheet retreat during Preboreal and Bølling-Allerød
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Similarly, high-resolution late Holocene records cover-

ing the last 1000–2000 years are particularly important

because they provide baseline variability to interpret recent

trends in sea ice and temperature. Terrestrial [40, 102],

marine SST [178], and sea ice [104] proxies show natural

climate variability during the late Holocene, including the

Medieval Climate Anomaly (600–1400 C.E.) and the LIA,

as well as anomalous 20th century patterns.

Arctic Ocean marine mammals

Marine mammals are a major component of modern Arctic

sea-ice ecosystems [74, 105] and their molecular genetics

and paleontology provide insights about past climate

changes in the Arctic. The use of molecular sequences of

DNA and proteins to infer species’ phylogeny and diver-

gence times (i.e., a molecular clock) is an important aspect

of phylogenetics [191]. These analyses, combined with

vertebrate fossil evidence, can provide information about

the temporal distribution of species, which can be used

with paleoclimate data to better understand the Arctic cli-

mate-biological relationships, especially for vertebrate

lineages (Supplementary Table 3). As we see below,

molecular methods are increasingly applied to integrated

paleoclimatic-ecosystem studies in the Arctic, so it is

important to briefly consider the strengths and limitations.

The molecular approach involves comparison of the

amino acid sequences of proteins or nucleic acid sequences

(DNA or RNA) in different species [158, 191, 197, 209].

Molecular sequences will diverge by mutation from a

common ancestral sequence at some rate, which is the time

component of the ‘‘clock’’. If the rate of sequence diver-

gence is constant, then its extent will be a function of time

and the phylogenetic relationships and time of divergence

of the sequences can be estimated. If the time of divergence

of the sequences is assumed to be equal to the time of

divergence of the species, then an estimate of species’

divergence time is obtained. The assumptions of a constant

rate of sequence divergence (depending on mutation rate

and population genetic factors of selection, population size,

migration) and that a sequence divergence reflects the

species divergence are key factors affecting the accuracy of

molecular clocks. Single gene sequences often do not

reflect the species phylogeny so multiple genes or entire

genome sequences are needed for robust analyses (e.g.,

[142]). DNA from extant animals is typically used to

quantify sequence divergence, but ancient DNA (aDNA)

from fossil material as old as 0.7 ma can also be used and

provide valuable insights [168].

The accuracy of molecular clocks also depends on the

accuracy of a fossil calibration date to identify the diver-

gence time for at least one node of the phylogenetic tree of

the taxa considered [7, 87, 124, 143]. Divergence time

estimates can be controversial because of potential dis-

crepancies of molecular clocks depending on the genes,

calibration points, and models of molecular evolution

considered [69, 158, 191, 197].

Case studies of vertebrate phylogeny with fossils

and DNA sequences

In the case of Arctic climate change, the divergence time of

polar bears (Ursus maritimus) and its sister species, brown

bears (U. arctos), is especially relevant because there is

concern about reduced summer sea ice habitat, especially

for some geographic populations [3, 4, 54, 185]. Polar

bears and brown bears are thought to have evolved from a

common ancestor during the Pleistocene [111], and a polar

bear fossil from the last interglacial (Eemian) period

*125 ka established this age as their minimum time of

divergence [2, 88, 114].

Molecular clock estimates of the divergence time of

polar bears and brown bears vary widely depending on the

genes used. These include divergence times of 2–3 Ma

using proteins [72], 110–130 ka with mitochondrial DNA

(mtDNA, [8, 19, 46, 57, 109, 114, 189, 206, 207],

0.43–1.12 Ma with Y-chromosome DNA sequences [18]

and 0.34–2.0 Ma with nuclear DNA sequences [57, 77,

206]. The most recent analyses of genome sequences

estimated the polar bear-brown bear divergence at

340–480 ka [116], 1.2 Ma [23, 36], and 4–5 Ma [128].

Due to the inherent uncertainty of molecular clocks,

some authors have refrained from applying them to these

species [32, 67, 140, 199]. Cahill et al. [23] note that the

molecular divergence times for bear species are relative,

not absolute dates because of the uncertainty of the fossil

record regarding bear species’ divergences. However, it is

reasonable to infer the minimum age of U. maritimus is

about 125 ka and more likely somewhat older, between

300 ka and 2 Ma. As discussed above, major climate

transitions including the mid-Pleistocene Transition and

mid-Brunhes Event occurred during this time frame.

Given the dynamic nature of climate-driven habitat

changes outlined above, it is important to note that speci-

ation may be accompanied by interbreeding between pop-

ulations until there is permanent reproductive isolation.

Extant populations of polar bears and brown bears have

separate gene pools with minimal interbreeding [34–36, 77,

144], but future interbreeding (i.e., hybridization) is

hypothesized if sea-ice declines and polar bears spend

more time on land [103]. Past interbreeding in these spe-

cies is suggested by paraphyletic mtDNA phylogeny in

which polar bears and brown bears from Admiralty,

Baranof, and Chichagof islands (ABC) in southeast Alaska

have haplotypes in a clade separate from other brown bears

[32, 35]. In addition, polar bears and ABC brown bears
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share nuclear alleles [77, 116, 128], including\1 % of the

autosomal genome and 6.5 % of the X-chromosome loci

[23], but none of the Y-chromosome [18]. The pattern of

genes shared by polar bears and ABC brown bears—ma-

ternally inherited mtDNA[X chromosome[ auto-

somes[Y-chromosomes—is consistent with introgressive

hybridization of male brown bears mating with female

polar bears. This is hypothesized to have occurred about

12 ka when brown bears replaced polar bears during post-

glacial colonization of the ABC islands [23].

Pinniped phylogenies also shed light on the development

of the Arctic marine ecosystem. The pinnipeds, which

include seals (Phocidae), sea lions (Otariidae), and walruses

(Odobenidae), live in Arctic and subarctic seas with seasonal

or perennial ice. Seals of the subfamily Phocinae (tribe

Phocini) include three closely related genera in the northern

hemisphere whose divergence has been estimated with fossil

and molecular data relevant to our discussion. This includes

the ringed seal (Pusa hispida), a primary prey of polar bears.

The genus Pusa has a circumpolar Arctic distribution that in

addition to P. hispida in the central Arctic includes Caspian

seals (P. caspica) in the Caspian Sea, and Baikal seals (P.

sibirica) in (freshwater) Lake Baikal, Siberia. Phoca

includes the harbor seal (P. vitulina) in the temperate and

subarctic northern hemisphere, and the spotted seal (P. lar-

gha) in the subarctic North Pacific Ocean. The gray seal

(Halichoerus grypus) occurs in the North Atlantic Ocean.

However, seal classification is not definitive because of

close relationships among various groups. For example,

harbor seals and spotted seals are sometimes considered

conspecific, and some taxonomists suggest that Pusa and

Halichoerus could be reclassified as Phoca [45, 86]. This is

reflected in equivalent mtDNA divergence (mean sequence

divergence 3.36 %) of ringed seals, harbor seals, and gray

seals, which has been used as a standard to calibrate a

molecular clock for other taxa [7].

The fossil record shows that ringed seals occurred in

the Arctic region during Quaternary interglacial and

interstadial periods, including the eastern Beaufort Sea

(*42 ka), Greenland (130 ka), and the Chukchi Sea

(130 ka, [81, 162]). Phoca (harbor seal or spotted seal)

fossils also occur in the Chukchi Sea (115–130 ka, [162]).

This indicates that the oldest fossils of ringed seals and

spotted/harbor seals in the Arctic are the same age as the

oldest polar bear fossil from the Eemian (MIS 5) inter-

glacial. Even though molecular clock estimates suggest a

much older origin of polar bears, the fossil data provide a

minimum estimate of their origin and that of ringed and

harbor/spotted seals. This confirms that the bears and

seals co-existed in the Arctic during MIS 5 and persisted

until the present.

Molecular genetic data indicate that the Phocini radiated

during the last 1–2 Ma. Analysis of 8935 bp of 16 nuclear

genes and mtDNA indicates that Pusa and Phoca split

1.58 Ma; and within Phoca harbor seals and spotted seals

split 0.4–1.3 Ma, and within Pusa ringed, Caspian, and

Baikal seals split 0.7–1.8 Ma [68]. Analysis of 26,818 bp

of 52 nuclear and mtDNA genes indicate Pusa and Phoca

split 2.1 Ma; and within Phoca harbor seals and spotted

seals split 1.1 Ma, and within Pusa ringed, Baikal, and

Caspian seals split 2.0 Ma [86]. The differences in these

estimates reflect the different genes and models used, but

they also indicate that seal species, including ringed seals,

probably existed over much of the Pleistocene and Holo-

cene along with polar bears.

The walrus (Odobenus rosmarus) also lives in Arctic

and subarctic sea-ice-covered regions. Two subspecies are

generally recognized, the Atlantic walrus (O. r. rosmarus)

in the central Canadian Arctic east to the Kara Sea and the

Pacific walrus (O. r. divergens) in the Bering and Chukchi

Seas. A population in the Laptev Sea is related to the

Pacific walrus [63, 113]. The fossil record shows that the

Odobenidae evolved in the mid-Miocene *16–21 Ma [47]

and O. rosmarus is the only extant species, although up to

14 genera and 20 species lived in the past [47, 81].

Odobenus rosmarus is thought to have migrated from the

Atlantic to the Pacific about 600 ka [81]; walrus fossils in

the Bering and Chukchi Seas date to about 130 ka, on

Vancouver Island, British Columbia 70 ka Ma, and as far

south as California *270 ka [82].

Molecular clock estimates suggest the walrus family

diverged from the sea lion family (Otariidae) about

15.1–18 Ma [68, 86]. There are no extant taxa for molec-

ular clock comparison of walruses with other Odobenidae,

but an estimate of divergence of the Atlantic and Pacific

walrus can be made considering their mtDNA divergence

of 1–1.6 % [33] and a rate of pinniped mtDNA evolution of

1.2 %/Ma [7]. These data suggest the Atlantic and Pacific

subspecies split sometime between 83 and 133 ka,

although there may have been gene flow between the

oceans over this time considering the changes in sea-ice

conditions described above.

Vertebrate range expansion and contraction

during climate changes

Vertebrate paleontology often combined with paleoclimatic

and/or molecular genetics provides key information about

Arctic mammalian response to climate change. For example,

Cooper et al. [29] recently analyzed genetic (13 events) and

paleontological (18 events) megafaunal ‘‘transition events’’

for terrestrial taxa within the context of abrupt climate

transitions including Dansgaard-Oeschger events identified

in Greenland ice cores and Cariaco Basin sediments. They

defined faunal transitions as geographically widespread or

global extinctions, or invasions, of species or major clades.
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The bulk of the evidence indicated terrestrial vertebrates are

affected by abrupt climate transitions.

In addition, there have been several studies in which

polar bear evolution has been assessed in the context of

orbital paleoclimate cycles over the past few million

years [23, 46, 57, 77, 128]. If, as DNA and fossil evi-

dence suggests, polar bears and their primary prey, rin-

ged seals and other prey such as walruses, have existed

for at least 125 ka and likely hundreds of thousands of

years, then they experienced extreme climate conditions

of glacial periods as well as partially or completely

summer sea-ice-free interglacial periods (MIS 11, MIS 5

and the early Holocene). Microfossil proxy evidence for

southward expansion of sea ice during glacial periods

implies that vertebrate species that are dependent on sea

ice habitat might have also migrated southward into the

Nordic and Bering Sea-North Pacific regions.

Several lines of evidence support this idea of frequent

geographically extensive range shifts, not only in terrestrial

vertebrates [29], but sea ice based marine mammals as well.

First, the close genetic relationships among bear species and

among seal species discussed above, including evidence for

hybridization, suggests dynamic population shifts. More-

over, large-scale range expansion during glacial periods is

evident in the fossil record of vertebrates in extra-Arctic

regions [81]. For example, the post-glacial Champlain Sea

(13–9 ka, [159]) of New York, Vermont, and Canada has

well-studied Arctic vertebrate faunas that include whales,

walruses, brown bears and seals [64, 83]. Likewise, in coastal

regions around Alaska, fossil records [31, 85] support

molecular genetic data [23] showing that during the LGM,

polar bears and ringed seals ranged as far south as the Gulf of

Alaska, considerably south of their current Arctic ranges. In

the case of summer sea-ice-free interglacial periods, the

presence of winter sea ice habitat, polar bears’ ability to fast

during summer [164], seals ability to use land areas in the

absence of sea ice, and the availability of new prey species

shifting ranges into the Arctic may have allowed survival

during warm periods. Walrus also have an extensive glacial

and post-glacial fossil record [55] including specimens from

the paleo-Hudson River Valley on the New York and New

Jersey continental shelf dated at *10.6–11.2 ka [51].

Discussion

The Cenozoic ecosystem changes in the Arctic described

above are summarized in Figs. 5 and 6 within the context

of climate changes over different timescales. Several con-

clusions can be made. First, a seasonally ice-free marginal

and central Arctic Ocean was common not only during

Greenhouse worlds of PETM and Early Eocene, but also

during the Pliocene, the early Quaternary before the Mid-

Pleistocene Transition, during MIS 11, MIS 5 and

regionally during the early Holocene. During orbital cli-

matic cycles of the last few hundred thousand years,

interglacial periods were characterized by perennial and at

times seasonal sea ice cover and inhabited by marine

ecosystems similar to those of the pre-industrial Holocene.

Some species thought to be dependent on summer sea ice

(e.g., polar bears) survived through these periods. In con-

trast, during glacial periods the much smaller Arctic Ocean

and much of the adjacent continents were covered with

massive ice sheets, thick ice shelves, and sea ice making

large regions virtually uninhabitable to most species that

inhabit today’s Arctic. Despite the scale, frequency and
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rapidity of Quaternary climate changes, Arctic marine

ecosystems associated with sea-ice habitats were extremely

resilient, adapting through geographic range expansion into

the Arctic during warm periods, and south into extra-Arctic

regions during glacial periods. The stratigraphic record of

the last 1.5 Ma indicates that no marine species’ extinction

events occurred despite major climate oscillations. The

Cenozoic sedimentary record is too incomplete to conclude

that large climate transitions caused extinction of Arctic

species, but hopefully future IODP coring will recover

more complete records [182]. More generally, future cross-

discipline studies of Arctic species and ecosystems com-

bining molecular methods and paleoclimate reconstruc-

tions will result in a better understanding of how biological

systems respond to climate changes.
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118. Löwemark L, März C, O’Regan M, Gyllencreutz R (2014)

Arctic Ocean Mn-stratigraphy: genesis, synthesis and inter-basin

correlation. Quat Sci Rev 92:97–111

119. Marzen R, DeNinno L, Cronin TM. Arctic Ocean calcareous

microfossil and productivity cycles over orbital timescales

(submitted)

120. Matthiessen J, de Vernal A, Head M, Okolodkov Y, Zonneveld

K, Harland R (2005) Modern organic-walled dinoflagellate cysts

in Arctic marine environments and their (paleo-) environmental
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M, Kjaer KH, Larsen El, Lokrantz H, Lunkka JP, Lyså A,
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