RESEARCH

Normality of the Thue-Morse function for finite fields along polynomial values

Mehdi Makhul ${ }^{*+\dagger}$ © and Arne Winterhof ${ }^{2 \dagger}$

*Correspondence:
mehdi.makhul@ricam.oeaw.ac.at
${ }^{\dagger}$ Mehdi Makhul and Arne Winterhof have contributed equally to this work.
${ }^{1}$ Research Institute for Symbolic Computation, Altenberger Str. 69, 4040 Linz, Austria Full list of author information is available at the end of the article

Abstract

Let \boldsymbol{F}_{q} be the finite field of q elements, where $q=p^{r}$ is a power of the prime p, and $\left(\beta_{1}, \beta_{2}, \ldots, \beta_{r}\right)$ be an ordered basis of \boldsymbol{F}_{q} over \boldsymbol{F}_{p}. For

$$
\xi=\sum_{i=1}^{r} x_{i} \beta_{i,} \quad x_{i} \in \boldsymbol{F}_{p,}
$$

we define the Thue-Morse or sum-of-digits function $T(\xi)$ on \boldsymbol{F}_{q} by

$$
T(\xi)=\sum_{i=1}^{r} x_{i} .
$$

For a given pattern length s with $1 \leq s \leq q$, a vector $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{s}\right) \in \boldsymbol{F}_{q}^{s}$ with different coordinates $\alpha_{j_{1}} \neq \alpha_{j_{2}}, 1 \leq j_{1}<j_{2} \leq s$, a polynomial $f(X) \in \boldsymbol{F}_{q}[X]$ of degree d and a vector $\mathbf{c}=\left(c_{1}, \ldots, c_{s}\right) \in \boldsymbol{F}_{p}^{s}$ we put

$$
\mathcal{T}(\mathbf{c}, \boldsymbol{\alpha}, f)=\left\{\xi \in \boldsymbol{F}_{q}: T\left(f\left(\xi+\alpha_{i}\right)\right)=c_{i}, i=1, \ldots, s\right\} .
$$

In this paper we will see that under some natural conditions, the size of $\mathcal{T}(\mathbf{c}, \boldsymbol{\alpha}, f)$ is asymptotically the same for all \mathbf{c} and $\boldsymbol{\alpha}$ in both cases, $p \rightarrow \infty$ and $r \rightarrow \infty$, respectively. More precisely, we have

$$
\left||\mathcal{T}(\mathbf{c}, \boldsymbol{\alpha}, f)|-p^{r-s}\right| \leq(d-1) q^{1 / 2}
$$

under certain conditions on d, q and s. For monomials of large degree we improve this bound as well as we find conditions on d, a and s for which this bound is not true. In particular, if $1 \leq d<p$ we have the dichotomy that the bound is valid if $s \leq d$ and for $s \geq d+1$ there are vectors \mathbf{c} and $\boldsymbol{\alpha}$ with $\mathcal{T}(\mathbf{c}, \boldsymbol{\alpha}, f)=\emptyset$ so that the bound fails for sufficiently large r. The case $s=1$ was studied before by Dartyge and Sárközy.

Keywords: Finite fields, Polynomial equations, Thue-Morse function, Exponential sums, Sum of digits, Normality
Mathematics Subject Classification: 11A63, 11T06, 11T23, 11L99

1 Introduction

1.1 The problem for binary sequences

For positive integers M and s, a binary sequence $\left(a_{n}\right)$ and a binary pattern

$$
\mathcal{E}_{s}=\left(\varepsilon_{0}, \ldots, \varepsilon_{s-1}\right) \in\{0,1\}^{s}
$$

of length s we denote by $N\left(a_{n}, M, \mathcal{E}_{s}\right)$ the number of n with $0 \leq n<M$ and $\left(a_{n}, a_{n+1}, \ldots, a_{n+s-1}\right)=\mathcal{E}_{s}$. The sequence $\left(a_{n}\right)$ is normal if for any fixed s and any pattern \mathcal{E}_{s} of length s,

$$
\lim _{M \rightarrow \infty} \frac{N\left(a_{n}, M, \mathcal{E}_{s}\right)}{M}=\frac{1}{2^{s}} .
$$

The Thue-Morse or sum-of-digits sequence $\left(t_{n}\right)$ is defined by

$$
t_{n}=\sum_{i=0}^{\infty} n_{i} \bmod 2, \quad n=0,1, \ldots
$$

if

$$
n=\sum_{i=0}^{\infty} n_{i} 2^{i}, \quad n_{0}, n_{1}, \ldots \in\{0,1\}
$$

is the binary expansion of n. Recently, Drmota et al. [1] showed that the Thue-Morse sequence along squares, that is, $\left(t_{n^{2}}\right)$ is normal. It is conjectured but not proved yet that the subsequence of the Thue-Morse sequence along any polynomial of degree $d \geq 3$ is normal as well, see [1, Conjecture 1]. Even the weaker problem of determining the frequency of 0 and 1 in the subsequence of the Thue-Morse sequence along any polynomial of degree $d \geq 3$ seems to be out of reach, see [1, above Conjecture 1].

However, the analog of the latter weaker problem for the Thue-Morse sequence in the finite field setting was settled by Dartyge and Sárközy [2].

1.2 The analog for finite fields

This paper deals with the following analog of the normality problem. Let $q=p^{r}$ be the power of a prime p and

$$
\mathcal{B}=\left(\beta_{1}, \ldots, \beta_{r}\right)
$$

be an ordered basis of the finite field \boldsymbol{F}_{q} over \boldsymbol{F}_{p}. Then any $\xi \in \boldsymbol{F}_{q}$ has a unique representation

$$
\xi=\sum_{j=1}^{r} x_{j} \beta_{j} \quad \text { with } x_{j} \in \boldsymbol{F}_{p}, \quad j=1, \ldots, r
$$

The coefficients x_{1}, \ldots, x_{r} are called the digits with respect to the basis \mathcal{B}.
Dartyge and Sárközy [2] introduced the Thue-Morse or sum-of-digits function $T(\xi)$ for the finite field \boldsymbol{F}_{q} with respect to the basis \mathcal{B} :

$$
T(\xi)=\sum_{i=1}^{r} x_{i}, \quad \xi=x_{1} \beta_{1}+\cdots+x_{r} \beta_{r} \in \boldsymbol{F}_{q}
$$

Note that T is a linear map from \boldsymbol{F}_{q} to \boldsymbol{F}_{p}. Actually, we can take any non-trivial linear map

$$
T(\xi)=\operatorname{Tr}(\delta \xi), \quad \delta \in F_{q}^{*}
$$

from \boldsymbol{F}_{q} to \boldsymbol{F}_{p} without changing our results or proofs below, where the trace Tr is defined by (7).

For a given pattern length s with $1 \leq s \leq q$, a vector

$$
\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{s}\right) \in \boldsymbol{F}_{q}^{s}, \quad \alpha_{j_{1}} \neq \alpha_{j_{2}}, \quad 1 \leq j_{1}<j_{2} \leq s
$$

with different coordinates, a polynomial $f(X) \in \boldsymbol{F}_{q}[X]$ and a vector $\mathbf{c}=\left(c_{1}, \ldots, c_{s}\right) \in \boldsymbol{F}_{p}^{s}$ we put

$$
\mathcal{T}(\mathbf{c}, \boldsymbol{\alpha}, f)=\left\{\xi \in \boldsymbol{F}_{q}: T\left(f\left(\xi+\alpha_{i}\right)\right)=c_{i}, i=1, \ldots, s\right\}
$$

In [2] the Weil bound, see Lemma 1, was used to bound the cardinality of $\mathcal{T}(\mathbf{c}, \boldsymbol{\alpha}, f)$ for $s=1$:
Let $f(X) \in \boldsymbol{F}_{q}[X]$ be a polynomial of degree d. Then for all $c \in \boldsymbol{F}_{p}$

$$
\begin{equation*}
\left||\mathcal{T}(c, f)|-p^{r-1}\right| \leq(d-1) q^{1 / 2}, \quad \operatorname{gcd}(d, p)=1 \tag{1}
\end{equation*}
$$

where

$$
\mathcal{T}(c, f)=\left\{\xi \in \boldsymbol{F}_{q}: T(f(\xi))=c\right\}
$$

Note that the condition $\operatorname{gcd}(d, p)=1$ can be relaxed to the condition that $f(X)$ is not of the form $g(X)^{p}-g(X)+c$ for some $g(X) \in \boldsymbol{F}_{q}[X]$ and $c \in \boldsymbol{F}_{q}$. For example, $f(X)=X^{p}$ is not of the form $g(X)^{p}-g(X)+c$ but does not satisfy $\operatorname{gcd}(d, p)=1$.
Our goal is to prove that, under some natural conditions, the size of $\mathcal{T}(\mathbf{c}, \boldsymbol{\alpha}, f)$ is asymptotically the same for all \mathbf{c} and $\boldsymbol{\alpha}$.

1.3 Results of this paper

First we study monomials and prove the following result in Sect. 4.
Theorem 1 Let d be any integer with $1 \leq d<q$ with unique representation

$$
d=\left(d_{0}+d_{1} p+\cdots+d_{n-1} p^{n-1}\right) \operatorname{gcd}(d, q)
$$

where

$$
1 \leq n \leq r-\frac{\log (\operatorname{gcd}(d, q))}{\log p}, \quad 0 \leq d_{i}<p, \quad i=0, \ldots, n-1, \quad d_{0} d_{n-1} \neq 0
$$

Let denote by

$$
f_{d}(X)=X^{d} \in \boldsymbol{F}_{q}[X]
$$

the monomial of degree d.

1. For $n \geq 2$, assume

$$
d_{m}=d_{m+1}=\cdots=d_{m+k-1}=p-1
$$

for some m and k with

$$
1 \leq m \leq m+k \leq n-1
$$

For any positive integer

$$
s \leq \begin{cases}\left(d_{m+k}+1\right)\left(p^{k}-p^{k-1}\right), & n \geq 2 \text { and } k \geq 1 \tag{2}\\ d_{0}, & n=1 \text { or } k=0\end{cases}
$$

any vector $\boldsymbol{\alpha} \in \boldsymbol{F}_{q}^{s}$ with $\alpha_{j_{1}} \neq \alpha_{j_{2}}$ for $1 \leq j_{1}<j_{2} \leq s$, and any $\boldsymbol{c} \in \boldsymbol{F}_{p}^{s}$ we have

$$
\left|\left|\mathcal{T}\left(\boldsymbol{c}, \boldsymbol{\alpha}, f_{d}\right)\right|-p^{r-s}\right| \leq\left(\frac{d}{\operatorname{gcd}(d, q)}-1\right) q^{1 / 2}
$$

2. Conversely, if

$$
\begin{equation*}
\left(d_{0}+1\right)\left(d_{1}+1\right) \cdots\left(d_{n-1}+1\right) \leq p \tag{3}
\end{equation*}
$$

for any integer s with

$$
\begin{equation*}
q \geq s \geq\left(d_{0}+1\right)\left(d_{1}+1\right) \cdots\left(d_{n-1}+1\right) \tag{4}
\end{equation*}
$$

there is a vector $\boldsymbol{\alpha} \in \boldsymbol{F}_{q}^{s}$ with $\alpha_{j_{1}} \neq \alpha_{j_{2}}, 1 \leq j_{1}<j_{2} \leq s$, and a vector $\boldsymbol{c} \in \boldsymbol{F}_{p}^{s}$ for which $\mathcal{T}\left(\boldsymbol{c}, \boldsymbol{\alpha}, f_{d}\right)$ is empty.
3. For anys with

$$
\begin{equation*}
q \geq s>\left(\left(d_{0}+1\right)\left(d_{1}+1\right) \cdots\left(d_{n-1}+1\right)-1\right) r \tag{5}
\end{equation*}
$$

and any vector $\boldsymbol{\alpha} \in \boldsymbol{F}_{q}^{s}$ there is a vector $\boldsymbol{c} \in \boldsymbol{F}_{p}^{s}$ for which $\mathcal{T}\left(\boldsymbol{c}, \boldsymbol{\alpha}, f_{d}\right)$ is empty.
For $d<p$ we have the following dichotomy:
Corollary 1 Assume $1 \leq d<p$.
For $s \leq d$ we have for any vector $\boldsymbol{\alpha} \in \boldsymbol{F}_{q}^{s}$ with $\alpha_{j_{1}} \neq \alpha_{j_{2}}, 1 \leq j_{1}<j_{2} \leq s$, and any $\boldsymbol{c} \in \boldsymbol{F}_{p}^{s}$

$$
\left|\left|\mathcal{T}\left(\boldsymbol{c}, \boldsymbol{\alpha}, f_{d}\right)\right|-p^{r-s}\right| \leq(d-1) q^{1 / 2}
$$

For s with $q \geq s>d$ there is a vector $\boldsymbol{\alpha} \in \boldsymbol{F}_{q}^{s}$ with $\alpha_{j_{1}} \neq \alpha_{j_{1}}, 1 \leq j_{1}<j_{2} \leq s$, and a vector $\boldsymbol{c} \in \boldsymbol{F}_{p}^{s}$ for which $\mathcal{T}\left(\boldsymbol{c}, \boldsymbol{\alpha}, f_{d}\right)$ is empty.

Theorem 1 provides two asymptotic formulas for $\left|\mathcal{T}\left(\mathbf{c}, \boldsymbol{\alpha}, X^{d}\right)\right|$ for $r \rightarrow \infty$ and $p \rightarrow \infty$, respectively.

Assume that $p, j, n, d=\left(d_{0}+d_{1} p+\cdots+d_{n-1} p^{n-1}\right) p^{j}$ and s satisfying (2) are fixed. Then we have

$$
\lim _{r \rightarrow \infty} \frac{\left|\mathcal{T}\left(\mathbf{c}, \boldsymbol{\alpha}, f_{d}\right)\right|}{p^{r-s}}=1
$$

for any vectors $\mathbf{c} \in \boldsymbol{F}_{p}^{s}$ and $\boldsymbol{\alpha} \in \boldsymbol{F}_{q}^{s}$ with $\alpha_{j_{1}} \neq \alpha_{j_{2}}, 1 \leq j_{1}<j_{2} \leq s$. We may say that $T\left(f_{d}\right)$ is r-normal if (2) is satisfied.
Assume that $j=0$ and d, r and s are fixed with $1 \leq s \leq \min \{d,\lfloor(r-1) / 2\rfloor\}$. Then we have

$$
\lim _{p \rightarrow \infty} \frac{\left|\mathcal{T}\left(\mathbf{c}, \boldsymbol{\alpha}, f_{d}\right)\right|}{p^{r-s}}=1
$$

for any $\mathbf{c} \in \boldsymbol{F}_{p}^{s}$ and $\boldsymbol{\alpha} \in \boldsymbol{F}_{q}^{s}$ with $\alpha_{j_{1}} \neq \alpha_{j_{2}}, 1 \leq j_{1}<j_{2} \leq s$. We may say that $T\left(f_{d}\right)$ is p-normal for $1 \leq s \leq \min \{d,\lfloor(r-1) / 2\rfloor\}$.
Theorem 1 is only non-trivial for small degrees. However, for very large degrees we prove the following non-trivial result in Sect. 5.

Theorem $2 \operatorname{Letf}_{q-1-d}(X)=X^{q-1-d}$ be a monomial of degree $q-1-d$ with $1 \leq d<q-1$.
Then for any $\boldsymbol{\alpha} \in \boldsymbol{F}_{q}^{s}$ with $\alpha_{j_{1}} \neq \alpha_{j_{2}}, 1 \leq j_{1}<j_{2} \leq s$, and any $\boldsymbol{c} \in \boldsymbol{F}_{p}^{s}$, we have

$$
\left|\left|\mathcal{T}\left(\boldsymbol{c}, \boldsymbol{\alpha}, f_{q-1-d}\right)\right|-p^{r-s}\right| \leq\left(\left(\frac{d}{\operatorname{gcd}(d, q)}+1\right) s-2\right) q^{1 / 2}+s+1
$$

Note that with the convention $0^{-1}=0$ we have

$$
\xi^{q-1-d}=\xi^{-d} \quad \text { for any } \xi \in \boldsymbol{F}_{q}
$$

and can identify the monomial $f_{q-1-d}(X)=X^{q-1-d}$ with the rational function $f_{-d}(X)=$ X^{-d}. However, the latter representation is independent of q and we can state two asymptotic formulas for $\left|\mathcal{T}\left(\mathbf{c}, \boldsymbol{\alpha}, f_{-d}\right)\right|$ as well.

For any fixed d, p and s we have

$$
\lim _{r \rightarrow \infty} \frac{\left|\mathcal{T}\left(\mathbf{c}, \boldsymbol{\alpha}, f_{-d}\right)\right|}{p^{r-s}}=1
$$

that is, $T\left(f_{-d}\right)$ is r-normal.
For any fixed d, s and r with $1 \leq s \leq\lfloor(r-1) / 2\rfloor$ we have

$$
\lim _{p \rightarrow \infty} \frac{\left|\mathcal{T}\left(\mathbf{c}, \boldsymbol{\alpha}, f_{-d}\right)\right|}{p^{r-s}}=1
$$

that is, $T\left(f_{-d}\right)$ is p-normal for $1 \leq s \leq\lfloor(r-1) / 2\rfloor$.
Finally, we extend our results to arbitrary polynomials in Sect. 6.
Theorem 3 Let d be any integer with $1 \leq d<q$ and $\operatorname{gcd}(d, q)=1$. Let $f(X) \in \boldsymbol{F}_{q}[X]$ be any polynomial of degree d.

1. Denote $d_{0} \equiv d \bmod p, 1 \leq d_{0}<p$. For any integer s with
$1 \leq s \leq d_{0}$,
any $\boldsymbol{\alpha} \in \boldsymbol{F}_{q}^{s}$ with $\alpha_{j_{1}} \neq \alpha_{j_{2}}, 1 \leq j_{1}<j_{2} \leq s$, and any $\boldsymbol{c} \in \boldsymbol{F}_{p}^{s}$ we have
$\left||\mathcal{T}(\boldsymbol{c}, \boldsymbol{\alpha}, f)|-p^{r-s}\right| \leq(d-1) q^{1 / 2}$.
2. Conversely, iff $(X) \in \boldsymbol{F}_{p}[X]$ and $d<p$, then for any integer s with
$q \geq s \geq d+1$,
there is $\boldsymbol{\alpha} \in \boldsymbol{F}_{q}^{s}$ with $\alpha_{j_{1}} \neq \alpha_{j_{2}}, 1 \leq j_{1}<j_{2} \leq s$, and $\boldsymbol{c} \in \boldsymbol{F}_{p}^{s}$ for which $\mathcal{T}(\boldsymbol{c}, \boldsymbol{\alpha}, f)$ is empty.
3. For any $f(X) \in \boldsymbol{F}_{q}[X]$, any s with
$q \geq s>d r$
and any $\boldsymbol{\alpha} \in \boldsymbol{F}_{q}^{s}$ there is a vector $\boldsymbol{c} \in \boldsymbol{F}_{p}^{s}$ for which $\mathcal{T}(\boldsymbol{c}, \boldsymbol{\alpha}, f)$ is empty.
We give examples of degree d with $\operatorname{gcd}(d, p)>1$ and $\mathcal{T}(\mathbf{c}, \boldsymbol{\alpha}, f)=\emptyset$ for any $s \geq 1$ in Sect. 7.1.
Again, for $f(X) \in \boldsymbol{F}_{p}[X]$ and $1 \leq d<p$ we have a dichotomy.
Moreover, for any fixed d, p and s with $\operatorname{gcd}(d, q)=1$ and $1 \leq s \leq d_{0}$ and any $f(X) \in$ $\boldsymbol{F}_{p}[X]$ of degree $d, T(f)$ is r-normal. Note that any $f(X) \in \boldsymbol{F}_{p}[X]$ is an element of $\boldsymbol{F}_{p^{r}}[X]$ for $r=1,2, \ldots$

For fixed d, r and s with $1 \leq s \leq \min \{d,\lfloor(r-1) / 2\rfloor\}$ and any $f(X) \in \mathbf{Z}[X]$ of degree $d, T(f)$ is p-normal. Here $f(X) \in \mathbf{Z}[X]$ can be identified with an element of $\boldsymbol{F}_{p}[X]$ for all primes p.
We start with a section on preliminary results used in the proofs. Then we show that

$$
\begin{equation*}
\left||\mathcal{T}(\mathbf{c}, \boldsymbol{\alpha}, f)|-p^{r-s}\right| \leq(\operatorname{deg}(f)-1) q^{1 / 2} \tag{6}
\end{equation*}
$$

under certain conditions in Sect. 3. In Sects. 4 to 6 we show that these conditions are fulfilled under the assumptions of our theorems. We finish the paper with some remarks on related work in Sect. 7.

2 Preliminary results

We start with the Weil bound, see [3, Theorem 5.38 and comments below], [4, Theorem 2E] or [5].

Lemma 1 Let ψ be the additive canonical character of the finite field \boldsymbol{F}_{q}, and $f(X)$ be a polynomial of degree $d \geq 1$ over \boldsymbol{F}_{q}, which is not of the form $g(X)^{p}-g(X)+c$ for some polynomial $g(X) \in \boldsymbol{F}_{q}[X]$ and $c \in \boldsymbol{F}_{q}$. Then we have

$$
\left|\sum_{\xi \in \boldsymbol{F}_{q}} \psi(f(\xi))\right| \leq(d-1) q^{1 / 2}
$$

We also use the analog of the Weil bound for rational functions

$$
\frac{f(X)}{g(X)} \in \boldsymbol{F}_{q}(X)
$$

of Moreno and Moreno [6, Theorem 2]. We only need the special case that $\operatorname{deg}(f) \leq$ $\operatorname{deg}(g)$.

Lemma 2 Let ψ be a nontrivial additive character of \boldsymbol{F}_{q} and let $\frac{f(X)}{g(X)} \in \boldsymbol{F}_{q}(X)$ be a rational function over \boldsymbol{F}_{q}. Let s be the number of distinct roots of the polynomial $g(X)$ in the algebraic closure $\overline{\boldsymbol{F}_{q}}$ of \boldsymbol{F}_{q}. Suppose that $\frac{f(X)}{g(X)}$ is not of the form $H(X)^{p}-H(X)$, where $H(X)$ is a rational function over $\overline{\boldsymbol{F}_{q}}$. If $\operatorname{deg}(f) \leq \operatorname{deg}(g)$, then we have

$$
\left|\sum_{\xi \in \boldsymbol{F}_{q}, g(\xi) \neq 0} \psi\left(\frac{f(\xi)}{g(\xi)}\right)\right| \leq(\operatorname{deg}(g)+s-2) \sqrt{q}+1
$$

Note that $g(X)^{p}-g(X)+c$ with $g(X) \in \boldsymbol{F}_{q}(X)$ and $c \in \boldsymbol{F}_{q}$ can be written as $h(X)^{p}-h(X)$ for $h(X)=g(X)+\gamma \in \overline{\boldsymbol{F}_{q}}(X)$, where $\gamma \in \overline{\boldsymbol{F}_{q}}$ is a zero of the polynomial $X^{p}-X-c$.

Next we state Lucas' congruence, see [7] or [8, Lemma 6.3.10].
Lemma 3 Let p be a prime. If m and n are two natural numbers with p-adic expansions

$$
m=m_{r-1} p^{r-1}+m_{r-2} p^{r-2}+\cdots+m_{1} p+m_{0}, \quad 0 \leq m_{0}, \ldots, m_{r-1}<p
$$

and

$$
n=n_{r-1} p^{r-1}+n_{r-2} p^{r-2}+\cdots+n_{1} p+n_{0}, \quad 0 \leq n_{0}, \ldots, n_{r-1}<p
$$

then we have

$$
\binom{m}{n} \equiv \prod_{j=0}^{r-1}\binom{m_{j}}{n_{j}} \quad \bmod p
$$

As a consequence of Lucas' congruence we can count the number of nonzero binomials coefficients $\binom{m}{n} \bmod p$ for fixed m. Indeed, by Lucas' congruence

$$
\binom{m}{n} \not \equiv 0 \quad \bmod p \text { if and only if }\binom{m_{j}}{n_{j}} \not \equiv 0 \quad \bmod p \text { for } j=0, \ldots, r-1
$$

or equivalently,

$$
0 \leq n_{j} \leq m_{j} \quad \text { for } j=0, \ldots, r-1
$$

Therefore, we have the following result of Fine [9, Theorem 2]:
Lemma 4 Let p be a prime and m an integer with p-adic expansion

$$
m=m_{r-1} p^{r-1}+m_{r-2} p^{r-2}+\cdots+m_{1} p+m_{0}, \quad 0 \leq m_{0}, \ldots, m_{r-1}<p
$$

Then the number of nonzero binomial coefficients $\binom{m}{n} \bmod p$ with $0 \leq n \leq m$ is

$$
\prod_{j=0}^{r-1}\left(m_{j}+1\right)
$$

3 Trace, dual basis and exponential sums

Let

$$
\begin{equation*}
\operatorname{Tr}(\xi)=\sum_{i=0}^{r-1} \xi^{p^{i}} \in \boldsymbol{F}_{p} \tag{7}
\end{equation*}
$$

denote the (absolute) trace of $\xi \in \boldsymbol{F}_{q}$. Let $\left(\delta_{1}, \ldots, \delta_{r}\right)$ denote the (existent and unique) dual basis of the basis $\mathcal{B}=\left(\beta_{1}, \ldots, \beta_{r}\right)$ of \boldsymbol{F}_{q}, see for example [3], that is,

$$
\operatorname{Tr}\left(\delta_{i} \beta_{j}\right)=\left\{\begin{array}{ll}
1 & \text { if } i=j, \\
0 & \text { if } i \neq j
\end{array} \quad 1 \leq i, j \leq r\right.
$$

Then we have

$$
\operatorname{Tr}\left(\delta_{i} \xi\right)=x_{i} \quad \text { for any } \quad \xi=\sum_{j=1}^{r} x_{j} \beta_{j} \in \boldsymbol{F}_{q} \quad \text { with } x_{j} \in \boldsymbol{F}_{p}
$$

and

$$
T(\xi)=\operatorname{Tr}(\delta \xi), \quad \text { where } \delta=\sum_{i=1}^{r} \delta_{i}
$$

Note that

$$
\delta \neq 0
$$

since $\delta_{1}, \ldots, \delta_{r}$ are linearly independent. Note that we don't have to restrict ourselves to this special choice of δ and T but can deal with any non-trivial linear map

$$
T(\xi)=\operatorname{Tr}(\delta \xi), \quad \delta \in F_{q}^{*}
$$

from \boldsymbol{F}_{q} to \boldsymbol{F}_{p}.
Put

$$
e_{p}(x)=\exp \left(\frac{2 \pi i x}{p}\right) \quad \text { for } x \in \boldsymbol{F}_{p}
$$

Since

$$
\sum_{a \in \boldsymbol{F}_{p}} e_{p}(a x)=\left\{\begin{array}{l}
0, x \neq 0 \\
p, x=0
\end{array} \quad x \in \boldsymbol{F}_{p}\right.
$$

we get

$$
\begin{aligned}
|\mathcal{T}(\mathbf{c}, \boldsymbol{\alpha}, f)| & =\frac{1}{p^{s}} \sum_{\xi \in \boldsymbol{F}_{q}} \prod_{i=1}^{s} \sum_{a \in \boldsymbol{F}_{p}} e_{p}\left(a\left(T\left(f\left(\xi+\alpha_{i}\right)\right)-c_{i}\right)\right) \\
& =\frac{1}{p^{s}} \sum_{a_{1}, \ldots, a_{s} \in \boldsymbol{F}_{p}} \sum_{\xi \in \boldsymbol{F}_{q}} e_{p}\left(\sum_{i=1}^{s} a_{i}\left(T\left(f\left(\xi+\alpha_{i}\right)\right)-c_{i}\right)\right) .
\end{aligned}
$$

Separating the term for $a_{1}=\cdots=a_{s}=0$ we get

$$
\begin{equation*}
\left||\mathcal{T}(\mathbf{c}, \boldsymbol{\alpha}, f)|-p^{r-s}\right| \leq \max _{\left(a_{1}, \ldots, a_{s}\right) \neq(0, \ldots, 0)}\left|\sum_{\xi \in \boldsymbol{F}_{q}} \psi\left(F_{a_{1}, \ldots, a_{s}}(\xi)\right)\right| \tag{8}
\end{equation*}
$$

where

$$
\psi(\xi)=e_{p}(\operatorname{Tr}(\xi))
$$

denotes the additive canonical character of \boldsymbol{F}_{q} and

$$
\begin{equation*}
F_{a_{1}, \ldots, a_{s}}(X)=\delta \sum_{i=1}^{s} a_{i} f\left(X+\alpha_{i}\right) \tag{9}
\end{equation*}
$$

If $F_{a_{1}, \ldots, a_{s}}(X)$ is not of the form $g(X)^{p}-g(X)+c$ for any $\left(a_{1}, \ldots, a_{s}\right) \neq(0, \ldots, 0)$, then the Weil bound, Lemma 1, can be applied and yields (6).

4 Monomials $f_{d}(X)=X^{\boldsymbol{d}}$

Now we study the special case

$$
f(X)=f_{d p}(X)=X^{d p^{j}} \quad \text { with } \quad \operatorname{gcd}(d, p)=1 \text { and } j=0,1, \ldots
$$

Put $\boldsymbol{\alpha}^{k}=\left(\alpha_{1}^{k}, \ldots, \alpha_{s}^{k}\right)$. Since $(X+\alpha)^{d p^{j}}=\left(X^{p^{j}}+\alpha^{p^{j}}\right)^{d}$ and $\xi \mapsto \xi^{p^{j}}$ permutes \boldsymbol{F}_{q} we have

$$
\left|\mathcal{T}\left(\mathbf{c}, \boldsymbol{\alpha}, f_{d p^{j}}\right)\right|=\left|\mathcal{T}\left(\mathbf{c}, \boldsymbol{\alpha}^{p^{j}}, f_{d}\right)\right|
$$

and we may assume $j=0$. Since

$$
\xi^{q}=\xi \quad \text { for all } \xi \in \boldsymbol{F}_{q}
$$

we may restrict ourselves to the case $d<q$.
To prove the first part of Theorem 1 we have to show that (6) is applicable. By (9) with

$$
f(X)=f_{d}(X)=X^{d}
$$

we have

$$
F_{a_{1}, \ldots, a_{s}}(X)=\delta \sum_{i=1}^{s} a_{i}\left(X+\alpha_{i}\right)^{d}
$$

and thus

$$
\begin{equation*}
F_{a_{1}, \ldots, a_{s}}^{\prime}(X)=\delta d \sum_{\ell=0}^{d-1}\binom{d-1}{\ell}\left(\sum_{i=1}^{s} a_{i} \alpha_{i}^{\ell}\right) X^{d-\ell-1} \tag{10}
\end{equation*}
$$

Assume that for some $\left(a_{1}, \ldots, a_{s}\right) \in \boldsymbol{F}_{p}^{s} \backslash\{(0, \ldots, 0)\}$ we have

$$
F_{a_{1}, \ldots, a_{s}}(X)=g(X)^{p}-g(X)+c
$$

for some polynomial $g(X) \in \boldsymbol{F}_{q}[X]$ and some constant $c \in \boldsymbol{F}_{q}$. We have

$$
\begin{equation*}
\text { either } F_{a_{1}, \ldots, a_{s}}(X)=\text { const } \quad \text { or } \quad 1 \leq \operatorname{deg}\left(F_{a_{1}, \ldots, a_{s}}\right) \equiv 0 \bmod p \tag{11}
\end{equation*}
$$

and

$$
F_{a_{1}, \ldots, a_{s}}^{\prime}(X)=-g^{\prime}(X)
$$

Then either

$$
\begin{align*}
& F_{a_{1}, \ldots, a_{s}}^{\prime}(X)=0 \tag{12}\\
& \operatorname{deg}\left(F_{a_{1}, \ldots, a_{s}}^{\prime}\right)<\operatorname{deg}(g)=\frac{\operatorname{deg}\left(F_{a_{1}, \ldots, a_{s}}\right)}{p} \tag{13}
\end{align*}
$$

Let

$$
d=d_{0}+d_{1} p+\cdots+d_{r-1} p^{r-1}, \quad 0 \leq d_{0}, \ldots, d_{r-1}<p, \quad d_{0} \neq 0
$$

be the p-adic expansion of d. Assume that there are $k \geq 0$ consecutive digits

$$
d_{m}=d_{m+1}=\cdots=d_{m+k-1}=p-1, \quad 1 \leq m \leq m+k \leq r-1
$$

of maximal size and

$$
s \leq \begin{cases}\left(d_{m+k}+1\right)\left(p^{k}-p^{k-1}\right), & k \geq 1 \\ d_{0}, & k=0\end{cases}
$$

Note that $\operatorname{deg}\left(F_{a_{1}, \ldots, a_{s}}\right) \leq d-d_{0}$ by (11) with the convention $\operatorname{deg}(0)=-1$. In both cases, (12) and (13), the coefficients of $F_{a_{1}, \ldots, a_{s}}^{\prime}(X)$ at $X^{d-1-\ell}$ are zero for $\ell=0, \ldots, d-(d-$ $\left.d_{0}\right) / p-1$. Since $\delta d \neq 0$ we get from (10)

$$
\begin{equation*}
\binom{d-1}{\ell}\left(\sum_{i=1}^{s} a_{i} \alpha_{i}^{\ell}\right)=0, \quad \ell=0, \ldots, d-\left(d-d_{0}\right) / p-1 \tag{14}
\end{equation*}
$$

By Lucas' congruence, Lemma 3, we have

$$
\begin{equation*}
\binom{d-1}{\ell} \equiv\binom{d_{0}-1}{\ell} \not \equiv 0 \bmod p, \quad \ell=0, \ldots, d_{0}-1 \tag{15}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\binom{d-1}{p^{m} \ell} \not \equiv 0 \bmod p, \quad \ell=0, \ldots,\left(d_{m+k}+1\right) p^{k}-1 \tag{16}
\end{equation*}
$$

since

$$
d-1=e_{0}+(p-1)\left(p^{m}+\cdots+p^{m+k-1}\right)+d_{m+k} p^{m+k}+e_{1} p^{m+k+1}
$$

for some

$$
0 \leq e_{0}<p^{m}, \quad 0 \leq e_{1}<p^{r-k-m-1}
$$

and

$$
p^{m} \ell=\ell_{0} p^{m}+\cdots+\ell_{k-1} p^{m+k-1}+\ell_{k} p^{m+k}
$$

for some

$$
0 \leq \ell_{0}, \ldots, \ell_{k-1}<p, \quad 0 \leq \ell_{k} \leq d_{m+k}
$$

and any $0 \leq \ell \leq\left(d_{m+k}+1\right) p^{k}-1$.
Note that

$$
\begin{aligned}
d-\frac{d-d_{0}}{p}-1 & \geq(d-1)\left(1-\frac{1}{p}\right) \geq\left(\left(d_{m+k}+1\right) p^{k}-1\right)\left(1-\frac{1}{p}\right) p^{m} \\
& \geq\left(\left(d_{m+k}+1\right)\left(p^{k}-p^{k-1}\right)-1\right) p^{m}, \quad k \geq 1
\end{aligned}
$$

Combining (14) with (15) and (16), respectively, we get

$$
\begin{equation*}
\sum_{i=1}^{s} a_{i} \alpha_{i}^{\ell}=0, \quad \ell=0, \ldots d_{0}-1 \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{s} a_{i} \alpha_{i}^{p^{m} \ell}, \quad \ell=0, \ldots,\left(d_{m+k}+1\right)\left(p^{k}-p^{k-1}\right)-1, \quad k \geq 1 \tag{18}
\end{equation*}
$$

respectively.
Hence, if $s \leq d_{0}(n=1$ or $k=0)$ or $s \leq\left(d_{m+k}+1\right)\left(p^{k}-p^{k-1}\right)(n \geq 2$ and $k \geq 1)$, the $s \times s$ coefficient matrix of the equations for $\ell=0, \ldots, s-1$ of (17) or (18), respectively, is an invertible Vandermonde matrix and we get

$$
a_{i}=0, \quad i=1, \ldots, s
$$

contradicting $\left(a_{1}, \ldots, a_{s}\right) \in \boldsymbol{F}_{p}^{s} \backslash\{(0, \ldots, 0)\}$. For the second case we used that $\xi \mapsto \xi^{p^{m}}$ permutes \boldsymbol{F}_{q} and the $\alpha_{i}^{p^{m}}, i=1, \ldots, s$, are pairwise distinct.

Proof of the second part of Theorem 1: now assume $d<p^{n}$ for some n with $1 \leq n \leq r$, that is, $d_{n}=\cdots=d_{r-1}=0$, and assume (3) and (4). Let D be the number of binomial coefficients $\binom{d}{\ell}, \ell=1, \ldots, d$, which are nonzero modulo p. By Lemma 4 we have

$$
D=\left(d_{0}+1\right) \cdots\left(d_{n-1}+1\right)-1
$$

For any $\alpha \in \boldsymbol{F}_{q}$ the polynomial

$$
(X+\alpha)^{d}-\alpha^{d}=\sum_{\ell=0}^{d-1}\binom{d}{\ell} \alpha^{\ell} X^{d-\ell}
$$

is in the vector space generated by the monomials $X^{d-\ell}$ with nonzero $\binom{d}{\ell} \bmod p, \ell=$ $0, \ldots, d-1$, of dimension D. For $D<s \leq q$ and any $\left(\alpha_{1}, \ldots, \alpha_{s}\right) \in F_{q}^{s}$ there is a nontrivial linear combination

$$
\sum_{i=1}^{s} \rho_{i}\left(\left(X+\alpha_{i}\right)^{d}-\alpha_{i}^{d}\right)=0
$$

of the zero polynomial with $\left(\rho_{1}, \ldots, \rho_{s}\right) \in \boldsymbol{F}_{q}^{s} \backslash\{(0, \ldots, 0)\}$. If $D<s \leq p$ and we take $\alpha_{i} \in \boldsymbol{F}_{p}, i=1, \ldots, s$, then we may assume $\rho_{i}=a_{i} \in \boldsymbol{F}_{p}$ and

$$
\sum_{i=1}^{s} a_{i} \operatorname{Tr}\left(\delta\left(\left(\xi+\alpha_{i}\right)^{d}-\alpha_{i}^{d}\right)\right)=0 \quad \text { for all } \xi \in \boldsymbol{F}_{q}
$$

Taking $\left(a_{1}, \ldots, a_{s}\right) \in \boldsymbol{F}_{p}^{s} \backslash\{(0, \ldots, 0)\}$ from the previous step, the vector space of solutions $\left(c_{1}, \ldots, c_{s}\right) \in F_{p}^{s}$ of the equation

$$
a_{1} c_{1}+\cdots+a_{s} c_{s}=0
$$

is of dimension $s-1$. More precisely, the mapping

$$
\varphi: \boldsymbol{F}_{p}^{s} \rightarrow \boldsymbol{F}_{p}, \quad \varphi\left(1, \ldots, c_{s}\right)=a_{1} c_{1}+\cdots+a_{s} c_{s}
$$

is surjective since $\left(a_{1}, \ldots, a_{s}\right)$ is not the zero vector. By the rank-nullity theorem its kernel is of dimension $s-1$.

That is, not all $\mathbf{c}=\left(c_{1}, \ldots, c_{s}\right) \in \boldsymbol{F}_{p}^{s}$ are attained as

$$
\mathbf{c}=\left(\operatorname{Tr}\left(\delta\left(\left(\xi+\alpha_{i}\right)^{d}-\alpha_{i}^{d}\right)\right)\right)_{i=1}^{s}
$$

for any $\xi \in \boldsymbol{F}_{q}$, namely those \mathbf{c} which are not in the kernel of φ. We can extend this argument to $s>p$ by extending $\left(a_{1}, \ldots, a_{p}\right) \in \boldsymbol{F}_{p}^{p} \backslash\{(0, \ldots, 0)\}$ to $\left(a_{1}, \ldots, a_{p}, 0, \ldots, 0\right) \in$ $\boldsymbol{F}_{p}^{s} \backslash\{(0, \ldots, 0)\}$.

Proof of the third part of Theorem 1: now we drop the condition (3) but then s has to satisfy the stronger condition (5) instead of (4). We extend the definition of the trace to polynomials $f(X) \in \boldsymbol{F}_{p^{r}}[X]$,

$$
\operatorname{Tr}(f(X))=\sum_{j=0}^{r-1} f(X)^{p^{j}}
$$

For each $\alpha \in \boldsymbol{F}_{q}$ we have

$$
\operatorname{Tr}\left(\delta\left((X+\alpha)^{d}-\alpha^{d}\right)\right)=\sum_{\ell=0}^{d-1}\binom{d}{\ell} \operatorname{Tr}\left(\delta \alpha^{\ell} X^{d-\ell}\right)
$$

since the trace is \boldsymbol{F}_{p}-linear, and thus it lies in the \boldsymbol{F}_{p}-linear space generated by the polynomials $\operatorname{Tr}\left(\beta_{i} X^{d-\ell}\right)$ with nonzero $\binom{d}{\ell}$ modulo $p, i=1, \ldots, r, \ell=1, \ldots, d$, of dimension at most Dr, where $\left\{\beta_{1}, \ldots, \beta_{r}\right\}$ is a basis of \boldsymbol{F}_{q} over \boldsymbol{F}_{p}. Now let $s>D r$, then for any $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots \alpha_{s}\right) \in \boldsymbol{F}_{q}^{s}$ consider the set of polynomials

$$
\left\{\operatorname{Tr}\left(\delta\left(\left(X+\alpha_{i}\right)^{d}-\alpha_{i}^{d}\right)\right): i=1, \ldots, s\right\}
$$

Since $s>D r$ there is a nontrivial \boldsymbol{F}_{p}-linear combination

$$
\sum_{i=1}^{s} a_{i} \operatorname{Tr}\left(\delta\left(\left(X+\alpha_{i}\right)^{d}-\alpha_{i}^{d}\right)\right)=0
$$

of the zero polynomial. Now consider the linear subspace of solutions $\left(c_{1}, \ldots, c_{s}\right) \in \boldsymbol{F}_{p}^{s}$ of the equation $a_{1} c_{1}+\cdots+a_{s} c_{s}=0$ which is of dimension $s-1$. Let $\mathbf{c} \in \boldsymbol{F}_{p}^{s}$ be a point which does not lie in this linear subspace, then \mathbf{c} is not attained as $\mathbf{c}=\left(\operatorname{Tr}\left(\delta\left(\left(\xi+\alpha_{i}\right)^{d}-\alpha_{i}^{d}\right)\right)\right)_{i=1}^{s}$ for any $\xi \in \boldsymbol{F}_{q}$.

5 Rational functions $\boldsymbol{f}_{-\boldsymbol{d}}(X)=\boldsymbol{X}^{-\boldsymbol{d}}$

Let $f_{q-d-1}(X)=X^{q-1-d}$ be a monomial of degree $q-d-1$, where $1 \leq d<q-1$. With the convention $0^{-1}=0$ we can identify $f_{q-d-1}(X)$ with the rational function $f_{-d}(X)=X^{-d}$. Let $\operatorname{gcd}(d, q)=p^{j}$. Since

$$
(X+\alpha)^{-p^{j}}=\left(X^{p^{j}}+\alpha^{p^{j}}\right)^{-1}
$$

and $\xi \mapsto \xi^{p^{j}}$ permutes \boldsymbol{F}_{q} we have

$$
\left|\mathcal{T}\left(\mathbf{c}, \boldsymbol{\alpha}, f_{-d p^{j}}\right)\right|=\left|\mathcal{T}\left(\mathbf{c}, \boldsymbol{\alpha}^{p^{j}}, f_{-d}\right)\right|
$$

and may restrict ourselves to the case $\operatorname{gcd}(d, q)=1$, that is,

$$
d=d_{0}+t_{1} p, \quad \text { where } 1 \leq d_{0}<p
$$

We first show that there is no nonzero s-tuple

$$
\left(a_{1}, \ldots, a_{s}\right) \in \boldsymbol{F}_{p}^{s} \backslash\{(0, \ldots, 0)\}
$$

such that

$$
F_{a_{1}, \ldots, a_{s}}(X)=\sum_{i=1}^{s} a_{i}\left(X+\alpha_{i}\right)^{-d}=H(X)^{p}-H(X)
$$

for any rational function $H(X) \in \overline{\boldsymbol{F}_{p}}(X)$. We have

$$
F_{a_{1}, \ldots, a_{s}}(X)=\frac{f(X)}{g(X)}
$$

where

$$
f(X)=\delta \sum_{j=1}^{s} a_{j} \prod_{i \neq j}\left(X+\alpha_{i}\right)^{d}
$$

and

$$
g(X)=\prod_{i=1}^{s}\left(X+\alpha_{i}\right)^{d}
$$

Suppose to the contrary that there exists a rational function

$$
H(X)=\frac{u(X)}{v(X)} \in \overline{\boldsymbol{F}_{p}}(X) \quad \text { with } \operatorname{gcd}(u, v)=1 \quad \text { and } \quad v(X) \text { is monic }
$$

satisfying

$$
F_{a_{1}, \ldots, a_{s}}(X)=H(X)^{p}-H(X) .
$$

Therefore, we have

$$
\begin{equation*}
\frac{f(X)}{g(X)}=\frac{u(X)^{p}}{v(X)^{p}}-\frac{u(X)}{v(X)} \tag{19}
\end{equation*}
$$

Clearing denominators we obtain

$$
f(X) v(X)^{p}=\left(u(X)^{p}-u(X) v(X)^{p-1}\right) g(X)
$$

and thus $v(X)^{p}$ divides $g(X)$, hence

$$
v(X)=\prod_{i=1}^{s}\left(X+\alpha_{i}\right)^{e_{i}} \quad \text { for some } 0 \leq e_{i} \leq t_{1}, \quad i=1, \ldots, s
$$

Now by taking derivatives of both sides of (19) and clearing denominators we get

$$
\begin{equation*}
\left(f^{\prime}(X) g(X)-f(X) g^{\prime}(X)\right) v(X)^{2}=\left(u(X) v^{\prime}(X)-u^{\prime}(X) v(X)\right) g(X)^{2} \tag{20}
\end{equation*}
$$

Without loss of generality we may assume $a_{1} \neq 0$, thus

$$
f\left(-\alpha_{1}\right)=\delta a_{1} \prod_{i=2}^{s}\left(\alpha_{i}-\alpha_{1}\right)^{d} \neq 0
$$

and

$$
X+\alpha_{1} \text { does not divide } f(X)
$$

Moreover, $\left(X+\alpha_{1}\right)^{d-1}$ and $\left(X+\alpha_{1}\right)^{d}$ are the largest powers dividing $g^{\prime}(X)$ and $g(X)$, respectively, that is,

$$
\left(X+\alpha_{1}\right)^{d-1+2 e_{1}}
$$

is the largest power of $\left(X+\alpha_{1}\right)$ dividing the left hand side of (20). Observing that $g(X)^{2}$ and thus the right hand side of (20) is divisible by

$$
\left(X+\alpha_{1}\right)^{2 d}
$$

we get

$$
d-1+2 e_{1} \geq 2 d
$$

and thus

$$
e_{1} \geq \frac{d+1}{2}>\frac{t_{1} p}{2} \geq t_{1}
$$

which is a contradiction.
We showed that the conditions of Lemma 2 are satisfied and Theorem 2 follows from
(8) and Lemma 2 since

$$
\left|\sum_{\xi \in \boldsymbol{F}_{q}} \psi\left(F_{a_{1}, \ldots, a_{s}}(\xi)\right)\right| \leq\left|\sum_{\xi \in \boldsymbol{F}_{q} \backslash-\boldsymbol{\alpha}} \psi\left(F_{a_{1}, \ldots, a_{s}}(\xi)\right)\right|+s
$$

where $-\boldsymbol{\alpha}=\left\{-\alpha_{1}, \ldots,-\alpha_{s}\right\}$.

6 Arbitrary polynomials

In this section we prove Theorem 3.
Let

$$
f(X)=\sum_{j=0}^{d} \gamma_{j} X^{j} \in \boldsymbol{F}_{q}[X], \quad \gamma_{d} \neq 0
$$

be a polynomial of degree

$$
d=d_{0}+t_{1} p, \quad 1 \leq d_{0}<p, \quad 0 \leq t_{1}<q / p
$$

Proof of the first part: we have to show that (6) is applicable, that is, the polynomial $F_{a_{1}, \ldots, a_{s}}(X)$ defined by (9) is not of the form $g(X)^{p}-g(X)+c$ for any $\left(a_{1}, \ldots, a_{s}\right) \neq(0, \ldots, 0)$.

Suppose the contrary that there exists an s-tuple

$$
\left(a_{1}, \ldots, a_{s}\right) \in \boldsymbol{F}_{p}^{s} \backslash\{(0, \ldots, 0)\}
$$

such that the polynomial

$$
F_{a_{1}, \ldots, a_{s}}(X)=\delta \sum_{\ell=0}^{d}\left(\sum_{j=\ell}^{d} \sum_{i=1}^{s} a_{i} \gamma_{j}\binom{j}{\ell} \alpha_{i}^{j-\ell}\right) X^{\ell}
$$

can be written as

$$
g(X)^{p}-g(X)+c \quad \text { for some } g(X) \in \boldsymbol{F}_{q}[X] \quad \text { and } \quad c \in \boldsymbol{F}_{q} .
$$

We have either

$$
F_{a_{1}, \ldots, a_{s}}(X)=0
$$

or

$$
\operatorname{deg}\left(F_{a_{1}, \ldots, a_{s}}\right) \equiv 0 \bmod p
$$

Hence,

$$
\operatorname{deg}\left(F_{a_{1}, \ldots, a_{s}}\right) \leq d-d_{0}
$$

where we used the convention $\operatorname{deg}(0)=-1$. We conclude that the coefficients δR_{ℓ} of $F_{a_{1}, \ldots, a_{s}}(X)$ at X^{ℓ} vanish for $\ell=d-d_{0}+1, \ldots, d$. Since $\delta \neq 0$ we have

$$
\begin{equation*}
R_{\ell}=\sum_{j=\ell}^{d} \sum_{i=1}^{s} a_{i} \gamma_{j}\binom{j}{\ell} \alpha_{i}^{j-\ell}=0, \quad \ell=\left(d-d_{0}\right)+1, \ldots, d \tag{21}
\end{equation*}
$$

Note that by Lucas' congruence, Lemma 3,

$$
\begin{equation*}
\binom{d}{r} \equiv\binom{d_{0}}{r} \not \equiv 0 \bmod p, \quad r=0, \ldots, d_{0} \tag{22}
\end{equation*}
$$

Define $T_{\ell}, \ell=0, \ldots d_{0}-1$, recursively by

$$
T_{0}=R_{d}
$$

and

$$
\begin{equation*}
T_{\ell}=R_{d-\ell}-\gamma_{d}^{-1} \sum_{r=0}^{\ell-1} \gamma_{d-\ell+r}\binom{r+d-\ell}{d-\ell}\binom{d}{r}^{-1} T_{r} \tag{23}
\end{equation*}
$$

for $\ell=1, \ldots, d_{0}-1$. Next we show that

$$
\begin{equation*}
T_{\ell}=\gamma_{d}\binom{d}{\ell} \sum_{i=1}^{s} a_{i} \alpha_{i}^{\ell}=0, \quad \ell=0, \ldots, d_{0}-1 \tag{24}
\end{equation*}
$$

For $\ell=0$ the formula follows from (21) and for $\ell=1, \ldots, d_{0}-1$ from (23) we get by induction

$$
T_{\ell}=R_{d-\ell}-\sum_{r=0}^{\ell-1} \gamma_{d-\ell+r}\binom{r+d-\ell}{d-\ell} \sum_{i=1}^{s} a_{i} \alpha_{i}^{r}
$$

and from (21)

$$
T_{\ell}=\gamma_{d}\binom{d}{\ell} \sum_{i=1}^{s} a_{i} \alpha_{i}^{\ell}
$$

Moreover, we get

$$
T_{\ell}=0, \quad \ell=0, \ldots, d_{0}-1
$$

from (21), (23) again by induction.
By (24) and (22) we get since $\gamma_{d} \neq 0$,

$$
\sum_{i=1}^{s} a_{i} \alpha_{i}^{\ell}=0, \quad \ell=0, \ldots, d_{0}-1
$$

Thus for $s \leq d_{0}$, the $(s \times s)$-coefficient matrix

$$
\left(\alpha_{i}^{\ell}\right)_{i=1, \ldots, s, \ell=0,1, \ldots, s-1}
$$

of the system of the first s equations is a regular Vandermonde matrix and we get $\left(a_{1}, \ldots, a_{s}\right)=(0, \ldots, 0)$, which is a contradiction.
For the second part of Theorem 3 we assume $f(X) \in \boldsymbol{F}_{p}[X]$ and notice that for any $\alpha \in \boldsymbol{F}_{q}$ the element $f(X+\alpha)-f(\alpha)$ is in the vector space generated by the monomials X^{i}, $i=1, \ldots, d$, of dimension d.
If $d<s \leq p$, we can choose any $\boldsymbol{\alpha} \in \boldsymbol{F}_{p}^{s}$. Then

$$
f\left(X+\alpha_{i}\right)-f\left(\alpha_{i}\right), \quad i=1, \ldots, s
$$

are linearly dependent over \boldsymbol{F}_{p} as well as

$$
\operatorname{Tr}\left(\delta\left(f\left(X+\alpha_{i}\right)-f\left(\alpha_{i}\right)\right)\right), \quad i=1, \ldots, s,
$$

that is,

$$
\sum_{i=1}^{s} a_{i} \operatorname{Tr}\left(\delta\left(f\left(X+\alpha_{i}\right)-f\left(\alpha_{i}\right)\right)\right)=0
$$

for some $\left(a_{1}, \ldots, a_{s}\right) \in \boldsymbol{F}_{p}^{s} \backslash\{(0, \ldots, 0)\}$ and the result follows since not all $\left(c_{1}, \ldots, c_{s}\right) \in \boldsymbol{F}_{p}^{s}$ satisfy $a_{1} c_{1}+\cdots+a_{s} c_{s}=0$.
If $d<p$ and $s>p$, we can choose $\left(a_{1}, \ldots, a_{p}\right) \in \boldsymbol{F}_{p}^{p} \backslash\{(0, \ldots, 0)\}$ as in the case $s=p$ and extend it to $\left(a_{1}, \ldots, a_{p}, a_{p+1}, \ldots, a_{s}\right) \in \boldsymbol{F}_{p}^{s} \backslash\{(0, \ldots, 0)\}$ with $a_{p+1}=\cdots=a_{s}=0$.
Proof of the third part of Theorem 3: recall that $\left\{\beta_{1}, \ldots, \beta_{r}\right\}$ is a basis of \boldsymbol{F}_{q} over \boldsymbol{F}_{p}. Each $\delta(f(X+\alpha)-f(\alpha))$ lies in the \boldsymbol{F}_{p}-vector space generated by

$$
\delta \beta_{j} X^{i}, \quad j=1, \ldots, r, \quad i=1, \ldots, d
$$

of dimension $d r$. The dimension of the vector space generated by

$$
\operatorname{Tr}\left(\delta \beta_{j} X^{i}\right) \quad j=1, \ldots, r, \quad i=1, \ldots, d
$$

is at most $d r$. If $q \geq s>d r$, there is a nontrivial linear combination

$$
\sum_{i=1}^{s} a_{i} \operatorname{Tr}\left(\delta\left(f\left(X+\alpha_{i}\right)-f\left(\alpha_{i}\right)\right)\right)=0
$$

for any $\boldsymbol{\alpha} \in \boldsymbol{F}_{q}^{s}$ and the result follows.

7 Final remarks

7.1 Examples for $\operatorname{gcd}(d, p)>1$ and $\mathcal{T}(c, \alpha, f)=\emptyset$

Now we provide an example that if we drop the condition on s in part 1 of Theorem 3, the restriction $\operatorname{gcd}(d, q)=1$, that is $d_{0} \geq 1$, is needed.

Choose any $f(X)$ of the form

$$
f(X)=\delta^{-1}\left(g(X)^{p}-g(X)+c\right) \quad \text { for some } g(X) \in \boldsymbol{F}_{q}[X] \quad \text { and } \quad c \in \boldsymbol{F}_{q}
$$

Then we obtain

$$
\begin{aligned}
T\left(f\left(\xi+\alpha_{1}\right)\right) & =\operatorname{Tr}\left(\delta f\left(\xi+\alpha_{1}\right)\right) \\
& =\operatorname{Tr}\left(g\left(\xi+\alpha_{1}\right)^{p}-g\left(\xi+\alpha_{1}\right)+c\right)=\operatorname{Tr}(c)
\end{aligned}
$$

for all $\xi \in \boldsymbol{F}_{q}$, that is, any vector $\left(c_{1}, \ldots, c_{r}\right) \in \boldsymbol{F}_{p}^{r}$ with $c_{1} \neq \operatorname{Tr}(c)$ is not attained as $\left(T\left(f\left(\xi+\alpha_{i}\right)\right)\right)_{i=1}^{s}$.

We conclude that for polynomials of degree d with $\operatorname{gcd}(d, p)>1$, the bound of Theorem 3 may not hold for all s. However, by Theorem 1, for monomials the restriction $\operatorname{gcd}(d, p)=1$ is not needed.

7.2 Missing digits and subsets

For subsets \mathcal{D} of \boldsymbol{F}_{p}, the closely related problem of estimating the number of $\xi \in \boldsymbol{F}_{q}$ with

$$
f(\xi) \in\left\{d_{1} \beta_{1}+\cdots+d_{r} \beta_{r}: d_{1}, \ldots, d_{r} \in \mathcal{D}\right\}
$$

was studied in [10-12], that is, $f(\xi)$ 'misses' the digits in $\boldsymbol{F}_{p} \backslash \mathcal{D}$. It is straightforward to extend these results combining our approach with certain bounds on character sums to estimate the number of $\xi \in \boldsymbol{F}_{q}$ with

$$
f\left(\xi+\alpha_{i}\right) \in\left\{d_{1} \beta_{1}+\cdots+d_{r} \beta_{r}: d_{1}, \ldots, d_{r} \in \mathcal{D}\right\}, \quad i=1, \ldots, s
$$

For example, for $\mathcal{D}=\{0, \ldots, t-1\}$ we can use the bound on exponential sums of [13].
Instead of restricting the set of digits we may restrict the set of ξ. That is, for a subset \mathcal{S} of \boldsymbol{F}_{q} we are interested in the number of solutions $\xi \in \mathcal{S}$ of

$$
\left(T\left(f\left(\xi+\alpha_{1}\right)\right), \ldots, T\left(f\left(\xi+\alpha_{s}\right)\right)\right)=\mathbf{c}
$$

for any fixed $\mathbf{c} \in \boldsymbol{F}_{p}^{s}$. Typical choices of \mathcal{S} are 'boxes' $[13,14]$ and 'consecutive' elements [15].

7.3 Optimality and prescribed digits

Swaenepoel [16] improved the bound (1) of [2] in the case when the polynomial $f(X)$ has degree 2 or is a monomial. In particular, for $s=1$ and $d=2$ the improved bound of [16] is optimal. She also generalized (1) to several polynomials with \boldsymbol{F}_{p}-linearly independent leading coefficients [16, Theorem 1.5].
Moreover, in [17] Swaenepoel studied the number of solutions $\xi \in \boldsymbol{F}_{q}$ for which some of the digits of $f(\xi)$ are prescribed, that is, for given $\mathcal{I} \subset\{1, \ldots, r\}$ and given $c_{i} \in \boldsymbol{F}_{p}, i \in \mathcal{I}$, the number of $\xi \in \boldsymbol{F}_{q}$ with

$$
\operatorname{Tr}\left(\delta_{i} f(\xi)\right)=c_{i}, \quad i \in \mathcal{I}
$$

7.4 Related work on pseudorandom number generators

Some of the ideas of the proofs in this paper are based on earlier work on nonlinear, in particular, inversive pseudorandom number generators, see [18-20].

More precisely, in [20] the q-periodic sequence $\left(\eta_{n}\right)$ over \boldsymbol{F}_{q} defined by

$$
\eta_{n_{1}+n_{2} p+\cdots+n_{r} p^{r-1}}=f\left(n_{1} \beta_{1}+\cdots+n_{r} \beta_{r}\right), \quad 0 \leq n_{1}, \ldots, n_{r}<p
$$

passes the s-dimensional lattice test if s polynomials of the form

$$
f\left(X+\alpha_{j}\right)-f\left(\alpha_{j}\right), \quad j=1, \ldots, s
$$

are \boldsymbol{F}_{q}-linearly independent. However, in the proofs of this paper we need that they are linearly independent (resp. dependent) over \boldsymbol{F}_{p}.
To prove Theorem 2 for $d<p$, the method of [19] can be easily adjusted using [19, Lemma 2]. However, for $d \geq p$ we had to use a different approach since [19, Lemma 2] is not applicable in this case.

Finally, in the proof of [18, Theorem 4] we showed that polynomials of the form $F_{a_{1}, \ldots, a_{s}}(X)$ can only be identical 0 if $a_{1}=\cdots=a_{s}=0$. However, in the proof of Theorem 3 we had to show that $F_{a_{1}, \ldots, a_{s}}(X)$ is not of the form $g(X)^{p}-g(X)+c$ and we had to modify the idea of [18].

7.5 Rudin-Shapiro function

The Rudin-Shapiro sequence $\left(r_{n}\right)$ is defined by

$$
r_{n}=\sum_{i=0}^{\infty} n_{i} n_{i+1}, \quad n=0,1, \ldots
$$

if

$$
n=\sum_{i=0}^{\infty} n_{i} 2^{i}, \quad n_{0}, n_{1}, \ldots \in\{0,1\} .
$$

Müllner showed that the Rudin-Shapiro sequence along squares $\left(r_{n^{2}}\right)$ is normal [21].
The Rudin-Shapiro function $R(\xi)$ for the finite field \boldsymbol{F}_{q} with respect to the ordered basis $\left(\beta_{1}, \ldots, \beta_{r}\right)$ is defined as

$$
R(\xi)=\sum_{i=1}^{r-1} x_{i} x_{i+1}, \quad \xi=x_{1} \beta_{1}+x_{2} \beta_{2}+\cdots+x_{r} \beta_{r}, \quad x_{1}, \ldots, x_{r} \in \boldsymbol{F}_{p}
$$

For $f(X) \in \boldsymbol{F}_{q}[X]$ and $c \in \boldsymbol{F}_{p}$ let

$$
\mathcal{R}(c, f)=\left\{\xi \in \boldsymbol{F}_{q}: R(f(\xi))=c\right\} .
$$

It seems to be not possible to use character sums to estimate the size of $\mathcal{R}(c, f)$. However, in [22] the Hooley-Katz Theorem, see [23, Theorem 7.1.14] or [24] was used to show that if $d=\operatorname{deg}(f) \geq 1$,

$$
\left|\mathcal{R}(c, f)-p^{r-1}\right| \leq C_{r, d} p^{\frac{3 r+1}{4}}
$$

where $C_{r, d}$ is a constant depending only on r and d. In particular, we have for fixed d and $r \geq 6$,

$$
\lim _{p \rightarrow \infty} \frac{|\mathcal{R}(c, f)|}{p^{r-1}}=1
$$

that is, $R(f)$ is p-normal for $s=1$ and $r \geq 6$.
However, we are not aware of a result on the r-normality of $R(f)$.

Acknowledgements

The authors are partially supported by the Austrian Science Fund FWF Project P 30405. They wish to thank the anonymous referee for very useful suggestions.

Funding Open access funding provided by Johannes Kepler University Linz.

Author details

${ }^{1}$ Research Institute for Symbolic Computation, Altenberger Str. 69, 4040 Linz, Austria, ${ }^{1}$ Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenberger Str. 69, 4040 Linz, Austria.

Received: 5 October 2021 Accepted: 1 May 2022 Published online: 12 June 2022

References

1. Drmota, M., Mauduit, C., Rivat, J.: Normality along squares. J. Eur. Math. Soc. 21(2), 507-548 (2019). https://doi.org/10. 4171/JEMS/843
2. Dartyge, C., Sárközy, A.: The sum of digits function in finite fields. Proc. Am. Math. Soc. 141(12), 4119-4124 (2013). https://doi.org/10.1090/S0002-9939-2013-11801-0
3. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications, p. 407. Cambridge University Press, Cambridge (1986)
4. Schmidt, W.M.: Equations over Finite Fields. An Elementary Approach. Lecture Notes in Mathematics, vol. 536, p. 276. Springer, Berlin (1976)
5. Weil, A.: On some exponential sums. Proc. Natl Acad. Sci. USA 34, 204-207 (1948). https://doi.org/10.1073/pnas.34.5. 204
6. Moreno, C.J., Moreno, O.: Exponential sums and Goppa codes. I. Proc. Am. Math. Soc. 111 (2), 523-531 (1991). https:// doi.org/10.2307/2048345
7. Lucas, E.: Theorie des Fonctions Numeriques Simplement Periodiques. Am. J. Math. 1(2), 184-196 (1878). https://doi. org/10.2307/2369308
8. Niederreiter, H., Winterhof, A.: Applied Number Theory, p. 442. Springer, Berlin (2015). https://doi.org/10.1007/ 978-3-319-22321-6
9. Fine, N.J.: Binomial coefficients modulo a prime. Am. Math. Mon. 54, 589-592 (1947). https://doi.org/10.2307/2304500
10. Dartyge, C., Mauduit, C., Sárközy, A.: Polynomial values and generators with missing digits in finite fields. Funct. Approx. Comment. Math. 52(1), 65-74 (2015). https://doi.org/10.7169/facm/2015.52.1.5
11. Dietmann, R., Elsholtz, C., Shparlinski, I.E.: Prescribing the binary digits of squarefree numbers and quadratic residues. Trans. Am. Math. Soc. 369(12), 8369-8388 (2017). https://doi.org/10.1090/tran/6903
12. Gabdullin, M.R.: On the squares in the set of elements of a finite field with constraints on the coefficients of its basis expansion. Mat. Zametki 100(6), 807-824 (2016). https://doi.org/10.4213/mzm11091
13. Konyagin, S.V.: Estimates for character sums in finite fields. Mat. Zametki 88(4), 529-542 (2010). https://doi.org/10. 1134/S0001434610090221
14. Davenport, H., Lewis, D.J.: Character sums and primitive roots in finite fields. Rend. Circ. Mat. Palermo 2(12), 129-136 (1963). https://doi.org/10.1007/BF02843959
15. Winterhof, A.: Incomplete additive character sums and applications. In: Finite Fields and Applications (Augsburg, 1999), pp. 462-474. Springer, Berlin (2001)
16. Swaenepoel, C.: On the sum of digits of special sequences in finite fields. Mon. Math. 187(4), 705-728 (2018). https:// doi.org/10.1007/s00605-017-1148-5
17. Swaenepoel, C.: Prescribing digits in finite fields. J. Number Theory 189, 97-114 (2018). https://doi.org/10.1016/j.jnt. 2017.11.012
18. Meidl, W., Winterhof, A.: On the linear complexity profile of explicit nonlinear pseudorandom numbers. Inf. Process. Lett. 85(1), 13-18 (2003). https://doi.org/10.1016/S0020-0190(02)00335-6
19. Niederreiter, H., Winterhof, A.: Incomplete exponential sums over finite fields and their applications to new inversive pseudorandom number generators. Acta Arith. 93(4), 387-399 (2000). https://doi.org/10.4064/aa-93-4-387-399
20. Niederreiter, H., Winterhof, A.: On the lattice structure of pseudorandom numbers generated over arbitrary finite fields. Appl. Algebra Eng. Commun. Comput. 12(3), 265-272 (2001). https://doi.org/10.1007/s002000100074
21. Müllner, C.: The Rudin-Shapiro sequence and similar sequences are normal along squares. Can. J. Math. 70(5), 1096-1129 (2018). https://doi.org/10.4153/CJM-2017-053-1
22. Dartyge, C., Mérai, L., Winterhof, A.: On the distribution of the Rudin-Shapiro function for finite fields. Proc. Am. Math. Soc. 149(12), 5013-5023 (2021). https://doi.org/10.1090/proc/15668
23. Mullen, G.L. (ed.): Handbook of Finite Fields. Discrete Mathematics and Its Applications (Boca Raton), p. 1033. CRC Press, Boca Raton (2013). https://doi.org/10.1201/b15006
24. Hooley, C.: On the number of points on a complete intersection over a finite field. J. Number Theory 38(3), 338-358 (1991). https://doi.org/10.1016/0022-314X(91)90023-5 (With an Appendix by Nicholas M. Katz)

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

