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Abstract
This paper discusses the properties of dried sewage sludge (SS) and its influence on the microstructure development of HVFA 
concrete when used as a partial replacement of binder material. A detailed characterization of dried sludge samples collected 
from a sewage treatment plant is carried out using XRF, XRD, TGA, and FTIR techniques. HVFA concrete mix is designed 
for 50 MPa with 50% fly ash of the total binder content. Sludge is ground to a particle size of 150 µ and 75 µ and replaced at 
levels of 5%, 10%, and 15% of the total binder content. The strength activity index of the dried sludge sample is acceptable 
as per standards. Taking concrete mixes with HVFA as a reference, the fresh properties of binder paste and concrete with 
sewage sludge have been studied. Mechanical properties that define the applicability to various infrastructure projects are 
reported for all the studied mixes. EI, CI, COST per unit compressive strength for all mixes are also determined to comment 
on the environmental impact of the use of SS in concrete. The compressive strength of concrete specimens decreases with the 
increase in replacement level of SS. However, in comparison with OPC concrete, 75 µm SS at 5% replacement level concrete 
mechanical strength is within the acceptable limit for M50 concrete mix. The addition of SS as a binder to the concrete has 
a lower environmental impact, embodied energy,  CO2 emission, and cost per unit strength. But more than 10% replacement 
level resulted in reducing CS, FS, and STS by 11.17%, 6.23%, and 6.99%.
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Abbreviations
CO2  Carbon dioxide
CE  Carbon emission
CI  Carbon emission index
CS  Compressive strength
EE  Embodied energy
EI  Embodied energy index
FESEM  Field emission scanning electron microscope
FST  Final setting time
FS  Flexural strength
FA  Fly ash
FTIR  Fourier transform infrared spectroscopy
GHG  Greenhouse gas
HVFA  High-volume fly ash
HVFAC  High volume fly ash concrete
IST  Initial setting time
COST  Material cost index
MoE  Modulus of elasticity
MSWA  Municipal solid waste ash
MWWTP  Municipal waste water treatment plant
OPC  Ordinary Portland cement
PC  Portland cement
SS  Sewage sludge
SSA  Sewage sludge ash
STS  Split tensile strength
SAI  Strength activity index

SCMs  Supplementary cementitious materials
SDG  Sustainable development goals
TGA   Thermo gravimetric analysis
UPV  Ultrasonic pulse velocity
WA  Water absorption
XRD  X-ray powder diffraction
XRF  X-ray fluorescence

Introduction

The sustainability of concrete depends on the amount 
of CO2 and other GHGs emitted in the production and 
procurement of raw materials, mixing, casting, and curing. 
Due to globalization and increased population, industrial 
waste disposal is one of the most significant challenges 
humankind is facing. In this context, attempts are being 
made to reduce carbon emissions in concreting through the 
effective utilization of industrial by-products. Sustainable 
development goals (SDG) and standards have suggested 
using waste materials/by-products that reduce carbon 
emission and embodied energy.

Cement production is an energy-intensive process. As 
of now, 4400 million tons of cement are manufactured 
yearly worldwide. It is also anticipated that the number will 
rise to over 5500 million tons by 2050. About 8% of the 
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world's  CO2 emission is attributed to cement production. 
India stands at the second position in cement production 
and cement-related  CO2 emissions. Cement production in 
India is estimated to rise to 3000 MT, emitting nearly 1.3 
billion tons of  CO2 by 2050 [1]. The  CO2 emissions are 
found to reduce with SCMs in one of the binder phases. 
Approximately 13–22% of  CO2 emissions were reduced 
by SCMs depending on the level of replacement used [2]. 
O'Brien et al. (2009) reported that the primary source of 
GHG emissions is the concrete industry. Seven percent 
of the global GHG emissions are from PC production. In 
addition, the cement industry releases gases such as  SO2 
and  NOx that can cause environmental degradation and other 
associated effects [3, 4].

Many researchers have unanimously accepted that FA 
reduces GHG emissions when replaced with Portland cement 
[5]. The reduction in GHG emissions depends on the source 
and condition of raw materials, the type of supplementary 
cementitious material used, the percentage of replacement 
level, and the transportation distance. Industrial by-products, 
such as FA and slag, are widely used and accepted as partial 
replacements to OPC [6]. The effective use of improperly 
disposed of municipal and industrial by-products/wastes 
can reduce pollution and result in the sustainable use of 
natural resources [7]. Many experimental investigations are 
performed on using other wastes in concrete, such as palm 
oil fuel ash, rice hush ash, MSWA, incinerated bottom ash, 
agro-waste, and SSA, as a part of cementitious binder in 
concrete production [8–22].

Due to the ever-increasing energy demand, many thermal 
power plants were set up across the globe, resulting in the 
large-scale production of FA as a by-product. Therefore, the 
safe disposal of FA to prevent environmental pollution has 
become a global challenge. FA can be used as a valuable 
resource in concrete, greenhouse gas emissions, and 
embodied energy. HVFA is an approach to maximize the 
FA content in concrete and minimize OPC use for a similar 
level of mechanical properties. In contrast, Dunstan et al. 
(1992) referred to any concrete containing more than 40% 
of FA as HVFA concrete. Many experimental investigations 
have recommended 30–70% cement replacement by FA for 
concrete having 28 days strength of 40–50 MPa [3, 23–33].

Sivasundaram et  al. (1990) observed the strength 
development of HVFA concrete over three years. Concrete 
gained strength of 70 MPa and modulus of elasticity of 
47GPa with prolonged curing for two years [34]. Jiang and 
Malhotra (2000) recommended the use of a large amount 
of FA as binders (55%) in conjunction with the use of 
superplasticizers to achieve higher slumps of 100 mm and 
above since HVFAC is associated with a low W/B [32]. 
Bouzoubaa et al. (2000) found improvement in resistance to 
chloride ion penetration characteristics with HVFA blended 
cement. Further, it was also noticed that the performance of 

HVFA against chloride ion penetration was enhanced with 
an increase in the inter-grinding time of binder material [35].

SS is a by-product of the MWWTP. The estimated dry 
sludge production quantities annually are 8910, 6510, 
3955, 2960, 650, 580, 550, and 370 thousand metric tons 
EU-27, USA, India, China, Iran, Turkey, Canada, and 
Brazil, respectively [36–39]. Presently, in India, out of 
the 62,000 MLD sewage generated, only 20,120 MLD 
goes into the treatment plant. The quantity of dry sludge 
generated in India is expected to increase many times due 
to the extensive installation of municipal sewage treatment 
plants under the Swachh Bharat Mission [31–33]. Due to 
large SS production, a proper disposal strategy is essential to 
manage dried sludge quantities. Various disposal strategies 
like agricultural manure, fillers in landscapes, gardening, 
and all the unused SS get dumped into the landfills. With the 
lack of land spaces and new environmental regulations, it is 
essential to explore new applications of SS [40, 41]. There 
is a need for efficient recycling, resource recalcination, and 
proper SS treatment [42]. Several researchers identified the 
presence of calcium, silica, and alumina phases in SS on 
analysis of its chemical composition. SS is found to possess 
properties similar to popular pozzolanic material used in 
concrete [43, 44].

Marisal et  al. (2004) investigated the mechanical 
properties of concrete specimens containing treated plant 
sludge and recommended replacing levels up to 10% of 
binder content [45]. Baskar et al. (2006) have successfully 
replaced 9% of the binder with sludge obtained from the 
residue of the textile industry and wastewater in clay bricks. 
At a 9% replacement level, the brick samples satisfied the 
requirement of the BIS for compressive strength, weight 
loss, and shrinkage parameters [46]. Patel and Pandey 
(2009) reported that the sludge from the textile industry 
had a potential for reuse as construction materials [47]. 
Jamshidi et al. (2010) replaced cement with dry sludge at 
0%, 5%, 10%, 20%, and 30% in concrete. The sizing and 
milling of dry sludge to a finer particle size can improve the 
mechanical properties of concrete any unreacted particles 
are left to act as a filler in concrete [48].

The dried sludge organic content limited to 13% can be 
used as an additive to mix. The increase in sludge by more 
than 5% was adversely affected workability [45–47]. Similar 
results have been found for both wet and dry wastewater 
sludge used in concrete.

The current study investigates the physical and chemical 
properties of FA and SS as a binder material. The fresh and 
hardened properties of concrete mixes at different levels 
of replacement of SS are reported. The higher the energy 
required to produce raw material, the higher the energy 
cost, resulting in higher  CO2 emissions to the atmosphere 
and embodied energy. All these would result in higher  CO2 
emission and embodied energy, creating a higher negative 



 Innovative Infrastructure Solutions (2022) 7:240

1 3

240 Page 4 of 19

impact on the environment. This study performs CE and 
EE of the binding material and concrete mixes at a different 
replacement level.

Experimental program

Materials

Binder material

OPC Forty-three Grade confirming IS 8112-2013 [49] is 
used for the study. Low calcium FA (Class F) was procured 
from a Raichur, Karnataka, India. Dried SS was collected 
from the dry sludge bed at the MWWTP at End Point, 
MAHE, Manipal, Karnataka, India, and dried for seven more 
days in sunlight to remove excess moisture.

After oven-drying at 105 °C for 24 h, the sludge was 
ground for 1 h in a ball mill. The ground residue was sieved 
through 150 and 75-micron meter IS standard sieves and col-
lected separately. The particle size analysis of all the ingredi-
ents going into the binder system is illustrated in Fig. 1. The 
properties of various binder materials used in the present 
study are presented in Tables 1 and 2.

Chemical analysis with  X‑ray fluorescence Semi-chemical 
quantitative analysis of the oxides is performed, and the out-
comes are tabulated in Table 2. Sewage sludge comprises 
 SiO2,  Al2O3,  Fe2O3, CaO,  Na2O, and  P2O5, which is quite 
similar to FA. The proportions of  SiO2 and  Al2O3, which 
are the main reactive components responsible for pozzo-
lanic reactions in the binder system (ASTM C125, 2007), 
are lower than FA. Sludge is composed primarily of quartz 

and calcite. The same is noted by Valls et al. (2004) [45]. 
Clay is absent in dry sludge, which signifies the absence of a 
stable binder phase on hydration. However, it can be used as 
a partial replacement for cement. The range in which vari-
ous compounds are present in the sludge presented in previ-
ous research articles is also listed in Table 2. The ternary 
representation of  SiO2-CaO-Al2O3-Fe2O3 concerning that 
of OPC, FA, and SS is presented in Fig. 2.

X‑ray powder diffraction (XRD) of SS XRD spectra of SS are 
presented in Fig. 3. The crystalline phases of the SS mainly 
consist of quartz  SiO2 4.1%, Akermanito 34.4%,  Ca3SiO5 
53.3%, and Cristobalite 8.1%.

Thermogravimetric analysis of  sewage sludge The result 
of TGA is presented in Fig. 4. The SS sample tested was 
found to have undergone thermal degradation in two phases. 
The first phase of primary degradation occurred at the tem-
perature range of 100–500 °C, wherein the sludge sample 
was found to experience a high rate of mass loss. In the 
second phase, continuous decomposition of SS occurs at a 
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Fig. 1  Particle size distribution of concrete ingredient

Table 1  Physical characteristics of raw materials

Physical 
characteristics

Cement FA SS (150 µm) SS (75 µm)

Specific gravity 3.12 2.32 1.95 2.13
Specific surface 

area (m2/g)
0.313 0.377 0.320 0.315

Particle size D10 3.68 2.17 5.27 4.85
D50 14.85 8.72 35.13 24.34
D90 32.32 27.99 78.45 47.32

Table 2  Chemical composition of binder materials

Composition OPC FA SS (%) SS observed value in literature

Min Max

SiO2 20.27 53.25 12.013 2.06 [50] 42.54 [51]
Al2O3 8.98 25.62 4.424 2.06 [50] 14.79 [52]
Fe2O3 3.71 6.4 41.715 4.58 [50] 49.35 [53]
CaO 59.21 4.7 8.985 2.40 [52] 22.70 [45]
MgO 1.85 1.04 0.014 0.01 [15] 5.78 [27]
P2O5 – – 23.302 5.00 [54] 22.55 [27]
Na2O 0.15 2.22 6.247 0.31 [55] 1.11 [50]
K2O 0.98 0.87 2.122 0.53 [55] 6.19 [27]
TiO2 1.35 – 1.069 0.52 [52] 3.42 [50]
SO3 2.52 1.29 – 0.0 [48, 51, 52, 

56]
9.57 [27]

Cl− – – – 0 [50, 53, 57] 0.5 [55]
LOI 1.47 2.85 48.59 47.50 [50] 73.40 [50]
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high temperature of 500–900 °C with a comparatively lower 
mass-loss rate.

Fourier transform infrared spectroscopy of  sewage 
sludge FTIR analysis was carried out for SS using JASCO 
FTIR-6300 with a wavelength range of 400–4000   cm−1 
results which are shown in Fig. 5. Inorganic bonded O–H 
groups with a wavenumber of 3250  cm−1 are observed. The 
broad peak at the 3600–4000  cm−1 region signifies the pres-
ence of O–H and N–H functional groups. Hence, alcohols, 

acids, amides, and amines are also noted. Multiple peaks 
indicate the presence of C–H groups in the 1042–2925  cm−1 
region. The primary absorbance in FTIR spectra in the 
region 450–1050  cm−1 is due to the Si–O bond of silicate 
impurities and traces of clay minerals.

Microstructure The FESEM images of OPC, FA, and SS 
are shown in Fig. 6. From the FESEM image of SS, it is 
observed that the particle sizes appear to be more prominent 
than FA. SS appears crystalline in nature. It consists of the 
random orientation of solids with irregular shapes and sizes. 
Therefore, to attain higher reactivity, it is essential to grind 
the SS to a finer level.

Aggregates

Natural river sand and gravel as fine and coarse aggregate 
in accordance with IS 383-1970 1970 (Reaffirmed 2011) 
are used for the present study. Table 3 and Fig. 1 show 
aggregates physical properties and sieve analysis.

Superplasticizer

High range water reducing agent Rofluid H1 (PCE base), 
with a specific gravity of 1.15 and pH of 4.5, was used in all 
mixes to enhance the workability of concrete. The chloride 
ion and alkaline percentages are ≤ 0.1 and 0.4, respectively.

Fig. 2  Ternary 3D plot of binder materials
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Fig. 3  XRD pattern of sewage sludge
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Preparation of the paste

The mix proportions of various combinations of binder 
blends used for the study are listed in Table 4. The blended 
binder paste was carried out as per the norms stipulated in 
EN 196-3 [58].

Mix proportioning

The mix proportions used for the current investigation are 
presented in Table 5. Sewage sludge was replaced at 5%, 
10%, and 15% of the total binder content. Physical and 
mechanical properties of HVFA high strength concrete with 
three levels of sludge replacement were investigated through 
experimental procedures. Using the Department of Environ-
ment's Design (DOE) method, M50 concrete is designed 
with 50% cement and 50% FA as a binder. The w/b ratio of 

0.3 is used for all the mixes. After casting, the specimens are 
de-molded after 24 h and then immersed in water for curing 
as per IS 10086-2008 [59].

Fig. 4  The TGA of raw SS

Fig. 5  FTIR spectra of sewage sludge

Sewage Sludge

Fly ash

OPC

Fig. 6  Microstructure of sewage sludge, fly ash, and OPC

Table 3  Properties of natural aggregates

Properties Coarse aggregate Fine aggregate

Specific gravity 2.65 2.55
Bulk density (Loose state) (kg/

m3)
1428 1454

Bulk density (compacted state) 
(kg/m3)

1679 1645

Water absorption (%) 0.42 0.85
Silt content (%) – 1.50
Bulking of sand (%) – 25
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Specimen casting and curing

OPC, FA, and SS were mixed thoroughly to obtain uniform 
binder mix. The aggregates are mixed with binders for 
2 min to obtain a uniform dry mix. Uniform concrete mix 
was obtained by continuing the mixing for 2–3 min after 
water dispersion, and chemical admixture was poured. 
Later, concrete was cast into specific molds. The molded 
samples were kept in laboratory conditions for 24 ± 0.5 h 
and de-molded, later stored in a curing tank in the conven-
tional method for the required durations [60–62].

Experimental procedure

Test on binder material

The setting time of the binder was determined as per 
the procedure prescribed in ASTM C191 [63]. Standard 
consistency of binder pastes is performed as per ASTM 
C187-16 [64]. SAI test was performed according to ASTM 
C618-05 [65] to study the pozzolanic activity of the binder 
mix. The fluidity of binder paste was measured (mini-
slump flow) as per ASTM C1437 [66].

Tests on concrete

"Compressive strength test has been performed at 7, 14, 28, 
56, and 90 days of the curing period using 150 mm cubic 
size, as per the Indian Standard Specifications IS:516-1959 
[60]. The loading rate of 14 N/mm2/min was maintained 
using CTM of capacity 3000 kN. The split tensile strength 
was determined as per IS 5816-1999 [67] using specimen 
sizes of 150 mm diameter and 300 mm height at 7, 28,56, 
and 90 days. The rate of load application was within the 
range of 1.2–2.4 N/mm2/min. The flexural strength test was 
performed using the prism of size 100 × 100 × 500 mm as 
per IS 516-1959 [60]. Modulus of elasticity (MoE) has 
been conducted as per IS 516-1959 [60] on the cylinder 
specimen of size 150 mm diameter and 300 mm height after 
28 days of curing. Deformation of the sample under com-
pressive load was found using compressometer and linear 
variable differential transformer (LVDT) equipment. The 
ultrasonic pulse velocity (UPV) test was performed as per 
IS 13311-1-1992 [68] using a TICO Ultrasonic instrument 
supplied by PROCEQ SA, Switzerland. A water absorp-
tion test has been conducted on 150 mm cube specimens 
following the specifications prescribed in BS 1881-122-
1983 [69]. Details of the tests and the corresponding codes 
referred are mentioned in Table 6 [62].

Table 4  Mix designation for 
blended mixes

Blends Combination General designation Binder content

OPC (%) FA (%) SS (%)

Control OPC C 100 – –
Binary blends OPC + FA CF 50 50 –
Ternary blends OPC + FA + SS (150 µm) CFS150-5 47.5 47.5 5

CFS150-10 45 45 10
CFS150-15 42.5 42.5 15

OPC + FA + SS (75 µm) CFS75-5 47.5 47.5 5
CFS75-10 45 45 10
CFS75-15 42.5 42.5 15

Table 5  Mix proportion of concrete used in present study

Mix desig-
nation

OPC (kg/m3) FA (kg/m3) SS-150 µm
(kg/m3)

SS-75 µm
(kg/m3)

Sand (kg/m3) Coarse aggregate Water
(kg/m3)

W/B ratio SP
(%)

M1 577 – – – 899.94 798.06 191 0.33 1.0
M2 288 288.5 – – 899.94 798.06 191 0.33 2.1
M3 274.075 274.075 28.85 – 899.94 798.06 191 0.33 2.1
M4 259.65 259.65 57.7 – 899.94 798.06 191 0.33 2.1
M5 245.225 245.225 86.55 – 899.94 798.06 191 0.33 2.1
M6 274.075 274.075 – 28.85 899.94 798.06 191 0.33 2.1
M7 259.65 259.65 – 57.7 899.94 798.06 191 0.33 2.1
M8 245.225 245.225 – 86.55 899.94 798.06 191 0.33 2.1
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Results and discussion

Initial and final setting time

The IST and FST of pastes tested are presented in Table 7. 
IST and FST vary from 155 to 255 and 265 to 375, 
respectively. It is noticed that with an increase of SS, the 
setting time also increases for the pastes containing both 
150  µm and 75  µm downsized dried sludge. However, 
the paste samples containing 75  µm downsized SS 
have exhibited acceptable setting times at 5% and 10% 
replacement levels. Mirza et al. (2002), Duran-Herrera et al. 
(2011), and Huang et al. (201) reported an increase in IST 
and FST of cement paste with the inclusion of SCMs [25, 
72, 73].

Standard consistency of binder

The standard consistencies of binder pastes studied at differ-
ent replacement levels are shown in Table 7. The consistency 
value of FA blended cement paste at 50% cement replace-
ment level is 34%, while the control sample consistency 

was 31%. A similar trend was observed by Marthong and 
Agrawal (2012) [74]. Replacement of SS resulted in an 
increase in the consistency values of the blended pastes due 
to the higher powder volume and porous and crystalline 
nature of SS. It is also noted from Table 7 that the con-
sistency value is higher for binder paste with 75 µm down-
size SS particle compared to 150 µm downsize at the same 
replacement level.

Fluidity (mini‑slump flow) of binder

The fluidity of various paste compositions studied with 
and without sludge replacement is presented in Table 7. 
The slump flow values of the paste mixes were found to 
range from 151 to 195 mm compared to the slump value of 
180 mm for OPC. It is observed that the fluidity of the OPC 
paste was found to have increased on replacing OPC with 
50% FA. However, with the incorporation of SS into the 
binder, the fluidity is considerably reduced. The SS particles 
are porous and irregular in shape, hence, more susceptible 
to water absorption on particle surfaces [75]. Also, the size 
of SS was found to influence the fluidity.

Strength activity index

The SAI test was conducted to evaluate the pozzolanic activ-
ity of SS and presented in Fig. 7. According to ASTM C618-
05 [65], the substitutive material is designated a pozzolan 
if it achieves a 75% of the strength gained by OPC mortar 
at 7 14, 28, 56, and 90 days, respectively, with 20% cement 
replacement. According to the results of the SAI, SS (75 µm) 
exhibits moderate pozzolanic activity. It can also be seen 
from the figure that the SAI of SS increased as the curing 
day advances. The presence and quantities of amorphous 
phases in the pozzolan contribute to pozzolanic when used 
as partial replacement to cement.

Table 6  Summary of 
experimental tests conducted

Sl. no Tests Specimen Standards

1 Setting time Binder paste ASTM C191 [63]
2 Standard consistency Binder paste ASTM C187-16 [64]
3 Fluidity (Mini-Slump Flow) Binder paste ASTM C1437 [66]
4 Strength activity index test Binder mortar ASTM C618-05 [65]
5 Slump flow Concrete IS 1199-1959 [70]
6 Density Concrete BS 1881-114:1983 [71]
7 Compressive strength Concrete IS 516-1959 [60]
8 Splitting tensile strength Concrete IS 5816-1999 [67]
9 Flexural strength Concrete IS 516-1959 [60]
10 Modulus of elasticity Concrete IS 516-1959 [60]
11 Ultrasonic pulse velocity Concrete IS 13311-1-1992 [68]
12 Water absorption Concrete BS 1881-122-1983 [69]

Table 7  Setting time, consistency, and slump flow of binder paste

Binder mix Setting time Consistency Slump flow

IST (min) FST (min) (%) (mm)

C 150 265 31 180
CF 185 305 34 195
CFS150-5 220 335 38 162
CFS150-10 235 350 40 157
CFS150-15 255 375 41 151
CFS75-5 200 315 41 172
CFS75-10 185 330 46 166
CFS75-15 175 360 53 161



Innovative Infrastructure Solutions (2022) 7:240 

1 3

Page 9 of 19 240

In comparison, SS has proven to possess lower SAI than 
FA. Finer grinding may be used for improving pozzolanic 
activity. In the present study, SS with a particle size of 
75 µm possesses moderate pozzolanic activity, suitable to 
be used as SCM's.

Influence of sewage sludge on slump flow

The slump flow values of freshly mixed concrete mix are 
illustrated in Fig. 8. A higher slump value is observed in 
mix M2 because of a higher proportion of FA compared 
to the OPC (M1) mix. Sahmaran and Yaman (2007) also 
reported that OPC replacement with 50% FA increased the 
slump flow by 23.2% [76]. The increase in the percentage 

replacement of SS resulted in a decrease in slump value for 
the concrete in both 75 and 150 µm size particles. Similar 
results are observed by Jamshidi et al. (2011) [48], Ghada 
Mourtada et al. (2016) [74], and Ehab et al. (2019) [77].

Concrete density

The 28-day concrete density was determined according to 
BS 1881: Part 114:1983 [71] (Method of determination of 
density of hardened concrete) [71] and presented in Fig. 9. 
The density of specimens increased with curing age. Con-
tinuous hydration and pozzolanic action from binder materi-
als resulted in dense microstructure at a later age. Compared 
to the control sample, the concrete density began to drop in 
addition to 5% of SS. Based on the results obtained, it can be 
noted that the concrete density decreased with an increase in 
SS particle size. The same trend was observed by Amminu-
din et al. (2020) [56]. It is important to note that the addition 
of FA to the mix lowers the fresh concrete density. The lower 
specific gravity of FA and SS compared to OPC accounts for 
a decrease in density. The same trend is observed in studies 
reported earlier [3, 23, 78]. The deadweight of the struc-
tural element is reduced due to a reduction in the density 
of concrete. So, the use of SS in the binder system can be 
considered one of the advantages.

Compressive strength

The CS test was performed on concrete samples at 7, 14, 
28, 56, and 90 curing days. The measurement of CS of 
the concrete sample with variable SS content is shown in 
Table 8. The replacement of 150 µm downsized SS at 5%, 
10%, and 15% resulted in a decrease in 28 days strength by 
24.12%, 25.54%, and 36.54%, respectively. Whereas 75 µm 
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downsize contributed 1.4%, 11.17%, and 17.99% reduc-
tion for 5%, 10%, and 15% replacement levels, respec-
tively. Jamshidi et al. (2011, 2012) [48, 79] observed that 
5%, 10%, and 20% addition of dry sludge resulted in a 
decrease in strength by approximately 9%, 14.5%, and 
28% in 28 days and 3.5%, 8%, and 20% in 90 days cured 
samples. It is also noted that for both the sizes, 75 µm and 
150 µm sized SS, compressive strength at 90 days for 5% 
and 10% replacement levels is within the acceptable limits 
for M50 concrete. The relationship between CS and per-
centage replacement level is plotted, individual equations 
are presented in Figs. 10 and 11, and a strong relationship 
between percentage replacement and CS with  R2 lying 
between 83.81 and 93.42%.

Split tensile strength

The STS results of eight mixes are illustrated in Table 8. 
The 28 days lowest strength of 2.96 MPa is observed in mix 
5 (M5). The replacement of 150 µm downsized SS at 5%, 
10%, and 15% replacement levels resulted in a consider-
able decrease in strength. Whereas 75 µm downsized, SS 
concrete samples contributed reasonably good strength 
than 150 µm. The relationship between STS and percentage 
replacement level is plotted, and individual equations are 
presented in Figs. 12 and 13. A direct relationship equation 
is plotted considering 7, 28 56, and 90 days CS and STS and 
presented in Fig. 14. R2, a value of 0.809, indicates a cor-
relation between them.

Flexural strength

The FS experiment results at 7, 14, 28, 56, and 90 days 
are illustrated in Table 8. The 28 days lowest strength of 
3.94 MPa is observed for the M5 mix. The replacement of 
150 µm downsized SS at 5%, 10%, and 15% replacement 

Table 8  CS, STS, and FS of mixes at different curing ages

Concrete mix Compressive strength (MPa) Split tensile Strength (MPa) Flexural strength (MPa)

7 day 14 day 28 day 56 day 90 day 7 day 28 day 56 day 90 day 7 day 28 day 56 day 90 day

M1 46.04 53.93 61.11 63.56 65.18 3.36 3.99 4.09 4.16 4.53 5.14 5.25 5.32
M2 43.04 45.93 58.96 62.15 64.45 3.22 3.91 4.04 4.13 4.38 5.04 5.18 5.29
M3 27.81 36.72 44.70 48.72 54.28 2.48 3.30 3.48 3.71 3.52 4.33 4.54 4.81
M4 26.37 37.42 43.90 46.18 52.45 2.40 3.26 3.37 3.64 3.44 4.29 4.41 4.73
M5 42.43 44.62 58.12 61.25 63.25 2.12 2.96 3.14 3.37 3.09 3.94 4.14 4.42
M6 38.23 43.25 52.37 55.18 56.95 3.20 3.87 4.00 4.08 4.35 5.00 5.14 5.23
M7 35.30 38.95 48.35 50.11 51.31 3.00 3.63 3.75 3.82 4.11 4.72 4.86 4.94
M8 42.43 44.62 58.12 61.25 63.25 2.86 3.46 3.54 3.59 3.93 4.52 4.61 4.67
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levels resulted in a drastic decrease in strength. Whereas 
75 µm downsized SS exhibited higher strength than 150 µm. 
The relationship between tensile strength and percentage 
replacement level is plotted, and individual equations are 
presented in Figs. 15 and 16. A direct relationship equation 
is plotted considering 7, 28, 56, and 90 days CS and STS 
and presented in Fig. 17. The R2 value of 0.873 is observed, 
indicating a good correlation between them.

Modulus of elasticity (MoE)

The MoE affects reinforced concrete's safety, durability, den-
sity, and life span. The 28 days MoE of concrete specimens 
is calculated by applying a series of compressive stress cycles 
up to about 40% of the measured compressive strength and is 

presented in Fig. 18. The replacement of 150 µm downsizes 
SS decreased the modulus of elasticity, whereas it is similar to 
the control mix in the samples containing 75 µm downsize SS. 
The incorporation of SS led to a decrease in MoE due to the 
de-densification of pore structure. A linear degradation in the 
value of modulus of elasticity with an increase in SS content 
is observed. A linear relationship between CS and MoE at 
28 days is plotted in Fig. 19. A good correlation is observed 
with the R2 value of 0.917.
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Influence of sewage sludge on quality aspect 
of concrete

Ultrasonic pulse velocity (UPV)

The UPV test results for the mix at 28 and 90  days 
and correlation between UPV and CS are presented 
in Fig.  20. The mixes result was between 3400 and 
3700 m/s, which falls under the decent to the excel-
lent category as per IS 13111 (Part 1). The linear 
regression analysis has been plotted (Fig. 21) between 
UPV and CS. A direct relationship was obtained as y 
(UPV)=2917.24 + 12.49 X (CS), with an R2 value of 
0.8954 showing a good correlation.
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Water absorption (WA)

WA of eight mixes investigated at 28, 56, and 90 days of cur-
ing is presented in Table 9. WA decreases with an increase in 
curing ages in all mix specimens. An increase in SS percent-
age increased water absorption. However, 75 µm downsized 

replacement of SS as binder material gives better results than 
150 µm downsized SS particle.

Assessment of environment impact and cost 
implication

Using a higher dosage of supplementary cementitious 
material in concrete minimizes environmental impact and 
increases compressive strength. Cradle-to-gate EE, CE, and 
COST are quantified for different binder combinations. The 
energy consumption and CE can vary depending upon the 
manufacturing process, raw material, and distance from the 
source. Therefore, representative data from the literature 
were used in this study.

Carbon dioxide emission

Global warming is exacerbated by urbanization and 
industrialization, which leads to the depletion of natural 
resources, prompting scholars worldwide to consider 
sustainable development. As a large user of natural resources 
and energy, the concrete industry has significantly increased 
GHG emissions. According to estimates, the global 
population is expected to reach ten billion by 2050, resulting 
in increased construction and development activities and a 
negative impact on the environment [78, 80].

The  CO2 emission parameters were calculated in this 
study by calculating carbon emissions during the preparation 
of SCMs. According to previous studies, the carbon 
footprint of FA is low because it is a waste by-product of 
coal-burning power plants. Researchers in earlier studies 
state that carbon mission from FA is negligible because it 
is a waste by-product arising from the coal-burning power 
station. But in the current study, the value of 0.008 kg eq.
CO2/kg is considered for FA, as per Hammond and Jones 
(2011) [80, 81].
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Table 9  Water absorption in percentage at 28, 56, and 90 days

28 days 56 days 90 days

M1 4.2 3.98 3.85
M2 4.32 4.05 3.94
M3 4.48 4.26 3.99
M4 4.72 4.54 4.36
M5 4.87 4.63 4.4
M6 4.33 4.09 3.92
M7 4.39 4.12 3.96
M8 4.43 4.24 4.02

Table 10  CO2 emission factors 
for sewage sludge

"a Energy utilized by oven during 24 h of drying with a utilization rate of 1041.67 W/h."
"b Energy utilized by sieving and grinding machines."
"c Emission aspect due to electricity production (DECC 2021)."
"d Distance from Municipal Treatment Plant to MIT, Manipal MAHE Campus."
"e Emission aspect of the truck used to transport the materials (DECC 2021)."

Material Energy requirement for 1000 kg SS Transport of 1000 kg SS Total emission 
(kg  CO2/kg SS)

Consumption (kWh) Emission 
factors (kg  CO2/
kWh)

Distanced Emission  factore

Oven  dryinga Grinding 
and 
 sievingb

SS (150 µm) 25 130.3 0.231 10 0.245 0.0383
SS (75 µm) 25 186.5 0.231 10 0.245 0.0513
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Similarly, SS raw material contributes zero  CO2 emis-
sion, as it is also a by-product in municipal wastewater treat-
ment plants [5, 82]. However, the energy utilized to improve 
reactivity by drying, grinding, sieving, and transport is 
considered for calculating carbon emission for SS and FA. 
According to the UK Government, conversion factors for 
GHG report 2021 are considered while calculating carbon 
emissions. Table 10 represents the calculated  CO2 emis-
sion factors for SS (150 µm) and (75 µm). The final carbon 
emission factors of ingredients used in concrete mixes are 
presented in Table 11.

The  CO2 emission of individual and total cementi-
tious material per mix is illustrated in Figs. 22 and 23. 
Replacing OPC by increasing the amount of SCMs per 
unit volume of concrete resulted in reducing  CO2 emis-
sion of cementitious material in mixes up to 57%. The 
amounts of  CO2 released by each concrete mix depend 
upon the proportions of materials, concrete production, 
and raw material transport, as presented in Fig. 24. The 

 CO2 emission factor was considered 0.008 kg  CO2/kg for 
concrete production as Kin et al. (2016) [86]. The pur-
pose of the  CO2 emission analysis is not to achieve a mix 
with the lowest  CO2. Achieving a mix with less  CO2 emis-
sions is also important, which shows acceptable mechani-
cal properties. The results show that Mix M1 with 100% 
OPC has the highest emission rate of 601.24 kg  CO2/m3, 
while the lowest value of 293.95 kg  CO2/m3 and 295.17 kg 
 CO2/m3 is observed in mix M5 and M8. When SCMs were 
incorporated, a reduction in  CO2 emissions was observed. 
According to the current study result, the binder was the 
major contributor to  CO2 emissions at rates ranging from 
80 to 90% of the total emission of 1  m3, depending upon 
the replacement ratio of SCMs.

Table 11  Carbon emissions factors of raw materials

Materials Emission factors (kg  CO2/kg) References

Cement 0.951 [83]
Fly ash (FA) 0.008 [83, 84]
SS (150) 0.0383 Table 8
SS (75) 0.0513 Table 8
Coarse aggregate 0.0043 [85]
Sand 0.0026 [85]
Water 0.000196 [86]
Super plasticiser 0.944 [83, 86]
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Eco‑efficiency

Eco-efficiency is the ratio between 28-day mechanical 
strength and  CO2 equivalent emissions of the concrete 
mixes. Figure 25 represents the concrete eco-efficiency 
of eight mixes and illustrates that the mix with alternative 
binder materials shows better efficiency than the OPC mix. 
The efficiency value observed (CS) at 28 days was 0.101 
MPa/kg.  CO2  m3 was in line with findings of Alnahhal et al. 
[86] and Stark et al. [87].

Concrete mixes with alternative binder material have 
shown better eco-efficiency than the control mix. The 
maximum eco-efficiency of 0.185 (CS), 00,158 (FS), and 
0.0123 (STS) is noticed with 75 µm downsized SS at 5% 
replacement.

Embodied energy and cost of blended binder

The EE of each binder material is presented in Table 12. In 
the current study, while comparing, the only binder mate-
rial is considered since fine, and coarse aggregate content 
is constant for all the mix. Figure 26 shows the embodied 
energy of binder material of different mixes. The embodied 
energy of SS at 150 µm and 75 µm is calculated using avail-
able data from the literature [10, 80, 88]. It can be observed 

that a decrease in cement content and an increase in sup-
plementary cementitious material can significantly reduce 
the EE and CE.

Environmental impact and binder cost per unit CS 
of concrete

The environmental impact quantification and binder cost per 
unit CS for different binder materials are calculated. The 
EI, CI, and binder cost index (COST) are calculated based 
on Eqs. 1, 2, and 3 derived with the help of an earlier study 
carried out by Jing Yu et al. (2021) [81].

where i denotes the curing time in days.
The calculation results on  EIi,  CIi, and  COSTi for binder 

material per meter cube are shown in Figs. 27, 28, and 29 at 
28, 56, and 90 days. EI value of 51.93, 49.2, and 48.69 (MJ/
kg)/MPa is observed for OPC mix at 28, 56, and 90 days. 
There is a drastic reduction in the embodied energy for the 
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Table 12  EE and material cost of ingredients

Material EE (MJ/kg) Material cost 
(IND Rs/kg)

Portland cement 5.5 [10, 80] 8.00
Fly ash (FA) 0.1 [81] 4.75
Sewage sludge (150 µm) 0.014 [80, 88] 1.20
Sewage sludge (75 µm) 0.0188 [80, 88] 1.60
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other mixes with OPC replacement. The least embodied 
energy index value of 26.42, 25.07, and 24.27 (MJ/kg)/MPa 
is observed at mix 06. The mix 7 value is on par with mix 

2, which has a 50% cement replacement with FA. A similar 
trend is observed for 56 and 90 days.

The Carbon Emission Index value of mixes 2–8 is lesser 
than the control mix (M1) observed for 28, 56, and 90 days. 
The addition of SS resulted in the reduction of carbon emis-
sions. At 90 days age, the trend of COST 90 is similar to 
COST 28 and COST 56. The COST 90 values of cement with 
different replacement levels of SCM are very close to each 
other due to significant strength development at a later stage. 
The mix with SS 150 µm at 5, 10, 15, and 75 µm at 10 and 
15 replacement levels exhibited slightly lower CS than the 
control mix. But it has superior environmental and economic 
benefits by considering the environmental impact and mate-
rial cost per unit strength.

Conclusion

The present study investigated the characteristics of SS, 
mechanical properties of concrete with different replacement 
levels along with carbon emissions, and embodied energy to 
develop sustainable and environmentally efficient concrete. 
A total of eight mixes with different levels of SS replacement 
as a binder material were cast and tested. The following main 
conclusions were drawn based on laboratory observations 
and findings.

• The main mineral components of SS are silicon dioxide, 
calcium, iron, and aluminum compounds. Based on the 
oxide content in SS, it is suitable to replace the Portland 
cement content in standard concrete.

• Mechanical characterizations such as CS, FS, and STP 
with 150 µm were observed with a reduction in strength, 
whereas the strength obtained at a 5% replacement level 
of 75 µm is on par with the control mix. There is no 
significant reduction in mechanical strength for 75 µm 
SS at 5% and 10% level at 90 days.

• All of the mixes tested for UPV reported between 3400 
and 3700 m/s, which falls into the decent to excellent 
range. A direct relationship between compressive strength 
and UPV was obtained as y (UPV) = 2917.24 + 12.49 
X (CS), with an R2 value of 0.8954 showing a good 
correlation.

• Partial replacement of SS as a binder material generally 
affects eco-efficiency, with values similar to or higher 
than the control mix. The advantages of utilizing SS as 
a partial substitute binder material lie in reducing  CO2 
emissions in making concrete and significantly reducing 
environmental problems caused by SS disposal.

• Incorporating SS as a binder to the concrete has a 
lower environmental impact, embodied energy,  CO2 
emission, and cost per unit strength. But more than 10% 
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Fig. 27  Comparison of EI, CI, and COST per unit CS of the mix at 
28 days
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replacement level resulted in reducing CS, FS, and STS 
by 11.17%, 6.23%, and 6.99%.

In the context of sustainable development, using SS as a 
binder material in concrete and these findings can help the 
efforts to reduce the carbon footprint and embodied energy 
in the construction industry. It can also reduce the burden 
and environmental effects of disposal of SS.
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