
Vol:.(1234567890)

Data Science and Engineering (2020) 5:224–239
https://doi.org/10.1007/s41019-020-00132-2

1 3

Real‑Time Influence Maximization in a RTB Setting

David Dupuis1 · Cédric du Mouza2 · Nicolas Travers3  · Gaël Chareyron1

Received: 11 March 2020 / Revised: 24 May 2020 / Accepted: 8 June 2020 / Published online: 22 June 2020
© The Author(s) 2020

Abstract
To maximize the impact of an advertisement campaign on social networks, the real-time bidding (RTB) systems aim at
targeting the most influential users of this network. Influence maximization (IM) is a solution that addresses this issue by
maximizing the coverage of the network with top-k influencers who maximize the diffusion of information. Associated with
online advertising strategies at Web scale, RTB is faced with complex ad placement decisions in real time to deal with a
high-speed stream of online users. To tackle this issue, IM strategies should be modified in order to integrate RTB constraints.
While most traditional IM methods deal with static sets of top influencers, they hardly address the dynamic influence target-
ing issue by integrating short time decision, no interchange and stream’s incompleteness. This paper proposes a real-time
influence maximization approach which takes influence maximization decisions within a real-time bidding environment.
A deep analysis of influence scores of users over several social networks is presented as well a strategy to guarantee the
impact of an IM strategy in order to define the budget of an ad campaign. Finally, we offer a thorough experimental process
to compare static versus dynamic IM solutions wrt. influence scores.

Keywords  Real-time bidding · Influence maximization · Social network

1  Introduction

Influence maximization (IM) is a trend topic since Kempe
et al. [19], known as a maximum coverage problem of social
networks. The goal is to find the smallest subset of individu-
als in a social network, whom when targeted with a piece of
information will maximize its diffusion through social influ-
ence. Thus, IM aims at maximizing the influence impact of
a set of users. “Influence” is “the power of causing an effect
in indirect or intangible ways” (Merriam-Webster). In other

words, a user can be influenced if he saw the ad, interacted
with it, purchased the product or was encouraged to do so
in the future.

Today, real-time bidding (RTB) outpaced other advertis-
ing strategies in terms of online advertising [29, 38] and
social network services (SNS). RTB is an online auction
system which allows advertisers to bid in real time for ad
locations on a Web page loaded by users and thus to target
them efficiently. In RTB, advertisers see a stream of users,
one at a time and have less than 100 ms [11, 38] to decide
to bid or not. The bidders do not know what the auction
landscape looks like and consequently cannot oversee future
connections.

In addition, RTB ad targeting relies essentially on Web
page content and users’ profile. However, it lacks the social
value of each customer as suggested by Domingos and Rich-
ardson [10]. As far as we know, no RTB algorithm attempts
to find an IM solution to improve bidding decisions. Thus,
the aim of our approach is to develop an IM algorithm capa-
ble of running with RTB constraints. It is worth noting that
IM could integrate the bidding aspect in order to improve
RTB, but this approach is left for future work.

Traditional IM algorithms, based on propagation mod-
els, propose various optimization techniques to statistically

 *	 Nicolas Travers
	 nicolas.travers@devinci.fr

	 David Dupuis
	 david.dupuis@gmail.com

	 Cédric du Mouza
	 dumouza@cnam.fr

	 Gaël Chareyron
	 gael.chareyron@devinci.fr

1	 Research Center, Léonard de Vinci Pôle Universitaire,
Paris La Défense, France

2	 CNAM, Paris, France
3	 Research Center and CNAM, Léonard de Vinci Pôle

Universitaire, Paris La Défense, France

http://orcid.org/0000-0002-3502-151X
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-020-00132-2&domain=pdf

225Real‑Time Influence Maximization in a RTB Setting﻿	

1 3

choose a seed set of users that maximizes influence. Even if
some IM algorithms compute it in real time, none of them
can work within a real-time bidding environment and satisfy
its requirements.

Interestingly, the IM problematic in an RTB context is a
twofold issue. First, influence maximization needs to take
into account time with real-time bidding constraints: a short
time, no exchange with the past, no time windows, incom-
pleteness of the stream (not all users are connected). Second,
to maximize the impact of an ad campaign, it is necessary
to know in advance how much user it requires to target in
the social network to guarantee a sufficient coverage. In fact,
it is necessary to define the more accurate budget to define
the best seed set size which maximizes the influence on the
social network.

Indeed, whereas existing algorithms take hours or days to
find a seed set up to 200 seeds in a large social network [1],
they do not cope with ad campaign requirements with thou-
sands of users or take into account the fact that chosen users
can be available online or not. The maximization problem
needs to rely on both propagation and real-time decision.

This article targets the issue with the following
constraints:

–	 Real-Time Bidding only an online user can be targeted,
–	 Processing Time 100 ms to choose to target a user or not,
–	 Social Networks the propagation influence score relies on

a social network containing millions of users and rela-
tionships,

–	 Influence Maximization thousands of users must be tar-
geted just by appending them in real time while maximiz-
ing scores of large seed sets.

–	 Ad Campaign Guarantee the size of the ad campaign is
set in advance in correlation with the social network to
give a guarantee of its influence score.

Therefore, an IM algorithm is necessary to target influential
users in an RTB environment, capable of deciding in real
time which users are worth targeting. To achieve this, we
propose the real-time influence maximization
(RTIM). It is an IM algorithm which decides in real time
the effectiveness of an online user u, while static IM models
only verify if this user u has been chosen in the precomputed
seed set. Our main contributions are as follows:

–	 We propose an elegant approach for real-time influence
maximization focusing on the stream of online users,

–	 We provide a deep analysis of users’ influence scores
for various social network datasets in order to showcase
users’ behavior in IM,

–	 We give a model to give the estimation of the seed set
size in order to guarantee the influence efficiency of an
ad campaign on the network,

–	 We set up a thorough experimental setting for RTIM and
IMM models on different social networks.

In this article, we first review the literature on influence
maximization. We then explain the two stages of our algo-
rithm: preprocessing and live, how they relate to each other
and allow us to solve the influence maximization problem
under RTB constraints. We follow on the RTIM implemen-
tation, and we go through the experimental process which
compares our dynamic algorithm with a static approach. We
then present a methodology to estimate the impact of an ad
campaign which gives the estimation of the influence of a
seed set size.

2 � IM State of the Art

Influence Maximization takes place in a social network
graph G = (V ,E) where V is the set of vertices (users) and
E the set of directed edges (influence relationships). In this
graph G , a user is activated if he has successfully been influ-
enced by a neighbor and therefore influences his own out-
going neighbors. A targeted user is a user who is not yet
activated, but for whom a piece of information is shown to
be propagated.

IM’s goal is to produce a seed set S of targeted users
which maximizes its influence on G . The optimal seed set
(final result) is defined as S∗.

2.1 � Propagation Models

Kempe et al. [19] propose two common propagation models:
Independent Cascade (IC) and Linear Threshold (LT). The
IC model considers that each user can be influenced by a
neighbor independently of any of his other neighbors. The
LT model considers that a user is activated if the sum of suc-
cessful influence probabilities from his neighbors is greater
than his activation threshold.

Under the IC model, time unfolds in discrete steps. At
any time step, each newly activated node ui ∈ Va,∀i ∈ V
gets one independent attempt to activate each of its outgo-
ing neighbors vj ∈ Out(ui),∀j ∈ V{i} with a probability
p(u, v) = eij . In other words, eij denotes the probability of
ui influencing vi.

As explained in [14], there is a real challenge in acquir-
ing real-world data to build datasets containing accurate
influence probabilities. Therefore, theoretical edge weight
models may be assumed, like in the following edge weight’s
models for the IC model:

–	 Constant Each weight eij has a constant probability. In
most solutions [4, 9, 12, 13, 15, 19], p is set at 0.01 or
0.1. Some define p ∈ [0.01, 0.1] [5, 27].

226	 D. Dupuis et al.

1 3

–	 Weighted Cascade (WC) In this model, eij =
1

|In(vj)|
 where

In(vj) is the number of neighbors that influence u. Thus,
all neighbors that influence ui do so with the same prob-
ability. Therefore, it is easier to influence a user with a
low in-degree [4, 5, 7–9, 12, 13, 19, 31, 32].

–	 Tri-valency Model Here, the weight of edges is randomly
chosen from a list such as {0.001, 0.01, 0.1} [4, 7, 18]. In
very large or dense networks, the tri-valency model may
actually have edge weights far greater than the weighted
cascade model due to the number of neighbors each user
has.

For the LT model, the general edge weight rule is that the
sum of the weights must equal one. Therefore, the WC
model applies to LT. Additional alternative models can be
found in [25] with an extensive IM state of the art.

The IC model is very useful to model information diffu-
sion when a single exhibition to a piece of information from
one source is enough to influence an individual. It is also
a simpler model to study than LT. The LT model doesn’t
change the fundamental approach of our algorithm, and
we believe that it should be simple to extend it to LT. For
these reasons, we limit our approach to IC. In addition, we
define the edge weights using the WC model, because it cor-
responds better to the simulation of the diversity of influence
between individuals in a real-world social network.

2.2 � Properties

Kempe et al. [19] prove that the influence maximization
problem is a monotone and sub-modular function. It is also
an NP-Hard problem under both the IC and LT models. Chen
et al. [4] prove that computing the influence score of a seed
set is #P-Hard under the IC model.

For both IC and LT models, adding users to the seed set
always increases its global influence score which corre-
sponds to the positive monotone property.

Moreover, the propagation function f is sub-mod-
ular if it satisfies a natural diminishing returns prop-
erty, i.e., the marginal gain from adding an element
v to a set S is at least as high as the marginal gain from
adding the same element to a superset of S . Formally,
a sub-modular function satisfies: ∀S ⊆ T ⊆ 𝛺 and
x ∈ ��T , f (S ∪ {x}) − f (S) ≥ f (T ∪ {x}) − f (T) . This sub-
modular property is essential as it guarantees that a greedy
algorithm will have a (1 − 1∕e − �) approximation to the
optimal value [26]. Many IM algorithms of the state of
the art rely on this theoretical guarantee to validate their
strategy.

2.3 � Computing Score

Influence Score Authors in [39] elaborate the exact influence
spread function for the IC model as an inclusion–exclusion-
based equation. We generalize their inclusion–exclusion-
based equation into Eq. 1.

In Eq. 1, the influence score of a seed set S , of size k, is
defined as the sum of activation probabilities aS(v) of any
node v ∈ V when users in S are targeted. The activation
probability of a user is the probability that there exists a
path between that user and any targeted user. As we write
in Eq. 1, the probability that a path exists is the union of the
existence of any path between a user and any targeted user.
It is clear here that computing this formula is exponential
in complexity.

Determining the seed set S of k users among N which
provides the maximum global influence score �(S) is a
NP-hard problem since it requires computing the global

influence score of any combination of k users, so there are
⎛
⎜
⎜
⎝

N

k

⎞
⎟
⎟
⎠

combinations to test for any given k. Even when assuming the
seed set is known, computing its global influence score has
been proved to be #P-Hard [18]. Due to the exponential nature
of computing the influence score, Kempe et al. [19] offer an
alternative which consists in running n = 10,000 influence
propagation simulations and averaging the scores into a final
influence score result. This is called the Monte Carlo
approach, and we write an influence score computed with this
method as �MC() . This estimation method allows us to produce
a good approximation for the influence score, and we can thus
efficiently compute: �MC(S) ∼ �(S).

2.4 � Algorithms

Clearly presented by in [1] and [2], there are three main
categories of IM algorithms: greedy, sampling and
approximation.

Greedy [19], CELF [21] and CELF++ [15] are all three
lazy forward algorithms which take advantage of the sub-
modularity property of the IM problem and thus guarantee
an approximation of (1 − 1∕e − �) . To find S∗ , they start with
S = � and incrementally add node v which brings the larg-
est marginal gain: 𝜎MC(S ∪ v) > 𝜎MC(S) , until |S| = k . How-
ever, continuously computing �MC(S) is costly. CELF [15,
21] attempts to remedy this by storing certain scores to take
advantage of the sub-modular property and avoid recomput-
ing other scores, but this doesn’t provide any significant gain

(1)
�(S) =

�

vi∈V

aS(vi) =
�

vi∈V

�

⎛
⎜
⎜
⎝

�

pj∈Puvi

pj

⎞
⎟
⎟
⎠
,

Puvi
= {all paths event existence between u and vi}

227Real‑Time Influence Maximization in a RTB Setting﻿	

1 3

in runtime. Thus, those greedy algorithms do not scale for
large seed sets or large graphs.

Borg et al.’s method [3] (referred to as RIS: Reverse Influ-
ence Sampling), TIM, TIM+ [32] or IMM [31] use topo-
logical sampling. In the transpose graph, they generate a
set R of size � of random paths of the greatest influence by
picking users uniformly at random (reverse reachable (RR)
sets). Using a greedy method, they build S∗ by continuously
adding to S∗ the user who covers the greatest number of RR
sets and removing them from R . As shown by [1], sampling
algorithms are significantly faster because �MC(S

∗) is only
computed once the final solution is found. However, their
theoretical guarantee depends on � which is computed by �
in (1 − 1∕e − �) and l which determines their runtime factor
l2 ∗ log(n) . Experimentally they use � = 0.5 and l = 1 which
means that precision is sacrificed for scalability.

Approximation algorithms such as EaSyIM [12], IRIE
[18], SIMPATH [16], LDAG [6] or IMRANK [7], SSA-Fix
[17] offer heuristics to compute �(S) . Instead of computing
the union of all paths as indicated in Eq. 1, they consider the
most probable path. RLP [23] uses live edges and propa-
gation paths to optimize computation time. They can run
select the top k influential users. While scalable, they do not
provide theoretical guarantees [1].

Mining and learning strategies try to enhance the extrac-
tion of seed sets. DIEM [33] proposes to learn propaga-
tion models on the influence graph to produce a predic-
tion model. C2IM [28] focuses on influence communities’
extraction in order to ease the connection to the influencers.
Wu et al. [37] propose the factorization of bandits’ methods
in order to predict influencers through iterations of reward
strategies. However, it hardly scales in seed set sizes (gener-
ally 50) and, moreover, models are not designed to be time
dependent and flexible.

OIM [20], AIM [35] and TAIM [34] are recent works on
real-time influence maximization which need to be noticed.
They propose adaptative strategies that compute the seed set
dynamically by incrementally watching the influence impact
of users on time windows and choose the optimal one on this
setting. OPIM [30] also proposed an extension of Borg’s
solution [3] by deriving in real time the approximated seed
set and then choose the node with the largest marginal cover-
age. Even if those strategies properly approximate the seed
set influence iteratively, it cannot fit with RTB constraints for
which a decision must be made on a single user (bid) and not
on a set of users at once. Thus, it cannot be an approximation
on the whole graph but a local decision at once.

Conclusions: All of these algorithms provide proper
scientific solutions to solve the IM problem. The common
rule is that an algorithm which has high accuracy will
take weeks to find its seed set and vice versa an algorithm
which runs in a couple of hours will have less accuracy.
However, these algorithms compute the seed set in a static

graph environment and assume that every user must be
available at any time to be targeted. This approach is not
appropriate to graphs with more than tens of millions of
users with proportionally many edges [1]. There exist a large
number of specific IM contributions which have been listed
in [25]. It shows clearly that very few contributions have
been made regarding the analysis of the IM challenge in a
stream of online users. We must notice [36] which proposes
an interesting solution with sliding windows that computes
local influence maximization. However, it does not scale up
for large seed set lists; more than 100 while thousands are
required.

Therefore, none of the existing IM solutions can perform
well under real-time bidding constraints. Indeed, it requires
that all users in S appear during the campaign to guarantee
the maximization of the static IM strategies. These algo-
rithms compute the seed set in a static environment rather
than a dynamic one, as we hope to achieve, with RTB
constraints.

To this end, we offer RTIM, real-time influence maximi-
zation, which targets influential users in real time, hence-
forth generating a seed set of influencers under real-time
bidding constraints. To ensure this, RTIM takes place in
two stages: a preprocessing stage and a live stage which we
now present.

3 � RTIM Approach

RTIM is meant to perform in an RTB environment. The lat-
ter consists of users who, through their devices connected
to the Internet, are navigating on Web sites. As soon as a
user arrives on a Web page which sells its ad slots through
a real-time bidding environment, the IM algorithm has to
determine whether it is useful for targeting. In minutes, mil-
lions of users are quickly navigating through many dozens
of Web sites each leading for any RTB advertising agency
to a continuous stream of online users [38]. Advertisers can
only target, with advertisements, users who appear in the
stream and target them under 100 ms which corresponds
to the bidding platform delay. As we know, these users all
belong to a very large social network through which they
may be sharing information and influencing one another.
It is therefore in the advertiser’s interest to take advantage
of the social network value of each user that appears in the
RTB stream. In addition, these same advertisers with large
budgets seek to acquire or convert (i.e., activate) many users,
most through targeting.

The originality of our approach lies in its ability to tar-
get users who appear in this dynamic stream by estimating
whether they will have a significant gain based on previously
targeted users in the same stream and belonging to the same
social network, thus providing a solution to the influence

228	 D. Dupuis et al.

1 3

maximization problem and producing a large set of users for
a realistic ad campaign, while traditional approaches deter-
mine the best seed set of targeted users, at the cost of expen-
sive computation, by processing a static graph in which any
user is considered online and available for targeting at any
given moment. Contrary to these solutions, RTIM allows us
to adapt our influence maximization strategy to an advertise-
ment campaign taking place in an RTB streaming environ-
ment and which requires targeting tens of thousands of users.

Furthermore, we choose to compare RTIM with the static
algorithm IMM (“influence maximization with martingales”
[31]). Indeed, IMM has proved that it can compute an effec-
tive seed set in a reasonable time regardless of the graph
size. Even more so, it can compute large seed set sizes of
tens of thousands of users as an RTB advertising campaign
requires it.

Static algorithms, such as IMM [31], correspond to an
optimistic approach where they assume that the users from
their precomputed seed set will necessarily be online in the
stream. However, without integrating a probabilistic model
based on real and precise figures about the connection rate
of different users, which is hardly possible on large social
networks like Twitter, many users of the predefined seed
set won’t be available to target during the advertisement
campaign. In contrast, our greedy approach, which can be
considered as a pessimistic approach, allows us to dynami-
cally fill our seed set with online users of interest for the
advertisement campaign.

Our RTIM algorithm is composed of two steps: First, a
preprocessing step computes the influence score of every
user in the graph. Second, when reading the dynamic stream
in real time (called the “live stage”), for each user in the
stream, we determine whether his influence score is high
enough or the probability of him being activated by a previ-
ously targeted user is low enough. When a user is targeted
during this live stage, we update the activation probability
of the users in his neighborhood.

3.1 � Step I: Preprocessing—Building the Influence
Graph

First, we attribute a weight to each edge which estimates the
influence that depends on the number of incoming edges of
a vertex. This influence estimation between direct neighbors
is commonly adopted in influence propagation [27]. We call
this graph the influence graph GI(V ,E,wI) defined formally
as follows:

Definition 1  (Influence graph) Consider G(V ,E) the social
graph where V is the set of vertices and E ⊆ V2 the set
of oriented edges. The influence graph for G is the graph
GI(V ,E,wI) with the same sets of vertices and edges and a

weighted function wI ∶ E → ℝ such that for an edge eij from
vertex vi to vj:

Figure 1 depicts the influence graph for a social network
between 5 users. For instance, user u2 who follows or is
influenced by users u1 , u3 and u5 has each of his incoming
edge e ∈ E weighted by:

To estimate the influence score, we use the Monte Carlo
approach by running n simulations, where n is a large num-
ber (10,000 in [19]). The influence score of each user u is
the average number of users activated for all simulations.

For each single simulation, we test the existence of each
outgoing edge of a user (i.e., followers of u1 ) in G by gen-
erating a random number r ∈ [0, 1] and checking whether
r reaches the activation probability, so that r < wI(eij) . If it
is, the edge eij exists with probability wI(eij) . For example,
for user u1 we test his followers, the two edges e12 and e13
are tested with random values that give 0.3 < wI(e12) and
0.6 > wI(e13) . Consequently, only u2 is considered activated
since we can consider that a path exists between u1 and u2.

When a neighbor is activated, we can then recursively
test each of the neighbor’s outgoing edges with the same
method. We stop when no more neighbors are activated (the
influence propagation stops along the edges). That is, u2 can-
not reactivate a node already activated by u1 . For instance,
with 0.7 > wI(e23) and 0.4 < wI(e25) , user u5 is activated.
Recursively, we test the edge e53 . In our example, the influ-
ence score of user u1 (for the first simulation) is equal to 2
with activated users: u2 and u5.

Since the simulations are all independent and the graph
data structure is only read during the process, we can run the
n simulations in parallel. However, running 10,000 Monte

wI(eij) =
1

indegree(vj)

wI(e12) = wI(e32) = wI(e52) = 1∕3 = 0.33

u1

u2

u3

u4

u5

0.33
0.5 0.33

0.25

1
0.25

0.5
0.25

0.33

0.5

0.25
0.5

Fig. 1   Influence graph G
I
 with weighted edges

229Real‑Time Influence Maximization in a RTB Setting﻿	

1 3

Carlo simulations for each user u ∈ G remains extremely
costly when considering real large advertisement campaigns
where the expected seed set reaches tens of thousands of
users. Consequently, this computation must be performed
offline.

We store all the values in a vector I of user influence
scores:

3.2 � Step II: User targeting at Runtime

With the influence score computed in the preprocessing
step, RTIM is able to select, during the RTB stream, users
to target. Consider the temporal stream of users T in which
appears every online connection event of the users u ∈ G .
Since a user can only be targeted when he appears in the
stream, we need to decide in real time whether he is worth
targeting or not. To make this decision, our RTIM algorithm
takes into consideration two criteria:

(i)	� Is the user influential enough?
(ii)	� What is the probability that he was already activated

by the ad through one of his influential and targeted
neighbors?

To verify these two criteria, we set two thresholds, �I
and �A , respectively, the minimum influence score and the
activation probability. Whenever a user is online, we check
whether his influence score is important enough to be a
potential target for the advertisement campaign or not. If
his influence score is above the influence threshold �I (i.e.,
considered to be an influencer), we check the probability for
this user to be presented the advertisement by the users he
follows (i.e., already activated). If this probability is above
the threshold �A , we value that it is not worth presenting the
advertisement since it is very likely that it has already been
presented to a user he follows who will have influenced him.
Otherwise, the user is targeted and added to the seed set.

When we target a user who satisfies these two thresh-
olds, his activation probability is set to 1. This change,
which impacts the activation probability of other users in
the network, must be taken into account. Therefore, from
the targeted user, we update the activation probability of
neighboring users by propagating his influence. This will
enable us to make better targeting decisions for future users
who appear in the stream.

Figure 2 illustrates the stream of online users and their
interconnected graph. T is a basic example of an RTB
stream where users appear one at a time in discrete steps (in
red/bold) and can only be targeted when available. As soon
as RTIM makes a decision to target or not the user, he is no

∀ui ∈ G, Ii = �MC(ui)

longer available. When the first user u2 appears (time t1 ), we
verify his influence score I2 . His activation probability is
necessarily 0 because he is the first user in T  . If I2 > 𝜃I , then
we consider that u2 tries to activate his followers u1 , u3 and u5
and propagate to their own neighbors. Then, we update their
activation probability. Assume that u1 is activated ( A1 > 𝜃A )
while u3 and u5 are not.

When user u4 is online ( t2 ), his influence score is insuf-
ficient to be targeted. We skip him and wait for the following
online user. Then, when user u3 appears in the stream ( t3 ), he
is considered to be an influencer ( I3 > 𝜃I ) and not activated
by u2 ( A3 < 𝜃A ). As for u2 , he is targeted and propagates
the activation probability to his neighbors u1 , u2 , u5 and u4 .
When u5 appears in T at t4 , even if I5 is higher than �I , he is
considered to be influenced by both u2 and u3 (assume that
A5 > 𝜃A ). Thus, it is not worth targeting him.

By applying the whole stream of users T  , our approach
generates the seed set S∗ where every user u ∈ G verifies �I
and �A . The key point resides in the fact that RTIM maxi-
mizes the influence of connected users while removing those
who are too close to users already targeted.

We present different algorithms, within RTIM, which are
required for the runtime processing, in the following section.

4 � RTIM Model

Traditional influence maximization algorithms, like IMM,
have an optimistic approach since they determine statically
the users to target based on the final global influence score
of the set of targeted users. So they assume with a probabil-
ity of 1 that these users will connect within the advertise-
ment campaign period. If the advertisement campaign is not
time limited, i.e., we consider an infinite stream of users
online, these solutions potentially maximize the total score
of the campaign. However, with a limited time window for
the advertisement campaign, not all these users will likely
appear online.

u2 u4 u3 u5 u4 u1
users
stream

t1

u1

u2

u3

u4

u5

0.330.5
0.33

0.25

1
0.25

0.5
0.25

0.33

0.5

0.25
0.5

t2

u1

u2

u3

u4

u5

0.330.5
0.33

0.25

1
0.25

0.5
0.25

0.33

0.5

0.25
0.5

t3 t4 t5 t6

Fig. 2   Ex. of the live stream ( T  ) of available users

230	 D. Dupuis et al.

1 3

RTIM’s strategy is quite different since it considers that
the probability that a user will appear in the stream is unde-
fined. Therefore, the decision of targeting a user is done in
real time when he is available, considering whether this user
is a good “influencer” while not already having been influ-
enced by other users during the campaign. So RTIM can be
considered as a pessimistic algorithm since we decide to add
a user to the final seed set instantaneously, even if a “better”
user to add to the seed set appears later in the stream.

Upon targeting a user, his activation probability is imme-
diately set to 1 because he is considered to be activated on
the spot. This change in the targeted user’s status means that
other users around him are likely to also be activated through
his influence. In the following part, we discuss the activation
probability graph which allows us to update the activation
probability of neighboring users, with respect to time (i.e.,
the user position in the stream).

Activation probability graph At time t0 , when T starts, we
create the activation probability graph as the influence graph
GI described in Sect. 3.1.

We can adopt the matrix representation for the graph in
the following:

where AG is the adjacency matrix, i.e., AG[i, j] = 1 if there
exists an edge from user ui to user uj , 0 otherwise, and
InDegV is the indegree vector, with InDegV [i] =

1

indegree(ui)
.

The activation probability vector AV is initialized as the
�⃗0 vector.

Activation probability updates Consider we have at time
tk−1 > t0 , an activation probability vector AV(tk−1) . Then,
assume that at time tk , a user ui connects and we decide to
target him. So his activation probability AV(tk−1)[i] is now
set to 1. This probability update impacts other probabilities
in the graph. Indeed, users who follow ui are now more likely
to see this advertisement, and consequently, we may avoid
targeting them in the future. We must update other activa-
tion probabilities through influence propagation according
to existing links in the graph to obtain the AV(tk) probability
vector.

Definition 2  (Activation probability propagation) Consider
the social graph G(V ,E) and its influence graph GI(V ,E,wI)
as stated in Sect. 3. The activation probability vector AV(tk)
for G at tk is recursively defined as:

So, after targeting a user ui ( AV(tk−1)[i] = 1 ) the vector is
recursively combined with the activation probability graph

MGI
(V ,E) = AG × InDegV

{
AV (0)(tk) = MGI

(V ,E) × AV(tk−1)

AV (i+1)(tk) = MGI
(V ,E) × AV (i)(tk)

MGI
 in order to propagate the activation while obtaining a

convergence after i iterations:

This model corresponds to a matrix population model
[22].1 Thus, we can guarantee its convergence since the
Eigenvalues of MGI

(V ,E) are real strictly positive (the matrix
is real, asymmetric and non-diagonal). Moreover, the propa-
gation is an increasing and monotone function bounded to �⃗1.

As the stream of users goes by RTIM will take less risk
and target the best user when available, there is no certainty
that a better user will appear later on. On the contrary, if the
stream is infinite, then the probability that a user will appear
is necessarily 1, and thus, IMM, on an infinite stream, will
always perform better than RTIM.

The aim of RTIM is to determine in real time if a user is
a good influencer while not already having been influenced
by other users. To achieve this, our model relies on the prob-
ability a targeted and activated user has of influencing and
activating other users. The issue is to determine the proper
thresholds in order to fill the seed set both efficiently and
effectively.

To target influencers, we need to determine users worth
targeting but also when users are considered activated by
influencers. For this, we define the threshold �I as the mini-
mum influence score for which we can consider the top-k
influencers. Therefore, we propose to set �I to the influence
score of the kth influencer. We also define the activation
probability threshold �A which is the likelihood of a user
being activated. By default, we set �A to 0.5. Any user whose
activation probability is greater than �A is considered to have
been activated and therefore will have attempted himself to
propagate the information provided by an influencer and is
therefore not worth targeting.

During the live stage, we need to update the current
online user’s activation probability while checking if he is
a worthwhile influencer. To achieve this, we need to com-
pute all of the most reliable paths between this user and any
activated neighbor of depth less than d. For that user, if his
influence score is above �I and his activation probability is
below �A , the user is targeted. Otherwise, we ignore him.

In Eq. 1, we explained that the probability of a user v
being activated by any node u ∈ S is the probability of all
pa ths between v and any user in S (i . e . ,
aS(u) = �(

⋃
pj∈Puvi

pj) ). Here, we consider S = u , where u is
the online user who has just been targeted and considered
activated.

AV(tk) = AV (∞)(tk) = MGI
(V ,E) × AV (∞)(tk)

1  Not a Markov chain since the sum of a column can exceed 1:
MG

I
(V ,E) = AG × InDeg

V
.

231Real‑Time Influence Maximization in a RTB Setting﻿	

1 3

Notice that if we consider the paths between u and v as
being independent, then we obtain Eq. 2:

This theoretical bias is validated if we consider the paths to
be of length no more than 2. This is true because between

(2)
A[u] = �

⎛
⎜
⎜
⎝

�

pj∈Puv

pj

⎞
⎟
⎟
⎠
= 1 −

�

wi∈P
d
uv

(1 − wi),

wi ∈ P
d
uv
= {all path weights of length d from u to v}

two nodes all paths of length 2 are necessarily independent.
Therefore, we use Eq. 2 with a maximum depth of 2 to
update the activation probability of a user.

Due to the directed property of the influence graph, for
algorithmic and computational purposes it is easier to update
the activation probabilities of a recently targeted and acti-
vated user. Hence, when a user is targeted, we update the
activation probabilities of all his neighbors up to a maximum
depth d.

Algorithm 1 Updating activation probabilities
Require: a graph G, nodes u and v, user v’s activation probability A[v], the set of user u’s

neighbors Nu, current path weight p, depth d
1: procedure ActivationScores(G, u, p, d)
2: for v ∈ Nu do
3: A[v] ← 1− (1−A[v]) ∗ (1− p ∗ wuv)
4: if d > 1 then
5: ActivationScores(G, v, p ∗ wuv , d− 1)

Algorithm 1 illustrates updates of activation probabilities.
For each neighbor v of user u, we propagate his activation
probability (line 3). Then, while the depth of propagation is
sufficient, we follow the propagation recursively (line 4&5).
In the worst case, it runs in O(|V|d) when all users are
interconnected. Since in most cases, our networks are

not dense (Table 1), updating the activation probabilities
is done very fast (Table 4) and we set d to 2. However, it
is not necessary to be extremely fast for very large and
dense networks, such as Twitter, as updating the activation
probabilities can take place in a separate thread during the
live stage.

Algorithm 2 RTIM Live
Require: a graph G, a user u, the sorted list of influence scores I, influence threshold θI ,

u’s activation probability A[u] of size |V|, a depth d, a temporal stream of users T , the
seed set S, seed set max size k

1: Initialize A ← −→
0

2: while |S| < k do
3: u ← next(T)
4: if I[u] ≥ θI and A[u] ≤ θA then
5: ActivationScores(G, u, 1, d)
6: S ← S ∪ u

For the live stage of RTIM, we consider that if any
neighbor (of depth d) of a user is targeted, then we update
his activation probability. First, Algorithm 2 initializes
the activation probabilities to the 0 vector (line 1). Then,
while the seed set is not filled (line 2), we check each new
incoming user u if he validates both �I and �A (line 3&4).
Deciding to target a user (line 4) is done in O(1) and is
thus instantaneous. If he does, we add u to the seed set and
propagate the activation by applying Algorithm 1 (line 5&6).

Consider Fig. 2 as an example. Its influence score vector
I is:

I⊤ =
[
2.3423 3.0232 3.7802 1.6932 2.3423

]

During the live stage, we read the RTB stream T with
maximum seed size k = 3 , �A = 0.5 and �I = 3.0 , as exam-
ple settings. At t = 0 , we initialize the activation probability
vector to A0 = �⃗0 (line 1). At t = 1 , the first user in T  , u2 ,
has I[u2] = 3.0232 > 𝜃I and A[u2] = 0 , so we target him
and update the activation probability of his neighbors which
gives us:

At t = 2 , user u4 has I[u4] = 1.6932 < 𝜃I . We ignore
him because his influence score is too low. At t = 3 , for u3 ,
I[u3] = 3.7802 > 𝜃I and A[u3] = 0.4257 < 𝜃A , so we target
u3 and update the activation probability vector:

A1⊤ =
[
0.54125 1.0 0.4257 0.25 0.54125

]

232	 D. Dupuis et al.

1 3

In the remainder of the stream, T  , A[u5] = 0.7303 > 𝜃A
and u4 is already targeted ( A[u4] = 1.0 ), so S∗ = {u2, u3} .
Notice how the final seed set size is less than the maxi-
mum seed set size k = 3 . It is due to the time-dependent live
stream which prevents filling the seed set.

5 � Influence Analysis

Our model is experimented with empirical datasets
of different sizes: LiveJournal, YouTube and
Twitter. These graph datasets have interesting properties
that can be exploited in order to understand the impact
of the real-time bidding environment on the influence
maximization interactions of users.

To achieve this, we need to understand the way more
closely that users are interconnected for each dataset and
study their topologies. We can see in Table 1 the global
statistics that highlight different sizes. We see here the graph
composition of all three datasets (# nodes and # edges) and
node degrees (mean, variance and standard deviation).

We can see that YouTube is the “smallest” graph with
fewer connections (mean degree of 10) but with a high vari-
ation in degree compared to its size. LiveJournal is
highly connected with a high number of edges and a mean
degree of 34. However, users are more homogeneously

A2⊤ =
[
0.7303 1.0 1.0 1.0 0.7303

]

connected with a low variance and standard deviation.
Twitter, on the other hand, is the biggest graph in which
users can have varying numbers of connections with a mean
degree of 70 but a variance of 6.4M and a standard deviation
of 2.5k. This analysis helps understand the subtle perfor-
mance of RTIM for each dataset.

As for the distribution of users’ influence score, to esti-
mate the influence score of each user we applied Monte
Carlo simulations on each dataset for every node in the
social networks. The result of each MC influence score is a
correct approximation of the real score.

Figure 3 shows the distribution of influence scores for
our graph datasets (reduced to 105 , but analysis was done
on all users). These distributions can be characterized by
a standard Zipf–Mandelbrot distribution [24], traditionally
used for distribution of ranked data. It is defined by:

where r is, here, the rank of the influencer. r0 is a constant
representing the number of top influencers. B corresponds
to the starting score modifier, and � is the decreasing speed
of scores.

Table 2 gives the corresponding values for those
Zipf–Mandelbrot distributions and the Pearson Xi-square
values (observation probabilities).
YouTube and Twitter behave similarly with a huge r0

(resp. 11 and 6) leading 100 to 750 top influencers. We can
see that Twitter has more top influencers with a high score
and then drops faster than YouTube.
LiveJournal behaves differently with very few top

influencers compared to YouTube or Twitter. The low value

B

(r0 + r)�

Table 1   Datasets characteristics

YouTube LiveJournal Twitter

of nodes 1.13M 3.99M 41M
of edges 5.97M 69.3M 1.46B
Degree Mean 10.53 34.70 70.50
Degree Variance 10,304.01 7381.26 6,426,184.47
Degree Standard Devia-

tion
101.50 85.91 2534.99

Fig. 3   Datasets’ influence score
distributions

100 101 102 103 104 105
101

102

103

104

105

106
Youtube

Youtube Zipf-Mandelbrot

LiveJournal

LiveJournal Zipf-Mandelbrot

Twitter

Twitter Zipf-Mandelbrot

Table 2   Zipf–Mandelbrot parameters for graph datasets

Dataset B r
0

� X
2-Pearson value

YouTube 8 × 10

4 11 0.78 0.976
LiveJournal 1.55 × 10

3 0 0.395 0.971
Twitter 1.7 × 10

6 6 0.99 0.969

233Real‑Time Influence Maximization in a RTB Setting﻿	

1 3

r0 shows that top influencers’ score decreases faster at the
beginning of the curve.

However, the decreasing speed of the influence score �
witnesses really high values (resp. 0.78 and 0.99) which
means that it is harder to become a top influencer on Twit-
ter than YouTube. Likewise, the number of influencers is
really high with a B value between 104 and 106 leading to a
long tail which only starts after more than 105 for YouTube
and 2 × 105 users for Twitter.

On the other hand, LiveJournal’s score curve
decreases slower than the others with an � of only 0.395
giving the idea that the number of connections between
users are closer to the average than Twitter or YouTube.
Consequently, the long tail is reached more slowly than the
others ( 4 × 105 users).

This conclusion is interesting in order to understand the
impact of these social networks on influence maximiza-
tion. Indeed, targeting top influencers in real time requires
choosing influencers according to their estimated score. For
instance, users from the long tail are pretty identical and
cannot be differentiated from each other; thus, the decision
to target or not an influencer depends on � which tells us how
much influencers’ score evolves.

6 � Experiments

All of our experiments are run on a server of make Intel(R)
Xeon(R) CPU E5-2680 v4 @ 2.40GHz with 56 CPUs and
462Gb of RAM memory.

We wish to show in this section the impact of choosing
influencers in a real-time bidding stream of users. In order to
do this, we need to compute users’ influence scores, generate
multiple streams of users with varying distributions and
compare the final solution of each algorithm for different
graph datasets.

6.1 � Experimental Process

Since RTIM is an IM algorithm which runs under RTB con-
straints, we want to compare it to an existing IM algorithm.
We choose IMM [31] because in [1] it is proved to have
the best compromise between computation speed, scalabil-
ity and accuracy. In particular, IMM can compute seed sets
with thousands of users on our largest dataset. We run all
algorithms in a specific experimental process involving three
stages: preprocessing, live stream generation and live stream
process. The code for IMM is provided by [1] in C++.

Stage I: Preprocessing. First, we run IMM in its entirety
and add k users to its seed set SIMM . Recall that IMM states
that every user in the graph appears equiprobable, and more
precisely assumes that they will appear in the stream. How-
ever, during the ad campaign, it is more likely that not all the

users will be available online. Since our objective is to target
a large number of users in the stream, as would happen in a
marketing campaign, we set k = 10,000 . We compute IMM’s
optimal seed using � = 0.1 . It can do this in seconds and very
easily scale to large graphs (see [1] for a proper analysis of
IMM performance).
RTIM uses the Monte Carlo approach to compute the

influence score of each user in the graph. We run n parallel-
ized simulations per node ( n = 10,000 ). Even so, for large
graphs, this operation can take several days, so to make it
scalable we limit it to a depth of 3 on large graphs to reduce
preprocessing time to a few hours at most. Thanks to the
graph topology with a high connectivity (Sect. 5), the Monte
Carlo simulations converge faster. As a counterpart, we lose
in influence score precision but believe the error to be negli-
gible. The influence scores of each user are stored in a vector
I for future use.

Stage II: Live stream generation. It is during this stage
that we read our RTB stream and both algorithms have the
opportunity to target influential users. Since no real streams
of connected users are available online, we simulate users’
behavior in the social networks with different distributions.
To the best of our abilities, we haven’t found well-founded
models for RTB social stream generation. So, we simulate
the RTB stream of users in the three different social net-
works by randomly picking users based on two distributions.
Notice that a user can appear several times in the stream.
Here are the two distributions:

–	 Uniform we suppose that all users have equal probability
of appearing in the stream. This distribution can be
considered to be the worst case where highly connected
users can appear as frequently as poorly connected users
or where top influencers can appear as frequently as low
influencers.

–	 Log we suppose that users who have more in/out edges
in the graph are more likely to be connected. User
probability of being in the stream is:

 where degui is the degree of ui , the sum of in-degree and
out-degree. We apply a logarithm on the number of edges
per user in order to give users with a low influence score
a reasonable probability of showing up in the stream. In
fact, due to the distribution of edges in the graph, some
users are highly connected to other ones and represent the
large majority of online users in the stream even though
this does not reflect the reality. This Log stream can be
considered to be the best case where highly linked users
are more likely to be present in the stream and potentially
top influencers.

P(ui ∈ S) =
log(degui)∑

ui∈V
log(degui)

234	 D. Dupuis et al.

1 3

Moreover, each stream is a subset of the total number of
users; we choose 10% of the total number of users. In this
setting, we ensure that all the users are not necessarily avail-
able online during the ad campaign: |T| = 10% × |V|

Table 3 gives for each stream the proportions of influence
scores and size in our experiments. As expected, Uniform
distributions contains lower influence scores while Log
focuses more on higher scores (more than 10). As shown
in Fig. 5, LiveJournal produces lower scores so does
the stream. According to Twitter, it witnesses a huge
amount of low scores with more than 80% in both Uniform
and Log distributions. It is due to the large stream (above
4M connections) and stick to the distribution of Twitter
scores. However, with respect to the proportions even with
1.20% of the stream, the number of high influence scores is
higher than LiveJournal and YouTube.

Stage III: Live stream process. For IMM, if a user in the
stream belongs to SIMM , he is targeted and added to the seed
set S∗

IMM
 . A user is targeted only once, even if he appears

twice. At the end of the stream: S∗
IMM

= SIMM ∩ T

For each user ui in the stream, RTIM will verify its
targeting conditions. It will check that the user’s activation
probability ap(ui) is below the activation threshold �A , and
if his influence score �MC(ui) is greater than the influence
threshold �I . If both conditions are satisfied, then ui is
targeted instantaneously (Algorithm 2). At which point, he is
added to the final seed set S∗

RTIM
 and we update the activation

probability of his neighbors up to depth 2 (Algorithm 1).
The update operation can be done by a separate thread.

Table 4 gives the time spent to target and update propaga-
tion probabilities in the network. It shows that the average
targeting time is very low with a constant time wrt. the num-
ber of users and the update time is less than 100 ms which
satisfies our real-time requirement and in most of the case
far less (median). However, some updates on large dense

Table 3   Streams’ influence
score distributions

Influence score YouTube LiveJournal Twitter

Uniform Log Uniform Log Uniform Log

1 ≤ I ≤ 2 37.79% 19.92% 37.43% 17.78% 86.33% 80.55%
2 < I ≤ 5 43.25% 40.69% 36.71% 39.42% 12.02% 16.13%
5 < I ≤ 10 11.01% 18.88% 17.18% 26.27% 1.13% 2.12%
10 < I ≤ 100 7.46% 18.71% 8.66% 16.45% 0.48% 1.08%
100 < I ≤ 1000 0.47% 1.71% 0.03% 0.08% 0.04% 0.10%
1000 < I 0.02% 0.10% 0.00% 0.00% 0.00% 0.02%
Stream size 226,978 399,796 4,165,223

Table 4   Target and update activation probabilities time

Targeting
time

Activation time

Average ( μs) Average
(ms)

Median (ms) Max (ms)

YouTube 0.5 70.3 6.30 193.4
LiveJour-
nal

1.0 61.1 6.03 192.0

Twitter 3.1 85.9 44.5 411.1

0 1 · 105 2 · 105
0

5; 000

10; 000

Stream of users

Se
ed

se
t
si
ze

RTIM log IMM log

RTIM uniform IMM uniform

Fig. 4   Seed set size evolution with YouTube 

RTIM log IMM log

RTIM uniform IMM uniform

0 1 · 105 2 · 105
0

2 · 105

4 · 105

Stream of users

Se
ed

se
t
sc
or
e

Fig. 5   Seed set score evolution with YouTube 

235Real‑Time Influence Maximization in a RTB Setting﻿	

1 3

graphs can take up to 411 ms. This is still negligible since
a user cannot influence another in less than half a second.

6.1.1 � Stage IV: Seed Set Evaluation

To compare the performance of both IM algorithms, we
compute and compare �MC(S

∗
IMM

) and �MC(S
∗
RTIM

) during
the live stage in order to analyze how the seed set score
evolves. Because of the computation cost of �MC(S) , during
the live stage, the score of the seed set is computed for every
100 users added to the seed set, or 1000 for large seed sets
on Twitter.

6.2 � Experimental Results

YouTube. In the following, we see the evolution of the
seed set during the stream both for influence score and size.
Figures 4 and 5 give the results produced with a stream of
2.27 × 105 connected users over the YouTube dataset.

Figure 4 shows the evolution of the seed set size. We
clearly see that IMM hardly finds predefined influencers,
especially for the Uniform distribution. RTIM evolves almost
linearly with twice as many seeds for the Uniform distribu-
tion and 3.3 times more for the Log one. According to the
Log distribution, RTIM finds more influencers and reaches
k faster. The sudden stop of the RTIM seed set at 1.89 × 105
users is due to the fact that the marketing campaign is over
with a full seed set of k = 10,000 users.

Figure 5 shows that RTIM produces seed sets with higher
scores than IMM. Uniform and Log streams witness differ-
ent evolutions. In fact, IMM hardly finds influencers in the
Uniform distribution where highly connected users are less
likely to be available online. This explains why IMM’s seed
set evolves slowly. On the other hand, RTIM targets users
according to their local influence on the graph and thus has
more targeting opportunities.

According to the Log distribution, IMM is closer to
RTIM since top influencers are more present in the stream.
Consequently, it takes time for IMM to reach this goal by
the end of the stream with a similar score (1,105 less), while
RTIM stopped earlier when the seed set size reached k. This
confirms the fact that IMM is better at maximizing k than
RTIM in an infinite stream; however, in a finite campaign
this is not the case.

Interestingly, the score growth is higher at the beginning
of the stream and we observe a logarithmic evolution of
the score. In fact, during the stream process finding new
influencers is more unlikely since they have already been
selected (IMM) or activated by targeted neighbors (RTIM).
Since the evolution of size is almost linear (Fig. 4), this loga-
rithmic evolution of the seed set score confirms the fact that
chosen users bring less influence than previous chosen ones,
explained by the sub-modular property of the IM problem.

LiveJournal. This dataset is evaluated with a stream
of 4 × 105 online users.

Figure 6 shows the evolution of seed set sizes. We can see
that IMM finds very few expected influencers and produces
8.5 times fewer seeds for the Uniform stream (resp. 7 for the
Log stream) than RTIM. In fact, RTIM targets influencers
more easily than IMM. This is explained by the specific
distribution of scores we explained in Sect. 5 with a very
slow decreasing of the scores ( � = 0.395 ). It is confirmed
by the fact that LiveJournal has a low degree standard
deviation and variance. Thus, RTIM adapts locally to the
users’ connection with similar scores while IMM only
focuses on prechosen seeds.

We can see in Fig. 7 that the evolution of seed set
scores is really different from the YouTube dataset. Pre-
determined seeds have a huge impact on the final seed set
score since very few influencers appear in the stream while
RTIM has the opportunity to choose a “similar” score in the
neighborhood.

0 1 · 105 2 · 105 3 · 105 4 · 105
0

5; 000

10; 000

Stream of users

Se
ed

se
t
si
ze

RTIM log IMM log

RTIM uniform IMM uniform

Fig. 6   LiveJournal’s seed set size evolution

RTIM log IMM log

RTIM uniform IMM uniform

0 1 · 105 2 · 105 3 · 105 4 · 105
0

2 · 105

4 · 105

Stream of users

Se
ed

se
t
sc
or
e

Fig. 7   LiveJournal’s seed set score 

236	 D. Dupuis et al.

1 3

We can also see that RTIM obtains a lower seed set score
for the Uniform distribution than the Log one. It is due to
the fact that RTIM Log fills the seed set more quickly after
only 2.38 × 105 users in the stream. The impact of the spe-
cific distribution of scores of LiveJournal and the fact
that users have high mean degrees (with a low variance)
give more chances for common users (lower scores) to ease
information propagation.
Twitter. Seed sets produced for the Twitter dataset

are presented in Figs. 8 and 9. The stream is composed of
4.17 × 106 connected users.

Figure 8 shows that RTIM seed sets evolve very quickly
for both Uniform and Log streams. This is due to the huge
amount of high score users of the Twitter distribution
( B = 1.7 × 106—Sect. 5); consequently, RTIM targets any
user in the stream that reaches the threshold �I . On the other
hand, IMM evolves more slowly, 10 times less for Uniform
(resp. 3.5 times less for Log). RTIM fulfills the ad campaign
k = 10,000 after 4 × 106 users in the stream.

In Fig. 9, the seed set scores evolve similarly to the You-
Tube dataset (Fig. 5) with close scores for the Log stream,
even if the gap is higher due to huge seed set scores (600,000
less). The effect of the high decrease in the influence score
( � = 0.99 in Table 1) is observable here where IMM targets
high influencers that have sufficient impact to grow rapidly
while RTIM targets good influencers to guarantee a global
impact in a minimum amount of time.

6.3 � Conclusions

Our experiments showed that RTIM provides better seed
sets score while maximizing the score in a minimum of time
while IMM succeeds in maximizing on the whole dataset.
The impact of the live stream distribution between Uniform
and Log is such that both methods behave clearly better on
users with very high degrees (top influencers); however,
IMM is more sensitive to this setting.

The seed set score curve is logarithmic; this is due to the
sub-modular property of the influence maximization prob-
lem. Indeed, the more users we add to the final seed, the
smaller the marginal gain to the overall seed set.

We saw that the distribution of users’ influence score
has an impact on the effectiveness of both IMM and
RTIM methods. First, the decrease in those scores is in
favor of RTIM when � is low (LiveJournal) where
IMM makes a choice on similar influencers while RTIM
targets only available ones. Second, graphs with very high
influence scores (induced by B) give RTIM more choices of
influencers (even with average scores), and so it fills up the
seed set quickly.

7 � Seed Set Size Guarantee to Maximize Ad
Campaigns

Although finding the optimal seed set of size k to maximize
the influence of a network is the focus of Influence
Maximization, one other issue is to determine in advance
the correct value for k. In fact, making the choice of top-k
influencers for an ad campaign is crucial in order to give a
guarantee of the budget to reach a sufficient number of users
on the network.

The choice of the seed set size will help advertisers to
decide how much they wish to influence of social networks.
With a guarantee of efficiency, they will determine the
impact of the ad campaign in advance and may be more if
the IM algorithm performs better than expected.

The issue is for a given seed set size to guarantee or
estimate its influence score, the number of activated users.
For instance, on the Twitter network with tens of millions
of users, rather than targeting millions of users to reach

0 1 · 106 2 · 106 3 · 106 4 · 106
0

5; 000

10; 000

Stream of users

Se
ed

se
t
si
ze

RTIM log IMM log

RTIM uniform IMM uniform

Fig. 8   Seed set size evolution with Twitter 

RTIM log IMM log

RTIM uniform IMM uniform

0 1 · 106 2 · 106 3 · 106 4 · 106
0

5 · 106

1 · 107

Stream of users

Se
ed

se
t
sc
or
e

Fig. 9   Seed set score evolution with Twitter 

237Real‑Time Influence Maximization in a RTB Setting﻿	

1 3

everyone ( 100% ), we may only want to target tens of thou-
sands of users to reach 25% of the social network.

However, as discussed in the state of the art, finding seed
set in a network of N users, there are 2N total seed sets to test
in a brute force approach to search for the optimal seed set

S
∗ , and by setting k there are

⎛
⎜
⎜
⎝

N

k

⎞
⎟
⎟
⎠
 combinations. As far as we

know, no existing IM paper has established a method of
determined the proper seed set size, nor do existing IM
algorithms offer guarantees of finding a seed set capable of
covering a given portion of the network.

7.1 � Expected Seed Set Size

We denote k∗
p
 the expected seed set size which influences a

sufficient number of users in the graph given by the rate p.
Thus, k∗

p
 is the seed set size that guarantees to reach r × |V|

users, where p is a percentage between 0 and 1.
Although the expected k∗

p
 is bounded between 1 and

p × |V| , we can infer that k∗
p
 is at least equal to the number

of connected components in G in order to reach disconnected
communities of users.

In order to give k∗
p
 , we propose an approach that esti-

mates them. It consists in randomly sampling as many users
necessary to influence p × |V| users. We apply propagation
models on each sampled user in order to see if he activates
his neighborhood or not. The final sample size is a possible
seed set size k′

p
 . This random sampling is performed until

convergence of the sample size.

Of course, to give a better approximation of k∗
p
 , activated

users during a sampling cannot be targeted. The number
of uniformly chosen users that activate p × |V| users is an
estimation k∗

p
 . The expected seed set size is then computed

using the average of the results for each iteration, where I
is the number of iterations required to reach convergence:
k∗
p
≈

∑
i∈I k

�
p
(i)

I
.

7.2 � Preliminary Experiments

To achieve those simulations, we used the Nethept and
HepPh [15] graph datasets composed of 15,200 nodes
(resp. 12,006) and 61,300 edges (resp. 80,578). We ran
experiments using various edge weighting methods, like
Weighted Cascade (like in RTIM) as well as edge weights
in [0.01, 0.1, 0.3, 0.5, 0.7, 0.8, 0.9] to test the effect of
weights on the size of k∗

p
 . Reach is the number p and its

correspondence in number of users who are activated by a
sample.

Tables 5 and 6 give results of simulations of k∗
p
 for each

edge weight strategy according to the given reach p. We can
say that p corresponds to the goal of an ad campaign. We
can see that the seed set size increases, the smaller the edge
weights are. For constant weights, when those values are
higher than 0.3, reaching at least of half the network requires
very low seed set sizes, 360 for Nethept where the number of
edges is lower than HepPh, and a size of 2 for HepPh which
is the number of connected components.

Table 5   Nethept expected
Seed Set Sizes k∗

p
 according to

the reach

Reach Seed set size by edge weight models

% # users 0.01 0.1 0.3 0.5 0.7 0.8 0.9 WC

100 15,233.00 14,919 12,183 7768 5037 3292 2669 2173 7589
95 14,471.35 14,159 11,428 7024 4320 2657 2114 1724 6912
90 13,709.70 13,399 10,680 6312 3680 2162 1703 1384 6331
80 12,186.40 11,886 9220 4982 2586 1375 1044 824 5318
70 10,663.10 10,377 7806 3777 1687 758 525 373 4428
60 9139.80 8874 6434 2693 948 275 124 48 3622
50 7616.50 7378 5114 1730 360 26 13 9 2883

Table 6   HepPh expected Seed
Set Sizes k∗

p
 according to the

reach

Reach Seed Set Size by edge weight models

% # users 0.01 0.1 0.3 0.5 0.7 0.8 0.9 WC

100 12,006.0 10,915 6817 3378 1806 940 655 440 5778
95 11,405.7 10,316 6222 2792 1241 450 243 123 5213
90 10,805.4 9720 5636 2232 749 118 3 2 4708
80 9604.8 8534 4498 1208 15 2 2 2 3820
70 8404.2 7360 3408 339 2 2 2 2 3057
60 7203.6 6197 2376 2 2 2 2 2 2391
50 6003.0 5048 1408 2 2 2 2 2 1811

238	 D. Dupuis et al.

1 3

It also shows that the WC weight model requires to target
7589 users to reach 100% of users in Hep and 5778 users
must be targeted to reach 100% of users in Phy which cor-
responds to half the number of users in the graph.

It is interesting to notice that most of state-of-the-art
algorithms deal with small seed set sizes (mostly 300) in
order to make it scalable in terms of computation time. We
show in these experiments that it requires far more users to
influence at least half the number of users. However, remind
that we give an expected seed set size and not the optimal
one which means that any IM algorithm must give a higher
influence score to be efficient.

7.3 � Conclusion

Our approach offers an approximation of k∗
p
 which would

provide a valuable indicator of the budget of an online adver-
tising strategy given how much it would cost to target k∗
number of users during the campaign. Moreover, it gives a
threshold of efficiency of IM algorithms.

8 � Conclusion

In this article, we have shown that it is possible to answer
the influence maximization problem in a real-time bidding
environment, which up to now has not been applied to IM
algorithms. We have shown that static IM algorithms, such
as IMM, can solve this problem in a reasonable time with a
seed set of 10,000 influencers. However, RTIM is a solution
that competes static IM by using a dynamic IM algorithm
based on the local influence of each user. With streams or
ad, campaign of finite size can outperform static algorithms.

It is important to note that the RTB environment is more
complex so than the constraints which we used. For instance,
a user who was targeted should not have seen the ad, click
on it, or even convert. Indeed, the influence probability for
a targeted user is equal to 1. For future works, we propose to
extend RTIM to answer more RTB constraints. Contrary to
IM algorithms, RTIM could choose to target another user if
a previous user who was targeted was not considered as acti-
vated. We can therefore make RTIM much more interactive
with dynamic user behavior while static solutions cannot.

In addition, should the graph be updated, it is not difficult
to recompute local influence scores, if necessary, or keep
targeting users in the live stream, whereas static IM needs
to recompute the seed set for each new graph.

We can also improve RTIM by adapting the �I threshold
when processing the live stream. In fact, online user behav-
ior, such as periodicity connections, has an impact on the
final seed set score.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Arora A, Galhotra S, Ranu S (2017) Debunking the myths of influ-
ence maximization: an in-depth benchmarking study. In: Proceed-
ings of the SIGMOD ’17. ACM, New York, , pp 651–666. https​://
doi.org/10.1145/30359​18.30359​24

	 2.	 Aslay C, Lakshmanan LV, Lu W, Xiao X (2018) Influence
maximization in online social networks. In: Proceedings of
the WSDM’18. ACM, New York, pp 775–776. https​://doi.
org/10.1145/31596​52.31620​07

	 3.	 Borgs C, Brautbar M, Chayes J, Lucier B (2014) Maximizing
social influence in nearly optimal time. In: Proceedings of the
SODA ’14. Society for Industrial and Applied Mathematics, Phil-
adelphia, pp 946–957. https​://doi.org/10.5555/26340​74.26341​44

	 4.	 Chen W, Wang C, Wang Y (2010) Scalable influence maximiza-
tion for prevalent viral marketing in large-scale social networks.
In: Proceedings of the KDD’10. ACM, Washington, pp 1029–
1038. https​://doi.org/10.1145/18358​04.18359​34

	 5.	 Chen W, Wang Y, Yang S (2009) Efficient influence maximization
in social networks. In: Proceedings of the KDD’09. Paris, France,
pp 199–208. https​://doi.org/10.1145/15570​19.15570​47

	 6.	 Chen W, Yuan Y, Zhang L (2010) Scalable influence maximi-
zation in social networks under the linear threshold model. In:
Proceedings of the ICDM’10. Sydney, Australia, pp 88–97. https​
://doi.org/10.1109/ICDM.2010.118

	 7.	 Cheng S, Shen H, Huang J, Chen W, Cheng X (2014) Imrank:
influence maximization via finding self-consistent ranking. In:
Proceedings of the KDD’14. Gold Coast, QLD, Australia, pp
475–484. https​://doi.org/10.1145/26004​28.26095​92

	 8.	 Cheng S, Shen H, Huang J, Zhang G, Cheng X (2012) Static
greedy: solving the apparent scalability-accuracy dilemma in
influence maximization. CoRR arXiv​:1212.4779

	 9.	 Cohen E, Delling D, Pajor T, Werneck RF (2014) Sketch-based
influence maximization and computation: scaling up with guar-
antees. In: Proceedings of the CIKM’14. Shanghai, China, pp
629–638. https​://doi.org/10.1145/26618​29.26620​77

	10.	 Domingos P, Richardson M (2001) Mining the network value of
customers. In: Proceedings of the KDD’01. ACM, New York,
pp.57–66. https​://doi.org/10.1145/50251​2.50252​5

	11.	 Dupuis D et al (2019) RTIM: a real-time influence maximization
strategy. In: Proceedings of the WISE’19, vol 11881. Springer,
Hong Kong, pp 277–292. https​://doi.org/10.1007/978-3-030-
34223​-4_18

	12.	 Galhotra S, Arora A, Roy S (2016) Holistic influence maximi-
zation: combining scalability and efficiency with opinion-aware
models. In: Proceedings of the SIGMOD’16. ACM, New York,
pp 743–758. https​://doi.org/10.1145/28829​03.28829​29

	13.	 Galhotra S, Arora A, Virinchi S, Roy S (2015) ASIM: a scalable
algorithm for influence maximization under the independent cas-
cade model. In: Proceedings of the WWW’15. Florence, Italy, pp
35–36. https​://doi.org/10.1145/27409​08.27427​25

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3035918.3035924
https://doi.org/10.1145/3035918.3035924
https://doi.org/10.1145/3159652.3162007
https://doi.org/10.1145/3159652.3162007
https://doi.org/10.5555/2634074.2634144
https://doi.org/10.1145/1835804.1835934
https://doi.org/10.1145/1557019.1557047
https://doi.org/10.1109/ICDM.2010.118
https://doi.org/10.1109/ICDM.2010.118
https://doi.org/10.1145/2600428.2609592
http://arxiv.org/abs/1212.4779
https://doi.org/10.1145/2661829.2662077
https://doi.org/10.1145/502512.502525
https://doi.org/10.1007/978-3-030-34223-4_18
https://doi.org/10.1007/978-3-030-34223-4_18
https://doi.org/10.1145/2882903.2882929
https://doi.org/10.1145/2740908.2742725

239Real‑Time Influence Maximization in a RTB Setting﻿	

1 3

	14.	 Goyal A, Bonchi F, Lakshmanan LV (2010) Learning influence
probabilities in social networks. In: Proceedings of the WSDM’10.
ACM, New York, pp 241–250. https​://doi.org/10.1145/17184​
87.17185​18

	15.	 Goyal A, Lu W, Lakshmanan LV (2011) CELF++: optimizing the
greedy algorithm for influence maximization in social networks.
In: Proceedings of the WWW’11. ACM, New York, pp 47–48.
https​://doi.org/10.1145/19631​92.19632​17

	16.	 Goyal A, Lu W, Lakshmanan LVS (2011) SIMPATH: an efficient
algorithm for influence maximization under the linear threshold
model. In: Proceedings of the IEEE ICDM’11. Vancouver, BC,
Canada, pp 211–220. https​://doi.org/10.1109/ICDM.2011.132

	17.	 Huang K, Wang S, Bevilacqua G, Xiao X, Lakshmanan LVS
(2017) Revisiting the stop-and-stare algorithms for influence
maximization. Proc VLDB Endow 10(9):913–924. https​://doi.
org/10.14778​/30996​22.30996​23

	18.	 Jung K, Heo W, Chen W (2012) Irie: Scalable and robust influ-
ence maximization in social networks. In: Proceedings of the
IEEE ICDM’12. Brussels, Belgium, pp 918–923. https​://doi.
org/10.1109/ICDM.2012.79

	19.	 Kempe D, Kleinberg J, Tardos E (2003) Maximizing the
spread of influence through a social network. In: Proceedings
of the KDD’03. ACM, New York, pp 137–146. https​://doi.
org/10.1145/95675​0.95676​9

	20.	 Lei S, Maniu S, Mo L, Cheng R, Senellart P (2015) Online influ-
ence maximization. In: Cao L, Zhang C, Joachims T, Webb GI,
Margineantu DD, Williams G (eds) Proceedings of the SIG-
KDD’15. ACM, pp 645–654. https​://doi.org/10.1145/27832​
58.27832​71

	21.	 Leskovec J, Krause A, Guestrin C, Faloutsos C, Faloutsos C, Van-
Briesen J, Glance N (2007) Cost-effective outbreak detection in
networks. In: Proceedings of the KDD’07. ACM, New York, pp
420–429. https​://doi.org/10.1145/12811​92.12812​39

	22.	 Leslie PH (1945) On the use of matrices in certain population
mathematics. Biometrika 33(3):183–212. https​://doi.org/10.1093/
biome​t/33.3.183

	23.	 Liang W, Shen C, Li X, Nishide R, Piumarta I, Takada H (2019)
Influence maximization in signed social networks with opinion
formation. IEEE Access 7:68837–68852. https​://doi.org/10.1109/
ACCES​S.2019.29188​10

	24.	 Mandelbrot BB (1982) The fractal geometry of nature, vol 1. WH
Freeman, New York

	25.	 Sumith N, Annappa B, Bhattacharya S (2018) Influence maximi-
zation in large social networks: heuristics, models and parameters.
Future Gener Comput Syst 89:777–790. https​://doi.org/10.1016/j.
futur​e.2018.07.015

	26.	 Nemhauser GL, Wolsey LA, Fisher ML (1978) An analysis of
approximations for maximizing submodular set functions–i. Math
Program 14(1):265–294. https​://doi.org/10.1007/BF015​88971​

	27.	 Ohsaka N, Akiba T, Yoshida Y, Kawarabayashi K (2014) Fast and
accurate influence maximization on large networks with pruned
Monte-Carlo simulations. In: Proceedings of the AAAI’14.
Québec City, Québec, Canada, pp 138–144

	28.	 Singh SS, Kumar A, Singh K, Biswas B (2019) C2im: community
based context-aware influence maximization in social networks.
Phys A Stat Mech Appl 514:796–818. https​://doi.org/10.1016/j.
physa​.2018.09.142

	29.	 Spencer S, O’Connell J, Greene M (2011) The arrival of real-time
bidding. Technical report, Google

	30.	 Tang J, Tang X, Xiao X, Yuan J (2018) Online processing
algorithms for influence maximization. In: Proceedings of
the SIGMOD’18. ACM, New York, pp 991–1005. https​://doi.
org/10.1145/31837​13.31837​49

	31.	 Tang Y, Shi Y, Xiao X (2015) Influence maximization in near-
linear time: a martingale approach. In: Proc. SIGMOD’15. ACM,
New York, pp 1539–1554. https​://doi.org/10.1145/27233​72.27237​
34

	32.	 Tang Y, Xiao X, Shi Y (2014) Influence maximization: near-
optimal time complexity meets practical efficiency. In: Proceed-
ings of the SIGMOD’14. ACM, New York, pp 75–86. https​://doi.
org/10.1145/25885​55.25936​70

	33.	 Tian S, Zhang P, Mo S, Wang L, Peng Z (2019) A learning
approach for topic-aware influence maximization. In: Shao J, Yiu
ML, Toyoda M, Zhang D, Wang W, Cui B (eds) Web and big data.
Springer, Cham, pp 125–140

	34.	 Tong G, Wang R, Ling C, Dong Z, Li X (2020) Time-constrained
adaptive influence maximization. arXiv​:2001.01742​

	35.	 Tong GA, Wu W, Tang S, Du DZ (2017) Adaptive influence maxi-
mization in dynamic social networks. IEEE/ACM Trans Netw
25:112–125

	36.	 Wang Y, Fan Q, Li Y, Tan KL (2017) Real-time influence maximi-
zation on dynamic social streams. Proc VLDB Endow 10(7):805–
816. https​://doi.org/10.14778​/30674​21.30674​29

	37.	 Wu Q, Li Z, Wang H, Chen W, Wang H (2019) Factorization
bandits for online influence maximization. In: Proceedings of the
KDD’2019, pp 636–646

	38.	 Yuan S, Wang J, Zhao X (2013) Real-time bidding for online
advertising: measurement and analysis. CoRR arXiv​:1306.6542

	39.	 Zhang M, Dai C, Ding C, Chen E (2013) Probabilistic solu-
tions of influence propagation on social networks. In: Proceed-
ings of the CIKM’13. ACM, New York, pp 429–438. https​://doi.
org/10.1145/25055​15.25057​18

https://doi.org/10.1145/1718487.1718518
https://doi.org/10.1145/1718487.1718518
https://doi.org/10.1145/1963192.1963217
https://doi.org/10.1109/ICDM.2011.132
https://doi.org/10.14778/3099622.3099623
https://doi.org/10.14778/3099622.3099623
https://doi.org/10.1109/ICDM.2012.79
https://doi.org/10.1109/ICDM.2012.79
https://doi.org/10.1145/956750.956769
https://doi.org/10.1145/956750.956769
https://doi.org/10.1145/2783258.2783271
https://doi.org/10.1145/2783258.2783271
https://doi.org/10.1145/1281192.1281239
https://doi.org/10.1093/biomet/33.3.183
https://doi.org/10.1093/biomet/33.3.183
https://doi.org/10.1109/ACCESS.2019.2918810
https://doi.org/10.1109/ACCESS.2019.2918810
https://doi.org/10.1016/j.future.2018.07.015
https://doi.org/10.1016/j.future.2018.07.015
https://doi.org/10.1007/BF01588971
https://doi.org/10.1016/j.physa.2018.09.142
https://doi.org/10.1016/j.physa.2018.09.142
https://doi.org/10.1145/3183713.3183749
https://doi.org/10.1145/3183713.3183749
https://doi.org/10.1145/2723372.2723734
https://doi.org/10.1145/2723372.2723734
https://doi.org/10.1145/2588555.2593670
https://doi.org/10.1145/2588555.2593670
http://arxiv.org/abs/2001.01742
https://doi.org/10.14778/3067421.3067429
http://arxiv.org/abs/1306.6542
https://doi.org/10.1145/2505515.2505718
https://doi.org/10.1145/2505515.2505718

	Real-Time Influence Maximization in a RTB Setting
	Abstract
	1 Introduction
	2 IM State of the Art
	2.1 Propagation Models
	2.2 Properties
	2.3 Computing Score
	2.4 Algorithms

	3 RTIM Approach
	3.1 Step I: Preprocessing—Building the Influence Graph
	3.2 Step II: User targeting at Runtime

	4 RTIM Model
	5 Influence Analysis
	6 Experiments
	6.1 Experimental Process
	6.1.1 Stage IV: Seed Set Evaluation

	6.2 Experimental Results
	6.3 Conclusions

	7 Seed Set Size Guarantee to Maximize Ad Campaigns
	7.1 Expected Seed Set Size
	7.2 Preliminary Experiments
	7.3 Conclusion

	8 Conclusion
	References

