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Abstract Context plays an important role in helping users

to make decisions. There are hierarchical structure between

contexts and aggregation characteristics within the context

in real scenarios. Exist works mainly focus on exploring

the explicit hierarchy between contexts, while ignoring the

aggregation characteristics within the context. In this work,

we explore both of them so as to improve accuracy of

prediction in recommender systems. We propose a Random

Partition Factorization Machines (RPFM) by adopting

random decision trees to split the contexts hierarchically to

better capture the local complex interplay. The intuition

here is that local homogeneous contexts tend to generate

similar ratings. During prediction, our method goes through

from the root to the leaves and borrows from predictions at

higher level when there is sparseness at lower level. Other

than estimation accuracy of ratings, RPFM also reduces the

over-fitting by building an ensemble model on multiple

decision trees. We test RPFM over three different bench-

mark contextual datasets. Experimental results demonstrate

that RPFM outperforms state-of-the-art context-aware

recommendation methods.

Keywords Context-aware recommendations � Hierarchical
information � Factorization Machines � Random decision

trees

1 Introduction

With the rapid development of web 2.0 and wireless

communication technologies, we are going through a new

era of information overload. That is, it is difficult to quickly

find the available information for users. To cope with the

challenge, there are two solutions: information retrieval

[19] and recommender systems [12]. If users can express

their requirement clearly, information retrieval is a good

method to help them. For example, when will start the next

game of Real Madrid football club? However, it is difficult

to generate the specific demand in many cases. Such as,

what the Internet is talking about right now, which movie is

the most interesting recently, which book should I buy?

Recommender systems can give the answers.

Recommender systems have become an important tool

to help users to easily find the favorite items. In general,

recommender systems can be divided into three categories:

content-based recommendation, collaborative filtering and

A short version of this paper appeared in the proceedings of the 17th

International Conference on Web-Age Information Management

(WAIM2016) [26]. Different from the conference paper, the new

contents of this paper include the following. (1) We add a discussion

about the relationship between the proposed RPFM and other state-of-

the-art random partition based methods in Sect. 4.2. (2) We add some

experiments to assess the performance of proposed RPFM with

different similarity measure function in k-means method. (3) Besides,

introduction, related works, preliminaries, and future work are all

been extended in Sects. 1, 2, 3, and 6, respectively.
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hybrid recommendation [9]. Content-based recommenda-

tion can play an important role to help users making

decisions when the content can be abstracted from the

items, e.g., news [4], jokes, books, reviews. However, the

recommended items are very familiar to the users. Lack of

novelty is the one of the weak points of content-based

recommendation. The main idea of collaborative filtering

approaches is to exploit information about the past

behaviors of all users of the system for predicting which

items the current user will most probably be interested in.

Pure collaborative filtering approaches take a matrix of

given user–item ratings as the only input. Though collab-

orative filtering approaches achieves great success, there

are some shortcomings. For example, cold-start items

cannot be recommended, and popular items often be rec-

ommended. Due to known limitations of either pure con-

tent-based recommender systems or collaborative filtering ,

it rather soon led to the development of hybrid recom-

mendation that combine the advantages of different rec-

ommendation techniques. In this work, we focus on

collaborative filtering by exploiting the hierarchal infor-

mation implied to improve the performance of

recommendations.

Collaborative filtering [11, 12, 23, 25] methods that

behind the recommender systems have been developed for

many years and is still a hot research topic up to now.

User’s decisions (e.g., clicked, purchased, re-tweeted,

commented) to the relevant items are made under the

certain environments which is often referred to as context.

The contexts which include time, location, mood, com-

panion and so on can be collected easily in real-world

applications. Comparing to conventional recommendation

solely based on user–item interactions, context-aware rec-

ommendation (CAR) can significantly improve the rec-

ommendation quality.

For this purpose, a great number of context-aware rec-

ommendation methods [10, 13, 21] have been proposed.

Among them, Factorization Machines (FM) [21] is cur-

rently an influential and popular one. It represents the user–

item–context interactions as a linear combination of the

latent factors to be inferred from the data and treats the

latent factors of user, item and context equality. Despite its

successful application, existing FM model is weak to uti-

lize hierarchical information. In practice, hierarchies can

capture broad contextual information at different levels and

hence ought to be exploited to improve the recommenda-

tion quality. The intuition here is that local homogeneous

contexts tend to generate similar ratings. For example,

many men who are engaged in IT department like to

browse on technology Web sites in office during the day.

However, they enjoy visiting sport Web sites at home in

the evening. Here, users may be arranged in a hierarchy

based on gender or occupation, Web sites may be

characterized by contents, and there are natural hierarchies

for time and location.

In this paper, we focus on solving the problem of

exploiting the hierarchical information to improve the rec-

ommendation quality. We propose a Random Partition

Factorization Machines (RPFM) by adopting random

decision trees to split the contexts hierarchically to better

capture the local complex interplay. More specifically, the

user–item–context interactions are first partitioned to dif-

ferent nodes of a decision tree according to their local

contexts. Then, FM model is applied to the interactions of

each node to capture the tight impact of each other. During

prediction, our method goes through from the root to the

leaves and borrows from predictions at higher level when

there is sparseness at lower level. Other than estimation

accuracy of rating, RPFM also reduces the over-fitting by

building an ensemble model on multiple decision trees. The

main contribution of the paper is summarized as follows:

1. FM model is one of the most successful approaches for

context-aware recommendation. However, there is

only one set of the model parameters which can be

learned from the whole training set. We propose the

novel RPFM model which makes use of the intuition

that similar ratings can be generated from homoge-

neous environments.

2. We adopt the k-means cluster method to partition the

user–item–context interactions at each node of deci-

sion trees. The similarity between the latent factor

vectors of FM model can be used to partition the user–

item–context interactions. The subset at each node is

expected to be more impacted each other.

3. We conduct experiments on three datasets and com-

pare it with five state-of-the-art context-aware recom-

mendations to demonstrate RPFM’s performance.

The rest of the paper is organized as follows: In Sect. 2, we

provide related works about context-aware and random

partition-based models. In Sect. 3, we introduce the FM

model. In Sect. 4, we propose the Random Partition Fac-

torization Machines (RPFM) model which includes algo-

rithm description and discussion with two state-of-the-art

random partition-based models. In Sect. 5, we present the

experimental result on three real datasets. The paper is

concluded in Sect. 6, and the future research direction is

outlined.

2 Related Works

The work presented in this paper is closely related to

context-aware recommendation and random partition on

tree structure. In the following, we introduce the related

works to serve as background for our solution.
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2.1 Context-Aware Recommendation

In general, there are three types of integration method [2]:

(1)contextual pre-filtering method; (2) contextual post-fil-

tering method; and (3) contextual modeling method. In

contrast to the previous two methods, the contextual

modeling method uses all the contextual and user–item

information simultaneously to make predictions. More

recent works have focused on the third method

[10, 13, 24, 27].

Karatzoglou et al. [10] proposed Multiverse Recom-

mendation model in which the different types of context are

considered as additional dimensions in the representation of

the data as a tensor. The factorization of this tensor leads to a

compact model of the data which can be used to provide

context-aware recommendations. However, for real-world

scenarios its computational complexity is too high. Rendle

[24] showed that FactorizationMachines (FM)model can be

applied to context-aware recommendation because that a

wide variety of context-aware data can be transformed into

prediction task using real-valued feature vectors. Nguyen

et al. [16] developed a nonlinear probabilistic algorithm for

context-aware recommendation using Gaussian processes

which is called Gaussian Process Factorization Machines

(GPFM). GPFM is applicable to both the explicit feedback

setting and the implicit feedback setting. Currently, the most

recent approach in terms of prediction accuracy is COT [13]

model, which represented the common semantic effects of

contexts as a contextual operating tensor and represents a

context as a latent vector. Then, to model the semantic

operation of a context combination, it generates contextual

operating matrix from the contextual operating tensor and

latent vectors of contexts. Thus latent vectors of users and

items can be operated by the contextual operating matrices.

However, its computational complexity is also too high.

2.2 Random Partition on Tree Structure

Fan et al. [5] proposed Random Decision Trees which are

applicable for classification and regression to partition the

rating matrix and build ensemble. Each time, according to

the feature and threshold which were selected randomly,

the instances at each intermediate nodes are partitioned into

two parts. Zhong et al. [28] proposed Random Partition

Matrix Factorization (RPMF), based on a tree structure

constructed by using an efficient random partition tech-

nique, which explore low-rank approximation to the cur-

rent sub-rating matrix at each node. RPMF combines the

predictions at each node (non-leaf and leaf) on the decision

path from root to leaves. Liu et al. [14] handled contextual

information by using random decision trees to partition the

original user–item–rating matrix such that the ratings with

similar contexts are grouped. Matrix factorization was then

employed to predict missing ratings of users for items in

the partitioned sub-matrix.

3 Preliminaries

In this section, we briefly review Factorization Machines

(FM) which is closely related to our work.

The notations used in this paper are summarized in

Table 1.

3.1 Factorization Machines

Factorization Machines (FM), proposed by Rendle [21], is

a general predictor which can mimic classical models like

biased MF [12], SVD?? [11], PITF [25] or FPMC [23].

The model equation for FM of degree d ¼ 2 is defined as:

ŷðxiÞ ¼ x0 þ
Xp

j¼1

xjxi;j þ
Xp

j¼1

Xp

j0¼jþ1

h\vj; vj0 ixi;jxi;j0 ; ð1Þ

and

hvj; vj0 i :¼
Xf

k¼1

vj;k � vj0;k; ð2Þ

where the mode parameters H that have to be estimated

are:

x0 2 R; w 2 Rp; V 2 Rf�p: ð3Þ

A row vector vi of V represents the ith variable with f

factors. f 2 Nþ
0 is the dimensionality of the factorization.

The model equation of a factorization machine in

Eq. (1) can be computed in linear time Oðf � pÞ because

the pairwise interaction can be reformulated:

Table 1 Definition of notations

Notation Description

R Training set

Rdj jth training subset at dth level

ni Number of the context Ci

m Number of the contextual variables

f Dimensionality of latent factor vectors

k Number of clusters in k-means method

fun Similarity function in k-means method

x0 Global bias

xi Strength of the ith variable.

vi Factor vector of the ith variable

S Structure of tree

N Number of trees

h Height of tree

leastT Number of least support tuples at leaf node
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Xp

j¼1

Xp

j0¼jþ1

hvj; vj0 ixi;jxi;j0 ¼
1

2

Xf

k¼1

Xp

j¼1

vj;kxi;j

 !2

�
Xp

j¼1

v2j;kx
2
i;j

0
@

1
A

Table 2 shows an example of input formation of training

set. Here, there are jUj ¼ 3 users, jIj ¼ 4 items, jLj ¼ 4

locations, which are binary indicator variables.

U ¼ fu1; u2; u3g
I ¼ fi1; i2; i3; i4g
L ¼ fl1; l2; l3; l4g

The first tuple x1 means that user u1 consumed i1 at l1 and

rated it as 4 stars. For simplicity, we only consider categor-

ical features in the paper. Table 3 shows the model param-

eters learned from the training set which is shown in Table 2.

3.2 Extensions to FM

There are a lot of extensions to FM model. Freudenthaler

et al. [6] presented simple and fast structured Bayesian

learning for FM model. Rendle [22] scaled FM to relational

data. Hong et al. [8] proposed co-FM to model user

interests and predicted individual decisions in twitter.

Qiang et al. [20] exploited ranking FM for microblog

retrieval. Loni et al. [15] presented ’Free lunch’ enhance-

ment for collaborative filtering with FM. Oentaryo et al.

[17] predicted response in mobile advertising with hierar-

chical importance-aware FM. Cheng et al. [3] proposed a

Gradient Boosting Factorization Machine (GBFM) model

to incorporate feature selection algorithm with FM into a

unified framework. To the best of our knowledge, there is

no extension to FM model integrated into random decision

trees such as to exploit the universal context-aware

recommendations.

4 Random Partition Factorization Machines

The intuition is that there are similar rating behaviors

among users under the same or similar contextual envi-

ronments. Motivated by Zhong et al. [28], We describe the

proposed Random Partition Factorization Machines

(RPFM) for context-aware recommendations.

4.1 Algorithm Description

In order to efficiently take advantage of different contex-

tual information, we adopt the idea the random decision

trees algorithm.

The rational is to partition the original training set

R such that the tuples generated by the similar users, items

Table 2 An example of training set of FM model

Users Items Locations Ratings

x1 1 0 0 1 0 0 0 1 0 0 0 4

x2 1 0 0 0 1 0 0 0 1 0 0 3

x3 1 0 0 0 0 1 0 0 1 0 0 3

x4 0 1 0 0 0 0 1 0 0 1 0 5

x5 0 0 1 1 0 0 0 1 0 1 0 2

x6 0 0 1 0 1 0 0 0 0 0 1 3

Table 3 An example of

parameters’ values of FM model
Users Items Locations

w0 1.86

w 0.81 0.22 0.80 0.49 0.05 1.15 0.05 1.10 0.51 -0.10 0.49

V 0.03 0.06 0.03 -0.03 0.01 -0.06 0.03 -0.06 -0.08 -0.01 -0.03

-0.03 -0.07 -0.02 0.00 0.01 0.10 0.00 0.10 0.13 -0.02 0.01

0.03 0.03 0.02 0.01 0.01 -0.07 0.01 -0.07 -0.09 0.04 0.01

-0.02 -0.02 -0.02 0.00 0.00 -0.07 -0.01 -0.06 -0.07 0.03 0.01

Fig. 1 Random decision trees (one tree)
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or contexts are grouped into the same node. Tuples in the

same cluster are expected to be more correlated each other

than those in original training set R. The main flow can be

found in Fig. 1 and Algorithm 2.

To begin with, there is an input parameter S, the struc-

ture of decision trees, which can be generated by Algo-

rithm 1 and determined by cross-validation. The parameter

S includes contexts for partition at each level, numbers of

clusters at each node. The maximal depth of trees can be

inferred from the parameter S. For instance, if the value of

S is ’C2:4,C3:6,C1:10,C0:5’, the meaning is: (1) at the root

node of decision trees, the R can be divided into four

groups by using k-means method according to the simi-

larity between factor vectors of context C2. Subsequently,

the set at each node of 2nd, 3rd and 4th level of decision

trees can be, respectively, divided into six, ten and five

groups according to the similarity between factor vectors of

context C3, C1 and C0 using k-means method. (2) The

maximal depth of each tree is five because there are four

intermediate levels and one terminal level.
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At each node, we learn the model parameter using FM

model.

k2
2
kwk2 þ k3

2
kVk2x̂0; ŵ; V̂

¼ arg min
x0;w;V

XjRj

i¼1

ðyðxiÞ � ŷðxiÞÞ2 þ k
Xp

j¼1

kVj � Vpa
j k2

ð4Þ

where k � k is the Frobenius norm andVpa is the latent factor

matrix at parent node. The parameter k controls the extent of
regularization. Equation (4) can be solved using two

approaches: (1) stochastic gradient descent (SGD) algo-

rithms, which are very popular for optimizing factorization

models as they are simple, work well with different loss

functions. The SGD algorithm for FM has a linear compu-

tational and constant storage complexity [21]. (2) Alternat-

ing least-squares (ALS) algorithms that iteratively solves a

least-squares problem permodel parameter and updates each

model parameter with the optimal solution [24]. Here, V is

f � pmatrix ofwhich f is the dimensionality of factor vectors

and p ¼ n0 þ n1 þ :::nm�1. ni is the number of context Ci, m

is the number of contextual variables. For simplicity, we

denote user set as C0 and item set as C1. Each of the f � ni
sub-matrix is the latent representation of context Ci, as

shown in Table 3. The smaller the distance among the factor

vectors of context Ci, the greater the similarity.

To partition the training set R, we extract the context

and the number of clusters according to the tree structure S

and current level. We group the similar latent vectors of

context C by making use of the k-means method, In

Table 3, suppose we get the context C1 (i.e., Item) and

number of clusters k ¼ 2 according to input parameter S.

Then the initial cluster central points selected randomly are

i1 and i2. Subsequently, the generated clustering result

could be fi1; i3; i4g and fi2g. Lastly, the training set in the

current node can be divided into two groups according to

the clustering result of context C1 (i.e., Item) and the value

of C1 (i.e., Item) of tuples. In other words, the current node

has two children nodes. The subset of one chid node

includes the tuples whose value of C1 (i.e.,

Item)2 fi1; i3; i4g, the remaining tuples are assigned to the

other children node.

The partition process stops once one of following condi-

tions is met: (1) the height of a tree exceeds the limitation

which can be inferred from the given tree structure parameter

S; (2) the number of tuples at each child node of current node

is less than the number of least support tuples leastL.

During training, the function of each non-leaf node is to

separate training set by making use of the clustering result

of special context, such that the tuples in the subset have

more impact each other. However, leaf nodes are respon-

sible for prediction.

Note that in different decision trees, the training set is

divided differently because that initial k cluster central

points are selected randomly at each node of decision trees.

During prediction, for a given case xi in the test set, we

transfer it from root node to leaf node at each tree using the

clustering information of each non-leaf node. For instance,

the value of S is ‘C1:2, C0:3, C2:4’ and a test case xi ¼
fu3; i1; l2g corresponding to Table 2. Thus from the root

node, the xi would be transferred to node (e.g., R23) which

include i1 at second level. Then from the node R23, the xi
would be transferd to node (e.g., R33) which include u3 at

third level. Subsequently, from the node R33, the xi would

be transferd to node (e.g., R41) which include l2 at fourth

level. At the target leaf node, the rating can be predicted by

taking advantage of Eq. (1) and the parameters learned by

the training subset. To the end, the predictions from all

trees are combined to obtain the final prediction as shown

in Eq. (5)

ŷðxiÞ ¼
PN

t¼1 ŷtðxiÞ
N

; ð5Þ

where ŷt means the prediction of the tuple xi at tth decision

tree, N denotes the number of decision trees.

After partitioning the original training set, the tuples at

each leaf node have the more influence on each other. So,

the FM model at each leaf node can achieve high quality

recommendation. By combining multiple predictions from

different decision trees, all subsets in which the tuples are

more correlated are comprehensively investigated, per-

sonalized and accurate context-aware recommendations

can be generated.

4.2 Discussion

We discuss the relationship between the proposed RPFM

and other state-of-the-art random partition-based methods.

• Relation to RPMF Zhong et al. [28] proposed RPMF

works by applying a set of local decomposition

processes on sub-rating matrices. There are some

differences between RPMF and our proposed RPFM.

First of all, RPMF explores a basic MF model to

factorize the user–item rating matrix. However, RPFM

factorizes the user–item–context interactions using FM

model. Secondly, the decision trees in RPMF are binary

trees created by selecting a latent factor from U, V and a

splitting point randomly, while that in RPFM are

irregular trees generated by k-means method where

k initial cluster central points are selected randomly.

Thirdly, the depth of decision trees in RPMF can be

very large in theory, while that in RPFM is limited by

the number of contextual variables. Finally, during

prediction, for a given user–item pair, RPMF obtain a

130 S. Wang et al.
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partial prediction at each node on the path from the root

to leaf node on each decision tree. However, our

proposed RPFM make a partial prediction only at the

leaf node of each decision tree for a given user–item–

context interaction tuple. So, RPMF spend more time in

prediction than RPFM.

• Relation to SoCoLiu et al. [14] proposed SoCo to improve

recommendation quality by using contexts and social

network information. Here, we only pay attention to the

relation between SoCo without social information and

RPFM. Firstly, in SoCo contextual information cr, used to

separate data at each level of each tree, is selected

randomly. Then the training data at each intermediate

node are partitioned according to the value of cr.

However, the tree structure in RPFM is determined by

the input parameter S and training subset is generated

according to similarity of latent factor vectors of selected

context cr. Second, the prediction ismade by the basicMF

model in SoCo. However, our proposed RPFM makes

prediction by taking advantage of FM model. It is worth

mentioning that some contextual information which can

improve recommendation quality may be lost in SoCo

when the depth of tree is less than the number of

contextual variables. For instance, the node R22 in Fig. 1

has no child node because the number of tuples at the node

R22 is less than the number of least support tuples. If

matrix factorization is performed, the contextual infor-

mation at node R22 can not be taken advantage. However,

our proposed RPFM can do it. Third, both the users and

items cannot be used to split training set in SoCo. In other

words, the number of tuples at leaf nodes in SoCo may be

still enormous.

5 Experiments

In this section, we empirically investigate whether our pro-

posed RPFM can achieve better performance compared with

other state-of-the-art methods on three benchmark datasets.

First we describe the datasets and settings in our experi-

ments, then report and analyze the experiment results.

5.1 Datasets

We conduct our experiments on three datasets: the Adom.

dataset [1], the Food dataset [18] as well as the Yahoo!

Webscope dataset.

The Adom. dataset [1] contains 1757 ratings by 117

users for 226 movies with many contextual information.

The rating scale rang from 1 (hate) to 13 (absolutely love).

However, there are missing values in some tuples. After

removing the tuples containing missing values, there are

1464 ratings by 84 users for 192 movies in Adom. dataset.

We keep 5 contextual information: withwhom, day of the

week, if it was on the opening weekend, month and year

seen (Table 4).

The Food dataset [18] contains 6360 ratings (1–5 stars)

by 212 users for 20 menu items. We select 2 context

variables. One context variable captures how hungry the

user is: normal, hungry and full. The second one describes

if the situation in which the user rates is virtual or real to be

hungry.

The Yahoo! Webscope dataset contains 221,367 ratings

(1–5 stars), for 11,915 movies by 7,642 users. There is no

contextual information. However, the dataset contains

user’s age and gender features. Just like [24], we also

follow [10] and apply their method to generate modified

dataset. In other words, we modify the original Yahoo!

dataset by replacing the gender feature with a new artificial

feature C 2 f0; 1g that was assigned randomly to the value

1 or 0 for each rating. This feature C represents a con-

textual condition that can affect the rating. We randomly

choose 50% items from the dataset, and for these items we

randomly pick 50% of the ratings to modify. We increase

(or decrease) the rating value by one if C ¼ 1ðC ¼ 0Þ if the
rating value was not already 5 (1).

5.2 Setup and Metrics

We assess the performance of the models by conducting a

fivefold cross-validation and use the most popular metrics:

the mean absolute error (MAE) and root mean square error

(RMSE), defined as follows:

MAE ¼
P

ðxi;yiÞ2Xtest
jyi � ŷðxiÞj

jXtestj
ð6Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðxi;yiÞ2Xtest

ðyi � ŷðxiÞÞ2

jXtestj

s
ð7Þ

where Xtest denotes the test set, and jXtestj denotes the

number of tuples in test set. The smaller the value of MAE

or RMSE, the better the performance.

5.3 Performance Comparison

We first conduct some experiments to assess the perfor-

mance of proposed RPFM with different similarity measure

Table 4 Data set statistics

Dataset Users Items Context dim Ratings Scale

Adom. 84 192 5 1464 1–13

Food 212 20 2 6360 1–5

Yahoo! 7642 11,915 2 221,367 1–5
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function in k-means method. Then we compared the per-

formance of proposed RPFM with state-of-the-art context-

aware methods.

5.3.1 What’s the Better Method of Similarity Function?

The proposed RPFM algorithm takes advantage of k-means

method to partition the training set. So the tuples in the

each training subset are more impact each other. As we

know, there are many metrics to measure the similarity

among the tuples, for instance, Euclidean distance ( Eu-

clid), Cosine-based similarity (Cosine), correlation-based

similarity (Pearson), adjusted Cosine-based similarity

(adjCosine), etc. As shown in Table 5, there are some

different performance under the different similarity mea-

sure function. However, the difference of performance is

not significance. In the following sections, we thus report

performances using Euclidean distance.

5.3.2 Comparison to Factorization-Based Context-Aware

Methods

To begin with, we determine the structure of decision trees,

i.e., input parameters S, by Algorithm 1. The parameters

are ‘C2:2,C6:2,C5:2,C3:3,C0:2,C4:5,C1:5’, ‘C3:3,C2:2,

C0:5,C1:4’ and ‘C3:2,C2:2,C0:2,C1:2’ for Adom., Food

and Yahoo! dataset, respectively. Then, we select 0.01 as

the values of learning rate and regularization.

• FM [21] is easily applicable to a wide variety of context

by specifying only the input data and achieves fast

runtime both in training and prediction.

• Multiverse Recommendation [10] is a contextual col-

laborative filtering model using N dimensional tensor

factorization. In Multiverse Recommendation, different

types of context are considered as addition dimensions

in the representation of the data as tensor. The

factorization of this tensor leads to a compact model

of the data which can be used to provide context-aware

recommendations.

• COT [13] represents the common semantic effects of

contexts as a contextual operating tensor and represents

a context as a latent vector. Then, contextual operating

matrix from the contextual operating tensor and latent

vectors of contexts was generated so as to model the

semantic operation of a context combination.

Dimensionality of latent factor vectors is one of the

important parameters. Though latent factor vectors’

dimensionality of various contexts can be different in

Multiverse and COT. In order to compare with FM and our

proposed RPFM, we just take into account the equal

dimensionality of latent factor vectors of various contexts.

The scale of three datasets is different, so we run models

with f 2 f2; 3; 4; 5; 6; 7g over Adom. dataset, f 2
f2; 4; 6; 8; 10; 12g over Food dataset and f 2
f5; 10; 15; 20; 25; 30g over Yahoo! dataset. Fig-

ures 2 and 3 show the result of FM, Multiverse, COT and

RPFM over the three real-world datasets.

We notice that in all experiment scenarios, dimension-

ality of latent factor vectors in RPFM is not sensitive and

RPFM is more accurate than other recommendation mod-

els. These results show that in homogeneous environment

which can be obtained by applying random decision trees

to partition the original training set, users have similar

rating behavior.

High computational complexity for both learning and

prediction is one of the main disadvantages of Multiverse

and COT. This make them hard to apply for larger

dimensionality of latent factor vectors. In contrast to this,

the computational complexity of FM and RPFM is linear.

Table 5 Performance comparison in terms of different similarity

function

Dataset Metric RPFM

Euclid Cosine Pearson adjCosine

Adom. RMSE 2.642 2.640 2.643 2.649

MAE 2.039 2.032 2.054 2.049

Food RMSE 1.022 1.042 1.035 1.038

MAE 0.786 0.814 0.800 0.813

Yahoo! RMSE 0.911 0.933 0.928 0.926

MAE 0.617 0.626 0.629 0.621

Bold numbers are the best performance in terms of different similarity

function for each dataset
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Fig. 2 MAE over three datasets

with different dimensionality of

latent factor vectors. a Adom.

dataset, b food dataset,

c Yahoo! dataset
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In order to compare the runtime of various models, we do

experiment on Yahoo! dataset for one full iteration over

whole training set. Figure 4 shows that the learning run-

time of RPFM is faster than that of Multiverse and COT

with increasing the dimensionality, however, slower than

that of FM which is obvious because RPFM generates an

ensemble which reduces the prediction error.

5.3.3 Comparison to Random Partition-Based Context-

Aware Methods

• RPMF [28] adopted a random partition approach to

group similar users and items by taking advantage of

decision trees. The tuples at each node of decision trees

have more impact each other. Then matrix factorization

is applied at each node to predict the missing ratings.

• SoCo [14] explicitly handle contextual information

which means SoCo partitions the training set based on

the values of real contexts. SoCo incorporate social

network information to make recommendation. There

are not social network information in our selected

datasets, so we just consider SoCo without social

network information.

Both the number and depth of trees have important impact

on the decision tree-based prediction methods. Because of

space limitations, we just report the experimental result

over Food dataset.

As shown in Fig. 5, we observe that RPFM achieves the

best performance compared with RPMF and SoCo. And we

notice that MAE/RMSE decreases with increasing number

of trees, which means more trees produces higher accuracy.

However, when the number of trees increases to around 3,

improvements on prediction quality become negligible. We

thus conclude that even a small number of trees are suffi-

cient for decision tree-based models.

The depth of trees which is one of the input parameters

in RPMF can be very large because it can select a latent

factor from U, V and a splitting point randomly at each

intermediate node during building the decision trees. Here,

we define the maximal depth of trees as five in RPMF. In

SoCo, the maximal depth of trees equals the number of

contextual variables excluding user and item. Specially, the
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maximal depth of trees over Food dataset is two in SoCo.

However, both user and item can be considered as con-

textual variables in RPFM. Then the maximal depth of

trees over Food dataset is four in RPFM. Figure 6 shows

that the deeper of trees, the better prediction quality, and

RPFM outperforms RPMF and SoCo in terms of MAE and

RMSE.

6 Conclusion and Future Work

In this paper, we propose Random Partition Factorization

Machines (RPFM) for context-aware recommendations.

RPFM adopts random decision trees to partition the orig-

inal training set using k-means method. Factorization

machines (FM) is then employed to learn the model

parameters at each node of the trees and predict missing

ratings of users for items under some specific contexts at

leaf nodes of the trees. Experimental results demonstrate

that RPFM outperforms state-of-the-art context-aware

recommendation methods.

There are several directions for future work on RPFM.

First, RPFM adopts the k-means method to partition the

training set. There are many cluster methods [7] such as

BIRCH, ROCK, Chameleon, DBSCAN. Some of them

may be achieve better performance. Second, manipulation

at each node in training phase, such as clustering, partition

and learning parameters, can be parallelized. Third, there

are many floating point arithmetic at leaf nodes in pre-

diction which will spend much time. While GPU hold

powerful capacity of floating point arithmetic, it can be

taken advantage to accelerate the prediction.
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