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Abstract With the proliferation of graph-based applica-

tions, such as social network management and Web

structure mining, update-intensive graph databases have

become an important component of today’s data manage-

ment platforms. Several techniques have been recently

proposed to exploit locality on both data organization and

computational model in graph databases. However, little

investigation has been conducted on buffer management of

graph databases. To the best of our knowledge, current

buffer managers of graph databases suffer performance loss

caused by unnecessary random I/O access. To solve this

problem, we develop a novel batch replacement policy for

buffer management. This policy enables us to maximally

exploit sequential I/O to improve the performance of graph

database. However, trivial solution produces impractical

maintenance for replacement plan with maximal sequential

I/O. To enable the policy, we first devise a segment tree-

based buffer manager to efficiently maintain a optimal

replacement plan. Unfortunately, segment tree-based

solution becomes bottleneck in multi-core environment. To

remedy this weakness, a B-tree-based buffer manager is

further proposed. Extensive experiments on real-world and

synthetic datasets demonstrate the superiority of our

method.

Keywords Batch replacement � Buffer manager � Graph

database

1 Introduction

The rapid growth of graph data fosters a market of spe-

cialized graph databases such as Neo4j,1 Titan2 and

DEX [16]. To meet the needs of various graph-based

applications [12, 28], these disk-based graph databases

offer both database functionality such as insert/delete/up-

date and analytical graph algorithms such as PageRank

computation [7]. The evolving social network and the

nature of some graph algorithms require graph databases to

be update friendly and update efficient. For instance, to

maintain a social network, each time a new friend-

ship/connection establishes, a link connecting the pair of

users should be inserted into the graph to reflect the

change. In PageRank computation, the ranking score of

every vertex needs to be updated in each iteration. This

paper focuses on such update-intensive applications.

To support large scale graph databases, existing research

work has mainly investigated the data organization and

computational models. To achieve efficient data organiza-

tion, the associated edges of each vertex are normal stored

together. For example, in social networks, the friends of a

user are usually stored in continuous data pages in neo4j.

As a result, frequent requests such as ‘‘return the friends of

a specific user’’ in Facebook or Twitter3 can benefit from

low latency of sequential I/O. As to computational model,

the dominant vertex-centric [15] or edge-centric [21] pro-

cessing models partition a graph based on vertices or edges,

and treat each partition as a unit of computation. They can

also benefit from sequential I/O.& Xuan Zhou
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Although existing graph databases widely adopt I/O

efficient data organization and computational models, they

rarely consider buffer replacement policies. In fact, they

still adopt variants of least recently used (LRU) or least

frequently used (LFU) policies [8, 17], which evict one

buffer page at a time and thus to some degree cancel out

the effects of the specialized data organization and com-

putational models. Figure 1 illustrates such a scenario.

After the insertion of some new friends of user u, the data

pages containing u’s information, bu1
, bu2

and bu3
, will be

cached in the buffer. Note that bu1
, bu2

and bu3
should be

continuously located on disk. When a query such as ‘‘return

the friend list of user v’’ is issued, the buffer manager

requires to read in a new set of continuously located data

pages, v1, v2 and v3, which contain the friends of the user

v. As the buffer is currently full, the buffer manager

decides to evict bu1
, bu2

and bu3
to make room for the

incoming data pages. Following the existing replacement

policy, the system will first seek to the position of u1 to

evict bu1
and then seek to the position of v1 to read in a new

page. Iteratively, the system will perform 6 random I/Os

according to the order marked by the arrows in Fig. 1. This

is inefficient. If we can evict bu1
, bu2

and bu3
in a batch, and

read in v1, v2 and v3 in a batch, we only need to perform

two random disk seeks, and the other I/Os can be per-

formed sequentially. Thus, such batch replacement can

save 4 out of 6 random I/Os.

In this paper, we propose a batch replacement buffer

manager for update-intensive graph databases. To the best

of our knowledge, it is the first buffer replacement policy

that exploits sequential I/O to speed up graph databases.

Our design considers the following aspects: (1) the buffer

manager should provide an unchanged interface to other

layers of the graph database; (2) it should figure out the

optimal replacement plan each time it needs to replace

buffered pages; (3) it should minimize computational and

memory overhead. To address these challenges, we first

define the optimal replacement plan as the criteria to evict

pages via sequential I/O. Then, we propose a segment tree-

based structure to organize buffered pages and to effi-

ciently generate the optimal replacement plan.

Since there is no specific optimized concurrency control

strategy for segment tree, our segment tree-based buffer

manager suffers from concurrent updates. To remedy this

weakness, we propose to transform the replacement plans

into B-tree organization and thus it benefits from sophis-

ticated B-tree concurrency control techniques.

To evaluate the performance of our batch replacement

buffer manager, we tried it on both real-world and syn-

thetic datasets using typical workloads of database

manipulation and graph algorithms. The experiment results

show that (1) the batch replacement policy is able to

achieve significant performance improvement by exploit-

ing sequential I/O and (2) it is practical for graph

databases.

The contributions of this paper are fourfold:

• We show the importance of exploiting sequential I/O in

buffer management of graph databases.

• We propose a batch buffer replacement policy. Based

on it, we define the optimal replacement plan and

devise a segment tree-based structure to manage

buffered data pages and efficiently maintain the optimal

plan.

• We propose to transform the replacement plans in

segment tree-based buffer manager to B-tree organiza-

tion. Consequently, our batch replacement buffer

manager can benefit from sophisticated concurrency

control techniques for B-tree.

• We conduct extensive experiments on real-world and

synthetic datasets to verify the effectiveness of the

batch replacement policy.

2 Related Work

Our work builds upon the existing techniques of graph

databases, especially their data organization and compu-

tational models.

2.1 Data Organization

Conventionally, graph organization is built on top of the

relational (a.k.a., SQL) storage and graphs are stored as

triplets [6, 22]. In other words, each edge e directed from a

vertex u to a vertex v in the graph is transformed into a

triplet hu; e; vi. However, it is known that RDBMS orga-

nization is not good at answering traversal types of graph

queries [24]. Considering the locality of data manipulation,

such as queries like ‘‘return the friends of a specific user,’’

it is more efficient to pack in-edges and out-edges of the

same vertex in two lists and store them together [19, 26].

This has been adopted by most disk-based graph databases

such as Neo4j. Therefore, we also assume such graph-

specific data organization.

2.2 Computational Model

Recently, a general iterative framework is adopted to

process various graph algorithms such as PageRank and

shortest path computation. In the framework, every vertex

and edge in the graph are associated with a value and at

each iteration, the value on a vertex or an edge is updated

in vertex-centric or edge-centric model.
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2.2.1 Vertex-centric Model

Vertex-centric model is explored by initial works such as

GraphLab [13] and Pregel [15]. In vertex-centric model,

each vertex and its associated edges are regarded as a unit

of computation so that if the main memory can hold any

single vertex and its associated edges, only sequential I/O

for loading data and updating results is required for each

computation unit. To improve scalability, MOCgraph fur-

ther reduces the memory footprint using message online

computing [27].

2.2.2 Edge-centric model

Because a single vertex in real-world graph data, such as a

celebrity, may be associated with so many edges that they

cannot fit in main memory, edge-centric model is pro-

posed [12, 21]. Edge-centric model partitions edges into

disjoint sets, and each set and its associated vertices form

the unit of computation. In this way, each set can be hold in

main memory to avoid random I/O access [10, 28, 29].

There is a significant body of work on distributed graph

databases [9, 20, 23]. As our work focuses on speeding up

a disk-based graph database on a single machine, our

research is orthogonal and complementary to them.

2.3 Buffer Manager on Database

Existing buffer managers in graph databases usually adopt

the variants of the LRU/LFU policy to reduce disk I/O.

Neo4j adopts the LRU policy while TurboGraph [10]

maintains frequently used pages in memory. These works

follow the same paradigm—when the buffer manager

requires to read in a new page and the buffer gets overflow,

only one buffered data page is evicted at a time. As a result,

it introduces unnecessary random I/Os. To deal with this

drawback, one recent work has proposed to remove buffer

managers [14]. Besides, there are also alternative approa-

ches which utilize index structures such as log structured

merge tree [18] or fractal tree [4] to handle update-inten-

sive workload. Both index structures process updates in a

key range in a batch. However, as the physical pages of a

key range may not be located consecutively on disk, ran-

dom I/O still cannot be avoided completely.

In this paper, we aim to leverage sequential I/O by

evicting buffered pages in a batch way rather following the

existing paradigm which repeats evicting and reading one

page at a time. Thus, our approach can benefit from the

data organization and computational models for graph

databases.

3 Batch Replacement Buffer Manager

In this section, we first present the problem definition for

our batch replacement buffer manager. Then, we present

the structure and algorithms of the proposed buffer

manager.

3.1 Problem Formulation

As we have shown in Fig. 1, it is inefficient to follow the

existing paradigm of buffer manager, which evicts only one

buffered data page at a time. In this paper, we extend the

single page-based replacement plan to the one that con-

siders a set of pages. Thus, the new definition of replace-

ment plan subsumes that of the existing buffer managers.

Definition 1 Replacement Plan. When the buffer man-

ager gets overflow, a replacement plan is a set of buffered

data pages that will be evicted before the buffer manager

performs any subsequent read operation.

For example, the ideal replacement plan in Fig. 1 is

fbu1
; bu2

; bu3
g.

Observing that evicting continuous buffered dirty data

pages can maximize sequential I/O, the ideal batch

replacement plan is to evict the longest sequence of such

data pages.

Definition 2 Optimal batch replacement plan. Given a set

of buffered pages with positions on the disk as

S ¼ fp1; p2; :::; png, the optimal batch replacement plan is

a subset P � S satisfying the following two conditions:

(1) Pages in P are continuous in disk, namely, there are

n� 1 pairs of pi and pj in P, such that pi ! pj or

pj ! pi, where pi ! pj means that pj is the successor

data block in disk to pi.

(2) Any other subset P0 � S satisfying Condition 1

contains less data pages than P, namely, jP0j\jPj.

For example, in Fig. 1, the optimal batch replacement

plan is fpb1
; pb2

; pb3
g. Although its subset such as fpb1

; pb2
g

satisfies the first condition, they violate the second condi-

tion and are not the optimal batch replacement plan.

bu1 bu2 bu3 ...

u1 u2 u3 ... v1 v2 v3
Disk-based Graph 

Database

Buffer Manager

231 4 65

Fig. 1 An illustrative example for the effect of existing buffer

manager and batch replacement in terms of random access, where the

dashed arrow indicates the additional random access performed by

existing buffer managers
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3.2 Overview

We would like a buffer manager to change its replacement

policy to the optimal batch replacement plan. However, we

also prefer the change is transparent to other components of

a graph database. We identify three properties the batch

replacement buffer manager should possess: (1) trans-

parency requires to export the same interface to other

layers in a graph database; (2) effectiveness requires to

identify the exact optimal replacement plan; and (3) effi-

ciency requires to minimize the computation and space cost

of buffer manager.

When a data page is being updated, if it is surrounded by

a number of continuous buffered dirty pages, batch

replacement may evict such an active page and cause

thrashing. Therefore, we use a ‘‘using’’ component to keep

track of such active data pages to avoid them from being

evicted. Although our batch replacement buffer manager is

designed for update-intensive applications, we also need to

ensure transparency for mixed workloads of read and write.

Therefore, we use a ‘‘clear’’ component to keep track of

unchanged data pages.

Besides the above-mentioned two components, the core

component for our batch replacement buffer manager store

all dirty data pages that can be evicted. Figure 2 shows the

transitions of a data page among the three components.

Whenever the buffer manager reads a data page, it is

inserted into the ‘‘using’’ component and only when the

data page is unpinned and all queries referring to it ter-

minate, it will be moved to the ‘‘clear’’ component or the

core component, depending on if it has been updated.

When the buffer overflows, the buffered data pages in the

‘‘clear’’ component will be evicted first. When the ‘‘clear’’

component is empty, the batch replacement plans will be

used.

To obtain an optimal replacement plan, the most

straightforward approach is to sort all buffered data pages

based on their positions in disk and then scan the sorted

page list to find the longest continuous sequence. As shown

in Algorithm 1, once we meet a continuous data page, we

increase the length of the continuous page list (Line 7–10)

and once the continuous data pages terminate, we update

the replacement plan (Line 11–13). Although simple, this

baseline algorithm is expensive, as it needs to sort and scan

all buffered data pages.

3.3 Segment Tree-based Buffer Manager

To avoid sorting and scanning, we adopt a segment tree-

based structure that maintains the buffered data pages that

are continuous in disk.4 In this way, each insertion routine

actually amortizes the time for sorting and scanning.

To amortize the overhead of sorting, we represent each

set of continuous data pages as an interval [a, b], which

indicates that these data pages start at the position a and

end at the position b on disk. Note that such an interval

represents individual data pages and continuous data pages

in a unified way—the interval of an individual data page at

Fig. 2 The three components for batch replacement buffer manager

Algorithm 1 Trivial Algorithm

Require: S = {p1, p2, ..., pn}, the set of all buffered pages free to evict
Ensure: P, the optimal replacement plan
1: Compute the list L by sorting pages in S in increasing order of positions in disk
2: P = ∅
3: lenP = 0
4: P ′ = {L[0]}
5: lenP′ = 1
6: for i = 1 to n − 1 do
7: if L[i − 1] → L[i] then
8: lenP′ + +
9: P ′ = P ′ ∪ {L[i]}

10: else
11: if lenP′ > lenP then
12: P = P ′
13: lenP = lenP′

14: Return P ′

4 For continence, the term ‘‘buffer manager’’ refers to the core

component in the rest of the paper.
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position a on disk will be [a, a]. To avoid the overhead of

scanning, we associate each interval with its interval

length, on which the priority of eviction is based. In other

words, the interval with the largest interval length will be

chosen as the optimal replacement plan.

As Fig. 3 illustrates, a segment tree is a balanced binary

tree of height Oðlog nÞ, using O(n) space. It can support

indexing of intervals with logarithmic computational

complexity for insertion, deletion and querying [5]. Such a

segment tree has the following 2 properties: (1) a key value

is associated with each internal node. The intervals in its

left branch end with positions no more than the key value

and the intervals in its right branch start with positions

larger than the key value; (2) an interval is associated with

each internal node; it records the longest interval among all

the intervals of its descendants.

For example, given the root node associated with the

key value 14 and the interval [5, 11], we know that: the

interval [17, 19] must be in its right branch because it starts

at 17 which is larger than 14 (Property 1); the associated

interval [5, 11] is the longest interval in the buffer and its

length is 7 (Property 2). In the figure, the interval [14, 14]

actually represents an individual data page at the position

14 on disk.

The original segment tree is unable to maintain contin-

uous data pages or the longest interval. It is our proposed

insertion algorithm that utilizes the segment tree to main-

tain continuous data pages and the optimal replacement

plan. The main idea is twofold: (1) whenever a buffered

data page is inserted into the buffer manager, if its prede-

cessor interval or successor interval exists, the inserted data

page will extend the interval to a new longer interval and

(2) whenever an interval is updated, the longest intervals

on the path percolated from the root down to the interval

itself will be updated. As Algorithm 2 illustrates, if the

inserted data page d is at position d.pos on disk, its pre-

decessor interval should end with d:pos� 1 and its suc-

cessor interval should start with d:posþ 1 (Line 2–3). If

any one of the two intervals is found, it will be removed

from the segment tree, and the intervals maintained by each

internal node on the path from the root percolating to the

interval will be updated (Line 7,11). Then, a new interval

combining the predecessor/successor interval and the

inserted data page will be inserted into the segment tree,

and the longest intervals on the path from the root to the

new interval will also be updated (Line 12–13). In this

way, an insertion involves at most two queries, two dele-

tions and one insertion on the segment tree. Thus its time

complexity is Oðlog nÞ, where n denotes the number of

intervals and is normally less than the number of buffered

data pages.

For example, given the segment tree in Fig. 3, if we

want to insert a page with position 12, we first find its

predecessor interval [5, 11], and combine it with the

inserted page to form the new interval [5, 12]. Since no

successor interval starting with 12 þ 1 ¼ 13 is found in the

segment tree, only the interval [5, 11] is removed from the

7 con�nuous 
buffered pages

Individual 
Buffered page

2 con�nuous 
buffered pages

3 con�nuous 
buffered pages

Fig. 3 An example segment tree, where leaf node represents intervals

and internal node is associated with a key value and the longest

interval among its descendants

Algorithm 2 Buffer Insert Algorithm
Require: d, the page to be inserted into the buffer

tree, the segment tree organizing buffered pages in the batch replacement buffer
manager

1: New Interval new = [d.pos, d.pos]
2: Predecessor interval p = tree.search(d.pos − 1)
3: Successor interval s = tree.search(d.pos + 1)
4: if p exists then
5: new = [p.start, d.pos]
6: tree.delete(p)
7: update longest intervals along the path from root to p

8: if s exists then
9: new = [new.start, s.end]

10: tree.delete(s)
11: update longest intervals along the path from root to s

12: tree.insert(new)
13: update longest intervals along the path from root to new
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tree and the new interval is inserted. The longest intervals

are updated correspondingly as marked in red in Fig. 4.

Since the segment tree maintains the longest interval at

the root node, whenever the buffer overflows, we simply

pick up the data pages corresponding to the longest interval

as the optimal replacement plan. After the eviction, we can

remove the corresponding interval and update the segment

tree with amortized and worst case time complexity of

Oðlog nÞ. This procedure is efficient.

4 Concurrency Control

Our segment tree-based buffer manager suffers from con-

current updates from two aspects: (1) lack of optimized

concurrency control strategies and (2) the binary structure

of segment tree reduces granularity of concurrency control.

To this end, we propose to transform all the replacement

plans hold by the segment tree into B-tree organization. In

this way, we can use the concurrency sophisticated B-tree

to handle concurrent updates on the buffer manager. In this

paper, we adopt a sophisticated multi-version B-tree

implementation [3]. Note that any concurrency-supporting

B-tree can be adopted such as the recently proposed multi-

core environment specific Bw tree [11]. In the following,

we first describe the transformation from the segment tree-

based buffer manager to B-tree organization and then

present how to maintain optimal replacement plan.

The transformation from the segment tree structure to a

B-tree organization is based on the following observation:

each candidate replacement plan, e.g., continuous pages in

disk, is regarded as an interval and all candidate plans are

disjoint. For example, there are totally 4 candidate

replacement plans in Fig. 3, namely [5,11], [14,14], [15,16]

and [17,19]. These intervals can also be represented in key-

length pairs in the form of hk; li, where the key k denotes

the start position of each candidate plan in disk and the

length l indicates the number of pages that can be flushed in

sequential I/O. For example, these 4 candidate replacement

plans can be represented by four key-length pairs h5; 7i,
h14; 1i, h15; 2i and h17; 19i. In this way, each replacement

plan can be organized in B-tree in a natural way. As Fig. 5

illustrates, the B-tree indexes the keys in each key-length

pairs and the length is stored in leaf nodes. Similar to the

segment tree-based buffer manager, each internal node of

the B-tree also refers to the optimal replacement plan

underlying itself. For example, the root node contains three

keys separating the four candidate replacement plans and

indicates that the candidate plan with start position less

than 14 is the optimal replacement plan.

When a new page is buffered, it will be merged into one

existing replacement plan or become an individual

replacement plan. Since the new page with position p in

disk can be merged into an existing replacement plan if and

only if it is the successor or predecessor of an existing key-

length pair, we search two potential key-length pairs

hk1; l1i and hk2; l2i in the B-tree such that (1) k1\p and

8k0\p; k1 � k0 and (2) k2 [ p and 8k0 [ p; k2 � k0. The first

condition is the necessary condition that the new page is a

successor of the replacement plan hk1; l1i; and the second

condition is the necessary condition that the new page is a

predecessor of the replacement plan hk2; l2i. If the new

page is a successor of the replacement plan hk1; l1i, it

should hold that p ¼ k1 þ l; if the new page is a prede-

cessor of the replacement plan hk2; l2i, it should hold that

pþ 1 ¼ k2.

The maintenance under B-tree is similar to segment

tree-based maintenance, and in the following, we use an

example to reveal the details. As Fig. 6 illustrates, given

the original B-tree shown in Fig. 5, when a new page with

position 12 becomes free to evict, B-tree first finds that

h5; 7i is the first replacement plan with start position less

than the new page position in disk and h14; 1i is the first

replacement plan with start position greater than the new

page position in disk. For the key-length pair h5; 7i, we can

determine the new page is the successor of this replacement

plan because p ¼ k1 þ l, where p ¼ 12, k1 ¼ 5 and l ¼ 7.

Therefore, the new page is merged into a new replacement

8 con�nuous 
buffered pages

Individual 
Buffered page

2 con�nuous 
buffered pages

3 con�nuous 
buffered pages

Fig. 4 The example segment tree after the page with position 12 at

disk is inserted, where the updated nodes are marked in red

<5,7>
14 15 17

<17,3><15,2><14,1><5,7>

7 continuous
buffered pages

Individual
Buffered page

2 continuous
buffered pages

3 continuous
buffered pages

Fig. 5 An example for replacement plans organized by B-tree

<5,8>
14 15 17

<17,3><15,2><14,1><5,8>

8 continuous
buffered pages

Individual
Buffered page

2 continuous
buffered pages

3 continuous
buffered pages

Fig. 6 An example for replacement plan maintenance in B-tree
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plan. Meantime, in each internal node up toward the root

node, the optimal replacement plan is updated.

5 Experiment

In this section, we report experiment results on real-world

and synthetic datasets. We demonstrate the effectiveness of

our method on both database manipulation and graph

algorithm execution. We also analyze the properties of the

proposed batch replacement method.

5.1 Experimental Setting

5.1.1 Dataset

Two public real-world graph datasets were used, namely

Live Journal [2] and Friendster [25]. Both datasets follow

power-law distribution with parameter a � 1:4, while the

Friendster dataset is much larger than the Live Journal

dataset. The parameter a controls the skewness of the

power-law distribution, that is, with a small a such as 0.5,

all vertices have similar number of edges, while with a

large a such as 1.5, a small number of vertices have much

more edges than others. The synthetic dataset is generated

by LinkBench and the graph database benchmark published

by Facebook [1]. It is able to generate graphs with power-

law distribution under varying a. The detailed statistics are

shown in Table 1.

5.1.2 Workload

The workloads included typical graph algorithms and

database manipulation. Following [12, 14, 20, 29], we ran

typical graph algorithms including PageRank (PR), single-

source shortest paths (SSSP), weakly connected compo-

nents (WCC) and sparse matrix multiplication (SMM).

LinkBench also provides a mix of insert/delete/update

operations on vertices and edges as basic graph database

manipulation.

All experiments were conducted on a machine with 2.5

Ghz Intel Core 2 CPU, 8GB of RAM and 10TB, 15, 000

rpm hard drive. We implemented the proposed batch

replacement buffer manager on Neo4j5 (Neo4j-BR) and

GraphChi-DB6 (ChiDB-BR). Neo4j is a leading industry

standard graph database that adopts LRU-based buffer

manager and vertex-centric programming model, while

GraphChi-DB (ChiDB) is a research prototype that dis-

cards buffer manager and adopts edge-centric program-

ming model. For database manipulation, we also report the

performance of a relational database MySQL, only for the

purpose of reference. ChiDB also has an option to adopt

log-structured merge tree (ChiDB-LSM) for write-opti-

mized database manipulation. We explicitly created

appropriate indexes for all databases during the experi-

mental study.

5.2 Performance Comparison

In this section, we first show the effectiveness of our batch

replacement buffer manager for data manipulation and

graph algorithms. Then, we show that our approach is

robust for various buffer sizes and workloads.

Figure 7 shows the average execution time for the typ-

ical graph algorithms. The buffer size BS is set to 5% of the

dataset size. We have three observations: (1) for all graph

algorithms on all datasets, the batch replacement variants

of the two graph databases outperform their original ver-

sions. This shows that our batch replacement policy is

superior to the LRU-based policy and the approach that

does not use buffer manager; (2) on both real-world data-

sets, ChiDB-BR and ChiDB outperform Neo4j-BR and

Neo4j. This shows edge-centric programming model is

more suitable for graph algorithms on real-world datasets.

The high value of a � 1:4 indicates that a few vertices may

contain a huge number of edges so that data pages involved

in these vertices are read and evicted repeatedly in Neo4j

and Neo4j-BR. However, our batch replacement policy

exhibits better performance than the LRU-based policy; (3)

on the synthetic dataset, Neo4j-BR outperforms ChiDB.

This is because under a ¼ 0:5 edges are distributed more

uniformly on vertices and thus Neo4j-BR benefit from less

buffered page eviction.

Table 2 shows the average execution time for various

manipulation workload on a small dataset (5GB) and a

large dataset (50GB), respectively. We have the following

observations: (1) on both datasets, both Neo4j-BR and

ChiDB-BR outperform the original databases equipped

with LRU-based buffer manager or log structure merge tree

or no buffer manager; this indicates that batch replacement

buffer manager is more suitable for graph databases; (2)

Neo4j-BR and ChiDB-BR outperform MySQL, which

shows the superiority of specialized graph database; (3)

Neo4j outperforms ChiDB on small dataset, while ChiDB

outperforms Neo4j on large dataset, revealing that LRU-

Table 1 Statistics of our datasets

Dataset # Vertex # Edges Raw size

Live Journal 4, 847, 571 68, 993, 773 2.3GB

Friendster 65, 608, 366 1, 806, 067, 135 150GB

LinkBench 106–107 108–109 5–60GB

5 http://neo4j.com/. 6 https://github.com/graphchi/graphchiDB-scala.
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based buffer management is sensitive to the scale of

dataset, while batch replacement buffer management is

more robust.

Both batch replacement buffer manager and log-struc-

tured merge tree are designed for update-intensive appli-

cations by leveraging sequential I/O. However, ChiDB-BR

outperforms ChiDB-LSM in most cases. This is because

LSM-tree does not consider the optimal replacement plan.

Sometimes, LSM-tree’s data accesses will be scattered

across a wide range on disk, which incurs numerous ran-

dom I/Os.

Figure 8 validates the robustness of our approach on

various ratios of buffer size to data size. On Live Journal

dataset, we continuously increased the buffer size until the

whole dataset was hold in main memory. The execution

time of the PageRank algorithm keeps dropping. We can

see: (1) until the buffer holds half the dataset, graph

databases employing the batch replacement policy always

outperform their counterparts; therefore, our approach can

exploit available main memory efficiently; (2) when the

buffer holds the whole dataset and buffer replacement is no

longer needed, our approach consumes 1% less execution

time than their counterparts; this shows that our method for

identifying optimal replacement plans is efficient.

Figure 9 shows the query performance on the Friendster

dataset for typical read-only workloads, including retrieval

of a specific vertex/edge and a traversal-heavy Friends-of-

(a) (b) (c)

Fig. 7 Execution time for graph algorithms on three datasets, where the synthetic dataset contains 106 vertices and 108 edges with a ¼ 0:5. BS=

5% of dataset size. a Live Journal, b Friendster, c LinkBench

Table 2 Execution time (ms) for graph database manipulation on synthetic dataset with a ¼ 1:5 and BS ¼ 5GB

Data Size Operation ChiDB-BR ChiDB ChiDB-LSM Neo4j-BR Neo4j MySQL

106 vertices, 108 edges node_insert 0.09 12.9 0.10 0.08 0.13 0.11

node_delete 0.10 16.7 0.14 0.07 0.12 0.17

node_update 0.12 19.1 0.16 0.09 0.13 0.21

edge_insert 0.15 24.6 0.17 0.09 0.19 0.25

edge_delete 0.15 26.3 0.19 0.12 0.19 0.34

edge_update 0.19 29.5 0.22 0.14 0.22 0.41

107 vertices, 109 edges node_insert 31 94 37 36 259 42

node_delete 33 105 41 39 268 45

node_update 34 116 46 41 280 49

edge_insert 42 136 55 47 295 64

edge_delete 48 152 63 57 323 69

edge_update 51 159 67 62 344 73

Fig. 8 Effect of RAM size on Live Journal

Fig. 9 Query time on Friendst., BS = 2GB
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Friends (FoF) query. The FoF query is defined to find all

vertices which can reach a specific vertex via any proxy

vertex. We can see that although maintaining intervals of

continuous buffered pages is of no use since there is no

replacement for dirty pages, the overhead is still low.

Therefore, although our batch replacement buffer manager

is designed for update-intensive applications, its perfor-

mance is acceptable for read-only applications as well.

Figure 14 compares the performance under different

number of threads. We can see that on graph algorithms,

the performance of all methods does not increases much

because processing is blocked by I/O. Instead, for data

manipulations, we can see that our B-tree-based buffer

manager does not incur performance drop and still out-

performs other methods under parallel processing, while

the segment tree-based method suffers from high concur-

rency no matter which concurrency control is adopted.

5.3 Property of Batch Replacement

In this section, we evaluate the effectiveness of our batch

replacement policy in terms of I/O and the computational

overhead.

Figure 10 plots the ratios of random I/O to all disk I/O

for the workloads of PageRank, node insertion and FoF

query, respectively, which represent typical workloads of

graph algorithm, database manipulation and read-only

query. We can observe that both Neo4j-BR and ChiDB-BR

used the least random I/O access. Therefore, it is not sur-

prising their execution time is the shortest in aforemen-

tioned experiments. Figure 11 depicts the distribution of

buffered interval lengths when running the PageRank

Algorithm on the Friendster dataset. We can see that on

most datasets there are sufficient segments of continuous

buffered data pages. Therefore, it is always possible for our

batch replacement buffer manager to exploit sequential

I/Os. The distribution of random I/O and interval lengths

for other graph algorithms and data manipulation are

similar to Figs. 10 and 11.

Figure 12 shows the average execution time for each

batch replacement using our segment tree-based solution

(Tree) and the trivial sort-based algorithm (Sort, Algo-

rithm 1) on the Friendster dataset for the PageRank

Algorithm. We can see that as the buffer size increases, our

segment tree-based solution outperforms the trivial sort-

based solution significantly. Figure 13 shows the additional

memory consumption for maintaining the segment tree of

continuous pages on the Friendster dataset for the PageR-

ank Algorithm. We can see that the segment tree only

consumes less than 1% of the buffer size. Note that the

computational and memory overhead are normally only

influenced by buffer size, rather than the variation of

workloads and datasets (Fig. 14 ).

6 Conclusion

In this paper, we propose a novel approach to batch

replacement buffer management for graph databases.

Taking the specific data organization and vertex-centric or

edge-centric programming models into consideration, the

Fig. 10 Ratio of random I/O access on Friendster dataset

Fig. 11 Interval length distribution for PageRank

Fig. 12 CPU time for replacement plan

Fig. 13 Memory overhead
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proposed method enables graph databases to make the best

of sequential I/O. In addition to a sort-based trivial solution

to find optimal replacement plan, we propose a segment

tree-based buffer structure to efficiently maintain optimal

replacement plans. To utilize multi-core environment, we

propose to transform all replacement plans in segment tree-

based buffer manager into B-tree organization. As a result,

our batch replacement buffer manager benefits from

sophisticated concurrency control techniques for B-tree.

Extensive experiments on real-world and synthetic datasets

show that our approach significantly improves the perfor-

mance of existing graph databases and outperforms the

LRU-based approaches and a recently proposed no-buffer

approach. The experiment results also show that our

approach incurs minimum computational and memory

overhead and therefore is practical for real-world

applications.
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