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Abstract New and available geophysical data from the

Eastern Arctic (around the Siberian tip of the Lomonosov

Ridge) indicate a change in the tectonic regime at the

Eocene time. Oceanic crust identified on the new seismic

reflection data in the Amundsen Basin displays an

asymmetric fabric also visible in the gravity and magnetic

gridded data. Tentative dating of the weak magnetic

anomalies suggests asymmetric spreading or ridge relo-

cation from ca. 49 to 33 Ma. Three seismic reflection

transects through the Laptev Sea, Lomonosov Ridge and

adjacent basins image several compressional features,

most likely initiated in the Eocene. According to a

regional plate tectonic model, the Greenland plate has

pushed the Lomonosov Ridge by ca. 30 mm/year from 54

to 49 Ma and by ca. 13.5 mm/year afterwards, until Early

Miocene. We suggest that intraplate stresses triggered by

the Eocene to Oligocene northern movement of the

Greenland plate and subsequent collision with the North

American plate that created the Eurekan deformation,

have propagated through the Arctic region and affected

part of the East Siberian Shelf, Podvodnikov Basin,

Laptev Sea and modified the spreading direction in the

eastern Eurasia Basin. We estimate that these changes

started at the same time as the peak compressional phase

in North Greenland dated 49–47 Ma and lasted until

Oligocene time when the large-scale tectonic regime

changed by incorporating Greenland into the North

American plate.

Keywords Arctic � Lomonosov � Eurasia Basin �
Magnetic anomalies � Compression � Eurekan deformation

Introduction

The Arctic realm (Fig. 1a) received considerable attention

from the scientific community in the last two decades,

partly due to numerous data acquisition campaigns meant

to feed geological knowledge to the UNCLOS (United

Nation Convention for the Law of the Sea) applications,

and partly because the sea ice coverage has been recently

reduced and therefore the success and quality of data col-

lection increased. Until recently, the tip of the Eurasian

Basin—the youngest oceanic basin in the Arctic which

hosts the slowest seafloor spreading ridge on Earth—has

been scarcely studied (e.g., [19, 38]). Its connection with

the continental margins—the sliver complex of the

Lomonosov Ridge on one flank, and the Kara and Laptev

seas extended continental shelves on the conjugate flank

(Fig. 1), has also received only limited attention. On the

other side of the Lomonosov Ridge, the Podvodnikov

Basin and the East Siberian shelf (Fig. 1) may have been

formed prior to the establishment of seafloor spreading in

the Eurasian Basin, but the timing, nature and exact rela-

tionship between the two basins flanking the East Lomo-

nosov Ridge are still unresolved.

In this contribution we aim to discuss and attempt to

shed light on Cenozoic structures observed in the area
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between the western part of Podvodnikov Basin and Kara

Sea margin based on new Russian seismic lines and

available potential field data and kinematic models. In

particular, we will focus on a series of compressional

features imaged by the new seismic data and discuss pos-

sible scenarios to explain their formation during the evo-

lution of the Eurasian Basin.

Tectonic setting of the eastern Eurasian Basin

Rifting and seafloor spreading in the Arctic region led to

the formation of several deep water basins (Canada, Pod-

vodnikov, and Makarov—as part of the Amerasia Basin,

and the Eurasian Basin) floored by extended continental

crust, exhumed subcontinental mantle and oceanic crust

Fig. 1 a, b Bathymetry

(ETOPO1, [1]); c Free air

gravity anomaly (DTU10, [3]);

d Magnetic anomaly [19] and

gravity anomaly (from c)
contours superimposed; and

e Gravity anomaly derivative

imaging the orientation of small

scale crustal features (also

indicated by thin black lines

within the polygon in panels

b and c). The magenta polygon

in panel a shows the area

detailed in panels b–d. The
white (black in e) dashed line

polygon shows the study area.

PB is Podvodnikov Basin and

MB is the Makarov Basin. In d,
P indicates positive magnetic

anomaly segment and

N negative magnetic anomaly

segment of the Gakkel Ridge in

the studied area. Note the

oblique orientation relative to

the Gakkel Ridge of two

features visible in the gravity

data (labelled Ra—Ridge in the

Amundsen Basin, and Rn—

ridge in the Nansen Basin). The

contour of these features and

adjacent contours are shown in

white in d
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(see review papers by [18, 31, 34]). It is now postulated

that the oldest oceanic basin—the Canada Basin—is

formed by all three types of crusts mentioned above (e.g.,

[32]). At the other end of the spectrum is the Eurasian

Basin, which is the result of seafloor spreading, albeit an

extremely slow seafloor spreading, in particular in the last

33 Ma (e.g., [8]). The Makarov Basin is a small, but very

deep basin and its basement is probably partly continental

(e.g., [27, 31]). The Podvodnikov Basin is floored by ca.

20 km thick crust (e.g., [28]), which led some authors to

propose that this is entirely stretched continental crust (e.g.,

[31]). Other studies suggest that the basin has both oceanic

and continental crust, with Jokat and Ickrath [22] sug-

gesting that ca. 50 % of its basement along the 81� N

transect is stretched continental crust (note that they refer

to the Podvodnikov Basin as the Makarov Basin). In this

paper we will discuss the region that contains the southern

part of the Podvodnikov Basin and the eastern–northeastern

part of the Eurasian Basin and surrounding regions: the

East Siberian Shelf, the Lomonosov Ridge and part of the

Laptev Sea (Fig. 1).

The continental nature of the Lomonosov Ridge has

been already established more than three decades ago by

noticing the similarities with the Barents and Kara seas

margins [13], the crustal thickness which exceeds 20 km

(e.g., [23, 27, 36]); and finally continental rocks recovered

from its flanks (e.g., [36]). Bathymetry, gravity and seismic

data indicate that the ridge broadens towards the Laptev

Shelf (e.g., [7, 24]); see Fig. 1). The tectonic link between

continental rifting, break-up and seafloor spreading in the

Eurasian Basin and the Laptev-East Siberian rift system

has been discussed in several studies. Sekretov, [38]

interpreted the MAGE seismic reflection data set that

covered 76–80�N region in the Eurasian Basin-Laptev Sea

area, and identified a rifted valley covered by sediments at

the tip of the Eurasian Basin as the buried continuation of

the Gakkel Ridge. He proposed that this ridge segment was

only recently reactivated (probably at 3–1 Ma), after a

standstill of almost 30 million years. This study established

the limit between continental and oceanic crust and sedi-

mentary package thickness and succession and emphasized

the asymmetric shape of this part of the Eurasian Basin.

Drachev et al. [11] analysed German–Russian seismic data

and satellite gravity data and suggested that the eastward

decrease of the sedimentary cover in the Laptev Sea indi-

cates a rejuvenation of the rifts in the same direction. They

also reiterated that the Eurasian Basin and the Laptev Sea

rift system are divided by a transform fault called the

‘‘Northern Fracture’’, ‘‘Severnyi Transfer’’ or the ‘‘Kha-

tanga–Lomonosov Transform’’. Franke et al. [15] and later

Franke and Hinz [14] used an extended seismic dataset in

the Laptev Sea and adjacent East Siberian shelf and sug-

gested that: (1) the Laptev Sea rift system was developed

east of the transfer zone which links the Gakkel Ridge to

the Laptev Sea Rift, with rifting episodes somehow dis-

connected from the evolution of the Gakkel Ridge, and (2)

the East Siberian shelf developed as an epicontinental

platform that subsided independently of the Laptev Sea

Rift system. A recently acquired high-resolution seismic

reflection dataset led Nikishin et al. [31] to suggest that the

pre-Eocene system of continental grabens observed on the

Lomonosov Ridge and Laptev–East Siberian seas shelves

are part of a common rift system.

A Mid-Eocene–Oligocene change in spreading
direction in the East Eurasian Basin

Thick sediment cover and sparse geophysical data has

hindered a detailed interpretation of the age and structure

of the Eurasian basin region next to the Russian shelves

(Fig. 1). The age and structure of the oceanic crust has

been relying so far on regional or global magnetic and

gravity anomaly gridded data (e.g., [2, 39]). The original

Russian aeromagnetic data have been used only once for a

detailed analysis of oceanic crust in the Eurasian Basin by

Glebovsky et al. [19]. However, their model does not

extend south of 81� N as the magnetic anomaly pattern

seems to lose the linear pattern. A closer inspection of the

geometry of the crust as illustrated by the gravity anoma-

lies (DTU10, Andersen [3]) points to a rhomboid-like

shaped area where the Gakkel ridge propagated obliquely

relative to a pre-existent crustal fabric (Fig. 1).

In the absence of original aeromagnetic track data, we use

a magnetic anomaly grid based on these data, but upward

continued to 5 km. Note that this grid corrects an artificial

shift of the Gakkel Ridge axis observed in the CAMP-GM

compilation [17] as shown by Glebovsky et al. [20]. The

nature of the crust in the easternmost Eurasian Basin is

revealed by the new seismic data (Figs. 2, 3), and clearly

shows oceanic crust pattern with rough basement reflectors

and a topography that subsides towards the basin margins.

Potential field data (isostatic gravity anomaly from World

Gravity Project, Balmino et al. [5]; magnetic data—an

amendment to the [17] CAMPGM-M map by Glebovsky

et al. [20], bathymetry (ETOPO1 version that incorporates

IBCAO3 grid, [1] and sediment thickness (modified grid of

Kaminsky et al. [26] and Kashubin et al. [25] by Lebedeva-

Ivanova et al. [29]) grids were sampled along four profiles

and stacked for further interpretation (Fig. 4). From profile

examination, we note that: (1) present day Gakkel ridge

valley has high positive anomaly on profile 1, lower positive

anomalies on profiles 2 and 3, and a negative magnetic

anomaly, on profile 4which is closer to the tip of the Eurasian

Basin; (2) symmetric spreading seems to be confined for

60–70 km away from the Gakkel Ridge, beyond that there
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are no identifiable symmetric magnetic anomalies, and (3)

more oceanic crust seems to be present on the Amundsen

Basin flank than on the Nansen flank between 80.5 and 78�N
(see shaded regions on maps and profiles 3 and 4 in Fig. 4).

These observations point to either asymmetric seafloor

spreading or a relocation of themid-ocean ridge through time

and crust transfer from the Eurasian to the North American

plate (whose continental margin in this region is the Lomo-

nosov Ridge). A tentative interpretation of the low-ampli-

tude magnetic anomalies in the easternmost tip of the

Eurasian basin (Figs. 1, 5a) suggests that the ridge may have

propagated southward at C22 time (ca. 49 Ma) and contin-

ued spreading until at least 45 Ma in an oblique direction

(relative to the present dayGakkel Ridge). At this time, in the

rest of the Eurasian Basin, the spreading rate decreased from

about 23–15 mm/year [19], and continued to decrease to less

than 10 mm/year until 33 Ma. An asymmetry in the seafloor

basementwith shallower depth to basement in theAmundsen

basin compared to the conjugate Nansen basin has been first

reported by Sekretov [38] and confirmed by the new Russian

seismic data [31]. Depth to oceanic basement is a proxy to its

age and therefore the presence of a wider area of shallow

basement in the Amundsen Basin and narrower, deeper

Nansen Basin could indicate asymmetry in oceanic

accretion.

Based on the asymmetric shape of the easternmost part

of the Eurasian Basin, a tentative interpretation of magnetic

and gravity anomalies on gridded data and along four

selected profiles, we suggest that at Mid-Eocene time

(C22–C20), the spreading direction changed in this region.

A possible relocation of the mid-ocean ridge may have led

to additional crust accretion in the Amundsen Basin at the

expense of the Nansen basin. By C13 (ca. 33 Ma), seafloor

spreading in the easternmost tip of the Eurasian basin

aligned to the same direction as to the ridge segment north

of 81 �N by a gradual clockwise rotation—a direction

maintained until present day.

Fig. 2 Fragment of the seismic line Arktika-2012-16. We interpret

uplift of continental slope basement highs possible around 45 Ma. We

postulate that this deformation was due to a transpressional regime

and may have lasted until to Oligocene–Neogene times. We label ‘‘1’’

the original basement highs which were formed by extension related

to break-up, and we label ‘‘2’’ anticlines that were formed after break-

up, possible in the Eocene. We estimate that the uplift took place after

our postulated ‘‘45 Ma’’ event as these highs and subsequent

sedimentation is laying on top of our ‘‘45 Ma’’ reflector. Un-

interpreted seismic line is presented in Supplementary Figure S1

cFig. 3 a Composite seismic line from Russian government projects

Arktika-2011, Arktika-2012 and Arktika-2014 covering the tip of the

Amundsen Basin, the Laptev Sea and the De Long High on the East

Siberian shelf. Our interpretation approach is the same as in Fig. 2. A

zoomed-in section where we have interpreted compressional features

is also presented. Un-interpreted seismic line is presented in

Supplementary Figure S2. b Seismic line Arktika-2014-14 and

zoomed-in section. Compression-related features (ca. 45–23 Ma)

could be recognized in the continental slope. The numbers in white

circles show the following: Unit ‘‘1’’—syntectonic and syncompres-

sional deposition simultaneously with folding in units 2 and 3. Units

‘‘2’’ and ‘‘3’’ were folded mainly between horizon 45 Ma and ‘‘blue’’

horizon. Unit ‘‘4’’—clinoform type of deposits with paleoslope

towards Podvodnikov Basin; note that unit ‘‘2’’ was not a topographic

high. Unit/event ‘‘5’’—Unit ‘‘2’’ together with the basement was

uplifted before the horizon interpreted as ‘‘23’’ Ma. Unit ‘‘6’’—

erosional surface in the slope; horizon ‘‘23 Ma’’ was deposited after

the end of the Unit ‘‘2’’ tectonic uplift
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Eocene and post-Eocene compression
on the Lomonosov Ridge: East Siberian Shelf—
Podvodnikov and East Eurasian basins

Break-up and seafloor spreading in the Eurasian Basin that

started in the Late Paleocene (e.g., [6, 19]) established a

pervasive extensional regime in the Arctic realm. This is

illustrated by the basement structure of continental margins

(both Eurasia and smaller tectonic blocks in the Arctic,

including the Lomonosov Ridge) and the smooth, undis-

turbed style of sediment draping observed in the seismic

data in most of the Arctic basins (e.g., [12, 24]). However,

new seismic data recently acquired by Russian institutes

show compressional features in several basins and conti-

nental margins. Here we report that several basement highs

and folds are observed in the Laptev Sea, at the immediate

border with the Eurasian Basin, and in the East Siberian

Shelf in the proximity of the Lomonosov Ridge (Figs. 2, 3,

Fig. 4 Upper panels: Magnetic

anomaly (left) and free air

gravity anomaly (right) as in

Fig. 1. Selected profiles are

shown as black lines on both

maps. 2D profiles extracted

from magnetic anomaly grid

(red), isostatic gravity grid

(green), bathymetry (blue) and

sediment thickness (olive)

variations in the Amundsen and

Nansen subbasins are also

shown. Synthetic magnetic

anomalies (in magenta) with a

symmetric spreading (upper

profile) and asymmetric

spreading system (lower profile)

are shown and used to identify

and date the magnetic chrons.

For constructing the synthetic

magnetic profiles we have used

a thin magnetised layer (0.1

km), a depth to source of 12 km

(water depth * 3km, sediment

thickness *4km, and an

upward continuation of 5 km

that corresponds to the magnetic

grid used here). The declination

and inclination of the magnetic

field at the time of data

collection are D = -14 and I =

64. The paleolatitude and

longitude at the time of oceanic

crust formation was

approximated at 82 degrees

north and 105 degrees east,

respectively
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S1–4). A systematic pan-Arctic sedimentary package cor-

relation following distinct seismic reflection character

separated by sharp reflectors and linked to the ACEX

borehole on the Lomonosov Ridge [4], has proposed ages of

unconformities and sedimentary packages [31, 44]. Mag-

netic anomalies identified in the central Eurasian Basin

were also correlated with a series of seismic reflection

profiles from the Amundsen Basin as additional constrain

on the age model [31]. These studies identified roughly the

same seismic reflectors, but differ in their age interpretation.

Both studies identify reflectors in the 56–45 Ma interval

which are correlated to the ACEX chronostratigraphy

(Fig. S5). Based on these estimations, it is suggested that the

compressional features identified in the seismic lines

crossing the Amundsen Basin and Lomonosov Ridge into

the Laptev Sea and East Siberian Shelf were formed not

earlier than Mid-Eocene time (approximately 45 Ma), and

some of them may have experienced compression or

transpression until Miocene (ca. 23 Ma) (Figs. 2, 3, S1–4).

The interpreted basement highs in the Laptev Sea—East

Siberia Sea continental slope were uplifted around 45 Ma

and this deformation may have lasted until Oligocene–

Neogene times. The seismic reflectors in the Cenozoic

deposits of the Lomonosov Ridge have sinusoid-like

geometry along ridge strike that could have resulted due to

compression along the ridge (Fig. S4).

Eurekan orogeny

As a result of changes in plate tectonics in the North

Atlantic that established a triple junction between North

America–Iberia spreading, the Labrador Sea and the newly

formed NE Atlantic, the Greenland plate started to move

northward in the Paleocene time (e.g., [16, 40]). North of

Greenland, a number of tectonic blocks, known as the

Ellesmere Islands (Fig. 1) and probably attached to the

northeastern tip of the North American plate, acted as a

buttress between the Greenland plate and the Arctic region

(formed, at that time, by an older oceanic domain—the

Amerasian Basin, and a number of smaller tectonic blocks,

among them—the Lomonosov Ridge). The Paleocene–

Eocene compression between Greenland and Ellesmere

Islands resulted in the so-called ‘‘Eurekan’’ orogeny or

deformation and it is now known to have been developed in

multiple stages (e.g., [37, 43]). Numerous field campaigns

in the last two decades to the Ellesmere islands reported

features that document polyphase Eurekan deformation as

complex networks of NNE–SSW and NW–SE trending

faults and ESE-directed frontal thrust of the Eurekan Fold-

and-Thrust Belt [35]. In some areas, the faults were reac-

tivated during SE-directed thrust tectonics in Mid-Eocene

Fig. 5 a Magnetic anomaly grid [19] enhanced by horizontal

gradient of the grid that helps detecting the magnetised body edges.

Relevant isochrons (lines of equal ages derived from interpretation of

magnetic anomaly pattern against a geomagnetic polarity time

scale—in this case, Ogg [33] are shown in different colours (see

legend). Flowlines computed for a kinematic model [16] with

symmetric spreading are shown as white lines. Flowline segments

represent small circles computed for stage poles derived from the

kinematic model. The triangles indicate the position of the mid ocean

ridge on each flank in case of symmetric spreading at chrons C24 old

(53.9 Ma), C22 old (49.3 Ma), C21 young (45.7 Ma), C33 young

(33.2 Ma), and C6 old (23.2 Ma). b Free air gravity grid (DTU10, [3])

and motion vectors showing the amount of compression and

transpression between the Lomonosov Ridge and the East Siberian

Shelf/Laptev Sea between ca. 54 and 33 Ma. To compute this motion,

we assume that the Lomonosov Ridge would have been rigidly

attached to Greenland (in other words, the entire northward Greenland

motion would have been accommodated between the tip of the Ridge

and the continental shelf in this region)
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times (chron 21, [37]). Tegner et al. [42] concluded, based

on new Ar-40-Ar-39 dating of alkaline volcanics from Kap

Kane (part of the Kap Washington Group volcanics at the

northern tip of Greenland), that the compression in North

Greenland peaked at 49–47 Ma and coincided with the

Eurekan Orogeny in a belt across the Canadian Arctic

Islands and western Svalbard.

The idea of Eurekan deformation affecting areas beyond

the Ellesmere Islands has been put forward in recent

studies which combined knowledge of crustal structure

from new geophysical data with results from modeling, and

shows that the oceanic Amundsen Basin, the continental

Lomonosov Ridge and the Morris Jessup Rise were all

disturbed by significant Eurekan compression [10]. In

particular, Dossing et al. [9] suggested that Eurekan crustal

shortening contributed to the formation of the distinct

Lomonosov Ridge plateau against an important fault zone

north of Greenland.

Following this lead, we compute the Eocene–Oligocene

motion of Greenland relative to Lomonosov Ridge

(Fig. 5b), using a combined plate tectonic model based on

dense magnetic anomaly identifications in the North

Atlantic [16, 30]. Regional plate tectonic reconstructions

and computed motion vectors are shown in Fig. 6. Two

distinct periods of compression-transpression occurred

between 54 and 49 Ma (ca. 30 mm/year convergence

velocity) and between 49 and 33 Ma (ca. 13.5 mm/year

convergence velocity), and amounted to more than 350 km

of oblique shortening between Greenland and Lomonosov

Ridge (computed at the Siberian side of the ridge).

Fig. 6 Motion vectors of the Greenland (magenta), and Eurasian

(grey) plates relative to the Lomonosov Ridge (North American plate)

based on a regional model (modified after [16]). Red lines show the

position of the mid ocean ridge at each reconstruction time. Note the

change in the ridge orientation in the easternmost part of Eurasian

Basin at 49.3 Ma and again at 33.2 Ma (for comparison, in the lower

right panel, the isochrons for 45.7 Ma are shown together with the

ridge location at 33.2 Ma). Pale orange colour indicates continental

crust and the grey area show oceanic basins (except the regions

around the Ellesmere Islands were the grey region shows future

deformation area due to the Eurekan event). Areas affected by

Eurekan deformation (ED)—including the one postulated in this

study—are indicated by dashed lines redellipses. The extent of the

Amerasian Basin is also shown, but we do not discuss here the nature

of the crust in this region. The continent-ocean boundaries, including

the outline of the Lomonosov Ridge, are based on potential field data

(CAMP-GM, [17])
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Combined with our interpretation and dating of compres-

sional features imaged by the seismic data in the Laptev

Sea and East Siberian Shelf, and the changes in seafloor

spreading in the easternmost part of the Eurasian basin,

these results point to possible links to one or several phases

of the Eurekan deformation.

Discussion

Convergent plate-margin processes impose significant for-

ces on the edges of continental blocks, often triggering

intraplate stress field (e.g., [41, 45]). Mechanical and ther-

mal differences in the strength of the lithosphere, additional

stress fields due to mantle processes and gravitational

potential resulted from changes in topography/bathymetry,

the distance from plate boundaries, and other factors play an

important role in the determination of the resultant litho-

spheric strain. Also note that the style of intraplate defor-

mation resulting from convergence can include shortening,

strike-slip, and extension-dominated regimes [41]. Despite

numerous attempts to model how the stress field propagates

away from various plate boundaries, there is no general

model to prescribe how the intra-continental lithosphere

responds to stresses as each case depends on specific rhe-

ology, loads and geometry. In our case, the continental

nature and same thickness (ca. 20 km) of the Lomonosov

Ridge and adjacent extended continental crust from the

Podvodnikov Basin and East Siberian Shelf may have been

rheologically weaker and prone to be deformed easier than

the cold oceanic crust formed at the ultraslow mid-ocean

ridge in the Eurasian Basin.

Dossing et al. [9] suggested that the Eurekan event may

have affected the southern part of the Lomonosov Ridge

and also could have triggered a certain amount of com-

pression in the southern Eurasian Basin that resulted in

volcanism and even subduction. The lack of fracture zones

in the Eurasian Basin makes it difficult to track changes in

spreading direction, but we would like to point out that a

certain change in isochron orientation is visible in the

magnetic anomaly data northwest of the Kara Sea (Fig. 5,

oval region marked with dashed black line). This pattern is

more difficult to see on the conjugate flank in the

Amundsen Basin, but a fan-shaped pattern for C24–C13 is

not excluded. This tentative interpretation could indicate

another gradual change in spreading direction from C24 or

younger to C13 when the spreading direction stabilized and

continued until present day. We do not have an explanation

of why the spreading in the Eurasian Basin changed

direction only in the middle and easternmost part of the

basin, but speculate that this is connected to the basin

architecture inherited from the continental margin pre-

breakup segmentation.

We also note that, according to our interpretation, the

compressional regime lasted longer (to Early Miocene?) in

the extended continental part (as seen on seismic lines in

Figs. 2, 3, S1–4), but the oceanic spreading system has

evolved steadily since Early Oligocene (ca. 33 Ma). Dra-

chev et al. [11] interpreted thrusts and reverse faults in the

so-called seismic unit SU-4 in the Laptev Sea and linked it

with observed compressional features onshore on the New

Siberian Islands and tentatively dated them as Oligocene to

Middle Miocene, based on plate tectonic model predic-

tions. A more detailed plate tectonic model based on

magnetic anomaly data along the entire North American–

Eurasian plate boundary, implies that the tectonic regime

between these two plates in the Laptev Sea region, was

mostly extensional, with a slight transtensional component

at chron 22 (ca. 49 Ma) [16]. This may hint that the

identified SU-4 horizon could be older than Oligocene and

that the Laptev Sea region that may have been affected by

Eocene far-field stresses. Drachev et al. [11] interpretation

of compressional features in the Laptev Sea has been

challenged by Franke and Hinz [14] who interpreted only

negligible evidence of the Oligocene–Miocene

compression.

Our postulated change in the Gakkel Ridge spreading

direction from ca. 49 to ca. 33 Ma is in the opposite

direction of the rift depocenter migration in the Laptev Sea,

as interpreted by Drachev et al. [11]. However, Franke and

Hinz [14] mentioned that the Anisin Basin, situated in the

eastern part of the Laptev Sea (Fig. 1), and considered the

youngest rift, has a shallower arm west of it that may

indicate a rift migration westward. Unfortunately, the lack

of drill holes in the Laptev Sea introduces significant

uncertainties in the dating the rift events and subsequent

sedimentation episodes.

Conclusions

We have interpreted selected profiles from the new seismic

data collected by Russian institutes and inspected improved

potential field grids in the easternmost part of Eurasian

Basin, the East Siberian Shelf and adjacent regions of the

Laptev Sea and Podvodnikov basin in order to identify

possible post break-up changes in tectonic regimes. The

oceanic crust (identified from the new seismic reflection

data) in the easternmost part of Eurasian Basin displays an

asymmetric fabric (visible in the gravity and magnetic

gridded data), with the Gakkel ridge propagating obliquely

relative to it. Tentative dating of the weak magnetic

anomalies suggests asymmetric spreading or ridge reloca-

tion from ca. 49 to 33 Ma.

Three seismic reflection transects through the Laptev

Sea, Lomonosov Ridge and adjacent basins display several
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compressional features including sedimentary package

folding that may have been formed from the Eocene time

onwards. Plate tectonic motion vectors based on up-to-date

regional tectonic models indicate that the Greenland plate

has impinged on the Lomonosov Ridge by ca. 30 mm/year

from 54 to 49 Ma and by ca. 13.5 mm/year and may have

created transpression in the eastern Arctic (Fig. 6).

We therefore suggest that intraplate stresses triggered by

the northern movement of the Greenland plate and collision

with the North American plate in the Ellesmere Islands and

western end of the Lomonosov Ridge have propagated

through the Arctic region and affected part of the East

Siberian Shelf, Podvodnikov Basin, Laptev Sea and mod-

ified the spreading direction in the eastern Eurasia Basin.

We estimate that these changes started at the same time as

the peak compressional phase in North Greenland dated at

49–47 Ma and lasted no later than Oligocene time when

the large-scale tectonic regime changed by incorporating

Greenland into the North American plate. These events

preceded two major periods when the spreading rates in the

Eurasian Basin decreased dramatically: at ca. 45 and

33 Ma (e.g., [19], see Fig. S5) and transformed this system

in the slowest spreading ridge on Earth. Uncertainties

linked to dating of this deformation are due to the lack of

well data in the studied area, but numerical modeling may

be used to test the proposed scenario.
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