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Abstract
OPTICS is a popular tool to analyze the clustering structure of a dataset visually. The created two-dimensional plots indicate
very dense areas and cluster candidates in the data as troughs. Each horizontal slice represents an outcome of a density-
based clustering specified by the height as the density threshold for clusters. However, in very dynamic and rapidly changing
applications, a complex and finely detailed visualization slows down the knowledge discovery. Instead, a framework that
provides fast but coarse insights is required to point out structures in the data quickly. The user can then control the direction
he wants to put emphasize on for refinement. We develop AMTICS as a novel and efficient divide-and-conquer approach to
pre-cluster data in distributed instances and align the results in a hierarchy afterward. An interactive online phase ensures a
low complexity while giving the user full control over the partial cluster instances. The offline phase reveals the current data
clustering structure with low complexity and at any time.

Keywords Data streams · Hierarchical clustering · Density-based · Visual analysis

1 Introduction

Clustering is an essential task in the field of data mining and
unsupervised machine learning. The initial data explorations
are usually an important but difficult and exhausting step of
the analysis. A huge performance bottleneck is the identifi-
cation of parameter ranges to return interesting results.

In density-based clustering approaches, we are mainly
interested in finding dense regions of neighboring objects.
However, the definition of proximity has to be chosen
mostly manually while investigating a new dataset. Proba-
bly, the most prominent density-based clustering method is
DBSCAN[4], which detects arbitrarily shaped clusters with
similar densities while being robust against noise. Estimating
proper parameters to distinguish between sparse and dense
regions is a nontrivial task here, especially in dynamic appli-
cations.

B Florian Richter
richter@dbs.ifi.lmu.de

Yifeng Lu
lu@dbs.ifi.lmu.de

Daniyal Kazempour
kazempour@dbs.ifi.lmu.de

Thomas Seidl
seidl@dbs.ifi.lmu.de

1 LMU Munich, Munich, Germany

A method called OPTICS[2] was designed to cope with
this problem. As an extension of DBSCAN, it provides a
hierarchical model of the cluster structure in the dataset. The
results are represented as a two-dimensional plot, such that
analysts visually identify troughs as cluster candidates.

While being a suitable visualization tool for experts to esti-
mate the number and size of clusters hidden in the dataset, it
still contains the risk of poor parameter choices. In the worst-
case scenario, no troughs can be identified due to a wide
spectrum of densities in the dataset, leading to a flat OPTICS
plot. Our novel approach AMTICS provides an interactive
way to choose promising density levels for further investiga-
tion. Due to this explicit choice, attention on certain aspects
is established and the coarser presentation of the dataset
offers a broader comprehension of the data. The advantage
is not only the efficient re-computations to allow a stream
application of AMTICS. Instead of visualizing all minor
density fluctuations, our novel method AMTICS provides a
coarse estimation of the cluster structure for a fast explorative
human-based visual analysis. An ensemble of density-based
online clustering instances is the core of AMTICS. These
efficient and distributed instances are interchangeable, so
observation levels can be added or discarded. Analysts are
free to choose which density levels are promising to increase
the granularity there. This interactivity improves the anal-
ysis performance of the human-in-the-loop. For changing
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conditions or new analysis interests, the observation focus
can be changed dynamically. In the final step, all instances
are aligned to produce an approximated density plot of the
recently observed objects which is a huge benefit for any
further data analysis. AMTICS, as shown here, utilizes Den-
Stream. However, themain contribution is the agglomeration
of approximative online density-based clustering results, so
DenStream can be replaced by other clustering techniques.

The research focus is the revelation of cluster structures in
dynamic environments. The result is by far not a certain clus-
tering, but serves as a hint to start a more thoroughly cluster
analysis or concept drift detection. Density-based clustering
is a wide field of different paradigms, which yield various
variants of clustering instances. The identification of suit-
able parameters for succeeding cluster techniques is highly
depending on application and the focus of the analysis, and
not covered in this work.

2 Preliminaries

Density-based clustering is a well-studied topic in data sci-
ence. As most readers will already know, density is here
defined by two parameters: the radius ε to define the neigh-
borhood of each point Nε(x) and the minimal number of
points MinPts required for a dense neighborhood. Every
point is

– A core point if it has a dense neighborhood. Neighbored
core points establish clusters.

– A border point if its neighborhood contains a core point.
It is also added to this core point’s cluster.

– Noise otherwise.

One of the most popular density-based methods is DBS
CAN[4]. It selects points until a core point is found. All
transitively neighboring core points are merged to a com-
mon cluster, and neighboring border points are included.
If no further reachable core points can be found, this strat-
egy is repeated for the remaining yet untouched points until
all points are classified as either core points, border points
or noise. A major benefit of DBSCAN is its ability to
detect arbitrarily shaped clusters, while many other cluster-
ing approaches focus on elliptically shaped clusters. Second,
it also includes robustness against noise due to the density
property. The fixed ε-parameter, on the other hand, is a draw-
back as clusters with deviating densities are not detected in
a single DBSCAN instance. Choosing a lower ε value will
assign sparse clusters to noise, while a higher ε value will
more likely merge separate nearby clusters.

To overcome this issue and to assist in finding a suitable
ε value in case of an initial data exploration task, Ankerst et
al. developed OPTICS[2]. Given MinPts, this method deter-

mines for each point its core distance, the minimal distance
needed such that the ε-neighborhood contains MinPts many
points. For a point p, let kNN be the kth nearest neighbor
and d a distance function. Then, the core distance is defined
by

coreε,MinPts(p)

=
{
d(p,MinPtsNN), |Nε(p)| ≥ MinPts

undefined, otherwise

The ε value is used as an upper bound for performance
improvement. Using the core distance, the reachability dis-
tance can be defined as

reachε,MinPts(o, p)

=
{
max(coreε,MinPts(p), d(p, o)), if |Nε(p)| ≥MinPts

undefined, otherwise

The set of data points gets ordered by its reachability
distance. For each point, its successor is the point with the
smallest reachability distance out of the unprocessed points.
This ordering is not unique, due to start point ambiguity
and potential choices between equidistant objects. Finally,
a reachability plot is provided using the ordering on the x-
axis and the reachability distance on the y-axis. Since dense
object clusters in the data space have low pairwise reachabil-
ity distances, they are accumulated in the plot and the cluster
is identified as a trough in the reachability plot.

In an interactive online setting, we cannot apply OPTICS
due to its high computational complexity. Hence, we propose
a novel approach, which adapts the idea of DenStream[3] by
utilizing micro-clusters. A micro-cluster is an aggregation
of a group of data points, storing the number of aggregated
points as the weight w, the center of the group c and the
radius r . To enable incremental updates, instead of storing
the center and radius, a linear sum LS and a squared sum SS
are stored. For an update of a micro-cluster with point p, the
procedure

w = w + 1,LS = LS + p,SS = SS + p2

has to be performed. As a decay mechanism, the current
values are determined after multiplying all three parame-
ters with the factor 2−λ∗δt if δt is the time interval since
the last update of the micro-cluster. λ > 0 has to be chosen
to suit the desired rate of decay. The center and the radius
can be derived from the provided statistics as c = LS/w,
r =

√
(SS/w2 − LS2/w).

The radius is defined as the standarddeviationof the aggre-
gated points. DenStream uses two sets of micro-clusters: the
outlier micro-clusters and potential micro-clusters. Outlier
micro-clusters contain few points such that their weight is
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below a certain threshold. If it decays without new points
being merged into this cluster, it will disappear. Exceeding
theweight threshold, it will become a potentialmicro-cluster.
For the final cluster result, only the p-micro-clusters are used
by merging touching p-micro-clusters into macro-clusters.

3 AMTICS

Our clustering approach is a two-phase algorithm maintain-
ing an online intermediate representation of clusters and
providing an offline refinement step to construct the current
cluster hierarchy. The online phase usesmultiple instances of
a density-based online clustering algorithm for various den-
sity levels ε1, . . . , εk . Traditionally, OPTICS is applied first
and interesting density levels are determined visually. In this
work, we reverse the application order by the application
of cluster algorithms on different density levels and merg-
ing this information into an approximate OPTICS plot. The
key points are the ensemble of single-density clusterings, the
alignment of micro-clusters and the final transformation into
a reachability plot.

3.1 Online Stream Ensemble

We choose DenStream[3] as a starting point. Few required
parameters make it suitable for user interaction. The main-
tained finite set of micro-clusters is necessary for the
complexity constraints. Further, it allows to compare micro-
cluster structures of different density levels, such that clusters
can be aligned in one model. In future work, we will
investigate which density-based online cluster methods, for
example a grid-based approach, can be used instead of Den-
Stream but this is not the focus in this work.

At all time, a finite set of DenStream instances {DSε |
0 ≤ ε ≤ ∞} observe the stream and maintain their micro-
clusters. Each instance can be deleted or initialized anytime
during the stream except of two instances: DS0 and DS∞.
DS0 will classify every object as a different one-point cluster.
DS∞ builds exactly one large cluster containing all objects.
Both instances define the boundaries of our final result.

Since DenStream guarantees to maintain a finite set of
micro-clusters, keeping several but finitely many instances
is within the complexity limitations of an online algorithm.
In case that the user wants to introduce a new instance, we
duplicate the denser neighboring instance. Due to the decay
λ, the new instance will quickly adapt to the recent points.
Each ε-instance is a set of overlapping micro-clusters. Two
micro-clusters are touching or overlapping if the distance
between their centers is smaller than the sum of their radii,
which is the standard deviation of its points. We show the
intermediate result of four instances in Fig. 1 for the two
moons dataset. From left to right and from top to bottom,

the ε level is decreasing. Note that the first instance con-
tains always only one large cluster and the last one contains
no cluster. Although the plot contains both types of micro-
clusters, only the red potential micro-clusters are used for the
following steps.

Algorithm 1: AMTICS.getClusters
Data: Set of DenStream instances DSε

Result: Mapping on micro-cluster sets m : (ε, i) → MC
1 initialization of empty mapping m;
2 foreach ε do
3 i = 0;
4 C = ∅;
5 while DSε contains potential micro-clusters do
6 i = i + 1;
7 get any potential micro-cluster mc ∈ DSε;
8 C = find all p-micro-clusters connected with mc;
9 remove all micro-clusters in C from DSε;

10 m(ε, i) = C ;
11 end
12 end

3.2 Hierarchical Alignment

The previous online phase provides layers of clusterings
for all ε-values, and we need to align the clusters of each
layer with the clusters of the layer below. A cluster is rep-
resented by a set of micro-clusters, which are points with
a certain weight. We call two clusters C1 and C2 directly
related if C1 ∈ DSε1 and C2 ∈ DSε2 with ε1 > ε2, there
is no instance in between DSε1 and DSε2 , and D(C1,C2) =
min({D(C1,Ci ) | Ci ∈ DSε2}) for a suitable distance func-
tion D.

Wemodel the alignment of two instances in the refinement
as a transportation model, since we have to match micro-
clusters of different weights and positions. Therefore, we
apply the Earth Mover‘s Distance EMD[11] and extend it to
compute the cluster distance.

A function for this set-to-set distance has to be chosen
carefully as it highly determines the result. Popular can-
didates for set distances are single-link, complete-link and
average-link distances which are used in agglomerative hier-
archical clustering. Since our approach also constructs a
cluster hierarchy, we could apply AHC here as well. The
major issue is that we do not deal with exact object sets but
with approximative partitions. This fuzziness of object mem-
bership between different dendrogram layers causes these
distance functions to be not suitable in this application. An
applicable distance should combine two properties: spatial
distance and cluster weight difference. Also the weight of
a larger cluster could be divided onto several smaller clus-
ters. This is more similar to the task of optimal transport.
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Fig. 1 Two moons dataset clustered with different instances of DenStream. Potential micro-clusters are drawn in red, outlier micro-clusters in blue

The Earth Mover’s Distance EMD[11] is well suited for this
task as it calculates the cost of shifting weights from one set
of bins to another set of empty bins. The bins represent the
micro-cluster centers, and the distance between two bins is
the distance between both centers. The EMD covers the case
that a large cluster is split into several smaller clusters in the
lower ε-level, which is rather common in our application.

The EMD is defined for two clusters C1 =
{(p1, w1), ..., (pm, wm)} and C2 = {(q1, v1), ..., (qn, vn)}.
We use the Euclidean distance d(x, y) = ‖x − y‖ =√∑n

i=1(xi − yi )2 as ground distance between two micro-
cluster centers. The aim is to find the flow F = ( fi, j ) ∈
R
m×n of weight from C1 to C2 which minimizes the costs

given by

cF =
m∑
i=1

n∑
j=1

fi, j d(pi , q j )

in strict accordance with the following constraints:

– The flow has to be nonnegative, so weights are only sent
from C1 to C2 and not vice versa:
fi, j ≥ 0, ∀1 ≤ i ≤ m, 1 ≤ j ≤ n

– The sent flow is bounded by the weights in C1:∑n
j=1 fi, j ≤ wi , ∀1 ≤ i ≤ m

– The received flow is bounded by the weights in C2:∑m
i=1 fi, j ≤ v j , ∀1 ≤ j ≤ n

– All weights possible have to be sent:∑m
i=1

∑n
j=1 fi, j = min

(∑m
i=1 wi ,

∑n
j=1 v j

)

The distance is then defined as EMD(C1,C2) =∑m
i=1

∑n
j=1 fi, j d(pi ,q j )∑m

i=1
∑n

j=1 fi, j
.

We apply the EMD on all potential candidate pairs which
are clusters of consecutive density levels. Eventually, we aim
for a tree of clusters such that the root is the cluster in DS∞
containing all points. The height of each node represents
the density level of this cluster. If two clusters are directly
related, then the corresponding tree nodes are connected. Our
method determines for every cluster the parent cluster with
the minimal EMD. In Fig. 2, a matching is performed for two
ε layers. The strong lines indicate the best matching parent

cluster. After application of the EMD, we gain an alignment
of all pairwise consecutive cluster layers connected by the
smallest EMD distances. The desired outcome is a tree-like
hierarchy, such that child nodes contain always less points
than parent nodes, which is comparable to a max-heap. The
reason is discussed in the following.

Algorithm 2: AMTICS.buildHierarchy
Data: Mapping on micro-cluster sets m : (ε, i) → MC
Result: Hierarchy of clusters H

1 initialize empty graph H
2 sort all ε descending
/* create node N for m(∞, 0) */

3 N = node(m(∞, 0))
4 parentNodes = list(N)
5 H.root = N
/* Generate a graph of related cluster

nodes */
6 foreach (εprev, εnext ) do
7 childNodes = list()
8 foreach m(εnext , i) do
9 nodec = node(m(εnext , i))

10 foreach nodep ∈ parent Nodes do
11 N .d(nodep) = EMD(nodec, nodep)
12 end

/* find closest parent nodes */
13 nodep1 = min(N .d)

14 nodep2 = minsecond (N .d)

15 if N .d(nodep1) ≈ N .d(nodep2) then
16 merge(nodep1, nodep2)
17 end
18 Add (N , nodep1) to H
19 end
20 parentNodes = childNodes
21 end

3.3 SharedMicro-cluster Coverage

In an optimal case, large clusters split into smaller shards
on the lower ε-levels and the constructed hierarchy repre-
sents a relation of subsets regarding the contained point set
and the cluster nodes represent a max-heap structure regard-
ing the cluster weights. For a maximal ε value, all points
are contained in a super-cluster which is also true for DS∞.
The lowest level classifies each point as noise and so does
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Fig. 2 Distances for all pairs of
clusters of consecutive ε levels
have to be computed to find the
closest and most likely parent
cluster

DS0. This is not necessarily the case at this point, even for
small synthetic datasets. The generation of micro-clusters
is depending on the processing order of the points, and we
usually cannot guarantee a perfectly uniform distribution of
stream objects, neither spatial nor temporal.

While OPTICS and DBSCAN consider ε neighborhoods
for all points, DenStream trades this accuracy for its ability
to aggregate points into micro-clusters. The more complex
the dataset is and the higher the dimension of the points is,
the more likely is that the aligned micro-clusters do not form
a hierarchy anymore.We identified two effects causing prob-
lems here by violating the heap condition, which is the case
if a cluster in a smaller ε level is the children of a cluster with
less weight. To ensure a valid hierarchy, clusters with larger
neighborhoods have to cover clusters with smaller ε values.

As we do not store every singular point, we assume the
contained points to be mostly equally distributed within the
defined circular area. Although this is a very useful assump-
tion for the general case, it has a drawback. Every point
added to themicro-cluster shifts the center toward this point’s
coordinates. If all points are perfectly equally distributed
regarding not only their position but also their sequential
occurrence, the micro-cluster would not move. In reality and
even for synthetic datasets, a small set of points can cause a
cluster to shift apart from its potential connecting neighbor,
causing a cluster to split. We call such events micro-trends,
and they are the more likely, the larger a dataset is.

The actual problem occurs by comparing micro-clusters
of different radii which we do by aligning micro-clusters
of different ε levels. Larger micro-clusters are much more
affected bymicro-trends. Let us assume twoone-dimensional
micro-clusters mc1 = {0, . . . , 7} and mc2 = {8, . . . , 15} as
displayed in Fig. 3. The micro-clusters are touching so they
form a cluster in the output result. If we add three additional
points per micro-cluster, the micro-clusters lose their con-
nection as the points are not equally distributed anymore.
In comparison with these large micro-clusters, we clustered
the same dataset with smaller micro-clusters. Each of the
four micro-clusters contains four neighboring points. When
adding the six additional points, the outer micro-clusters

absorb three points each. However, the points within all clus-
ters are equally distributed, so the centers are not shifted.
The radius of each outer micro-cluster is reduced but all four
micro-clusters are still connected.

In Fig. 4, we display two DenStream instances where the
previously described effect occurs. Considering both gaps
with smallest distance between themoons, the complete point
set is connected in the lower instance DS0.25 while discon-
nected in DS0.3.

Starting from the initial assumption that smaller clusters
with higher density on the lower hierarchy levels should
always stay connected in higher ε levels, we suggest the
following strategy. During the creation phase of the cluster
nodes, we previously determined for each cluster the clos-
est parent cluster considering the EMD. Instead, we also
compute the distance to the second nearest potential parent
cluster. If the ratio of the nearest p1 to the second nearest
cluster p2 as ratio = EMD(p1, n)/EMD(p2, n) is close to
1.0, both parent clusters cover a dominant area of the child
cluster.

We merge this pair of clusters by shifting all the weight
and micro-clusters of the second one p2 to the first one p1.
In addition, all pointers from and to p2 have to be changed
accordingly such that the parent node of p2 becomes p1.
Possibly, distances have to be recalculated as p1 contains
more micro-clusters now. It is also possible that this initial-
izes a cascade of merging operations bottom-up until the root
node is reached. This is repeated top-down until no merges
are required anymore. This cascade is still no issue for the
online applicability as the number of operations is limited
by the number of ε layers above, which is a user-defined
finite and mostly small number. The algorithmic description
is given in Algorithm 3.

3.4 Local Outliers

Border points sometimes are not covered by potential micro-
clusters of larger radius while being contained in smaller
micro-clusters, see, e.g., Fig. 5. Two DenStream instances
are applied to this dataset with ε values of 1.1 and 0.8. As
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Fig. 3 A one-dimensional dataset of 16 points is clustered. Then, six points are added. The larger micro-clusters are affected such that they
disconnect the main cluster. The smaller micro-clusters do not disconnect

Fig. 4 Depending on the actual
distribution of points, a
DenStream instance using
smaller micro-clusters can
sometimes connect point sets,
which are segmented by larger
micro-clusters

Algorithm 3: AMTICS.merge
Data: Two nodes n1, n2 to be merged
Result: void

1 Append all children of n2 to n1
2 Move all weight from n2 to n1
3 Move all micro-clusters from n2 to n1
4 Change link from n2.parent pointing to n2 to n1
5 Recalculate distances of n1 and potential parents
6 if EMD(n1.parent, n1) ≈ EMD(n2.parent, n1) then
7 merge(n1.parent, n2.parent)
8 end
9 Remove n2

described before, we construct a hierarchy and the figure
shows both levels and the established micro-cluster struc-
ture. As the larger ε value enables a micro-cluster to cover
the first three points but not the fourth point, only three points
are covered in the final clustering and the remaining point is
treated as noise. In the level below, the smaller neighbor-
hood range allows only the first two points to be merged into
one cluster. The third point is then processed and cannot be

merged into the first micro-cluster. It establishes a second
micro-cluster which starts as an outlier micro-cluster. Then,
it is merged with the remaining point, which allows this clus-
ter to be raised into a potential micro-cluster. The alignment
step will align the one cluster in the top level to all clusters
in the bottom level, causing the larger micro-cluster to cover
less points.

To repair the hierarchical structure and induce the mono-
tonicity required for a reachability plot, we virtually add
cluster points to the parent clusters such that their weight
exceeds or equals the weight of the children clusters. Our
assumption here relies on the better coverage quality of
smaller micro-clusters for arbitrarily shaped clusters. Tech-
nically, the hierarchy has to be processed bottom-up and for
each parent cluster the weight sum of all directly related is
calculated. If this sum exceeds the parent cluster weight, its
weight is set to the sum. Otherwise, nothing has to be done.
Eventually, the root DS∞ is reached. It is very common that
the weight sum of the second level will exceed the weight of
the top cluster. However, this cluster covers by definition all
points of the dataset. The ratio of the number of points that it
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Fig. 5 Clusters of DenStream instances with higher ε values can split
into clusters with a higher point coverage due to processing order and
the micro-cluster architecture

should have to the number of points it would have regarding
the weights of its children clusters is then propagated down
the hierarchy and used as a scaling factor for all weights.

After this operation, the ε levels present a valid hierarchy
ensuring monotonicity between weights of consecutive lev-
els: For all 0 ≤ ε < ε′ ≤ ∞, if a pair of points p1, p2 is
clustered in the same cluster in DSε, then p1 and p2 are also
clustered in one cluster in DSε′ .

3.5 Generating the Reachability Plot

To yield a reachability plot, we construct a dendrogram of
horizontal bars B in a first step. We approach top-down
through the hierarchy and transform the hierarchy of clusters
into a tree of line objects, where each line represents a cluster.
For each cluster, we plot a horizontal bar b = (x, y, w) ∈ B
with (x, y) being the starting point andw being the barwidth.
The width is defined by the weight sum of all contained
micro-clusters and represents the cluster size. For the height,
we define y = ε. The first bar for DS∞ will be drawn with
y0 = 1.25 · maxε∈R as b0 = (0, y0,DS∞.weight) ∈ B.

Recursively, if a bar has been drawn as b = (x, ε, w)

and the according cluster has n children clusters c1, . . . , cn ,
we first compute the remaining space by rem = w −∑n

i=1 ci .weight . All children bars are distributed equally,
using rem/n as an intermediate space between them. As we
ensured in the previous section that the sum of all children
weights will not be larger than the parent weight, the inter-
mediate space will be zero at least.

The final refinement is the definition of the reachability
r(z) = min{y > 0 | (x, y, w) ∈ B ∧ x ≤ z ≤ x + w}.
Geometrically, we sweep-line from left to right and choose
always the lowest bar of all candidates at this point on the
x-axis. As b∞ spans the complete interval, a minimum can
always be found.

3.6 Limitations and Complexity

The used Earth Mover’s Distance is quite slow in perfor-
mance. However, the overall complexity is not changed as
we are only looking on finitely many DenStream instances.

The aim of the EMD is to distribute one set of objects onto a
set of bins with the same capacity. In our case, we explicitly
use it as a distance between differently sized sets. Since the
distance computation is a core step in our method, it might
be worthwhile to improve this step further, for example by
introducing a suitable index structure to reduce the num-
ber of distance computations or lower distance bounds for
candidate filtering. However, alternatives to EMD and more
in-depth evaluations on other distance measures are not in
the scope of this paper and will be addressed in future works.

A strong limitation and simultaneously a benefit is the pos-
sibility to initialize and remove ε instances at any time and
for any density level. It is quite difficult to choose the first few
instances in the case of the absence of all expert knowledge
over the dataset. After some key levels have been identi-
fied, the interactiveness is quite useful to get a more accurate
picture for certain density levels. Giving a reasonable start
environment depending on the fed data automatically would
improve the usability significantly.

Regarding the complexity, eachDenStream instancekeeps
at mostW/MinPts many potential micro-clusters in memory
as shown in [3]. As W is the overall weight of all clusters, it
can be replaced byW = v/(1−2−λ)with v being the number
of objects observed in the stream per time unit. Sincewe keep
k instances of DenStream in parallel, the complexity is given
by O(kv/(1 − 2−λ)) or O(k/(1 − 2−λ)) per stream object.
As we only introduce finitely many clustering instances, the
complexity is constant for λ > 0. Solving optimizations like
Earth Mover‘s distances is expensive, however, as the num-
ber of micro-clusters is finite, the hierarchy is constructed
in constant time. This also holds for the number of hierar-
chy nodes. Although it is not required for the final result,
we can ensure a constant complexity for the whole chain of
operations.

3.7 Initial Parameter Choice

In the beginning, one starts with exactly two ε-levels ε0 and
ε∞. However, choosing additional ε-levels to observe the
data stream can be difficult. Until suitable levels are iden-
tified by trial, interesting clusters could have been missed
during the process of randomly probing. Here, we propose
a more targeted method to find a good starting set of initial
observation levels. Therefore,we collect streamobjects in the
starting phase and establish a promising set of observation
levels in an initial offline phase.

For a predefined n ∈ N, we apply OPTICS to the subset of
n objects. So although we do not apply our novel approach
directly from the beginning, we do not lose all information
since the offline application of a clustering algorithm still
provides us with a result.

Besides identifying interesting structures in the beginning,
the OPTICS plot is then used to hint good starting levels
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Fig. 6 Influence and observation patterns on AMTICS due to differ-
ent types of concept drifts. The middle area shows the original pattern
before the drift. From top-left to bottom-right, we observe (1) creation

of a new cluster, (2) condensing of a cluster, (3) merging of clusters,
(4) vanishing of a cluster, (5) extending of a cluster and (6) splitting of
a cluster
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for our AMTICS. We apply a sweep-line search on the plot
horizontally bottom-up. The procedure works in both direc-
tions. We are starting at ε = 0. Obviously, the OPTICS plot
should not be intersected by our sweep line in the beginning,
although it could be tangent in some special circumstances if
some points exist directly onto each other. Moving the sweep
line up, the number of intersections grows. Everytime the
number of intersections changes, the height of the sweep line
is used to initialize a new ε-level on this height. Finally, the
number of intersections will decrease again until the sweep
line is completely above the reachability plot. Then, we do
not need to introduce another observation level between the
previous one and the level at ε∞. Choosing those initial obser-
vation levels provides us with a good starting point to catch
the clustering structure in the beginning of the stream. Next,
wewill discuss how tomaintain an overview about a potential
changing structure.

3.8 Concept Drifts andMaintaining the Structural
Overview

Observing a stream of objects and their clustering struc-
ture, the environment is usually not static. The structure will
change and we observe effects that are commonly known as
concept drifts. The literature divides between four types of
drifts.

Sudden drifts are caused by abrupt changes of the envi-
ronment. With reference to clustered objects, a sudden drift
is often the appearance or vanishing of whole clusters. Due
to the fading characteristic of DenStream’s micro-clusters, a
sudden drift is hardly observable in the AMTICS plot. The
decay of a micro-cluster causes a vanished cluster causes a
micro-cluster to decay slowly, until the potential cluster com-
ponents traverse to the outlier state and become ignored in
the result set.

However, sudden drifts are very rare in real-world applica-
tions and often caused by active and obvious manipulations
like switching a lever. In many cases, sudden drifts are incre-
mental drifts with very small transition times. In the case of
incremental drifts, a cluster appears or vanishes over some
time.This effect canbe seen as troughs in theplot change their
shape. For a vanishing cluster, the shape becomes smaller
and more shallow and an emerging cluster leads to a valley,
growing in size. In Fig. 6, starting from the central dataset
in the middle, the left top area shows the dataset with the
corresponding AMTICS plot after another cluster has been
emerged. Instead of two dents in the plot, three troughs are
observed, according to the changed dataset. In the left bot-
tom area of the figure, the large cluster has been erased. The
AMTICS plot correctly shows only one large trough since
there is only one cluster in the data left.

The existence of clusters is not the only factor that can
change dynamically. The density is a dynamic property as

well. The number of objects in a cluster might be unchanged,
but if the spatial variance increases, the density will decrease.
In this scenario, the corresponding trough will flatten over
time, while keeping the same diameter. Analogously, the
same holds for clusters that converge toward their center.
Increasing density causes dents in the plot to be deepened.
The ability to recognize such a density drift with AMTICS
is highly depending on the resolution of density levels and
the significance of the density change. If the drift has only
minor significance, the drift remains undetected if the gap
between two density levels is too large. In Fig. 6, the mid-
dle top shows the results after the larger cluster has been
condensed into a smaller area, although containing the same
number of objects. The corresponding trough is deeper now,
indicating a denser connectivity within the cluster. The sep-
arating peak still highlights the structure comprising of two
distinct clusters. On the opposite position in the middle bot-
tom section, the smaller cluster has been extended. In the
AMTICS plot, we can clearly observe that the levels of both
dents are similar now, as in the case of increased density
before. However, the separating peak has almost vanished.
This is also explainable, since border points of both clus-
ters are already mingled. The plot also shows a black area of
points that could not be assigned to a cluster. The DenStream
instances at these levels produced a number of outlier micro-
clusters. According to the scatterplot, this result is expectable
since many points exist in sparse border areas now.

Spatial movement is also a drift effect, which is caused
by changing attributes. The position is not tracked in the
reachability plot; hence, such a drift cannot be detected by
AMTICS.However, this is not a disadvantage, since themain
focus is on the clustering structure. A side effect of moving
clusters is merging and splitting of clusters when clusters
overlap. This effect is detected by AMTICS as two closely
neighboring clusters will eventually merge their troughs in
the plot when they meet in the data space and a kind of inter-
ference patternwill indicate a joint dense cluster. In Fig. 6, the
right sections show such operations. In the top right corner,
the denser cluster collides with the larger cluster. The result
in the AMTICS plot is observed as the separating peak is
shrinking in height. If both clusters converge toward a com-
mon center, the peak will disappear and there will be one
large dent with an accumulated depth. In the bottom right
corner, the denser cluster has been split into two parts. In the
corresponding AMTICS plot, we can differentiate between
three clusters. Some objects of the sparse large cluster on the
left are very close to one of the new clusters, which causes
the lower DenStream instances to apply an unstable clus-
ter assignment. This is a common problem of density-based
clustering when cluster densities are too different and inter-
cluster distances are too small.

Sometimes, changed circumstances only affect a subset
of objects while the other part of objects follows the for-
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Fig. 7 Comparison of
computation time for OPTICS
and different AMTICS instances
with varying decay factors.
While OPTICS has a quadratic
complexity, AMTICS shows its
linear growth for increasing
numbers of data points

mer behavior. For example, there might be contracts that
assure some objects former rights, leading to different obser-
vations. In a certain period, objects with a changed behavior
will appear while the old behavior remains dominant at first.
During this period, the new behavior eventually dominates
the former behavior until objects with the former behavior
will disappear completely. In such a case, we are investigat-
ing gradual concept drifts. However, to identify such drifts,
we need a higher level of observation perspective and it
is required to store and compare different snapshots of the
clustering structure. Although AMTICSmight provide those
snapshots, the analysis of such drifts is a topic of its own and
not covered here.

Also, concept drifts are not necessarily restricted to unique
occurrences. If we have some kind of seasonal impact on our
data and drifts will occur regularly, for instances the system
will oscillate between two behaviors, we are talking about
a recurring drifts. The same as for the gradual drift holds
here, since the identification involves more stream observa-
tion techniques and is therefore also not covered in this work.

4 Evaluation

AMTICS is a data exploration tool to get first results of
the clustering structure within a data stream. To be appli-
cable to streams, an online algorithm has to process each
object inO(1). We empirically prove this claim to be correct
by measuring the performance on a data stream. The two
moons dataset was already mentioned in the previous sec-
tion. We generated two moons datasets with various sample
sizes between 500 and 5000 points. As a baseline, we applied
OPTICS to these datasets and measured the computation
time.We repeated each computation three times and used the
minimum to compare with our algorithm. For AMTICS, we
used four decaying factors λ ∈ {0.01, 0.02, 0.03and0.04} as
we know that the decaying influences the number of micro-
clusters and thus the performance. To get consistent results,

we applied AMTICS with the same settings on the streamed
datasets repeatedly. The complete computation time over all
stream data points is aggregated. For all AMTICS runs, we
used five ε instances.

In Fig. 7, we plot the computation time in seconds for
the different dataset sizes. All evaluations were performed
on a workstation with an Intel Xeon CPU with 3.10 GHz
clock frequency on 16 GB memory. The results show a
clear linear increase in computation time for AMTICSwhich
is expected since the additional processing time for each
arriving item has constant complexity. In comparison with
OPTICS which shows a quadratic complexity in the number
of data points, AMTICS has a reliable linear complexity over
the number of data items. Obviously, OPTICS can be faster
for small datasets where point neighborhoods consist only of
few points. However, already for medium-sized datasets, the
computation time of OPTICS exceeds our efficient method.

To achieve the performance advantage, we trade time
for accuracy. As we only produce an approximation of the
OPTICS plot, the result can be coarse. This is especially
true in the beginning of a stream and for a small set of ε

instances. To get an impression of howAMTICS results look
like compared to OPTICS and to compare the detected clus-
ters, we refer to some 2d example datasets in Fig. 8 and
the popular chameleon dataset in Fig. 9. In the four test
cases, AMTICS can compete with OPTICS by identifying
the overall structure of the clusters, although the OPTICS
results are slightly more accurate. Themost difficult scenario
for AMTICS seems to be the two-circle dataset. Due to the
curving, themicro-clusters in the inner circle are touching the
outer circles rather early. This leads to a rather large transition
phase between the detection of two clusters and one cluster
only, which can be seen in the corresponding AMTICS plot.

To give AMTICS a little challenge, we also clustered the
chameleon dataset, which is tough due to the combination of
solid clusters, sinusoidally arranged points and much noise.
Both OPTICS and AMTICS struggle with the detection of
the solid clusters. However, AMTICS is still able to identify

123



370 F. Richter et al.

Fig. 8 OPTICS and AMTICS in comparison on different synthetic datasets

the cluster structure with only few ε instances. Some clusters
are connected with dense noise, so they are aggregated in the
result.

OPTICS and AMTICS use a parameter ε with a synony-
mous meaning.We investigated the correlation between both
values εOPTICS and εAMTICS and define a controllable test
scenario ’GridGap’ as sketched in Fig. 10. It consists of
two regular grid-based point sets with a defined margin d
in between. If d is larger than the point distance in one of the
grids, it corresponds directly to εOPTICS. The maximum ε for
AMTICS to divide the dataset is εAMTICS. Since instances
have to be defined in advance, we choose a step width of
0.02.

In Fig. 10, we exemplarily gave the resulting plots for
d = 10. The overall structure is represented. We compared
the peak height of the OPTICS plot with the peak height of
the needle-like pillar in themiddle of theAMTICSplot. Eval-
uating several distances, we concluded that both approaches
are correlated linearly by f (x) = 0.47 · x + 0.33. The con-

stant term is a result of the distance within both clusters. In
the case of OPTICS, the distance is constant 0.1 for a grid of
10 × 10 points. For AMTICS, the distance between micro-
clusters is used. Since micro-clusters represent a Gaussian
distribution but we distributed the points equally, distances
are stretched in comparisonwithOPTICS.Hence,we assume
that the actual distribution of the data points will influence
this constant offset and it should not be expected that the
same density level in both methods yields the same results.

In a last evaluation, we show the applicability of AMTICS
to datasets of higher dimensionality. The datasets contain
2000 data points partitioned into three circular clusters of
equal size. The numbers of dimensions are 10, 20, 30, 40,
50 and 100. In Fig. 11, we give the AMTICS plots for
the datasets. For higher dimensions, the distances rise and
obviously the density-based method will fail for really high
dimensions due to the curse-of-dimensionality and the fact
that differences between distances of object pairs will van-
ish. For lower dimensions and practical applications, our
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Fig. 9 OPTICS and AMTICS in comparison on the Chameleon dataset

Fig. 10 Evaluation setup to estimate the correlation between density in OPTICS and density in AMTICS. Two regular point grids are divided into
two clusters. The gap distance in between is increased incrementally. Comparison of two result plots of OPTICS and AMTICS on the GridGap
dataset with d = 10

approach is able to distinguish between the three clusters.
This test is performed using the Euclidean distance. At some
point, it might be useful to substitute the distance with a
more robust measure like the Mahalanobis distance. In low-
dimensional spaces, the speed advantage of the Euclidean
distance prevails.

5 RelatedWork

In [1], the authors provide a formidable survey paper which
encompasses state-of-the-art density-based stream clustering
algorithms. To resharpen the focus: AMTICS is a density-
based stream clustering algorithm which comes with the
following properties: (a) it relies on concepts inherent to
OPTICS, (b) enables the operation on multiple resolutions
and (c) permits interactivity by interceptionwhile at the same
time reducing re-computation efforts. Considering the algo-
rithms proposed in [13] which are similar to AMTICS w.r.t.
the concepts provided by OPTICS, StreamOptics is listed.
While this method satisfies the criterion of relying on the

concepts ofOPTICS, it neither permits to investigate the clus-
tering at different resolutions nor does it provide interactions
from users. Regarding the support of different resolutions,
the authors in [1] refer to the method MR-Stream[15]. How-
ever, while enabling multiresolution clustering, MR-Stream
considers one single and therefore globally applied ε-range
and minpts parameter setting, while in contrast OPTICS and
AMTICS can identify the different ε-ranges of each cluster.
It also does not provide any interactions. AMTICS serves
the purpose to inspect interactively different density lev-
els and further investigate the potentially emerging clusters.
By selecting interesting regions on different density levels,
the information is merged into an approximative OPTICS
plot. The fact that AMTICS has a human-in-the-loop com-
ponent renders it difficult to perform quantitative analysis
w.r.t. quality measures such as NMI, ARI or density-based
validation index [9]. With the aspect of interactiveness, it
has a distinctive property which is not captured by any of the
state-of-the-art properties elaborated on in [1].

Since AMTICS is targeted at a density-based cluster-
ing model, we elaborate first on DBSCAN[4] as among
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Fig. 11 AMTICS applied to three-blob datasets with multiple dimensions

the most prominent algorithms for density-based cluster-
ing being followed by GDBSCAN[12], HDBSCAN[8] and
DENCLUE[6]. In DBSCAN, the users set an ε and mini-
mum number of objects to be located within this range by
which the expected density is characterized. Nevertheless,
DBSCAN also comes with certain weaknesses. One of them
is that it is a challenging task to determine an adequate ε-
range. A secondweakness is its incapability to detect clusters
of different density. A method which was constructed as a
visualization and has been constructed with these two weak
points inmind isOPTICS [2]. Toovercome theseweakpoints
of DBSCAN, OPTICS orders the points of a given dataset in
a linear fashion, such that neighboring points in this ordering
are following consecutively after each other. In the form of a
reachability plot, users can spot valleys of different depths by
which (1) the different densities of clusters become visible
and (2) determining an adequate ε-range is facilitated.

Data can occur in a stream setting, DBSCANandOPTICS
are not suitable for high-velocity scenarios. As such, a
density-based clustering algorithm tailored at data streams
has been designed knownasDenStream[3].Here, the authors
introduce dense micro-clusters (core-micro-clusters) with
the purpose to summarize dense clusters of arbitrary shapes.
Having a density-based method for the stream setting, works
have emerged on providing an OPTICS-fashioned method
for high-velocity scenarios. As one related work, we have
OpticsStream[13] which hybridizes the concept of a density-
based stream clustering with an extension of OPTICS. Their
approach to a streaming version maintains, based on the
reachability distance, an ordered list of core micro-clusters.
The maintenance over time is ensured through insertions
and deletions in a separate micro-cluster list. As a result, an
OPTICS plot is generated based on the current micro-cluster
structure. Further, the authors introduce a three-dimensional
reachability plot where the third dimension is an axis repre-
senting the time. However, the three-dimensional construct

renders it difficult to clearly identify the valleys and thus dif-
ferent density levels. One of the major differences between
OpticsStream and AMTICS is that our approach does not
start one single instance of an density-based stream cluster-
ing but several. This gives the opportunity to detect clusters
even though they are changing their density over time.

For the OPTICS algorithm itself, the authors recognized
in IncOPTICS [7] that it is not necessary to compute the
whole reachability plot anew. By the notion of density in
OPTICS, insertions and deletions impact only on a small
subset of objects. Updates, however, affect another subset of
objects leading to movements within the clustering order.
Based on these observations, the authors provide in their
work an algorithm to incrementally insert and delete within a
cluster ordering. However, the two major steps are infeasible
w.r.t a streaming setting. The first step involves the detec-
tion of a starting point for a reorganization which is required
after each update operation. The second step involves the
reorganization of the cluster ordering until a valid ordering
is re-obtained.

An OPTICS variant which is especially tailored at large
volume data is GridOPTICS[14]. The fundamental idea
behind this work is to impose a grid on a given dataset. The
grid approach the authors use is not the area or hypervolume
of a grid cell per se but the junctions, or in a more illus-
trative way: the corner points of a grid cell. The objects are
assigned to their closest junction point yielding junction sub-
sets. In the following step, it executes OPTICS on each of the
grid junction subsets. Then, in the third step, the clusters per
junction subsets are derived from the OPTICS computation.
Finally, all objects over all junction subsets are assigned to
their, respectively, closest cluster which leads either to no
changes of junction subsets or to a merging of them. While
the authors state that this method is in orders of magnitude
faster than OPTICS and highly suitable for large volume
data, they also state on the contrary that GridOPTICS results
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can be of lower accuracy compared to OPTICS. Further, the
benefits of the runtime can heavily degrade with increasing
dimensionality which results in an exponential increase of
junctions. AMTICS in contrast is not affected w.r.t. the run-
time by increasing number of dimensions as GridOPTICS.

Regarding the aspect of parallelization, POPTICS[10]
is a method which is a massive parallel shared memory
and distributed memory variant of OPTICS using Prim’s
Minimum Spanning Tree method. While in POPTICS a
low-level approach and inter-process communication man-
agement needs to be considered,AMTICScanbeparallelized
in an very simple fashion on a high-level scale.

In a more recent contribution [5], the authors propose an
algorithm which is capable of computing the OPTICS visu-
alizations within O(n log n) runtime. This improvement in
runtime is at the same time ensured within a certain approx-
imation bound, providing a guarantee that the resulting plots
have a highly close resemblance of the original OPTICS
plots. In order to achieve this goal, the authors propose a
novel approach named ρ-approximate OPTICS. However,
the authors state that the bounded precision is ensured in
low-dimensional spaces, rendering it infeasible for high-
dimensional scenarios.

6 Conclusion

AMTICS is an efficient and interactive density-based online
micro-clustering algorithm. It follows a divide-and-conquer
strategy by clustering the same dataset on different density
levels and merges the separate results into a hierarchy of
clusters of various sizes and densities. The hierarchy is finally
displayed visually as a reachability plot inwhich valleys refer
to dense areas that are more likely to be clusters.

With AMTICS, it is possible to process data streams
and explore the clustering structure visually. It provides the
flexibility to shift the focus to certain density levels by incre-
mentally adding or removing clustering instances. AMTICS
produces an approximative reachability plot anytime in the
stream on demand. Similar to OPTICS, the alignments of
micro-clusters provide insights into the cluster structure
while in contrast providing a coarse overview for a rapid
visual analysis. The advantage is not only the agile construc-
tion of a reachability plot, which can be constructed with
related methods like OpticsStream[13]. Using the layered
hierarchy provides the desired level of cluster granularity
which augments the analysis performance as well by reduc-
ing the complexity of the visual analysis for humans.

In future works, we are going to investigate heuristics for a
useful set of starting ε levels. This will assist a human opera-
tor in the visual analysis process. As a further future topic, the
distance computation can be improved. Although the Earth
Mover‘s distance is very suitable for the application, we do

not need to find the exact distance values. If we provide a suf-
ficient ordering of super-clusters as potential parent nodes in
the hierarchy, we can improve the performance in the offline
phase.

As mentioned in Introduction, AMTICS does not provide
a particular clustering for a dataset. The next logical step in
the explorative analysis demands the choice of a clustering
paradigm and suitable parameter settings. Hence, succeeding
clustering steps need detailed fundamental work and evalu-
ation, which cannot be covered here, although it is a very
promising future work.
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