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Abstract
We analyze the performance of regular decomposition, a method for compression of large and dense graphs. This method 
is inspired by Szemerédi’s regularity lemma (SRL), a generic structural result of large and dense graphs. In our method, 
stochastic block model (SBM) is used as a model in maximum likelihood fitting to find a regular structure similar to the 
one predicted by SRL. Another ingredient of our method is Rissanen’s minimum description length principle (MDL). We 
consider scaling of algorithms to extremely large size of graphs by sampling a small subgraph. We continue our previous 
work on the subject by proving some experimentally found claims. Our theoretical setting does not assume that the graph 
is generated from a SBM. The task is to find a SBM that is optimal for modeling the given graph in the sense of MDL. This 
assumption matches with real-life situations when no random generative model is appropriate. Our aim is to show that regular 
decomposition is a viable and robust method for large graphs emerging, say, in Big Data area.

Keywords Community detection · Sampling · Consistency · Martingales

1 Introduction

In the conference paper [1] we conjectured the possibility 
of applying our regular decomposition algorithm [2] to very 
large graphs, for which the full adjacency information is not 
possible to process, using a sampling approach. In this paper 
we develop the corresponding theory. Using martingale tech-
niques, we prove claims of the preceding paper and give 
precise conditions under which they are true. This method 
allows to abandon the customary assumption that the graph 
be generated by a SBM.

The so-called Big Data is a hot topic in science and applica-
tions. Revealing and understanding various relations embedded 
in such large data sets is of special interest. In mathematical 
terms, such relations form a huge graph. The size of the graph 
may be so big that sampling of subgraphs is the only practi-
cally feasible operation. Furthermore, part of the information 
may be inaccessible, faulty or missing. Our method suggests a 
way to overcome such hurdles in the case of dense data.

One example is the case of semantic relations between 
words in large corpora of natural language data. Relations 
can also exist between various data sets, forming large higher-
order tensors, thus requiring integration of various data sets. 
In such a scenario, algorithms based on stochastic block mod-
els (SBMs, also known as generalized random graphs [3]; for 

 * Hannu Reittu 
 hannu.reittu@vtt.fi

 Ilkka Norros 
 ilkka.norros@elisanet.fi

 Tomi Räty 
 tomi.raty@vtt.fi

 Marianna Bolla 
 marib@math.bme.hu

 Fülöp Bazsó 
 bazso.fulop@wigner.mta.hu

1 VTT Technical Research Centre of Finland Ltd., P.O. 
Box 02044, Espoo, Finland

2 Department of Mathematics and Statistics, University 
of Helsinki, P.O. Box 64, 00014 Helsinki, Finland

3 Department of Stochastics, Institute of Mathematics, 
Technical University of Budapest, P.O.Box 91, 
Budapest 1521, Hungary

4 Department of Computational Sciences, Institute 
for Particle and Nuclear Physics, Wigner Research Centre 
for Physics, Hungarian Academy of Sciences, P.O. Box 49, 
Budapest 1525, Hungary

http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-019-0084-x&domain=pdf


45Regular Decomposition of Large Graphs: Foundation of a Sampling Approach to Stochastic Block…

1 3

a review see, e.g., [4]) and their extensions are very attractive 
solutions, instead of simple clustering like k-means.

A strong result, less known among practitioners, is Sze-
merédi’s regularity lemma (SRL) [5]. SRL in a way sup-
ports a SBM-based approach to large data analysis, because 
it proves the existence of a SBM-like structure for any large 
graph, and has generalizations to similar objects like hyper-
graphs. SRL has been a rich source in pure mathematics—it 
appears as a key element of important results in many fields. 
We think that in more practical research it is also good to 
be aware of the broad context of SRL as a guiding principle 
and a source of inspiration. To emphasize this point, we call 
this kind of approach to SBM and a concrete way to fit data 
to it regular decomposition (RD).

Traditionally, SBM has been used for the so-called com-
munity detection in networks, like partitioning a network into 
blocks that are internally well connected and almost isolated 
from each other. From the point of view of SRL, this is too 
restrictive. According to SRL, the relations between the groups 
are more informative than those inside the groups, traditionally 
emphasized in community detection. Regular decomposition 
takes both aspects into account on equal footage. In [6] a more 
general scope of spectral clustering is introduced: the discrep-
ancy-based spectral clustering that favors regular structures.

The methodology of RD has been developed in our pre-
vious works, first introduced in [7] and later refined and 
extended in [1, 2, 8–10]. In [2] we used Rissanen’s minimum 
description length principle (MDL) [11] in RD. In [10] we 
extend RD to the case of large and sparse graphs using graph 
distance matrix as a basis.

In the current paper, we restrict ourselves to the case of 
very large and dense simple graphs. Other cases like rectan-
gular matrices with real entries can be probably treated in very 
similar manner using the approach described in [2]. We aim to 
show that large-scale block structures of such graphs can be 
learned from bounded size, usually quite small, samples. The 
block structure found from a sample can then be extended to 
the rest of the graph in just a linear time w.r.t. n, the number 
of nodes.

The block label of a given node can be found indepen-
dently of all other nodes, provided a good enough sample 
was used. This allows parallel computations in RD algo-
rithm. The labeling of a node requires only the information 
on links from that node to the nodes of the fixed sample. As 
a result, the labeling can be done independently in many 
processing cores sharing the same graph and the sample.

The revealed structure is useful for many applications 
like those that involve counting numbers of small subgraphs 
or finding motifs. It also helps in finding a comprehensive 
overall understanding of graphs when the graph size is far 
too large for complete mapping and visualization. We also 
introduce a new version of the RD algorithm for simple 
graphs that tolerates missing data and noise.

2  Related Work

Our theoretical description is partly overlapping with SBM 
literature using the apparatus of statistical physics, see, 
e.g., extensive works by T.P. Peixoto. In particular, the 
use of MDL to find the number of blocks has been studied 
earlier by Peixoto [12]. We think that such multitude of 
approaches is only beneficial since it brings in results and 
ideas of different fields and is understandable by a wider 
community of researchers.

Recently, impressive progress has been achieved in the 
theory of nonparametric statistical estimation of large and 
sparse graphs [13, 14]. Under certain conditions, latent mod-
els like the SBM can be found from samples of links, linear 
in number of nodes sizes. Our work could be seen as a spe-
cial case when the target is to find a block structure from a 
large graph using a specific algorithm. We show that in the 
dense case, the sample size is just a finite constant, instead 
of a linear function of the number of nodes, needed in the 
sparse case. Moreover, the algorithm in [14] is much more 
complicated than ours and may be difficult to use in practice. 
In a recent mostly experimental work [10], we attempted to 
use regular decomposition in a sparse graph case using graph 
distance as similarity measure between nodes.

A clustering method that can find the clusters from 
large enough samples is called consistent. As stated in 
[15], there are quite few results in proving consistency of 
clustering methods. The consistency of classical k-means 
clustering was proven by Pollard [16].

von Luxburg et al. [15] proved consistency of spectral 
clustering in a special case. It was shown that under some 
mild conditions, the spectral clustering of sampled simi-
larity matrix of data with two clusters will converge to the 
spectral clustering of the limit corresponding to the infinite 
data. In this respect the so-called normalized approach 
that uses normalized Laplacian (see Sect. 6.2) was found 
preferable. Spectral clustering can be seen as an alterna-
tive to regular decomposition, since it can reveal similar 
block structures in adjacency—or similarity matrices [17].

3  Regular Decomposition of Graphs 
and Matrices

Regular decomposition finds a structure that mimics the 
regular partitions promised by SRL. SRL says, roughly 
speaking, that the nodes of any large enough graph can 
be partitioned into a bounded number, k, of equally sized 
‘clusters,’ and one small exceptional set, in such a way 
that links between most pairs of clusters look like those 
in a random bipartite graphs with independent links and 
with the link probability that equals to the link density. 
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SRL is significant for large and dense graphs. However, 
similar results hold also to many other cases and struc-
tures, see the references in [18].

In RD, we simply replace the random-like bipartite graphs 
of SRL by a set of truly random bipartite graphs and use it 
as a modeling space in the MDL theory. We disregard the 
requirement of having blocks of equal sizes and also model 
the internal links of regular clusters by a random graph. The 
next step is to find an optimal model that explains the graph in 
a most economic way using MDL [2].

In the case of a matrix with nonnegative entries, we replace 
random graph models with a kind of bipartite Poissonian block 
models: A matrix element ai,j between row i and column j is 
thought to correspond to a random multi-link between nodes i 
and j, with the number of links distributed as a Poisson random 
variable with mean ai,j (see [9]). The bipartition is formed by 
the sets of rows and columns, respectively. Then the resulting 
RD is very similar to the RD of binary graphs. This approach 
allows also the analysis of several interrelated data sets and 
corresponding graphs, for instance, using corresponding ten-
sor models. In all cases, the RD algorithm is very compact, 
containing just few lines of code in high-level languages like 
Python, and uses standard matrix-algebraic operations.

In RD, the unlossy code that describes a simple graph 
G = (V ,E) with respect to a partition � = {A1,… ,Ak} of V 
has a length at most (and, for large graphs, typically close to)

where l∗(m) ∶= log(m) + log log(m) +⋯ is the coding length 
of an integer m and

is the entropy of the Bernoulli(p) distribution. A corre-
sponding representation exists also for the coding length of 
a matrix, interpreted as an average of a Poissonian block 
model (see details in [2]).

(1)

L(G|𝜉) = L1(G|𝜉) + L2(G|𝜉) + L3(G|𝜉)
+ L4(G|𝜉) + L5(G|𝜉),

L1(G|𝜉) =
k∑

i=1

l∗(|Ai|),

L2(G|𝜉) =
k∑

i=1

l∗
((

|Ai|
2d(Ai)

))

+
∑

i<j

l∗
(
|Ai||Aj|d(Ai,Aj)

)
,

L3(G|𝜉) = |V|H(𝜉),

L4(G|𝜉) =
k∑

i=1

(
|Ai|
2

)
H(d(Ai)),

L5(G|𝜉) =
∑

i<j

|Ai||Aj|H(d(Ai,Aj)),

H(p) = −p log p − (1 − p) log(1 − p)

Figure 1 shows a typical RD analysis result of a symmet-
ric real matrix. The regular groups are obtained by permut-
ing the rows (and accordingly the columns) of the left-hand 
side symmetric matrix and are presented on the right-hand 
side panel as homogeneous quadratic or rectangular blocks. 
For a non-symmetric rectangular matrix, the visual effect of 
RD is similar to chessboard.

3.1  Matrix Formulation of the RD Algorithm 
for Graphs

Definition 1 For a given graph G with n nodes, adjacency 
matrix A and a partition matrix R ∈ k , we denote:

where ⋅T stands for matrix transpose. R is by definition a 
binary n × k matrix with rows that are indicators for regular 
group membership of the corresponding nodes. For instance, 
if the row i of R is (0, 1, 0, 0), this means that node i belongs 
to the regular group number 2.

The block sizes are the column sums of R and are denoted

The number of links within each block and between block 
pairs (�, �) is uniquely defined by P1(R) and denoted as

Finally, we define the k × k link density matrix P:

P1(R) ∶= RTAR,

n� ∶= (RTR)�,� , 1 ≤ � ≤ k.

e�,�(R) =
(
1 −

1

2
��,�

)
(P1(R))�,� .

(P(R))𝛼,𝛼 ∶= 1{n𝛼>1}
e𝛼,𝛽(R)(

n𝛼

2

) ,

(P(R))𝛼,𝛽 ∶=
e𝛼,𝛽(R)

n𝛼n𝛽
, 𝛼 ≠ 𝛽,

𝛼, 𝛽 ∈{1, 2,… , k}

Fig. 1  Left: the similarity matrix between 4088 sentences from 
Charles Darwin’s Origin of Species. Right: the same matrix with sen-
tences reordered in 20 regular groups revealing a characteristic chess-
board structure
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By (1), the length of the code lk that uniquely describes the 
graph G(A) corresponding to A, using the model (R, P), 
R ∈  , can be computed as follows:

Definition 2 

where

presents the length of a code describing the model (the parti-
tion and the link densities).

The two-part MDL program of finding the optimal 
model, denoted as Rk∗ , can now be written as:

To solve this program approximately, we use the following 
greedy algorithm.

Algorithm 1 Greedy Two-part MDL
Input: G = G(A) is a simple graph of size n.
Output: (k∗,Rk∗ ∈ k∗ ), k

∗ ∈ {1, 2,… , n} , such that the 
two-part code for G is approximately equal to the shortest 
possible for all possible block models with number of blocks 
in the range from 1 to n.
Start: k = 1 , l∗ = ∞ , R ∈ 1 = {�} , k∗ = 1 , where � is the 
n × 1 matrix with all elements equal to 1.
1. Find

using subroutine ARGMAX k (Algorithm 2).
2. Compute  lk(G) = ⌈lk(G ∣ R̂(G))⌉ + lk(R̂(G))

3. If lk(G) < l∗ then l∗ = lk(G) , Rk∗ = R̂k(G) , k∗ = k

4. k = k + 1

5. If  k > n , Print (Rk∗ , k
∗) and STOP the program.

6. GoTo 1.

Definition 3 A mapping � ∶ k → k is defined as follows. 
First, define the following matrices element-wise:

lk(G(A) ∣ R) ∶=
∑

1≤i<j≤k

ninjH((P(R))i,j)

+
∑

1≤i≤k

(
ni

2

)
H((P(R))i,i)

+ lk(R),

lk(R) =
∑

1≤i≤k

niH(ni∕n) +
∑

1≤i≤j≤k

l∗(ei,j(R))

(2)(k∗,Rk∗ ) ∶= arg min
1≤k≤n

min
R∈k

lk(G(A) ∣ R ∈ k)

R̂k(G) ∶= arg min
R∈k

lk(G ∣ R)

(LogP(R))�,� ∶= log(P(R)�,�)

(Log[1 − P(R)])�,� ∶= log[1 − P(R)�,�],

(1 − A)�,� ∶= 1 − A�,� ,

L(R) ∶= −AR(LogP(R))T − (1 − A)RLog[1 − P(R)],

where we set log 0 ∶= 0 since it appears only in the combi-
nation 0 log 0 = 0 in matrix L, �, � ∈ {1, 2,… , k},

and finally define the matrix function �(⋅) element-wise on 
argument R:

The mapping �(R) defines a greedy optimization of par-
tition R, where each node is replaced to a new block inde-
pendently of all other placements, hence the term ‘greedy 
algorithm.’

Algorithm 2 ARGMAX k
Algorithm for finding regular decomposition for fixed k.
Input: A: the adjacency matrix of a graph (an n × n sym-
metric binary matrix with zero trace); N: an integer (the 
number of iterations in the search of a global optimum); k: 
a positive integer ≤ n.

Start: m = 1.
1. i ∶= 0 ; generate a uniformly random element Ri ∈ k.
2. If any of the column sums of Ri is zero, GoTo 1, if not, 
then compute:

3. If Ri+1 ≠ Ri , set i ∶= i + 1 and GoTo 2,
4. R(m) ∶= Ri ; m = m + 1;

l(m) ∶=
∑n

i=1
min1≤�≤k(L(R(m)))i,�.

5. If m < N , GoTo 1.
6. M ∶= {m ∶ l(m) ≤ l(i), i = 1, 2,… ,N} ; m∗ ∶= infM.
Output Solution: R(m∗).

In ARGMAX k the outer loop 1–5 runs several (N) 
optimization rounds finding each time a local optimum, 
and finally, the best local optimum is the output of Algo-
rithm 2. At each optimization round, the inner loop 2–3 
improves the initial random partition until a fixed point 
is reached and no further improvements of the partition 
are possible. This fixed point is an indication that a local 
optimum is found.

For very large graphs, the program may not be solvable in 
the sense that it is not possible and reasonable to go through 
all possible values of k ∈ {1, 2,… , n} . One option is to limit 
the range of k. In case that no minimum is found, then use as 
an optimal choice the model found for the largest k within 
this range. Another option is to find the first minimum with 
smallest k and stop. When the graph is extremely large, it 
makes sense to use only a randomly sampled subgraph as an 
input—indeed, when k∗ << n , a large-scale structure can be 
estimated from a sample as we shall show.

�(i,R) ∶= inf{� ∶ � = arg min
1≤�≤k

(L(R))i,�}, 1 ≤ i ≤ n,

�(R)i,� = ��,�(i,R), i ∈ {1, 2,… , n}.

Ri+1 ∶= �(Ri).
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3.2  Regular Decomposition with Missing Link 
Information

Now assume that part of the link information is lost. We only 
consider the simplest case when the link information is lost 
uniformly randomly over all node pairs. We also exclude the 
possibility of a sparse representation of graphs, when only 
those node pairs that have links are listed, since this would lead 
to unsolvable ambiguity in our setting; indeed, if some node 
pair is not in the list, it could mean one of two cases: There is 
no link, or the link information is lost.

We formulate how the matrices used in the previous section 
are modified. The RD algorithms themselves are unaltered.

Denote by A the adjacency matrix with missing link values 
replaced by −1’s. A is symmetric, and we also assume that 
we know its true dimension (the number of nodes). We put 
−1 on the diagonal of A, just for the convenience of further 
formulas. Define

where the absolute value of a matrix is defined element-
wise. Thus, D has the same elements as A, except that the 
entries equal to −1 are replaced by 0’s. Next define a ‘mask 
matrix’

where +1 means element-wise addition of 1 to all elements 
of the matrix. That is, bi,j = 0 if and only if ai,j = −1 , and 
bi,j = 1 otherwise. In other words, B is the indicator of known 
link data in A. The matrix P1 is now:

The number of observed links in a block indexed by (�, �) is

We also need the following matrix, whose elements present 
the number of node pairs in block (�, �) that contain link 
data:

The P-matrix is defined as the link densities in the observed 
data:

D ∶=
A + |A|

2
,

B ∶=
A − |A|

2
+ 1,

P1(R) ∶= RTDR.

e�,� =
(
1 −

1

2
��,�

)
(P1(R))�,� .

(N)�,� = n�,� ∶=
(
1 −

1

2
��,�

)∑
i,j
ri,�rj,�bi,j

=
(
1 −

1

2
��,�

)
(RTBR)�,� .

(P(R))𝛼,𝛽 ∶= 1{n𝛼,𝛽>0}
e𝛼,𝛽

n𝛼,𝛽
.

As stated above, we assume that the matrix elements of P are 
close to the corresponding actual link densities in the case 
that we would have complete link data. This also assumes 
that the graph and the blocks must have large size.

The cost function in Definition 2 remains unaltered. Now 
the P-matrix elements are only estimates based on observed 
data and not the exact ones. The block sizes are the true ones 
that are known since we assume that we know the actual num-
ber of nodes in the graph. The interpretation is that the con-
tributions of missing data entries in a block are replaced by 
the average contribution found from the observed data of that 
block. It should be noted that similar scaling must be done in 
the RD algorithms that find the optimum of the cost function. 
For example, A should be replaced with D, and summing over 
elements of D should be rescaled so that the contribution is 
proportional to the true size of the corresponding block.

4  Sparse Sampling Scheme Formulation

Assume that a large graph has a ‘regular structure’ that mini-
mizes the regular decomposition MDL program with k regular 
groups, � ∶= {V1,V2,… ,Vk} having sizes n1, n2,… , nk and 
irreducible link density matrix with elements 0 < di,j < 1 . 
The number of nodes in G is denoted as N, and it is assumed 
that the relative sizes ri ∶= ni∕N of the groups are such that 
kri ≥ c , where c is a positive constant and not too small, say, 
c = 1∕10 . This condition means that none of the regular 
groups is very small. Such small groups would be ‘artifacts’ 
and are excluded by MDL criteria or by the practical RD algo-
rithm that refuses forming too small groups. Here the aim of 
this condition is that when we make a uniformly random sam-
ple of n nodes, then all numbers rin , the expected number of 
sample nodes from each group, are big enough. On the other 
hand, this condition could probably be relaxed so that even 
small groups could be allowed. Their role in the classification 
problem we formulate is not decisive since the big groups are 
normally most decisive in this respect. However, we use this 
limitation in the sequel, for simplicity.

The optimal regular structure is, in particular, such that it is 
not possible to move even a single node from one group into 
another without some positive penalty in the following cost 
function (the log-likelihood part of it), the cost of placing a 
node v into group j

where ei(v) is the number of links between node v and nodes 
in group i. This means that the cost of changing a group 
membership is positive for all nodes:

Lj(v) ∶=
∑

1≤i≤k

(−ei(v) log di,j − (ni − ei(v)) log(1 − di,j)),

v ∈ Vj → Ls(v) − Lj(v) > 0, ∀s ≠ j,
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where Vj ∈ � is a regular group. The minimal penalty is 
denoted by �:

Here we need a condition that � is large. We require that 
the graph G and its optimal regular decomposition has the 
property:

This condition has similar motivation as the one for group 
sizes. We assume that N is very large; if � is not compara-
ble with N, then in a reasonable sample the corresponding 
difference becomes hopelessly small. We see in the sequel 
that the expected value of such a difference is large and it 
seems reasonable to place this condition. Also in the case 
of a SBM as the generator of G we would get such a condi-
tion on � with exponential probability. We could relax this 
condition by assuming that it holds for most of the nodes v. 
For simplicity we use this condition as it is.

Consider making a uniformly random sample of n 
nodes of G, and retrieve the corresponding induced sub-
graph Gn . The claim is that if n is sufficiently large, then 
Gn has a regular structure that has almost the same densi-
ties and relative sizes of the groups and correct member-
ship in regular groups. Further, if Gn is used as a classi-
fier, the misclassification probability is small, provided 
the regular structure of Gn has large enough groups to 
allow good approximation of the parameters of the regu-
lar structure of Gn . Compare this claim with Lemma 2.3 
from [18]:

Lemma 1 (Fox et al. [18]) Let X and Y be vertex subsets of 
a graph G. Let X′ ⊆ X and Y ′ ⊆ Y  be picked uniformly at 
random with |X�| = |Y �| = k . Then

The proof is based on Azuma’s equality for the edge 
exposure martingale. In our case we use a similar idea 
for the proofs.

5  Sampled Cost Function Estimation

First we show that in expectation the sampled cost func-
tion resolves well the correct optimum. Next, we study a 
harder problem of estimating the probability of a devia-
tion of the randomly sampled cost function from its 
expected value. Finally, it is shown that with exponen-
tial probability, in n, the sampled cost function is able to 
resolve the correct block structure.

𝛿 = min
v∈Vj,s∈Vs,s≠j

(Ls(v) − Lj(v)) > 0.

𝛿 = cN, c > 0.

�(|d(X� − Y �) − d(X, Y)| < 𝛿) ≥ 1 − 2e−𝛿
2k∕4.

5.1  Expectation of the Sampled Cost Function

The cost function of a node v ∈ Vi is just the length of the 
code (say, in number of bits) that describes the links of that 
node in G using the regular structure as the link probability 
distribution function. Select a node v uniformly at random. 
Then the cost function is a random variable. If v ∈ Vi , the 
cost function of placing v ∈ V� has the value

where ej(v), (j = 1, 2,… , k) are random variables, the other 
parameters being constants. The expectation of ej(v) , condi-
tionally that v ∈ Vi , is

which follows from the definition of di,j as an arithmetic 
average of the fraction of node pairs that have links between 
regular groups i and j, or inside a regular group i if i = j . As 
a result:

Proposition 3 Requiring that all groups are large and that 
for all pairs (i, �), i ≠ � , there is at least one index j with 
di,j ≠ dj,� , we have:

where c is a constant.

Proof It is easy to check that in the above formula for Ci,� , 
all terms in the sum, −di,j log dj,� − (1 − di,j) log(1 − dj,�) , 
are nonnegative and each of them has an absolute mini-
mum on argument dj,� when the corresponding densi-
ties are equal, di,j = dj,� . Therefore, in Ci,� − Ci,i the 
coefficients of nj , −di,j log dj,� − (1 − di,j) log(1 − dj,�)−

(−di,j log di,j − (1 − di,j) log(1 − di,j)) , are nonnegative for 
all j, and, according to the condition, at least one of them is 
strictly positive, because the corresponding densities are not 
equal. Since all nj are proportional to N, the claim follows. 
 □

In general setting, the difference Li,�(v) − Li,i(v) is not 
necessarily as large as the expected value for all nodes v. The 
only thing that can be guaranteed is that the value is positive 
(definition of an optimum). In the case of a true stochastic 

Li,�(v) ∶=
∑

j∈{1,2,…,k}

(
−ej(v) log dj,�

−(nj − ej(v)) log(1 − dj,�)
)
,

�(ej(v)|v ∈ Vi) = njdi,j,

Ci,� ∶=�(Li,�|v ∈ Vi)

= nj

∑

j∈{1,2,…,k}

(
−di,j log dj,�

−(1 − di,j) log(1 − dj,�)
)
.

min
{i,𝛼∶𝛼≠i,i,𝛼∈{1,2,…,k}}

(Ci,𝛼 − Ci,i) = cN, c > 0,
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block model as a generator of the graph G, almost all dif-
ferences Li,�(v) − Li,i(v) are of the order of the expectation 
(positive and linear in N). Sub-linear terms could be called 
‘outliers,’ since there is not much difference in terms of cost, 
in whichever group we place the corresponding nodes.

We now simply postulate that there are no outliers cor-
responding to the optimal regular structure we are dealing 
with. This means that

Consider a uniformly random sample of n nodes from V, 
denoted as V̂ ⊂ V  . Denote by 𝜉 (we shall use systematically 
‘hat,’ ̂ , over a symbol of a variable to denote a corresponding 
sampled value) the partition of Vn that is a subpartition of � , 
meaning that two nodes are in the same part of 𝜉 if and only 
if they are in the same part of � . Assume that all parts of 𝜉 are 
‘large,’ meaning that their relative sizes are close to those in 
� . The probability of this condition can be made close to one, 
taking n large enough. This probability will be estimated later 
on, see Proposition 9. Take a uniformly random node v ∈ V . 
Consider the following classifier based on 𝜉 ∶

where êj(v) is the number of links joining group j of 𝜉 and 
node v. The sizes of regulars groups in 𝜉 are denoted as n̂i , 
and the groups of 𝜉 are denoted as V̂i for every i = 1, 2,… , k , 
using same indexing as in � . Note that here we use the link 
densities between the regular groups of the large graph. 
Later, we shall show that the link densities in 𝜉 are close 
enough with a probability close to 1. This is another claim 
that needs to be justified (see Sect. 5.3).

Obviously, êj is a random variable with a hypergeometric 
distribution. If we call ‘success’ a case when a sampled node 
from V̂j has a link to node v, then there are ej(v) favorable 
outcomes out of ni possible choices. According to a well-
known result, conditionally on sample size, n̂j , the expecta-
tion is

Since n̂i, i = 1, 2,… , k , are distributed according to a multi-
variate hypergeometric distribution, we get easily

and we have

∀v ∈ V ∶ Li,𝛼(v) − Li,i(v) ≥ 𝛿 = cN, c > 0.

(3)

v →V𝛼∗,

𝛼∗ = arg min
𝛼∈{1,2,…,k}

L̂i,𝛼(v),

L̂i,𝛼(v) ∶=
∑

j∈{1,2,…,k}

(
−êj(v) log dj,𝛼

−(n̂j − êj(v)) log(1 − dj,𝛼)
)
,

�(êj(v)|n̂j) = ej(v)
n̂j

N
.

�n̂j = rjn,

We have shown the following:

Proposition 4 

In other words, the expectation of a sampled cost function is 
just a rescaled version of the cost function for the whole graph. 
Using this result, we see:

5.2  Deviations of the Sampled Block Sizes 
from the Expected Values

Assume that all link densities fulfill 0 < di,j < 1 . Excluding 
cases with zero or one densities are not limitations, since in 
both cases the sampled structures are deterministic (for density 
1, all sampled pairs have links, and in the other case, no pairs 
have links).

When v ∈ Vi , we can write

where

are all positive constants. Denote a normalized version as

where

This normalization guarantees that if one of the arguments 
of L̂i,𝛼(v) , êj , changes by an amount � with |�| ≤ 1 , then the 
absolute value of the difference is upper-bounded by 1:

Define the following random process with discrete time 
t ∈ {0, 1, 2,… , n} . Choose n̂j nodes uniformly at random 
from Vj , without replacement. Denote the sampled nodes in 

�êj(v) =
ej(v)

nj
rjn = ej(v)

n

N
.

�L̂i,𝛼(v) =
n

N
Li,𝛼(v).

∀v ∈ Vi, 𝛼 ≠ i ∶

�(L̂i,𝛼(v) − L̂i,i(v)) =
n

N
(Li,𝛼(v) − Li,i(v))

≥
n

N
cN = cn, c > 0.

L̂i,𝛼(v) =
∑

1≤j≤k

(aj,𝛼 êj(v) + bj,𝛼(n̂j,𝛼 − êj,𝛼)),

aj,� ∶= − log dj,� , bj,� ∶= − log(1 − dj,�)

Ŷi,𝛼(v) ∶=
L̂i,𝛼(v)

c𝛼
,

c� ∶= max
1≤j≤k

|aj,� − bj,�|.

|𝛥Ŷi,𝛼| =
|𝜖(aj,𝛼 − bj,𝛼)|

c𝛼
≤ |𝜖| ≤ 1.
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order they were drawn: (vj(1),… , vj(n̂j))) = V̂j and similarly 
for all 1 ≤ j ≤ k . Then choose v ∈ Vi uniformly at random 
from the remaining nodes. Correspondingly, define the ran-
dom variables xj(1),… , xj(n̂j) , so that xj(i) = 1 if (vj(i), v) is 
a link in G and otherwise xj(i) = 0.

Obviously, we have the following conditional 
probabilities:

Define the following vertex exposure process, correspond-
ing to xj(t):

Ej(t; v) is the expectation of êj after xj(1),… , xj(t) are 
known, and the contribution of unexposed variables 
xj(t + 1),… , xj(n̂j) is replaced by the expected value. Using 
the formulas for hypergeometric expectations, we get the 
following:

Proposition 5 Ej(⋅) is a martingale.

Proof We need to show that

It is well known that such an exposure process is always a 
martingale. However, we check this condition as a ‘sanity 
check’ of our construction.

Note that

�(xj(t) = 1�xj(t − 1), xj(t − 2),… , xj(1))

=
ej(v) −

∑
1≤s≤t−1 xj(s)

nj − (t − 1)
.

Ej(0; v) = �êj(v) = n̂j

ej(v)

nj
,

Ej(t; v) =
�

1≤s≤t

xj(s) +
(n̂j − t)(ej(v) −

∑
1≤s≤t xj(s))

nj − t
.

�(Ej(t; v)|Ej(t − 1; v),…Ej(0, v)) = Ej(t − 1; v).

�(Ej(t; v)|Ej(t − 1; v),…Ej(0; v))

= �(xj(t)|xj(t − 1),… , xj(1)) +
∑

1≤s≤t−1

xj(s)

+ (n̂j − t){ej(v) −
∑

1≤s≤t−1

xj(s)

− �(xj(t)|xj(t − 1),… , xj(1)))}∕(nj − t).

�(xj(t)�xj(t − 1),… , xj(1))

= �(xj(t) = 1�xj(t − 1), xj(t − 2),… , xj(1))

=
ej(v) −

∑
1≤s≤t−1 xj(s)

nj − (t − 1)
.

Denote x = n̂j, sm =
∑m

s=1
xj(s), ej(v) = e and nj = n . In these 

terms, we can write

Now,

  □

Let us construct the random process

where t is discrete time from 0 to n. First, define the follow-
ing ramp functions for each 1 ≤ i ≤ k:

Ej(t) = st +
(x − t)(e − st)

n − t
,

�(xj(t)|xj(t − 1),… , xj(1)) =
e − st−1

n − (t − 1)
.

�(Ej(t; v)|Ej(t − 1; v),…Ej(0; v))

= st−1 +
e − st−1

n − (t − 1)
+

(x − t)
(
e − st−1 −

e−st−1

n−(t−1)
)
)

n − t

= Ej(t − 1; v) −
(x − (t − 1))(e − st−1)

n − (t − 1)
+

e − st−1

n − (t − 1)

+
(x − t)

(
e − st−1 −

e−st−1

n−(t−1)
)
)

n − t

= Ej(t − 1; v) −
(x − t))(e − st−1)

n − (t − 1)

+
(x − t)

(
e − st−1 −

e−st−1

n−(t−1)
)
)

n − t

= Ej(t − 1; v) + (x − t)(e − st−1)

(
1

n − t
−

1

n − (t − 1)

)

−
(x − t)(e − st−1)

(n − t)(n − (t − 1))

= Ej(t − 1; v) +
(x − t)(e − st−1)

(n − t)(n − (t − 1))

−
(x − t)(e − st−1)

(n − t)(n − (t − 1))

= Ej(t − 1; v).

Xi,�(t; v), v ∈ V ,

𝜃i(t) ∶= 𝜃

(
t −

i∑

j=1

n̂j

)((
t −

i∑

j=1

n̂j

)

× 𝜃

(
i+1∑

j=1

n̂j − t) + n̂i𝜃

(
t −

i+1∑

j=1

n̂j

))
,
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where �(⋅) is the Heaviside step function, with agreement 
�(0) = 0 , n̂k+1 = 0 and t ∈ {0, 1,… ,

∑k

j=1
n̂j} (Fig. 2).

By definition,

where we refer to the previous definitions of Ej(⋅), v and �j(⋅) 
and t = 0, 1,… , n.

Proposition 6 Xi,�(⋅; v) is a martingale and

Proof At each discrete time, only one of the subprocesses 
Ej(⋅) is ‘active.’ By this, we mean that for any moment of 
time t only one subprocess Ej(⋅) is progressing, the others 
are either in the final state when all links to v are revealed, 
or are completely un-revealed, and the corresponding value 
equals the expectation. Therefore, Proposition 5 is sufficient 
to show the conditional expectation property. The normali-
zation coefficient c� guarantees the upper bound for the abso-
lute values of step-wise changes of the process.   □

As a result, we get the following:

Proposition 7 For all �, i ∈ {1, 2,… , k}:

Proof Use the standard Azuma’s inequality (e.g., Theo-
rem 2.25 in [19]). The inequality is true for all indices � and 
i since there is only one link exposure process, and for any 
of them the inequality is true with right-hand side that is 
independent of those indices.   □

Next, define the following vector process. It corresponds to 
uniformly random sampling of n nodes from V. Its components 
correspond to the numbers of nodes in the classes of 𝜉 . It has 

Xi,𝛼(t; v) ∶=
1

c𝛼

k∑

j=1

(
−Ej(𝜃j(t); v) log dj,𝛼

− (n̂j − Ej(𝜃j(t); v)) log(1 − dj,𝛼)
)
,

|Xi,�(t; v) − Xi,�(t − 1; v)| ≤ 1,∀t ∶ 1 ≤ t ≤ n.

�|(Xi,�(n; v) − �Xi,�(n; v)| ≤ t) ≥ 1 − 2e
−

t2

2n .

n + 1 time steps and starts from all components equal to zero, 
and at t = 1 , the value of ith component is �n̂i = nni∕N . After 
that the first node and its class in � , let it be i, are revealed, 
and the corresponding component is changed to the expected 
value of n̂i conditionally to this information. And so on, until 
the process ends with all components having their final values, 
like n̂i . By normalizing this process with the coefficient 13

√
k 

such a process is denoted as �(t).

Proposition 8 Assume that the graph size N is large enough 
and the sample size is small with n ≤

√
n
i
 , ∀i . Then �(⋅) is a 

vector martingale with maximal increment of its Euclidean 
norm equal to 1.

Proof The martingale property follows from the general 
character of the process as an exposure (see Proposition 5). 
It remains to check the step bound. Let xi(t) denote the 
increase in the number of nodes in class i at time step t. 
Then xi(t) equals 1 if the tth node happens to belong to class 
i and equals zero otherwise. Using the obvious multivariate 
hypergeometric distribution we see that the non-normalized 
ith component of the process at time t is

Using the short-hand notations x = ni , st =
∑t

s=1
xi(t) , we 

write:

We see that the dominating term (largest in absolute value) 
in the nominator is −xN = −niN , since we assume a large 
graph and much smaller sample size, and we can assume 
that the whole numerator is negative; thus, the upper bound 
of the absolute value of the numerator can be obtained by 
making the rest of terms as small as possible:

where we used also st − st−1 ≤ 1 , 0 ≤ t ≤ n , and in the final 
upper bound we assume that n is much smaller than ni or N. 
As a result we get:

Xi(t) =

t�

s=1

xi(t) +
(n − t)

�
ni −

∑t

s=1

�

N − t
.

|Xi(t) − Xi(t − 1)|

=
|||st − st−1 +

(n − t)(x − st)

N − t
−

(n − t + 1)(x − st−1)

N − t + 1

|||
=
|||st − st−1

+
(1 + N − t)(st−1 + (t − n)(st − st−1) − x))

(N − t)(N − t + 1)

|||.

|(1 + N − t)(st−1 + (t − n)(st − st−1) − x))|
= | − xN

+ (1 + N − t)
(
st−1 + (t − n)(st − st−1)

)
− x(1 − t)|

≤ | − xN + (N + 1)(−n) − x|
≤ xN + (N + 1)n + x ≤ 3xN,

Fig. 2  Schematic graphics of �
i
(t) ; it ramps from zero to n̂

i
 within 

some time interval [t(i), t(i + 1)] , with step size equal to 1, and outside 
the interval, remains constant. This interval corresponds to the one of 
span of process E

i
(⋅)
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Assuming that n ≤ N∕2 , we have

Finally, for the Euclidean norm we get:

Thus, by defining �(t) = �(t)

13
√
k
 , we obtain

  □

Using the Azuma inequality for a vector-valued martin-
gale, given in [20], we get:

Proposition 9 Under the same conditions as in Proposi-
tion 8, we have:

Proof We just check the conditions of the theorem in [20] 
that are all fulfilled after centering the �(⋅) to expected value 
at time t = n . The theorem then states:

This is equivalent to

The expectations of components are �Xi(n) = �n̂i = rin . 
Since ||�(n) − ��(n)|| ≥ max1≤i≤k |n̂i − rin| , we get the 
claimed inequality by choosing a = 1 + n3∕4 .   □

5.3  Deviations of Sampled Link Densities from Their 
Expectations

Finally, we estimate the deviations of link densities 
between sampled groups, d̂i,j , from their expected values 
di,j , conditionally on sampled group sizes n̂i . We simply 
reuse Theorem 2.2. from [18].

Proposition 10 Provided rin∕2 ≤ n̂i ≤ 2rin , we have:

|Xi(t) − Xi(t − 1)| ≤ 1 +
3niN

(N − n)2
.

|Xi(t) − Xi(t − 1)| ≤ 1 +
12niN

N2
≤ 13.

||�(t) − �(t − 1)||2 =
k∑

i=1

(Xi(t) − Xi(t − 1))2 ≤ k132.

||�(t) − �(t − 1)|| ≤ 1.

�

�
max
1≤i≤k

�n̂i − rin� ≤ 13
√
k(n3∕4 + 1)

�
≥ 1 − 2e1−

√
n∕2.

�(||�(n) − ��(n)|| ≥ a) < 2e1−(a−1)
2∕2n.

�(���(n) − ��(n)�� ≥ 13a
√
k) < 2e1−(a−1)

2∕2n.

where

Proof Use Theorem 2.2 of [18] and reasoning therein for a 
given pair (i, j) and the conditions on sizes rin∕2 ≤ n̂i ≤ 2rin , 
and finally the union bound to estimate that all densities are 
within the range. The coefficient a corresponds to the weak-
est exponent.   □

5.4  Probability of Deviation of Sampled Cost 
Function from the Expectation

Using the results of previous sections we can formulate 
and prove the main result:

Theorem 1 Provided n ≥ m , m = f 4 , then uniformly random 
sampling of n nodes and grouping of these nodes as in � has 
the property: If v ∈ V  is a random node from Vi , outside the 
sample, then for all � ≠ i:

where

�

�
max
1≤i≤j

�d̂i,j − di,j� ≤
1

4
√
n

�
≥ 1 − k(k − 1) exp(−

√
na),

a = min
i≠j

{(rirj)
2∕(32(ri + rj)

3), (ri − 1∕n)2∕r3
i
}.

�(L̂i,𝛼(v; D̂) − L̂i,i(v; D̂) > 0) ≥ 1 − g exp(−𝜙
√
n),

L̂i,s(v; D̂) ∶=
∑

j∈{1,2,…,k}

(−êj(v) log d̂j,s

− (n̂j − êj(v)) log(1 − d̂j,s)),

𝜙 = min(a, 1∕2),

g = 2 + k(k + 1),

a = min
i≠j

(
(rirj)

2∕(32(ri + rj)
3), (ri − 1∕n)2∕r3

i

)
,

d1 = min(di,j),

d2 = 1 −min(1 − di,j)

dm =

{
d1, if min(d1, 1 − d2) = d1,

d2, if min(d1, 1 − d2) = 1 − d2,

B = 14k3∕2 log

(
1

d1(1 − d2)

)
,

m1,2 = max

(
1

d2
1

,
1

(1 − d2)
2

)

f1 =
2

c

(
B + | log(1 − dm)∕dm)|

+
k

d1(1 − d2)
+ 2km1,2

)
,

f2 = 1∕min(d1∕2, (1 − d2)∕2),

f = max(f1, f2),
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and where d̂i,j are the (random) link densities between sam-
pled group pairs (V̂i, V̂j) or inside a single sampled group.

The meaning of Theorem 1 is that if we build a classi-
fier based on observed random sample of n nodes and its 
regular structure, then the rest of nodes can be classified 
correctly with probability that is exponentially close to 
one.

Proof To avoid extensively lengthy writing we use a short-
hand notation with probabilistic bounds. For instance, 
instead of

we write d̂i,j = di,j +
ci,j
4
√
n
, �ci,j� ≤ 1 . In the final step we return 

to the corresponding probabilistic bounds. First, we want to 
show that

provided that

We use the Taylor expansion of logarithm function truncated 
at the linear term and Taylor’s remainder theorem for esti-
mating the error:

where R2 is the remainder. First, the bound of the absolute 
value of the second term is:

�

�
max
1≤i≤j

�d̂i,j − di,j� ≤
1

4
√
n

�

≥ 1 − k(k − 1) exp(−
√
na),

L̂i,s(v; D̂) =L̂i,s(v) +
fi,sk

d1(1 − d2)
n3∕4

+ 2
√
nkgi,sm1,2,

�fi,s� ≤1, �gi,s� ≤ 1,

1

4
√
n
≤ min(d1∕2, (1 − d2)∕2).

L̂i,s(v; D̂)

∶=
�

j∈{1,2,…,k}

�
−êj(v) log d̂j,s − (n̂j − êj(v)) log(1 − d̂j,s)

�

= L̂i,s +
�

j∈{1,2,…,k}

�
−êj(v)

dj,s
+

(n̂j − êj(v))

1 − dj,s

�
ci,s

4
√
n
+ R2,

where we used the facts that n̂j,s ≤ n and êj(v) ≤ n . As a 
result, we get the second term in the Taylor expansion of 
L̂i,s(v; D̂) . Next, we estimate the absolute value of R2 . Obvi-
ously, R2 is a sum of remainders corresponding to each term 
of the sum of L̂i,s(v; D̂) . For each term we use the proposition 
according to which f (a + �) = f (a) + f �(a)� + r2(x) , where 
|r2(x)| ≤ M�2∕2 , where M = supx∈(a−|�|,a+|�|) |f ��(x)| . In our 
case we have terms like

where we used the condition 1
4
√
n
≤ min(d1∕2, (1 − d2)∕2) . 

Using this uniform bound for all terms, we obtain the third 
term in the expansion.

Next, we need to analyze the first term L̂i,s(v) , the cost 
function with the right densities, using Propositions 5 and 
7. From Proposition 5 it follows that

where the expectation, conditioned on the sizes of sampled 
groups n̂j , is

���
�

j∈{1,2,…,k}

�
−êj(v)

dj,s
+

(n̂j − êj(v))

1 − dj,s

�
ci,s

4
√
n

���

≤
�

j∈{1,2,…,k}

��n̂j,sdj,s − êj(v)0�
dj,s(1 − dj,s)

��ci,s�
4
√
n

≤
�

j∈{1,2,…,k}

�
n

dj,s(1 − dj,s)

�
1

4
√
n

≤
k

d1(1 − d2)
n3∕4,

1

2
sup

dj,s−1∕
4
√
n≤x≤dj,s+1∕

4
√
n

�����

êj(v)

x2
+

n̂j − êj

(1 − x)2

�����

�cj,s�2
√
n

≤
1

2

�
n

(dj,s − 1∕ 4
√
n)2

+
n

(1 − dj,s − 1∕ 4
√
n)2

�
�cj,s�2
√
n

≤
1

2

�
1

(d1 − 1∕ 4
√
n)2

+
1

(1 − d2 − 1∕ 4
√
n)2

�
√
n

≤ 2
√
nmax

�
1

d2
1

,
1

(1 − d2)
2

�
,

L̂i,s(v) = �L̂i,s(v) + cszi,sn
3∕4, |zi,s| ≤ 1,

�L̂i,s(v)

=

k∑

j=1

[
−
ej(v)n̂j

nj
log dj,s −

[
n̂j −

ej(v)n̂j

nj

]
log(1 − dj,s)

]
.
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Using Proposition 7, we get

Substituting this, and noting the fact nj = rjN , we have

The first term is

and the second term has an absolute bound:

where we used the fact that 0 ≤ ej(v)∕nj ≤ 1 . As a result we 
have:

with |b| ≤ 1 and B as in the claim of the theorem. Combining 
these estimates, we have

Gathering all pieces, we get finally:

n̂j = rjn + 14
√
ksjn

3∕4, �sj� ≤ 1.

�L̂i,s(v)

=

k�

j=1

�
−
ej(v)rjn

rjN
log dj,s

−

�
rjn −

ej(v)rjn

rjN

�
log(1 − dj,s)

�

+ 14
√
kn3∕4

k�

j=1

sj

�
−
ej(v)

nj
log dj,s

−

�
1 −

ej(v)

nj

�
log(1 − dj,s)

�
.

n

N

k∑

j=1

(
−ej(v) log dj,s − (nj − ej(v)) log(1 − dj,s)

)

=
n

N
Li,s(v),

14
√
kn3∕4

������

k�

j=1

sj

�
−
ej(v)

nj
log dj,s

−

�
1 −

ej(v)

nj

�
log(1 − dj,s)

������

≤ 14
√
kn3∕4

k�

j=1

(− log dj,s − log(1 − dj,s))

≤ 14
√
kkn3∕4 log

�
1

d1(1 − d2)

�
,

�L̂i,s(v) =
n

N
Li,s(v) + Bbi,sn

3∕4,

L̂i,s(v) =
n

N
Li,s(v) + (Bbi,s + cszi,s)n

3∕4.

with

Thus,

since by condition

a sufficient condition for L̂i,s(v; D̂) − L̂i,i(v; D̂) > 0 is that 
cn > |ui,s − ui,i|n3∕4 . Since |ui,s − ui,i|∕c is bounded by a con-
stant f1 , this condition is achievable with sufficiently large 
n. It can be seen that we can choose f1 as in the claim of the 
t h e o r e m .  W e  h a d  a n o t h e r  c o n d i t i o n 
1
4
√
n
≤ min(d1∕2, (1 − d2)∕2)  ,  o r 

4
√
n ≥ 1∕min(d1∕2, (1 − d2)∕2) ∶= f2.
As a result, if f = max(f1, f2) , then n ≥ f 4 implies 

L̂i,s(v; D̂) − L̂i,i(v; D̂) > 0 , with a probability that we estimate 
now. We use a simple union bound. Let A1,A2,… denote 
some events that correspond to the violation of one of the 
conditions in our proof. Then the event that at least one of 
them happens is given by the union of these events. The 
probability of this event always fulfills �(∪iAi) ≤

∑
i �(Ai) . 

Thus, the probability that none of the conditions is violated 
is not less than 1 −

∑
i �(Ai) . All �(Ai) are exponentially 

small in n, and so is their sum, with an exponent that has the 
smallest positive constant. The result of this count is given 
in the formulation of the theorem.   □

6  Simulations for Large‑Graph Analysis 
Based on Sampling

6.1  Regular Decomposition

We illustrate the suggested sampling scheme and its applica-
tion to analyze very large graphs. The results are illustrated 
in Figs. 3, 4, 5, 6, 7 and 8.     

Assume that a large graph is generated from a SBM. 
Denote the blocks by

L̂i,s(v; D̂) =
n

N
Li,s(v) + ui,sn

3∕4

ui,s = Bbi,s + cszi,s +
fi,sk

d1(1 − d2)
+

2kgi,sm1,2

4
√
n

.

L̂i,s(v; D̂) − L̂i,i(v; D̂)

=
n

N

(
Li,s(v) − Li,i(v)

)
+ (ui,s − ui,i)n

3∕4,

n

N

(
Li,s(v) − Li,i(v)

)
≥ cn,
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and the link probability matrix by P, that is, a k × k sym-
metric matrix with entries in (0, 1). We also assume that no 
two rows are identical, to avoid a redundant structure. Then 
we generate links between blocks and within blocks using 
P as independent link probabilities. The size of the graph G 
is assumed large and denoted by N.

Now take a uniform random sample of size n of the 
nodes. Denote the graph induced by sampling as Gn . The 
relative sizes of blocks are denoted as ri ∶=

|Vi|
N

 . The prob-
ability of sampling a node from block i is ri . We want to test 
whether the block structure of G can be reconstructed from 
a small sample, the size of which does not depend on N 
and with time complexity �(N) . We believe that the answer 
is positive.

For simplicity, assume that we know the block structure 
of Gn by having run an ideally working RD algorithm. This 
is not too far from reality, although some of the nodes may 
in reality be misclassified. However, there is not a big dif-
ference, if most of the nodes are correctly classified and n is 
not very small. The real graphs, however, are not generated 
from any SBMs, and this is a more serious drawback. In the 
latter case we would like to show that it is not necessary to 
run RD on G; rather, it is sufficient to run RD on Gn and just 
classify the rest of the nodes based on that structure.

In Gn , we denote the blocks as V̂1, V̂2,… , V̂k , and the 
empirical link densities between these blocks as d̂i,j . The 
relative sizes of the blocks as well as the link densities devi-
ate in Gn from their counterparts in G. Now assume that we 
take a node i ∈ V� outside Gn together with its links to Gn . 
What is the probability that the RD classifier places this 
node into V̂𝛽?

Denote by e�(v) the number of links from v to V̂𝛼 , 
n𝛼 ∶= |V̂𝛼| . The RD classifier based on Gn is the following 
program:

where 𝜉 =
{
V̂1, V̂2,… , V̂k

}
 and d̂ stands for the k × k matrix 

with matrix elements d̂i,j . To compute the optimal block for 
node i we need to compute and check a list of k numbers as 
well as compute the densities e�(i) . The computation time 
is upper-bounded by �(kn) . For a size n that is independent 
on N, the computation takes only a constant time. By this, 
we mean that it is enough to have some constant n regardless 
of how large the graph is. Such an n depends on the rela-
tive sizes of blocks and on k. This is because it is obviously 

V1,V2,… ,Vk

C𝛼(v|𝜉, d̂, k) ∶=
k∑

j=1

[
−ej(v) log d̂j,𝛼

− (nj − ej(v)) log(1 − d̂j,𝛼)
]
,

𝛼∗ = arg min
𝛼
(C𝛼(v|𝜉, d̂, k)),

necessary to have enough samples from each block to be 
able to obtain good estimates of link densities, and if some 
blocks are very small, more samples are needed.

We made experiments with k = 10 and with equal rela-
tive sizes of blocks. The P-matrix elements were i.i.d. 
Uniform(0, 1) r.v.’s. In this case, already n > 200 is such that 
no classification error was found in a long series of experi-
ments with repetitions of random samples and classification 
instances. Of course, errors are always possible, but they 
become insignificant already when each block has about 20 
members. A similar situation is met with non-equal block 
sizes, but then the small blocks dictate the required n. When 
the smallest block has more than a couple of dozen nodes, 
the errors become unnoticeable in experiments.

We conjecture that if such a block structure or close to 
it exists for a large graph, it can be found out using only a 
very small subgraph and a small number of links per node 
in order to place every node into right blocks with only very 
few errors. This would give a coarse view on the large graph 

Fig. 3  Adjacency matrix of a random graph with k = 10 , and equal 
size blocks and 1000 nodes

Fig. 4  Adjacency matrix of a random graph with k = 10 , and equal 
size blocks, generated from the same model as in previous picture but 
with only 200 nodes
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useful for getting an overall idea of link distribution without 
actually retrieving any link information besides labeling of 
its nodes. For instance, if we have a large node set, then the 

obtained labeling of nodes and the revealed block densities 
would allow computation of, say, the number of triangles 
or other small subgraphs, or the link density inside a set. 
It would be possible to use this scheme in the case of a 
dynamical graph, to label new nodes and monitor the evolu-
tion of its large-scale structure.

We can also adapt our RD method to the case of multi-
layer networks and tensors, etc. A similar sampling scheme 
would also be desirable and probably doable. On the other 
hand, large sparse networks need principally new solutions 
and development of a kind of sparse version of RD. These 
are major directions of our future work.
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Fig. 5  Classification success percentile as a function of n using sev-
eral repetitions of experiments and 1000 classification instances 
for each. Already a sample with 200 nodes generates a model with 
almost a perfect classifier

Fig. 6  A sample graph with 50 nodes that is insufficient to create a 
successful classifier—the result is similar to completely random clas-
sification

Fig. 7  200-node sample, from the same model as above, that gener-
ates almost a perfect classifier—no errors detected in experiments

Fig. 8  A scheme of RD for a huge graph shown at the top; in real-
ity, we assume a much larger graph than what is shown in the pic-
ture. First, a moderate size sample of n0 nodes and induced subgraph 
is formed. RD is applied to this small graph; groups 𝜉

n0
 and matrix P̂ 

are found, shown as the graph in the middle. Then, sequentially, any 
node v from the big graph can be classified to a regular group using 
just counts of links of this chosen node to regular groups of the sam-
ple graph. This classification requires a constant number of computa-
tions, upper-bounded by k2n0 , with elementary functions. As a result, 
nodes of the whole graph can be classified in just linear time with 
respect to number of nodes. After the classification is done (shown in 
the ring shape structure at the right side) the RD of the large graph is 
done simply by retrieving link information. The result is shown in the 
lower graph
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6.2  Spectral Clustering and Comparison with RD

For comparison, we repeated the experiments of the previ-
ous section using a spectral clustering method (see, e.g., 
[21]), to find a block structure in the sample. For more about 
the rigorous theory of spectral clustering and its variants, 
see [17].

The purpose is to compare the performance of spectral 
clustering with RD. The quality of spectral block struc-
ture was then evaluated similarly as in previous RD case, 
by counting the success rate of classification of additional 
1000 nodes of the graph, and using the same classifier as in 
previous section. We also checked the accuracy of spectral 
clustering versus RD.

Spectral clustering is a highly popular way of obtaining 
community and other stochastic block model structures in 
data. It combines spectral analysis of most significant eigen-
vectors associated with the graph with k-means clustering. 
For definiteness, we describe the steps of this method as 
follows. Let Wi,j be the adjacency matrix of a simple graph 
with n nodes. Define a diagonal matrix D with elements

and the normalized adjacency matrix WD as

WD is related to the normalized graph Laplacian as 
L = I −WD. (Note that in [21] WD is denoted as L.) Denote 
k eigenvectors of WD corresponding to k largest by absolute 
value eigenvalues as X1,…Xk . Form a matrix X, where the 
columns are X1,…Xk . As a result, X is an n × k matrix. Each 
row of X is treated as vector in k-dimensional Euclidean 
space. Next, run the k-means algorithm on these n vectors 

Di,i =
∑

1≤j≤n

Wi,j

WD = D
−

1

2WD
−

1

2 .

and cluster them into k clusters. The clustering of nodes is 
taken to be identical to the k-means clustering of rows of X.

In our case, it turned out that if we take k = 10 in the 
matrix X and k = 10 in k-means algorithm, the result was 
very poor and the blocks were not found. Based on numeri-
cal experiments we choose k = 5 for X and k = 10 in 
k-means, in order to have best results for finding the 10 × 10 
block structure of W. In this way the method was able to find 
the blocks with reasonable accuracy.

The spectral method performed somewhat worse than 
RD, as can be seen in Fig. 9. It needed a sample size of 
about 1000 nodes to have a low average error rate, instead of 
200 that was enough for RD. Moreover, even for n = 1000 , 
some random cases resulted in very poor performance, cor-
responding to a completely unsuccessful classifier. When n 
is around thousand and making 100 repetitions, we observed 
that almost all cases were error-free, but in a couple of cases 
the success rate was only around 10%, meaning a completely 
random classification. The blocks in our experiments did 
not have fixed sizes, only their expected sizes were fixed 
and equal. In a series of experiments, the link probability 
matrix was kept constant. Maybe these random variations of 
block sizes can explain such an instability. If n is not large 
enough, these variations can be very big. One cluster can 
become very small just by fluctuations caused by sampling. 
Such small clusters can be seen as outliers, since the nodes 
in such groups are very few and different from all others. It is 
well known that spectral clustering suffers from such outliers 
that should be removed from data before clustering. RD does 
not suffer from this feature, and we did not observe sensitiv-
ity of clustering to random fluctuations of the cluster sizes.

In the theory of spectral clustering there are usually bal-
ancing conditions on the way how the sizes of clusters grow 
as n → ∞ [17]. For instance, the block sizes n1,… , nk are 
such that ∃c ∶ 0 < c ≤ 1∕k s.t. 

∑
i ni → ∞ and ni∕n ≥ c 

as n → ∞ . Such conditions are needed to prove consistency 
properties of spectral clustering methods [15, 17].

Results  are demonstrated in Figs. 10, 11 and 12. Here we 
pick up one particular sample where spectral clustering pro-
duced a poor model with high rate of errors in classification. 
It was found that the block structure was only partially found 
using this method. Applying RD to the same sample produced 
a perfectly correct clustering. We also checked all cases where 
the spectral clustering produced a poor classification model. 
We found that in these cases the smallest and largest blocks 
of the sampled graph deviated a lot from their expectation, 
while in the case that the model was successful the sizes were 
systematically closer to the expectation, see Fig. 12.   

We conclude that RD is more preferable and stable for 
finding a block structure of a sample graph. RD is capable of 
finding blocks in the case of poor balancing of block sizes. 
This can happen when sampling a large graph even though 
the blocks are balanced yet, say, the biggest block is twice 
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Fig. 9  Spectral method for finding block structure. Classification suc-
cess percentile as a function of n using several repetitions (100) of 
experiments and 1000 classification instances for each
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the smallest. In the sample this can result in a fatal error 
for spectral clustering, when one sampled block, by chance, 
has only few representatives. RD seems to be more robust 
against such small samples of blocks and thus requires 
smaller sample sizes than spectral clustering.

7  Conclusions and Future Work

Our future work will be dedicated to the case of sparse 
graphs, which is the most important in Big Data. One idea 
we are currently studying is to use the matrix of hop-count 

distances between nodes instead of a sparse adjacency 
matrix [10].

For large dense graphs, testable graph parameters are 
nonparametric statistics that can be consistently estimated 
by appropriate sampling, introduced by László Lovász and 
coauthors, see also [17]. We plan to show that the MDL 
statistics and the multiway discrepancies of [6] are testable, 
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Fig. 10  Left: the true block structure. Right: the block structure found 
with spectral clustering. There are some large differences to be seen. 
In this case classifier based on the structure at right completely fails. 

In comparision, the RD method finds the correct structure without a 
single error
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Fig. 11  Errors of spectral clustering in case when the corresponding 
classifier has high error rate, for a fixed sample graph with n = 400 . 
The points correspond to nodes. Nodes exactly at diagonal are cor-
rectly clustered, and those off the diagonal are in wrong clusters. In 
case of applying RD to the same graph the nodes are 100% correctly 
clustered
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Fig. 12  Minimal and maximal block sizes in various experiments. 
These variations are result of choosing cluster assignment of each 
node uniformly at random and independently of all other nodes. 
Each horizontally aligned point pair corresponds to values in a single 
experiment, where the horizontal coordinate is the value itself. Blue 
points are from instances that resulted in high, more than 30 %, error 
rate in subsequent classification of nodes. The orange points corre-
spond to cases when this error rate was less than 1%. Average block 
size is 50, following from parameters n = 500 and k = 10 . This plot 
suggests high correlation between error rate and large deviations in 
block sizes. In case of blue points, the values are roughly twice larger 
or smaller than the average and in case of orange points the difference 
is much smaller
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possibly with appropriate normalizations. If so, they can be 
concluded from a smaller part of the graph that has advan-
tages with regard to the computational complexity of our 
algorithms.
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