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Abstract
To maximize the impact of an advertisement campaign on social networks, the real-time bidding (RTB) systems aim at 
targeting the most influential users of this network. Influence maximization (IM) is a solution that addresses this issue by 
maximizing the coverage of the network with top-k influencers who maximize the diffusion of information. Associated with 
online advertising strategies at Web scale, RTB is faced with complex ad placement decisions in real time to deal with a 
high-speed stream of online users. To tackle this issue, IM strategies should be modified in order to integrate RTB constraints. 
While most traditional IM methods deal with static sets of top influencers, they hardly address the dynamic influence target-
ing issue by integrating short time decision, no interchange and stream’s incompleteness. This paper proposes a real-time 
influence maximization approach which takes influence maximization decisions within a real-time bidding environment. 
A deep analysis of influence scores of users over several social networks is presented as well a strategy to guarantee the 
impact of an IM strategy in order to define the budget of an ad campaign. Finally, we offer a thorough experimental process 
to compare static versus dynamic IM solutions wrt. influence scores.
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1  Introduction

Influence maximization (IM) is a trend topic since Kempe 
et al. [19], known as a maximum coverage problem of social 
networks. The goal is to find the smallest subset of individu-
als in a social network, whom when targeted with a piece of 
information will maximize its diffusion through social influ-
ence. Thus, IM aims at maximizing the influence impact of 
a set of users. “Influence” is “the power of causing an effect 
in indirect or intangible ways” (Merriam-Webster). In other 

words, a user can be influenced if he saw the ad, interacted 
with it, purchased the product or was encouraged to do so 
in the future.

Today, real-time bidding (RTB) outpaced other advertis-
ing strategies in terms of online advertising [29, 38] and 
social network services (SNS). RTB is an online auction 
system which allows advertisers to bid in real time for ad 
locations on a Web page loaded by users and thus to target 
them efficiently. In RTB, advertisers see a stream of users, 
one at a time and have less than 100 ms [11, 38] to decide 
to bid or not. The bidders do not know what the auction 
landscape looks like and consequently cannot oversee future 
connections.

In addition, RTB ad targeting relies essentially on Web 
page content and users’ profile. However, it lacks the social 
value of each customer as suggested by Domingos and Rich-
ardson [10]. As far as we know, no RTB algorithm attempts 
to find an IM solution to improve bidding decisions. Thus, 
the aim of our approach is to develop an IM algorithm capa-
ble of running with RTB constraints. It is worth noting that 
IM could integrate the bidding aspect in order to improve 
RTB, but this approach is left for future work.

Traditional IM algorithms, based on propagation mod-
els, propose various optimization techniques to statistically 
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choose a seed set of users that maximizes influence. Even if 
some IM algorithms compute it in real time, none of them 
can work within a real-time bidding environment and satisfy 
its requirements.

Interestingly, the IM problematic in an RTB context is a 
twofold issue. First, influence maximization needs to take 
into account time with real-time bidding constraints: a short 
time, no exchange with the past, no time windows, incom-
pleteness of the stream (not all users are connected). Second, 
to maximize the impact of an ad campaign, it is necessary 
to know in advance how much user it requires to target in 
the social network to guarantee a sufficient coverage. In fact, 
it is necessary to define the more accurate budget to define 
the best seed set size which maximizes the influence on the 
social network.

Indeed, whereas existing algorithms take hours or days to 
find a seed set up to 200 seeds in a large social network [1], 
they do not cope with ad campaign requirements with thou-
sands of users or take into account the fact that chosen users 
can be available online or not. The maximization problem 
needs to rely on both propagation and real-time decision.

This article targets the issue with the following 
constraints:

–	 Real-Time Bidding only an online user can be targeted,
–	 Processing Time 100 ms to choose to target a user or not,
–	 Social Networks the propagation influence score relies on 

a social network containing millions of users and rela-
tionships,

–	 Influence Maximization thousands of users must be tar-
geted just by appending them in real time while maximiz-
ing scores of large seed sets.

–	 Ad Campaign Guarantee the size of the ad campaign is 
set in advance in correlation with the social network to 
give a guarantee of its influence score.

Therefore, an IM algorithm is necessary to target influential 
users in an RTB environment, capable of deciding in real 
time which users are worth targeting. To achieve this, we 
propose the real-time influence maximization 
(RTIM). It is an IM algorithm which decides in real time 
the effectiveness of an online user u, while static IM models 
only verify if this user u has been chosen in the precomputed 
seed set. Our main contributions are as follows:

–	 We propose an elegant approach for real-time influence 
maximization focusing on the stream of online users,

–	 We provide a deep analysis of users’ influence scores 
for various social network datasets in order to showcase 
users’ behavior in IM,

–	 We give a model to give the estimation of the seed set 
size in order to guarantee the influence efficiency of an 
ad campaign on the network,

–	 We set up a thorough experimental setting for RTIM and 
IMM models on different social networks.

In this article, we first review the literature on influence 
maximization. We then explain the two stages of our algo-
rithm: preprocessing and live, how they relate to each other 
and allow us to solve the influence maximization problem 
under RTB constraints. We follow on the RTIM implemen-
tation, and we go through the experimental process which 
compares our dynamic algorithm with a static approach. We 
then present a methodology to estimate the impact of an ad 
campaign which gives the estimation of the influence of a 
seed set size.

2 � IM State of the Art

Influence Maximization takes place in a social network 
graph G = (V ,E) where V is the set of vertices (users) and 
E the set of directed edges (influence relationships). In this 
graph G , a user is activated if he has successfully been influ-
enced by a neighbor and therefore influences his own out-
going neighbors. A targeted user is a user who is not yet 
activated, but for whom a piece of information is shown to 
be propagated.

IM’s goal is to produce a seed set S of targeted users 
which maximizes its influence on G . The optimal seed set 
(final result) is defined as S∗.

2.1 � Propagation Models

Kempe et al. [19] propose two common propagation models: 
Independent Cascade (IC) and Linear Threshold (LT). The 
IC model considers that each user can be influenced by a 
neighbor independently of any of his other neighbors. The 
LT model considers that a user is activated if the sum of suc-
cessful influence probabilities from his neighbors is greater 
than his activation threshold.

Under the IC model, time unfolds in discrete steps. At 
any time step, each newly activated node ui ∈ Va,∀i ∈ V  
gets one independent attempt to activate each of its outgo-
ing neighbors vj ∈ Out(ui),∀j ∈ V{i} with a probability 
p(u, v) = eij . In other words, eij denotes the probability of 
ui influencing vi.

As explained in [14], there is a real challenge in acquir-
ing real-world data to build datasets containing accurate 
influence probabilities. Therefore, theoretical edge weight 
models may be assumed, like in the following edge weight’s 
models for the IC model:

–	 Constant Each weight eij has a constant probability. In 
most solutions [4, 9, 12, 13, 15, 19], p is set at 0.01 or 
0.1. Some define p ∈ [0.01, 0.1] [5, 27].
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–	 Weighted Cascade (WC) In this model, eij =
1

|In(vj)|
 where 

In(vj) is the number of neighbors that influence u. Thus, 
all neighbors that influence ui do so with the same prob-
ability. Therefore, it is easier to influence a user with a 
low in-degree [4, 5, 7–9, 12, 13, 19, 31, 32].

–	 Tri-valency Model Here, the weight of edges is randomly 
chosen from a list such as {0.001, 0.01, 0.1} [4, 7, 18]. In 
very large or dense networks, the tri-valency model may 
actually have edge weights far greater than the weighted 
cascade model due to the number of neighbors each user 
has.

For the LT model, the general edge weight rule is that the 
sum of the weights must equal one. Therefore, the WC 
model applies to LT. Additional alternative models can be 
found in [25] with an extensive IM state of the art.

The IC model is very useful to model information diffu-
sion when a single exhibition to a piece of information from 
one source is enough to influence an individual. It is also 
a simpler model to study than LT. The LT model doesn’t 
change the fundamental approach of our algorithm, and 
we believe that it should be simple to extend it to LT. For 
these reasons, we limit our approach to IC. In addition, we 
define the edge weights using the WC model, because it cor-
responds better to the simulation of the diversity of influence 
between individuals in a real-world social network.

2.2 � Properties

Kempe et al. [19] prove that the influence maximization 
problem is a monotone and sub-modular function. It is also 
an NP-Hard problem under both the IC and LT models. Chen 
et al. [4] prove that computing the influence score of a seed 
set is #P-Hard under the IC model.

For both IC and LT models, adding users to the seed set 
always increases its global influence score which corre-
sponds to the positive monotone property.

Moreover, the propagation function f is sub-mod-
ular if it satisfies a natural diminishing returns prop-
erty, i.e., the marginal gain from adding an element 
v to a set S is at least as high as the marginal gain from 
adding the same element to a superset of S . Formally, 
a sub-modular function satisfies: ∀S ⊆ T ⊆ 𝛺 and 
x ∈ ��T , f (S ∪ {x}) − f (S) ≥ f (T ∪ {x}) − f (T) . This sub-
modular property is essential as it guarantees that a greedy 
algorithm will have a (1 − 1∕e − �) approximation to the 
optimal value [26]. Many IM algorithms of the state of 
the art rely on this theoretical guarantee to validate their 
strategy.

2.3 � Computing Score

Influence Score Authors in [39] elaborate the exact influence 
spread function for the IC model as an inclusion–exclusion-
based equation. We generalize their inclusion–exclusion-
based equation into Eq. 1.

In Eq. 1, the influence score of a seed set S , of size k, is 
defined as the sum of activation probabilities aS(v) of any 
node v ∈ V  when users in S are targeted. The activation 
probability of a user is the probability that there exists a 
path between that user and any targeted user. As we write 
in Eq. 1, the probability that a path exists is the union of the 
existence of any path between a user and any targeted user. 
It is clear here that computing this formula is exponential 
in complexity.

Determining the seed set S of k users among N which 
provides the maximum global influence score �(S) is a 
NP-hard problem since it requires computing the global 

influence score of any combination of k users, so there are 
⎛
⎜
⎜
⎝

N

k

⎞
⎟
⎟
⎠
 

combinations to test for any given k. Even when assuming the 
seed set is known, computing its global influence score has 
been proved to be #P-Hard [18]. Due to the exponential nature 
of computing the influence score, Kempe et al. [19] offer an 
alternative which consists in running n = 10,000 influence 
propagation simulations and averaging the scores into a final 
influence score result. This is called the Monte Carlo 
approach, and we write an influence score computed with this 
method as �MC() . This estimation method allows us to produce 
a good approximation for the influence score, and we can thus 
efficiently compute: �MC(S) ∼ �(S).

2.4 � Algorithms

Clearly presented by in [1] and [2], there are three main 
categories of IM algorithms: greedy, sampling and 
approximation.

Greedy [19], CELF [21] and CELF++ [15] are all three 
lazy forward algorithms which take advantage of the sub-
modularity property of the IM problem and thus guarantee 
an approximation of (1 − 1∕e − �) . To find S∗ , they start with 
S = � and incrementally add node v which brings the larg-
est marginal gain: 𝜎MC(S ∪ v) > 𝜎MC(S) , until |S| = k . How-
ever, continuously computing �MC(S) is costly. CELF [15, 
21] attempts to remedy this by storing certain scores to take 
advantage of the sub-modular property and avoid recomput-
ing other scores, but this doesn’t provide any significant gain 

(1)
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�
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�
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in runtime. Thus, those greedy algorithms do not scale for 
large seed sets or large graphs.

Borg et al.’s method [3] (referred to as RIS: Reverse Influ-
ence Sampling), TIM, TIM+ [32] or IMM [31] use topo-
logical sampling. In the transpose graph, they generate a 
set R of size � of random paths of the greatest influence by 
picking users uniformly at random (reverse reachable (RR) 
sets). Using a greedy method, they build S∗ by continuously 
adding to S∗ the user who covers the greatest number of RR 
sets and removing them from R . As shown by [1], sampling 
algorithms are significantly faster because �MC(S

∗) is only 
computed once the final solution is found. However, their 
theoretical guarantee depends on � which is computed by � 
in (1 − 1∕e − �) and l which determines their runtime factor 
l2 ∗ log(n) . Experimentally they use � = 0.5 and l = 1 which 
means that precision is sacrificed for scalability.

Approximation algorithms such as EaSyIM [12], IRIE 
[18], SIMPATH [16], LDAG [6] or IMRANK [7], SSA-Fix 
[17] offer heuristics to compute �(S) . Instead of computing 
the union of all paths as indicated in Eq. 1, they consider the 
most probable path. RLP [23] uses live edges and propa-
gation paths to optimize computation time. They can run 
select the top k influential users. While scalable, they do not 
provide theoretical guarantees [1].

Mining and learning strategies try to enhance the extrac-
tion of seed sets. DIEM [33] proposes to learn propaga-
tion models on the influence graph to produce a predic-
tion model. C2IM [28] focuses on influence communities’ 
extraction in order to ease the connection to the influencers. 
Wu et al. [37] propose the factorization of bandits’ methods 
in order to predict influencers through iterations of reward 
strategies. However, it hardly scales in seed set sizes (gener-
ally 50) and, moreover, models are not designed to be time 
dependent and flexible.

OIM [20], AIM [35] and TAIM [34] are recent works on 
real-time influence maximization which need to be noticed. 
They propose adaptative strategies that compute the seed set 
dynamically by incrementally watching the influence impact 
of users on time windows and choose the optimal one on this 
setting. OPIM [30] also proposed an extension of Borg’s 
solution [3] by deriving in real time the approximated seed 
set and then choose the node with the largest marginal cover-
age. Even if those strategies properly approximate the seed 
set influence iteratively, it cannot fit with RTB constraints for 
which a decision must be made on a single user (bid) and not 
on a set of users at once. Thus, it cannot be an approximation 
on the whole graph but a local decision at once.

Conclusions: All of these algorithms provide proper 
scientific solutions to solve the IM problem. The common 
rule is that an algorithm which has high accuracy will 
take weeks to find its seed set and vice versa an algorithm 
which runs in a couple of hours will have less accuracy. 
However, these algorithms compute the seed set in a static 

graph environment and assume that every user must be 
available at any time to be targeted. This approach is not 
appropriate to graphs with more than tens of millions of 
users with proportionally many edges [1]. There exist a large 
number of specific IM contributions which have been listed 
in [25]. It shows clearly that very few contributions have 
been made regarding the analysis of the IM challenge in a 
stream of online users. We must notice [36] which proposes 
an interesting solution with sliding windows that computes 
local influence maximization. However, it does not scale up 
for large seed set lists; more than 100 while thousands are 
required.

Therefore, none of the existing IM solutions can perform 
well under real-time bidding constraints. Indeed, it requires 
that all users in S appear during the campaign to guarantee 
the maximization of the static IM strategies. These algo-
rithms compute the seed set in a static environment rather 
than a dynamic one, as we hope to achieve, with RTB 
constraints.

To this end, we offer RTIM, real-time influence maximi-
zation, which targets influential users in real time, hence-
forth generating a seed set of influencers under real-time 
bidding constraints. To ensure this, RTIM takes place in 
two stages: a preprocessing stage and a live stage which we 
now present.

3 � RTIM Approach

RTIM is meant to perform in an RTB environment. The lat-
ter consists of users who, through their devices connected 
to the Internet, are navigating on Web sites. As soon as a 
user arrives on a Web page which sells its ad slots through 
a real-time bidding environment, the IM algorithm has to 
determine whether it is useful for targeting. In minutes, mil-
lions of users are quickly navigating through many dozens 
of Web sites each leading for any RTB advertising agency 
to a continuous stream of online users [38]. Advertisers can 
only target, with advertisements, users who appear in the 
stream and target them under 100 ms which corresponds 
to the bidding platform delay. As we know, these users all 
belong to a very large social network through which they 
may be sharing information and influencing one another. 
It is therefore in the advertiser’s interest to take advantage 
of the social network value of each user that appears in the 
RTB stream. In addition, these same advertisers with large 
budgets seek to acquire or convert (i.e., activate) many users, 
most through targeting.

The originality of our approach lies in its ability to tar-
get users who appear in this dynamic stream by estimating 
whether they will have a significant gain based on previously 
targeted users in the same stream and belonging to the same 
social network, thus providing a solution to the influence 
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maximization problem and producing a large set of users for 
a realistic ad campaign, while traditional approaches deter-
mine the best seed set of targeted users, at the cost of expen-
sive computation, by processing a static graph in which any 
user is considered online and available for targeting at any 
given moment. Contrary to these solutions, RTIM allows us 
to adapt our influence maximization strategy to an advertise-
ment campaign taking place in an RTB streaming environ-
ment and which requires targeting tens of thousands of users.

Furthermore, we choose to compare RTIM with the static 
algorithm IMM (“influence maximization with martingales” 
[31]). Indeed, IMM has proved that it can compute an effec-
tive seed set in a reasonable time regardless of the graph 
size. Even more so, it can compute large seed set sizes of 
tens of thousands of users as an RTB advertising campaign 
requires it.

Static algorithms, such as IMM [31], correspond to an 
optimistic approach where they assume that the users from 
their precomputed seed set will necessarily be online in the 
stream. However, without integrating a probabilistic model 
based on real and precise figures about the connection rate 
of different users, which is hardly possible on large social 
networks like Twitter, many users of the predefined seed 
set won’t be available to target during the advertisement 
campaign. In contrast, our greedy approach, which can be 
considered as a pessimistic approach, allows us to dynami-
cally fill our seed set with online users of interest for the 
advertisement campaign.

Our RTIM algorithm is composed of two steps: First, a 
preprocessing step computes the influence score of every 
user in the graph. Second, when reading the dynamic stream 
in real time (called the “live stage”), for each user in the 
stream, we determine whether his influence score is high 
enough or the probability of him being activated by a previ-
ously targeted user is low enough. When a user is targeted 
during this live stage, we update the activation probability 
of the users in his neighborhood.

3.1 � Step I: Preprocessing—Building the Influence 
Graph

First, we attribute a weight to each edge which estimates the 
influence that depends on the number of incoming edges of 
a vertex. This influence estimation between direct neighbors 
is commonly adopted in influence propagation [27]. We call 
this graph the influence graph GI(V ,E,wI) defined formally 
as follows:

Definition 1  (Influence graph) Consider G(V ,E) the social 
graph where V is the set of vertices and E ⊆ V2 the set 
of oriented edges. The influence graph for G is the graph 
GI(V ,E,wI) with the same sets of vertices and edges and a 

weighted function wI ∶ E → ℝ such that for an edge eij from 
vertex vi to vj:

Figure 1 depicts the influence graph for a social network 
between 5 users. For instance, user u2 who follows or is 
influenced by users u1 , u3 and u5 has each of his incoming 
edge e ∈ E weighted by:

To estimate the influence score, we use the Monte Carlo 
approach by running n simulations, where n is a large num-
ber (10,000 in [19]). The influence score of each user u is 
the average number of users activated for all simulations.

For each single simulation, we test the existence of each 
outgoing edge of a user (i.e., followers of u1 ) in G by gen-
erating a random number r ∈ [0, 1] and checking whether 
r reaches the activation probability, so that r < wI(eij) . If it 
is, the edge eij exists with probability wI(eij) . For example, 
for user u1 we test his followers, the two edges e12 and e13 
are tested with random values that give 0.3 < wI(e12) and 
0.6 > wI(e13) . Consequently, only u2 is considered activated 
since we can consider that a path exists between u1 and u2.

When a neighbor is activated, we can then recursively 
test each of the neighbor’s outgoing edges with the same 
method. We stop when no more neighbors are activated (the 
influence propagation stops along the edges). That is, u2 can-
not reactivate a node already activated by u1 . For instance, 
with 0.7 > wI(e23) and 0.4 < wI(e25) , user u5 is activated. 
Recursively, we test the edge e53 . In our example, the influ-
ence score of user u1 (for the first simulation) is equal to 2 
with activated users: u2 and u5.

Since the simulations are all independent and the graph 
data structure is only read during the process, we can run the 
n simulations in parallel. However, running 10,000 Monte 

wI(eij) =
1

indegree(vj)

wI(e12) = wI(e32) = wI(e52) = 1∕3 = 0.33

u1
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u3

u4

u5

0.33
0.5 0.33
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1
0.25
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0.25

0.33

0.5

0.25
0.5

Fig. 1   Influence graph G
I
 with weighted edges
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Carlo simulations for each user u ∈ G remains extremely 
costly when considering real large advertisement campaigns 
where the expected seed set reaches tens of thousands of 
users. Consequently, this computation must be performed 
offline.

We store all the values in a vector I of user influence 
scores:

3.2 � Step II: User targeting at Runtime

With the influence score computed in the preprocessing 
step, RTIM is able to select, during the RTB stream, users 
to target. Consider the temporal stream of users T  in which 
appears every online connection event of the users u ∈ G . 
Since a user can only be targeted when he appears in the 
stream, we need to decide in real time whether he is worth 
targeting or not. To make this decision, our RTIM algorithm 
takes into consideration two criteria: 

(i)	� Is the user influential enough?
(ii)	� What is the probability that he was already activated 

by the ad through one of his influential and targeted 
neighbors?

To verify these two criteria, we set two thresholds, �I 
and �A , respectively, the minimum influence score and the 
activation probability. Whenever a user is online, we check 
whether his influence score is important enough to be a 
potential target for the advertisement campaign or not. If 
his influence score is above the influence threshold �I (i.e., 
considered to be an influencer), we check the probability for 
this user to be presented the advertisement by the users he 
follows (i.e., already activated). If this probability is above 
the threshold �A , we value that it is not worth presenting the 
advertisement since it is very likely that it has already been 
presented to a user he follows who will have influenced him. 
Otherwise, the user is targeted and added to the seed set.

When we target a user who satisfies these two thresh-
olds, his activation probability is set to 1. This change, 
which impacts the activation probability of other users in 
the network, must be taken into account. Therefore, from 
the targeted user, we update the activation probability of 
neighboring users by propagating his influence. This will 
enable us to make better targeting decisions for future users 
who appear in the stream.

Figure 2 illustrates the stream of online users and their 
interconnected graph. T  is a basic example of an RTB 
stream where users appear one at a time in discrete steps (in 
red/bold) and can only be targeted when available. As soon 
as RTIM makes a decision to target or not the user, he is no 

∀ui ∈ G, Ii = �MC(ui)

longer available. When the first user u2 appears (time t1 ), we 
verify his influence score I2 . His activation probability is 
necessarily 0 because he is the first user in T  . If I2 > 𝜃I , then 
we consider that u2 tries to activate his followers u1 , u3 and u5 
and propagate to their own neighbors. Then, we update their 
activation probability. Assume that u1 is activated ( A1 > 𝜃A ) 
while u3 and u5 are not.

When user u4 is online ( t2 ), his influence score is insuf-
ficient to be targeted. We skip him and wait for the following 
online user. Then, when user u3 appears in the stream ( t3 ), he 
is considered to be an influencer ( I3 > 𝜃I ) and not activated 
by u2 ( A3 < 𝜃A ). As for u2 , he is targeted and propagates 
the activation probability to his neighbors u1 , u2 , u5 and u4 . 
When u5 appears in T  at t4 , even if I5 is higher than �I , he is 
considered to be influenced by both u2 and u3 (assume that 
A5 > 𝜃A ). Thus, it is not worth targeting him.

By applying the whole stream of users T  , our approach 
generates the seed set S∗ where every user u ∈ G verifies �I 
and �A . The key point resides in the fact that RTIM maxi-
mizes the influence of connected users while removing those 
who are too close to users already targeted.

We present different algorithms, within RTIM, which are 
required for the runtime processing, in the following section.

4 � RTIM Model

Traditional influence maximization algorithms, like IMM, 
have an optimistic approach since they determine statically 
the users to target based on the final global influence score 
of the set of targeted users. So they assume with a probabil-
ity of 1 that these users will connect within the advertise-
ment campaign period. If the advertisement campaign is not 
time limited, i.e., we consider an infinite stream of users 
online, these solutions potentially maximize the total score 
of the campaign. However, with a limited time window for 
the advertisement campaign, not all these users will likely 
appear online.
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Fig. 2   Ex. of the live stream ( T  ) of available users
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RTIM’s strategy is quite different since it considers that 
the probability that a user will appear in the stream is unde-
fined. Therefore, the decision of targeting a user is done in 
real time when he is available, considering whether this user 
is a good “influencer” while not already having been influ-
enced by other users during the campaign. So RTIM can be 
considered as a pessimistic algorithm since we decide to add 
a user to the final seed set instantaneously, even if a “better” 
user to add to the seed set appears later in the stream.

Upon targeting a user, his activation probability is imme-
diately set to 1 because he is considered to be activated on 
the spot. This change in the targeted user’s status means that 
other users around him are likely to also be activated through 
his influence. In the following part, we discuss the activation 
probability graph which allows us to update the activation 
probability of neighboring users, with respect to time (i.e., 
the user position in the stream).

Activation probability graph At time t0 , when T  starts, we 
create the activation probability graph as the influence graph 
GI described in Sect. 3.1.

We can adopt the matrix representation for the graph in 
the following:

where AG is the adjacency matrix, i.e., AG[i, j] = 1 if there 
exists an edge from user ui to user uj , 0 otherwise, and 
InDegV is the indegree vector, with InDegV [i] =

1

indegree(ui)
.

The activation probability vector AV is initialized as the 
�⃗0 vector.

Activation probability updates Consider we have at time 
tk−1 > t0 , an activation probability vector AV(tk−1) . Then, 
assume that at time tk , a user ui connects and we decide to 
target him. So his activation probability AV(tk−1)[i] is now 
set to 1. This probability update impacts other probabilities 
in the graph. Indeed, users who follow ui are now more likely 
to see this advertisement, and consequently, we may avoid 
targeting them in the future. We must update other activa-
tion probabilities through influence propagation according 
to existing links in the graph to obtain the AV(tk) probability 
vector.

Definition 2  (Activation probability propagation) Consider 
the social graph G(V ,E) and its influence graph GI(V ,E,wI) 
as stated in Sect. 3. The activation probability vector AV(tk) 
for G at tk is recursively defined as:

So, after targeting a user ui ( AV(tk−1)[i] = 1 ) the vector is 
recursively combined with the activation probability graph 

MGI
(V ,E) = AG × InDegV

{
AV (0)(tk) = MGI

(V ,E) × AV(tk−1)

AV (i+1)(tk) = MGI
(V ,E) × AV (i)(tk)

MGI
 in order to propagate the activation while obtaining a 

convergence after i iterations:

This model corresponds to a matrix population model 
[22].1 Thus, we can guarantee its convergence since the 
Eigenvalues of MGI

(V ,E) are real strictly positive (the matrix 
is real, asymmetric and non-diagonal). Moreover, the propa-
gation is an increasing and monotone function bounded to �⃗1.

As the stream of users goes by RTIM will take less risk 
and target the best user when available, there is no certainty 
that a better user will appear later on. On the contrary, if the 
stream is infinite, then the probability that a user will appear 
is necessarily 1, and thus, IMM, on an infinite stream, will 
always perform better than RTIM.

The aim of RTIM is to determine in real time if a user is 
a good influencer while not already having been influenced 
by other users. To achieve this, our model relies on the prob-
ability a targeted and activated user has of influencing and 
activating other users. The issue is to determine the proper 
thresholds in order to fill the seed set both efficiently and 
effectively.

To target influencers, we need to determine users worth 
targeting but also when users are considered activated by 
influencers. For this, we define the threshold �I as the mini-
mum influence score for which we can consider the top-k 
influencers. Therefore, we propose to set �I to the influence 
score of the kth influencer. We also define the activation 
probability threshold �A which is the likelihood of a user 
being activated. By default, we set �A to 0.5. Any user whose 
activation probability is greater than �A is considered to have 
been activated and therefore will have attempted himself to 
propagate the information provided by an influencer and is 
therefore not worth targeting.

During the live stage, we need to update the current 
online user’s activation probability while checking if he is 
a worthwhile influencer. To achieve this, we need to com-
pute all of the most reliable paths between this user and any 
activated neighbor of depth less than d. For that user, if his 
influence score is above �I and his activation probability is 
below �A , the user is targeted. Otherwise, we ignore him.

In Eq. 1, we explained that the probability of a user v 
being activated by any node u ∈ S is the probability of all 
pa ths  between v  and  any user  in  S  ( i . e . , 
aS(u) = �(

⋃
pj∈Puvi

pj) ). Here, we consider S = u , where u is 
the online user who has just been targeted and considered 
activated.

AV(tk) = AV (∞)(tk) = MGI
(V ,E) × AV (∞)(tk)

1  Not a Markov chain since the sum of a column can exceed 1: 
MG

I
(V ,E) = AG × InDeg

V
.



231Real‑Time Influence Maximization in a RTB Setting﻿	

1 3

Notice that if we consider the paths between u and v as 
being independent, then we obtain Eq. 2:

This theoretical bias is validated if we consider the paths to 
be of length no more than 2. This is true because between 

(2)
A[u] = �

⎛
⎜
⎜
⎝

�

pj∈Puv

pj

⎞
⎟
⎟
⎠
= 1 −

�

wi∈P
d
uv

(1 − wi),

wi ∈ P
d
uv
= {all path weights of length d from u to v}

two nodes all paths of length 2 are necessarily independent. 
Therefore, we use Eq. 2 with a maximum depth of 2 to 
update the activation probability of a user.

Due to the directed property of the influence graph, for 
algorithmic and computational purposes it is easier to update 
the activation probabilities of a recently targeted and acti-
vated user. Hence, when a user is targeted, we update the 
activation probabilities of all his neighbors up to a maximum 
depth d.

Algorithm 1 Updating activation probabilities
Require: a graph G, nodes u and v, user v’s activation probability A[v], the set of user u’s

neighbors Nu, current path weight p, depth d
1: procedure ActivationScores(G, u, p, d)
2: for v ∈ Nu do
3: A[v] ← 1− (1−A[v]) ∗ (1− p ∗ wuv)
4: if d > 1 then
5: ActivationScores(G, v, p ∗ wuv , d− 1)

Algorithm 1 illustrates updates of activation probabilities. 
For each neighbor v of user u, we propagate his activation 
probability (line 3). Then, while the depth of propagation is 
sufficient, we follow the propagation recursively (line 4&5). 
In the worst case, it runs in O(|V|d) when all users are 
interconnected. Since in most cases, our networks are 

not dense (Table 1), updating the activation probabilities 
is done very fast (Table 4) and we set d to 2. However, it 
is not necessary to be extremely fast for very large and 
dense networks, such as Twitter, as updating the activation 
probabilities can take place in a separate thread during the 
live stage.

Algorithm 2 RTIM Live
Require: a graph G, a user u, the sorted list of influence scores I, influence threshold θI ,

u’s activation probability A[u] of size |V|, a depth d, a temporal stream of users T , the
seed set S, seed set max size k

1: Initialize A ← −→
0

2: while |S| < k do
3: u ← next(T )
4: if I[u] ≥ θI and A[u] ≤ θA then
5: ActivationScores(G, u, 1, d)
6: S ← S ∪ u

For the live stage of RTIM, we consider that if any 
neighbor (of depth d) of a user is targeted, then we update 
his activation probability. First, Algorithm 2 initializes 
the activation probabilities to the 0 vector (line 1). Then, 
while the seed set is not filled (line 2), we check each new 
incoming user u if he validates both �I and �A (line 3&4). 
Deciding to target a user (line 4) is done in O(1) and is 
thus instantaneous. If he does, we add u to the seed set and 
propagate the activation by applying Algorithm 1 (line 5&6).

Consider Fig. 2 as an example. Its influence score vector 
I is:

I⊤ =
[
2.3423 3.0232 3.7802 1.6932 2.3423

]

During the live stage, we read the RTB stream T  with 
maximum seed size k = 3 , �A = 0.5 and �I = 3.0 , as exam-
ple settings. At t = 0 , we initialize the activation probability 
vector to A0 = �⃗0 (line 1). At t = 1 , the first user in T  , u2 , 
has I[u2] = 3.0232 > 𝜃I and A[u2] = 0 , so we target him 
and update the activation probability of his neighbors which 
gives us:

At t = 2 , user u4 has I[u4] = 1.6932 < 𝜃I . We ignore 
him because his influence score is too low. At t = 3 , for u3 , 
I[u3] = 3.7802 > 𝜃I and A[u3] = 0.4257 < 𝜃A , so we target 
u3 and update the activation probability vector:

A1⊤ =
[
0.54125 1.0 0.4257 0.25 0.54125

]
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In the remainder of the stream, T  , A[u5] = 0.7303 > 𝜃A 
and u4 is already targeted ( A[u4] = 1.0 ), so S∗ = {u2, u3} . 
Notice how the final seed set size is less than the maxi-
mum seed set size k = 3 . It is due to the time-dependent live 
stream which prevents filling the seed set.

5 � Influence Analysis

Our model is experimented with empirical datasets 
of different sizes: LiveJournal, YouTube and 
Twitter. These graph datasets have interesting properties 
that can be exploited in order to understand the impact 
of the real-time bidding environment on the influence 
maximization interactions of users.

To achieve this, we need to understand the way more 
closely that users are interconnected for each dataset and 
study their topologies. We can see in Table 1 the global 
statistics that highlight different sizes. We see here the graph 
composition of all three datasets (# nodes and # edges) and 
node degrees (mean, variance and standard deviation).

We can see that YouTube is the “smallest” graph with 
fewer connections (mean degree of 10) but with a high vari-
ation in degree compared to its size. LiveJournal is 
highly connected with a high number of edges and a mean 
degree of 34. However, users are more homogeneously 

A2⊤ =
[
0.7303 1.0 1.0 1.0 0.7303

]

connected with a low variance and standard deviation. 
Twitter, on the other hand, is the biggest graph in which 
users can have varying numbers of connections with a mean 
degree of 70 but a variance of 6.4M and a standard deviation 
of 2.5k. This analysis helps understand the subtle perfor-
mance of RTIM for each dataset.

As for the distribution of users’ influence score, to esti-
mate the influence score of each user we applied Monte 
Carlo simulations on each dataset for every node in the 
social networks. The result of each MC influence score is a 
correct approximation of the real score.

Figure 3 shows the distribution of influence scores for 
our graph datasets (reduced to 105 , but analysis was done 
on all users). These distributions can be characterized by 
a standard Zipf–Mandelbrot distribution [24], traditionally 
used for distribution of ranked data. It is defined by:

where r is, here, the rank of the influencer. r0 is a constant 
representing the number of top influencers. B corresponds 
to the starting score modifier, and � is the decreasing speed 
of scores.

Table  2 gives the corresponding values for those 
Zipf–Mandelbrot distributions and the Pearson Xi-square 
values (observation probabilities).
YouTube and Twitter behave similarly with a huge r0 

(resp. 11 and 6) leading 100 to 750 top influencers. We can 
see that Twitter has more top influencers with a high score 
and then drops faster than YouTube.
LiveJournal behaves differently with very few top 

influencers compared to YouTube or Twitter. The low value 

B

(r0 + r)�

Table 1   Datasets characteristics

YouTube LiveJournal Twitter

# of nodes 1.13M 3.99M 41M
# of edges 5.97M 69.3M 1.46B
Degree Mean 10.53 34.70 70.50
Degree Variance 10,304.01 7381.26 6,426,184.47
Degree Standard Devia-

tion
101.50 85.91 2534.99

Fig. 3   Datasets’ influence score 
distributions
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Table 2   Zipf–Mandelbrot parameters for graph datasets

Dataset B r
0

� X
2-Pearson value

YouTube 8 × 10

4 11 0.78 0.976
LiveJournal 1.55 × 10

3 0 0.395 0.971
Twitter 1.7 × 10

6 6 0.99 0.969
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r0 shows that top influencers’ score decreases faster at the 
beginning of the curve.

However, the decreasing speed of the influence score � 
witnesses really high values (resp. 0.78 and 0.99) which 
means that it is harder to become a top influencer on Twit-
ter than YouTube. Likewise, the number of influencers is 
really high with a B value between 104 and 106 leading to a 
long tail which only starts after more than 105 for YouTube 
and 2 × 105 users for Twitter.

On the other hand, LiveJournal’s score curve 
decreases slower than the others with an � of only 0.395 
giving the idea that the number of connections between 
users are closer to the average than Twitter or YouTube. 
Consequently, the long tail is reached more slowly than the 
others ( 4 × 105 users).

This conclusion is interesting in order to understand the 
impact of these social networks on influence maximiza-
tion. Indeed, targeting top influencers in real time requires 
choosing influencers according to their estimated score. For 
instance, users from the long tail are pretty identical and 
cannot be differentiated from each other; thus, the decision 
to target or not an influencer depends on � which tells us how 
much influencers’ score evolves.

6 � Experiments

All of our experiments are run on a server of make Intel(R) 
Xeon(R) CPU E5-2680 v4 @ 2.40GHz with 56 CPUs and 
462Gb of RAM memory.

We wish to show in this section the impact of choosing 
influencers in a real-time bidding stream of users. In order to 
do this, we need to compute users’ influence scores, generate 
multiple streams of users with varying distributions and 
compare the final solution of each algorithm for different 
graph datasets.

6.1 � Experimental Process

Since RTIM is an IM algorithm which runs under RTB con-
straints, we want to compare it to an existing IM algorithm. 
We choose IMM [31] because in [1] it is proved to have 
the best compromise between computation speed, scalabil-
ity and accuracy. In particular, IMM can compute seed sets 
with thousands of users on our largest dataset. We run all 
algorithms in a specific experimental process involving three 
stages: preprocessing, live stream generation and live stream 
process. The code for IMM is provided by [1] in C++.

Stage I: Preprocessing. First, we run IMM in its entirety 
and add k users to its seed set SIMM . Recall that IMM states 
that every user in the graph appears equiprobable, and more 
precisely assumes that they will appear in the stream. How-
ever, during the ad campaign, it is more likely that not all the 

users will be available online. Since our objective is to target 
a large number of users in the stream, as would happen in a 
marketing campaign, we set k = 10,000 . We compute IMM’s 
optimal seed using � = 0.1 . It can do this in seconds and very 
easily scale to large graphs (see [1] for a proper analysis of 
IMM performance).
RTIM uses the Monte Carlo approach to compute the 

influence score of each user in the graph. We run n parallel-
ized simulations per node ( n = 10,000 ). Even so, for large 
graphs, this operation can take several days, so to make it 
scalable we limit it to a depth of 3 on large graphs to reduce 
preprocessing time to a few hours at most. Thanks to the 
graph topology with a high connectivity (Sect. 5), the Monte 
Carlo simulations converge faster. As a counterpart, we lose 
in influence score precision but believe the error to be negli-
gible. The influence scores of each user are stored in a vector 
I for future use.

Stage II: Live stream generation. It is during this stage 
that we read our RTB stream and both algorithms have the 
opportunity to target influential users. Since no real streams 
of connected users are available online, we simulate users’ 
behavior in the social networks with different distributions. 
To the best of our abilities, we haven’t found well-founded 
models for RTB social stream generation. So, we simulate 
the RTB stream of users in the three different social net-
works by randomly picking users based on two distributions. 
Notice that a user can appear several times in the stream. 
Here are the two distributions:

–	 Uniform we suppose that all users have equal probability 
of appearing in the stream. This distribution can be 
considered to be the worst case where highly connected 
users can appear as frequently as poorly connected users 
or where top influencers can appear as frequently as low 
influencers.

–	 Log we suppose that users who have more in/out edges 
in the graph are more likely to be connected. User 
probability of being in the stream is: 

 where degui is the degree of ui , the sum of in-degree and 
out-degree. We apply a logarithm on the number of edges 
per user in order to give users with a low influence score 
a reasonable probability of showing up in the stream. In 
fact, due to the distribution of edges in the graph, some 
users are highly connected to other ones and represent the 
large majority of online users in the stream even though 
this does not reflect the reality. This Log stream can be 
considered to be the best case where highly linked users 
are more likely to be present in the stream and potentially 
top influencers.

P(ui ∈ S) =
log(degui)∑

ui∈V
log(degui)
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Moreover, each stream is a subset of the total number of 
users; we choose 10% of the total number of users. In this 
setting, we ensure that all the users are not necessarily avail-
able online during the ad campaign: |T| = 10% × |V|

Table 3 gives for each stream the proportions of influence 
scores and size in our experiments. As expected, Uniform 
distributions contains lower influence scores while Log 
focuses more on higher scores (more than 10). As shown 
in Fig. 5, LiveJournal produces lower scores so does 
the stream. According to Twitter, it witnesses a huge 
amount of low scores with more than 80% in both Uniform 
and Log distributions. It is due to the large stream (above 
4M connections) and stick to the distribution of Twitter 
scores. However, with respect to the proportions even with 
1.20% of the stream, the number of high influence scores is 
higher than LiveJournal and YouTube.

Stage III: Live stream process. For IMM, if a user in the 
stream belongs to SIMM , he is targeted and added to the seed 
set S∗

IMM
 . A user is targeted only once, even if he appears 

twice. At the end of the stream: S∗
IMM

= SIMM ∩ T

For each user ui in the stream, RTIM will verify its 
targeting conditions. It will check that the user’s activation 
probability ap(ui) is below the activation threshold �A , and 
if his influence score �MC(ui) is greater than the influence 
threshold �I . If both conditions are satisfied, then ui is 
targeted instantaneously (Algorithm 2). At which point, he is 
added to the final seed set S∗

RTIM
 and we update the activation 

probability of his neighbors up to depth 2 (Algorithm 1). 
The update operation can be done by a separate thread.

Table 4 gives the time spent to target and update propaga-
tion probabilities in the network. It shows that the average 
targeting time is very low with a constant time wrt. the num-
ber of users and the update time is less than 100 ms which 
satisfies our real-time requirement and in most of the case 
far less (median). However, some updates on large dense 

Table 3   Streams’ influence 
score distributions

Influence score YouTube LiveJournal Twitter

Uniform Log Uniform Log Uniform Log

1 ≤ I ≤ 2 37.79% 19.92% 37.43% 17.78% 86.33% 80.55%
2 < I ≤ 5 43.25% 40.69% 36.71% 39.42% 12.02% 16.13%
5 < I ≤ 10 11.01% 18.88% 17.18% 26.27% 1.13% 2.12%
10 < I ≤ 100 7.46% 18.71% 8.66% 16.45% 0.48% 1.08%
100 < I ≤ 1000 0.47% 1.71% 0.03% 0.08% 0.04% 0.10%
1000 < I           0.02% 0.10% 0.00% 0.00% 0.00% 0.02%
Stream size 226,978 399,796 4,165,223

Table 4   Target and update activation probabilities time

Targeting 
time

Activation time

Average ( μs) Average 
(ms)

Median (ms) Max (ms)

YouTube 0.5 70.3 6.30 193.4
LiveJour-
nal

1.0 61.1 6.03 192.0

Twitter 3.1 85.9 44.5 411.1
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Fig. 4   Seed set size evolution with YouTube 
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Fig. 5   Seed set score evolution with YouTube 
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graphs can take up to 411 ms. This is still negligible since 
a user cannot influence another in less than half a second.

6.1.1 � Stage IV: Seed Set Evaluation

To compare the performance of both IM algorithms, we 
compute and compare �MC(S

∗
IMM

) and �MC(S
∗
RTIM

) during 
the live stage in order to analyze how the seed set score 
evolves. Because of the computation cost of �MC(S) , during 
the live stage, the score of the seed set is computed for every 
100 users added to the seed set, or 1000 for large seed sets 
on Twitter.

6.2 � Experimental Results

YouTube. In the following, we see the evolution of the 
seed set during the stream both for influence score and size. 
Figures 4 and 5 give the results produced with a stream of 
2.27 × 105 connected users over the YouTube dataset.

Figure 4 shows the evolution of the seed set size. We 
clearly see that IMM hardly finds predefined influencers, 
especially for the Uniform distribution. RTIM evolves almost 
linearly with twice as many seeds for the Uniform distribu-
tion and 3.3 times more for the Log one. According to the 
Log distribution, RTIM finds more influencers and reaches 
k faster. The sudden stop of the RTIM seed set at 1.89 × 105 
users is due to the fact that the marketing campaign is over 
with a full seed set of k = 10,000 users.

Figure 5 shows that RTIM produces seed sets with higher 
scores than IMM. Uniform and Log streams witness differ-
ent evolutions. In fact, IMM hardly finds influencers in the 
Uniform distribution where highly connected users are less 
likely to be available online. This explains why IMM’s seed 
set evolves slowly. On the other hand, RTIM targets users 
according to their local influence on the graph and thus has 
more targeting opportunities.

According to the Log distribution, IMM is closer to 
RTIM since top influencers are more present in the stream. 
Consequently, it takes time for IMM to reach this goal by 
the end of the stream with a similar score (1,105 less), while 
RTIM stopped earlier when the seed set size reached k. This 
confirms the fact that IMM is better at maximizing k than 
RTIM in an infinite stream; however, in a finite campaign 
this is not the case.

Interestingly, the score growth is higher at the beginning 
of the stream and we observe a logarithmic evolution of 
the score. In fact, during the stream process finding new 
influencers is more unlikely since they have already been 
selected (IMM) or activated by targeted neighbors (RTIM). 
Since the evolution of size is almost linear (Fig. 4), this loga-
rithmic evolution of the seed set score confirms the fact that 
chosen users bring less influence than previous chosen ones, 
explained by the sub-modular property of the IM problem.

LiveJournal. This dataset is evaluated with a stream 
of 4 × 105 online users.

Figure 6 shows the evolution of seed set sizes. We can see 
that IMM finds very few expected influencers and produces 
8.5 times fewer seeds for the Uniform stream (resp. 7 for the 
Log stream) than RTIM. In fact, RTIM targets influencers 
more easily than IMM. This is explained by the specific 
distribution of scores we explained in Sect. 5 with a very 
slow decreasing of the scores ( � = 0.395 ). It is confirmed 
by the fact that LiveJournal has a low degree standard 
deviation and variance. Thus, RTIM adapts locally to the 
users’ connection with similar scores while IMM only 
focuses on prechosen seeds.

We can see in Fig.  7 that the evolution of seed set 
scores is really different from the YouTube dataset. Pre-
determined seeds have a huge impact on the final seed set 
score since very few influencers appear in the stream while 
RTIM has the opportunity to choose a “similar” score in the 
neighborhood.
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Fig. 6   LiveJournal’s seed set size evolution
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We can also see that RTIM obtains a lower seed set score 
for the Uniform distribution than the Log one. It is due to 
the fact that RTIM Log fills the seed set more quickly after 
only 2.38 × 105 users in the stream. The impact of the spe-
cific distribution of scores of LiveJournal and the fact 
that users have high mean degrees (with a low variance) 
give more chances for common users (lower scores) to ease 
information propagation.
Twitter. Seed sets produced for the Twitter dataset 

are presented in Figs. 8 and 9. The stream is composed of 
4.17 × 106 connected users.

Figure 8 shows that RTIM seed sets evolve very quickly 
for both Uniform and Log streams. This is due to the huge 
amount of high score users of the Twitter distribution 
( B = 1.7 × 106—Sect. 5); consequently, RTIM targets any 
user in the stream that reaches the threshold �I . On the other 
hand, IMM evolves more slowly, 10 times less for Uniform 
(resp. 3.5 times less for Log). RTIM fulfills the ad campaign 
k = 10,000 after 4 × 106 users in the stream.

In Fig. 9, the seed set scores evolve similarly to the You-
Tube dataset (Fig. 5) with close scores for the Log stream, 
even if the gap is higher due to huge seed set scores (600,000 
less). The effect of the high decrease in the influence score 
( � = 0.99 in Table 1) is observable here where IMM targets 
high influencers that have sufficient impact to grow rapidly 
while RTIM targets good influencers to guarantee a global 
impact in a minimum amount of time.

6.3 � Conclusions

Our experiments showed that RTIM provides better seed 
sets score while maximizing the score in a minimum of time 
while IMM succeeds in maximizing on the whole dataset. 
The impact of the live stream distribution between Uniform 
and Log is such that both methods behave clearly better on 
users with very high degrees (top influencers); however, 
IMM is more sensitive to this setting.

The seed set score curve is logarithmic; this is due to the 
sub-modular property of the influence maximization prob-
lem. Indeed, the more users we add to the final seed, the 
smaller the marginal gain to the overall seed set.

We saw that the distribution of users’ influence score 
has an impact on the effectiveness of both IMM and 
RTIM methods. First, the decrease in those scores is in 
favor of RTIM when � is low (LiveJournal) where 
IMM makes a choice on similar influencers while RTIM 
targets only available ones. Second, graphs with very high 
influence scores (induced by B) give RTIM more choices of 
influencers (even with average scores), and so it fills up the 
seed set quickly.

7 � Seed Set Size Guarantee to Maximize Ad 
Campaigns

Although finding the optimal seed set of size k to maximize 
the influence of a network is the focus of Influence 
Maximization, one other issue is to determine in advance 
the correct value for k. In fact, making the choice of top-k 
influencers for an ad campaign is crucial in order to give a 
guarantee of the budget to reach a sufficient number of users 
on the network.

The choice of the seed set size will help advertisers to 
decide how much they wish to influence of social networks. 
With a guarantee of efficiency, they will determine the 
impact of the ad campaign in advance and may be more if 
the IM algorithm performs better than expected.

The issue is for a given seed set size to guarantee or 
estimate its influence score, the number of activated users. 
For instance, on the Twitter network with tens of millions 
of users, rather than targeting millions of users to reach 
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everyone ( 100% ), we may only want to target tens of thou-
sands of users to reach 25% of the social network.

However, as discussed in the state of the art, finding seed 
set in a network of N users, there are 2N total seed sets to test 
in a brute force approach to search for the optimal seed set 

S
∗ , and by setting k there are 

⎛
⎜
⎜
⎝

N

k

⎞
⎟
⎟
⎠
 combinations. As far as we 

know, no existing IM paper has established a method of 
determined the proper seed set size, nor do existing IM 
algorithms offer guarantees of finding a seed set capable of 
covering a given portion of the network.

7.1 � Expected Seed Set Size

We denote k∗
p
 the expected seed set size which influences a 

sufficient number of users in the graph given by the rate p. 
Thus, k∗

p
 is the seed set size that guarantees to reach r × |V| 

users, where p is a percentage between 0 and 1.
Although the expected k∗

p
 is bounded between 1 and 

p × |V| , we can infer that k∗
p
 is at least equal to the number 

of connected components in G in order to reach disconnected 
communities of users.

In order to give k∗
p
 , we propose an approach that esti-

mates them. It consists in randomly sampling as many users 
necessary to influence p × |V| users. We apply propagation 
models on each sampled user in order to see if he activates 
his neighborhood or not. The final sample size is a possible 
seed set size k′

p
 . This random sampling is performed until 

convergence of the sample size.

Of course, to give a better approximation of k∗
p
 , activated 

users during a sampling cannot be targeted. The number 
of uniformly chosen users that activate p × |V| users is an 
estimation k∗

p
 . The expected seed set size is then computed 

using the average of the results for each iteration, where I 
is the number of iterations required to reach convergence: 
k∗
p
≈

∑
i∈I k

�
p
(i)

I
.

7.2 � Preliminary Experiments

To achieve those simulations, we used the Nethept and 
HepPh [15] graph datasets composed of 15,200 nodes 
(resp. 12,006) and 61,300 edges (resp. 80,578). We ran 
experiments using various edge weighting methods, like 
Weighted Cascade (like in RTIM) as well as edge weights 
in [0.01, 0.1, 0.3, 0.5, 0.7, 0.8,  0.9] to test the effect of 
weights on the size of k∗

p
 . Reach is the number p and its 

correspondence in number of users who are activated by a 
sample.

Tables 5 and 6 give results of simulations of k∗
p
 for each 

edge weight strategy according to the given reach p. We can 
say that p corresponds to the goal of an ad campaign. We 
can see that the seed set size increases, the smaller the edge 
weights are. For constant weights, when those values are 
higher than 0.3, reaching at least of half the network requires 
very low seed set sizes, 360 for Nethept where the number of 
edges is lower than HepPh, and a size of 2 for HepPh which 
is the number of connected components.

Table 5   Nethept expected 
Seed Set Sizes k∗

p
 according to 

the reach

Reach Seed set size by edge weight models

% # users 0.01 0.1 0.3 0.5 0.7 0.8 0.9 WC

100 15,233.00 14,919 12,183 7768 5037 3292 2669 2173 7589
95 14,471.35 14,159 11,428 7024 4320 2657 2114 1724 6912
90 13,709.70 13,399 10,680 6312 3680 2162 1703 1384 6331
80 12,186.40 11,886 9220 4982 2586 1375 1044 824 5318
70 10,663.10 10,377 7806 3777 1687 758 525 373 4428
60 9139.80 8874 6434 2693 948 275 124 48 3622
50 7616.50 7378 5114 1730 360 26 13 9 2883

Table 6   HepPh expected Seed 
Set Sizes k∗

p
 according to the 

reach

Reach Seed Set Size by edge weight models

% # users 0.01 0.1 0.3 0.5 0.7 0.8 0.9 WC

100 12,006.0 10,915 6817 3378 1806 940 655 440 5778
95 11,405.7 10,316 6222 2792 1241 450 243 123 5213
90 10,805.4 9720 5636 2232 749 118 3 2 4708
80 9604.8 8534 4498 1208 15 2 2 2 3820
70 8404.2 7360 3408 339 2 2 2 2 3057
60 7203.6 6197 2376 2 2 2 2 2 2391
50 6003.0 5048 1408 2 2 2 2 2 1811



238	 D. Dupuis et al.

1 3

It also shows that the WC weight model requires to target 
7589 users to reach 100% of users in Hep and 5778 users 
must be targeted to reach 100% of users in Phy which cor-
responds to half the number of users in the graph.

It is interesting to notice that most of state-of-the-art 
algorithms deal with small seed set sizes (mostly 300) in 
order to make it scalable in terms of computation time. We 
show in these experiments that it requires far more users to 
influence at least half the number of users. However, remind 
that we give an expected seed set size and not the optimal 
one which means that any IM algorithm must give a higher 
influence score to be efficient.

7.3 � Conclusion

Our approach offers an approximation of k∗
p
 which would 

provide a valuable indicator of the budget of an online adver-
tising strategy given how much it would cost to target k∗ 
number of users during the campaign. Moreover, it gives a 
threshold of efficiency of IM algorithms.

8 � Conclusion

In this article, we have shown that it is possible to answer 
the influence maximization problem in a real-time bidding 
environment, which up to now has not been applied to IM 
algorithms. We have shown that static IM algorithms, such 
as IMM, can solve this problem in a reasonable time with a 
seed set of 10,000 influencers. However, RTIM is a solution 
that competes static IM by using a dynamic IM algorithm 
based on the local influence of each user. With streams or 
ad, campaign of finite size can outperform static algorithms.

It is important to note that the RTB environment is more 
complex so than the constraints which we used. For instance, 
a user who was targeted should not have seen the ad, click 
on it, or even convert. Indeed, the influence probability for 
a targeted user is equal to 1. For future works, we propose to 
extend RTIM to answer more RTB constraints. Contrary to 
IM algorithms, RTIM could choose to target another user if 
a previous user who was targeted was not considered as acti-
vated. We can therefore make RTIM much more interactive 
with dynamic user behavior while static solutions cannot.

In addition, should the graph be updated, it is not difficult 
to recompute local influence scores, if necessary, or keep 
targeting users in the live stream, whereas static IM needs 
to recompute the seed set for each new graph.

We can also improve RTIM by adapting the �I threshold 
when processing the live stream. In fact, online user behav-
ior, such as periodicity connections, has an impact on the 
final seed set score.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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