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Abstract

Let Fq be the finite field of q elements, where q = pr is a power of the prime p, and
(β1,β2, . . . ,βr ) be an ordered basis of F q over Fp. For

ξ =
r∑

i=1

xiβi , xi ∈ Fp,

we define the Thue–Morse or sum-of-digits function T (ξ ) on F q by

T (ξ ) =
r∑

i=1

xi .

For a given pattern length s with 1 ≤ s ≤ q, a vector α = (α1, . . . ,αs) ∈ F s
q with

different coordinates αj1 �= αj2 , 1 ≤ j1 < j2 ≤ s, a polynomial f (X ) ∈ F q[X ] of degree d
and a vector c = (c1, . . . , cs) ∈ F s

p we put

T (c,α, f ) = {ξ ∈ Fq : T (f (ξ + αi)) = ci , i = 1, . . . , s}.
In this paper we will see that under some natural conditions, the size of T (c,α, f ) is
asymptotically the same for all c and α in both cases, p → ∞ and r → ∞, respectively.
More precisely, we have

∣∣|T (c,α, f )| − pr−s
∣∣ ≤ (d − 1)q1/2

under certain conditions on d, q and s. For monomials of large degree we improve this
bound as well as we find conditions on d, q and s for which this bound is not true. In
particular, if 1 ≤ d < p we have the dichotomy that the bound is valid if s ≤ d and for
s ≥ d + 1 there are vectors c and α with T (c,α, f ) = ∅ so that the bound fails for
sufficiently large r . The case s = 1 was studied before by Dartyge and Sárközy.

Keywords: Finite fields, Polynomial equations, Thue–Morse function, Exponential
sums, Sum of digits, Normality
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1 Introduction
1.1 The problem for binary sequences

For positive integersM and s, a binary sequence (an) and a binary pattern

Es = (ε0, . . . , εs−1) ∈ {0, 1}s
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of length s we denote by N (an,M, Es) the number of n with 0 ≤ n < M and
(an, an+1, . . . , an+s−1) = Es. The sequence (an) is normal if for any fixed s and any pattern
Es of length s,

lim
M→∞

N (an,M, Es)
M

= 1
2s
.

The Thue–Morse or sum-of-digits sequence (tn) is defined by

tn =
∞∑

i=0
ni mod 2, n = 0, 1, . . .

if

n =
∞∑

i=0
ni2i, n0, n1, . . . ∈ {0, 1},

is the binary expansion of n. Recently, Drmota et al. [1] showed that the Thue–Morse
sequence along squares, that is, (tn2 ) is normal. It is conjectured but not proved yet that the
subsequence of theThue–Morse sequence along anypolynomial of degreed ≥ 3 is normal
as well, see [1, Conjecture 1]. Even the weaker problem of determining the frequency of
0 and 1 in the subsequence of the Thue–Morse sequence along any polynomial of degree
d ≥ 3 seems to be out of reach, see [1, above Conjecture 1].
However, the analog of the latter weaker problem for the Thue–Morse sequence in the

finite field setting was settled by Dartyge and Sárközy [2].

1.2 The analog for finite fields

This paper deals with the following analog of the normality problem. Let q = pr be the
power of a prime p and

B = (β1, . . . ,βr )

be an ordered basis of the finite field Fq over Fp. Then any ξ ∈ Fq has a unique represen-
tation

ξ =
r∑

j=1
xjβj with xj ∈ Fp, j = 1, . . . , r.

The coefficients x1, . . . , xr are called the digits with respect to the basis B.
Dartyge and Sárközy [2] introduced the Thue–Morse or sum-of-digits function T (ξ ) for

the finite field Fq with respect to the basis B:

T (ξ ) =
r∑

i=1
xi, ξ = x1β1 + · · · + xrβr ∈ Fq.

Note that T is a linear map from Fq to Fp. Actually, we can take any non-trivial linear
map

T (ξ ) = Tr(δξ ), δ ∈ F∗
q,

from Fq to Fp without changing our results or proofs below, where the trace Tr is defined
by (7).
For a given pattern length s with 1 ≤ s ≤ q, a vector

α = (α1, . . . ,αs) ∈ F s
q, αj1 �= αj2 , 1 ≤ j1 < j2 ≤ s,
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with different coordinates, a polynomial f (X) ∈ Fq[X] and a vector c = (c1, . . . , cs) ∈ F s
p

we put

T (c,α, f ) = {ξ ∈ Fq : T (f (ξ + αi)) = ci, i = 1, . . . , s}.
In [2] the Weil bound, see Lemma 1, was used to bound the cardinality of T (c,α, f )
for s = 1:
Let f (X) ∈ Fq[X] be a polynomial of degree d. Then for all c ∈ Fp

∣∣|T (c, f )| − pr−1∣∣ ≤ (d − 1)q1/2, gcd(d, p) = 1, (1)

where

T (c, f ) = {ξ ∈ Fq : T (f (ξ )) = c}.
Note that the condition gcd(d, p) = 1 can be relaxed to the condition that f (X) is not of
the form g(X)p − g(X)+ c for some g(X) ∈ Fq[X] and c ∈ Fq . For example, f (X) = Xp is
not of the form g(X)p − g(X) + c but does not satisfy gcd(d, p) = 1.
Our goal is to prove that, under some natural conditions, the size of T (c,α, f ) is asymp-

totically the same for all c and α.

1.3 Results of this paper

First we study monomials and prove the following result in Sect. 4.

Theorem 1 Let d be any integer with 1 ≤ d < q with unique representation

d = (d0 + d1p + · · · + dn−1pn−1) gcd(d, q)

where

1 ≤ n ≤ r − log(gcd(d, q))
log p

, 0 ≤ di < p, i = 0, . . . , n − 1, d0dn−1 �= 0.

Let denote by

fd(X) = Xd ∈ Fq[X]

the monomial of degree d.
1. For n ≥ 2, assume

dm = dm+1 = · · · = dm+k−1 = p − 1

for some m and k with

1 ≤ m ≤ m + k ≤ n − 1.

For any positive integer

s ≤
{
(dm+k + 1)(pk − pk−1), n ≥ 2 and k ≥ 1,
d0, n = 1 or k = 0,

(2)

any vector α ∈ F s
q with αj1 �= αj2 for 1 ≤ j1 < j2 ≤ s, and any c ∈ F s

p we have

∣∣|T (c,α, fd)|−pr−s∣∣ ≤
(

d
gcd(d, q)

− 1
)
q1/2.

2. Conversely, if

(d0 + 1)(d1 + 1) · · · (dn−1 + 1) ≤ p, (3)
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for any integer s with

q ≥ s ≥ (d0 + 1)(d1 + 1) · · · (dn−1 + 1), (4)

there is a vector α ∈ F s
q with αj1 �= αj2 , 1 ≤ j1 < j2 ≤ s, and a vector c ∈ F s

p for which
T (c,α, fd) is empty.
3. For any s with

q ≥ s > ((d0 + 1)(d1 + 1) · · · (dn−1 + 1) − 1)r (5)

and any vector α ∈ F s
q there is a vector c ∈ F s

p for which T (c,α, fd) is empty.

For d < p we have the following dichotomy:

Corollary 1 Assume 1 ≤ d < p.
For s ≤ d we have for any vector α ∈ F s

q with αj1 �= αj2 , 1 ≤ j1 < j2 ≤ s, and any c ∈ F s
p

∣∣|T (c,α, fd)|−pr−s∣∣ ≤ (d − 1)q1/2.

For s with q ≥ s > d there is a vector α ∈ F s
q with αj1 �= αj1 , 1 ≤ j1 < j2 ≤ s, and a

vector c ∈ F s
p for which T (c,α, fd) is empty.

Theorem 1 provides two asymptotic formulas for |T (c,α, Xd)| for r → ∞ and p → ∞,
respectively.
Assume that p, j, n, d = (d0 + d1p + · · · + dn−1pn−1)pj and s satisfying (2) are fixed.

Then we have

lim
r→∞

|T (c,α, fd)|
pr−s = 1

for any vectors c ∈ F s
p and α ∈ F s

q with αj1 �= αj2 , 1 ≤ j1 < j2 ≤ s. We may say that T (fd)
is r-normal if (2) is satisfied.
Assume that j = 0 and d, r and s are fixed with 1 ≤ s ≤ min{d, 
(r − 1)/2�}. Then we

have

lim
p→∞

|T (c,α, fd)|
pr−s = 1

for any c ∈ F s
p and α ∈ F s

q with αj1 �= αj2 , 1 ≤ j1 < j2 ≤ s. We may say that T (fd)
is p-normal for 1 ≤ s ≤ min{d, 
(r − 1)/2�}.
Theorem 1 is only non-trivial for small degrees. However, for very large degrees we

prove the following non-trivial result in Sect. 5.

Theorem 2 Let fq−1−d(X) = Xq−1−d be amonomial of degree q−1−d with1 ≤ d < q−1.
Then for any α ∈ F s

q with αj1 �= αj2 , 1 ≤ j1 < j2 ≤ s, and any c ∈ F s
p, we have

|| T (c,α, fq−1−d) | −pr−s |≤
((

d
gcd(d, q)

+ 1
)
s − 2

)
q1/2 + s + 1.

Note that with the convention 0−1 = 0 we have

ξq−1−d = ξ−d for any ξ ∈ Fq

and can identify the monomial fq−1−d(X) = Xq−1−d with the rational function f−d(X) =
X−d . However, the latter representation is independent of q and we can state two asymp-
totic formulas for |T (c,α, f−d)| as well.
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For any fixed d, p and s we have

lim
r→∞

|T (c,α, f−d)|
pr−s = 1,

that is, T (f−d) is r-normal.
For any fixed d, s and r with 1 ≤ s ≤ 
(r − 1)/2� we have

lim
p→∞

|T (c,α, f−d)|
pr−s = 1,

that is, T (f−d) is p-normal for 1 ≤ s ≤ 
(r − 1)/2�.
Finally, we extend our results to arbitrary polynomials in Sect. 6.

Theorem 3 Let d be any integer with 1 ≤ d < q and gcd(d, q) = 1. Let f (X) ∈ Fq[X] be
any polynomial of degree d.
1. Denote d0 ≡ d mod p, 1 ≤ d0 < p. For any integer s with

1 ≤ s ≤ d0,

any α ∈ F s
q with αj1 �= αj2 , 1 ≤ j1 < j2 ≤ s, and any c ∈ F s

p we have
∣∣|T (c,α, f )|−pr−s∣∣ ≤ (d − 1)q1/2.

2. Conversely, if f (X) ∈ Fp[X] and d < p, then for any integer s with

q ≥ s ≥ d + 1,

there is α ∈ F s
q with αj1 �= αj2 , 1 ≤ j1 < j2 ≤ s, and c ∈ F s

p for which T (c,α, f ) is empty.
3. For any f (X) ∈ Fq[X], any s with

q ≥ s > dr

and any α ∈ F s
q there is a vector c ∈ F s

p for which T (c,α, f ) is empty.

We give examples of degree d with gcd(d, p) > 1 and T (c,α, f ) = ∅ for any s ≥ 1 in
Sect. 7.1.
Again, for f (X) ∈ Fp[X] and 1 ≤ d < p we have a dichotomy.
Moreover, for any fixed d, p and s with gcd(d, q) = 1 and 1 ≤ s ≤ d0 and any f (X) ∈

Fp[X] of degree d, T (f ) is r-normal. Note that any f (X) ∈ Fp[X] is an element of Fpr [X]
for r = 1, 2, . . .
For fixed d, r and s with 1 ≤ s ≤ min{d, 
(r − 1)/2�} and any f (X) ∈ Z[X] of degree

d, T (f ) is p-normal. Here f (X) ∈ Z[X] can be identified with an element of Fp[X] for all
primes p.
We start with a section on preliminary results used in the proofs. Then we show that

∣∣|T (c,α, f )|−pr−s∣∣ ≤ (deg(f ) − 1)q1/2 (6)

under certain conditions in Sect. 3. In Sects. 4 to 6 we show that these conditions are
fulfilled under the assumptions of our theorems. We finish the paper with some remarks
on related work in Sect. 7.

2 Preliminary results
We start with the Weil bound, see [3, Theorem 5.38 and comments below], [4, Theorem
2E] or [5].
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Lemma 1 Let ψ be the additive canonical character of the finite field Fq, and f (X) be a
polynomial of degree d ≥ 1 over Fq, which is not of the form g(X)p − g(X) + c for some
polynomial g(X) ∈ Fq[X] and c ∈ Fq. Then we have

∣∣∣∣∣∣

∑

ξ∈Fq

ψ (f (ξ ))

∣∣∣∣∣∣
≤ (d − 1)q1/2.

We also use the analog of the Weil bound for rational functions

f (X)
g(X)

∈ Fq(X)

of Moreno and Moreno [6, Theorem 2]. We only need the special case that deg(f ) ≤
deg(g).

Lemma 2 Let ψ be a nontrivial additive character of Fq and let f (X)
g(X) ∈ Fq(X) be a

rational function over Fq. Let s be the number of distinct roots of the polynomial g(X) in
the algebraic closure Fq of Fq. Suppose that f (X)

g(X) is not of the form H (X)p − H (X), where
H (X) is a rational function over Fq. If deg(f ) ≤ deg(g), then we have

∣∣∣∣∣∣

∑

ξ∈Fq ,g(ξ ) �=0
ψ

(
f (ξ )
g(ξ )

)∣∣∣∣∣∣
≤ (deg(g) + s − 2)√q + 1.

Note that g(X)p − g(X)+ c with g(X) ∈ Fq(X) and c ∈ Fq can be written as h(X)p − h(X)
for h(X) = g(X) + γ ∈ Fq(X), where γ ∈ Fq is a zero of the polynomial Xp − X − c.
Next we state Lucas’ congruence, see [7] or [8, Lemma 6.3.10].

Lemma 3 Let p be a prime. If m and n are two natural numbers with p-adic expansions

m = mr−1pr−1 + mr−2pr−2 + · · · + m1p + m0, 0 ≤ m0, . . . , mr−1 < p,

and

n = nr−1pr−1 + nr−2pr−2 + · · · + n1p + n0, 0 ≤ n0, . . . , nr−1 < p,

then we have
(
m
n

)
≡

r−1∏

j=0

(
mj
nj

)
mod p.

As a consequence of Lucas’ congruence we can count the number of nonzero binomials
coefficients

(m
n
)
mod p for fixedm. Indeed, by Lucas’ congruence

(
m
n

)
�≡ 0 mod p if and only if

(
mj
nj

)
�≡ 0 mod p for j = 0, . . . , r − 1,

or equivalently,

0 ≤ nj ≤ mj for j = 0, . . . , r − 1.

Therefore, we have the following result of Fine [9, Theorem 2]:

Lemma 4 Let p be a prime and m an integer with p-adic expansion

m = mr−1pr−1 + mr−2pr−2 + · · · + m1p + m0, 0 ≤ m0, . . . , mr−1 < p.
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Then the number of nonzero binomial coefficients
(m
n
)
mod p with 0 ≤ n ≤ m is

r−1∏

j=0
(mj + 1).

3 Trace, dual basis and exponential sums
Let

Tr(ξ ) =
r−1∑

i=0
ξp

i ∈ Fp (7)

denote the (absolute) trace of ξ ∈ Fq . Let (δ1, . . . , δr) denote the (existent and unique)
dual basis of the basis B = (β1, . . . ,βr) of Fq , see for example [3], that is,

Tr(δiβj) =
⎧
⎨

⎩
1 if i = j,

0 if i �= j,
1 ≤ i, j ≤ r.

Then we have

Tr(δiξ ) = xi for any ξ =
r∑

j=1
xjβj ∈ Fq with xj ∈ Fp,

and

T (ξ ) = Tr(δξ ), where δ =
r∑

i=1
δi.

Note that

δ �= 0

since δ1, . . . , δr are linearly independent. Note that we don’t have to restrict ourselves to
this special choice of δ and T but can deal with any non-trivial linear map

T (ξ ) = Tr(δξ ), δ ∈ F∗
q,

from Fq to Fp.
Put

ep(x) = exp
(
2π ix
p

)
for x ∈ Fp.

Since
∑

a∈Fp

ep(ax) =
{
0, x �= 0,
p, x = 0,

x ∈ Fp,

we get

|T (c,α, f )| = 1
ps

∑

ξ∈Fq

s∏

i=1

∑

a∈Fp

ep (a(T (f (ξ + αi)) − ci))

= 1
ps

∑

a1 ,...,as∈Fp

∑

ξ∈Fq

ep

( s∑

i=1
ai(T (f (ξ + αi)) − ci)

)
.

Separating the term for a1 = · · · = as = 0 we get

∣∣|T (c,α, f )|−pr−s∣∣ ≤ max
(a1 ,...,as) �=(0,...,0)

∣∣∣∣∣∣

∑

ξ∈Fq

ψ(Fa1 ,...,as (ξ ))

∣∣∣∣∣∣
, (8)
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where

ψ(ξ ) = ep(Tr(ξ ))

denotes the additive canonical character of Fq and

Fa1 ,...,as (X) = δ

s∑

i=1
aif (X + αi). (9)

If Fa1 ,...,as (X) is not of the form g(X)p − g(X) + c for any (a1, . . . , as) �= (0, . . . , 0), then
the Weil bound, Lemma 1, can be applied and yields (6).

4 Monomials fd(X ) = Xd

Now we study the special case

f (X) = fdpj (X) = Xdpj with gcd(d, p) = 1 and j = 0, 1, . . .

Put αk = (αk
1 , . . . ,αk

s ). Since (X +α)dpj = (Xpj +αpj )d and ξ �→ ξp
j permutes Fq we have

∣∣∣T (c,α, fdpj )
∣∣∣ =

∣∣∣T (c,αpj , fd)
∣∣∣

and we may assume j = 0. Since

ξq = ξ for all ξ ∈ Fq

we may restrict ourselves to the case d < q.
To prove the first part of Theorem 1 we have to show that (6) is applicable. By (9) with

f (X) = fd(X) = Xd

we have

Fa1 ,...,as (X) = δ

s∑

i=1
ai(X + αi)d

and thus

F ′
a1 ,...,as (X) = δd

d−1∑


=0

(
d − 1




) ( s∑

i=1
aiα


i

)
Xd−
−1. (10)

Assume that for some (a1, . . . , as) ∈ F s
p \ {(0, . . . , 0)} we have

Fa1 ,...,as (X) = g(X)p − g(X) + c

for some polynomial g(X) ∈ Fq[X] and some constant c ∈ Fq . We have

either Fa1 ,...,as (X) = const or 1 ≤ deg(Fa1 ,...,as ) ≡ 0 mod p (11)

and

F ′
a1 ,...,as (X) = −g ′(X).

Then either

F ′
a1 ,...,as (X) = 0, (12)

deg(F ′
a1 ,...,as ) < deg(g) = deg(Fa1 ,...,as )

p
. (13)

Let

d = d0 + d1p + · · · + dr−1pr−1, 0 ≤ d0, . . . , dr−1 < p, d0 �= 0,
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be the p-adic expansion of d. Assume that there are k ≥ 0 consecutive digits

dm = dm+1 = · · · = dm+k−1 = p − 1, 1 ≤ m ≤ m + k ≤ r − 1,

of maximal size and

s ≤
{
(dm+k + 1)(pk − pk−1), k ≥ 1,
d0, k = 0.

Note that deg(Fa1 ,...,as ) ≤ d − d0 by (11) with the convention deg(0) = −1. In both cases,
(12) and (13), the coefficients of F ′

a1 ,...,as (X) at X
d−1−
 are zero for 
 = 0, . . . , d − (d −

d0)/p − 1. Since δd �= 0 we get from (10)
(
d − 1




)( s∑

i=1
aiα


i

)
= 0, 
 = 0, . . . , d − (d − d0)/p − 1. (14)

By Lucas’ congruence, Lemma 3, we have
(
d − 1




)
≡

(
d0 − 1




)
�≡ 0 mod p, 
 = 0, . . . , d0 − 1, (15)

as well as(
d − 1
pm


)
�≡ 0 mod p, 
 = 0, . . . , (dm+k + 1)pk − 1, (16)

since

d − 1 = e0 + (p − 1)(pm + · · · + pm+k−1) + dm+kpm+k + e1pm+k+1

for some

0 ≤ e0 < pm, 0 ≤ e1 < pr−k−m−1,

and

pm
 = 
0pm + · · · + 
k−1pm+k−1 + 
kpm+k

for some

0 ≤ 
0, . . . , 
k−1 < p, 0 ≤ 
k ≤ dm+k ,

and any 0 ≤ 
 ≤ (dm+k + 1)pk − 1.
Note that

d − d − d0
p

− 1 ≥ (d − 1)
(
1 − 1

p

)
≥ ((dm+k + 1)pk − 1)

(
1 − 1

p

)
pm

≥ ((dm+k + 1)(pk − pk−1) − 1)pm, k ≥ 1.

Combining (14) with (15) and (16), respectively, we get
s∑

i=1
aiα


i = 0, 
 = 0, . . . d0 − 1, (17)

and
s∑

i=1
aiα

pm


i , 
 = 0, . . . , (dm+k + 1)(pk − pk−1) − 1, k ≥ 1, (18)

respectively.
Hence, if s ≤ d0 (n = 1 or k = 0) or s ≤ (dm+k + 1)(pk − pk−1) (n ≥ 2 and k ≥ 1), the

s × s coefficient matrix of the equations for 
 = 0, . . . , s − 1 of (17) or (18), respectively,
is an invertible Vandermonde matrix and we get

ai = 0, i = 1, . . . , s,
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contradicting (a1, . . . , as) ∈ F s
p \ {(0, . . . , 0)}. For the second case we used that ξ �→ ξp

m

permutes Fq and the α
pm
i , i = 1, . . . , s, are pairwise distinct.

Proof of the second part of Theorem 1: now assume d < pn for some n with 1 ≤ n ≤ r,
that is, dn = · · · = dr−1 = 0, and assume (3) and (4). Let D be the number of binomial
coefficients

(d



)
, 
 = 1, . . . , d, which are nonzero modulo p. By Lemma 4 we have

D = (d0 + 1) · · · (dn−1 + 1) − 1.

For any α ∈ Fq the polynomial

(X + α)d − αd =
d−1∑


=0

(
d



)
α
Xd−


is in the vector space generated by the monomials Xd−
 with nonzero
(d



)
mod p, 
 =

0, . . . , d−1, of dimensionD. ForD < s ≤ q and any (α1, . . . ,αs) ∈ F s
q there is a nontrivial

linear combination
s∑

i=1
ρi

(
(X + αi)d − αd

i

)
= 0

of the zero polynomial with (ρ1, . . . , ρs) ∈ F s
q \ {(0, . . . , 0)}. If D < s ≤ p and we take

αi ∈ Fp, i = 1, . . . , s, then we may assume ρi = ai ∈ Fp and
s∑

i=1
aiTr

(
δ
(
(ξ + αi)d − αd

i

))
= 0 for all ξ ∈ Fq.

Taking (a1, . . . , as) ∈ F s
p \{(0, . . . , 0)} from the previous step, the vector space of solutions

(c1, . . . , cs) ∈ F s
p of the equation

a1c1 + · · · + ascs = 0

is of dimension s − 1. More precisely, the mapping

ϕ : F s
p → Fp, ϕ(1, . . . , cs) = a1c1 + · · · + ascs

is surjective since (a1, . . . , as) is not the zero vector. By the rank-nullity theorem its kernel
is of dimension s − 1.
That is, not all c = (c1, . . . , cs) ∈ F s

p are attained as

c =
(
Tr

(
δ
(
(ξ + αi)d − αd

i

)))s
i=1

for any ξ ∈ Fq , namely those c which are not in the kernel of ϕ. We can extend this
argument to s > p by extending (a1, . . . , ap) ∈ Fp

p \ {(0, . . . , 0)} to (a1, . . . , ap, 0, . . . , 0) ∈
F s
p \ {(0, . . . , 0)}.
Proof of the third part of Theorem 1: now we drop the condition (3) but then s has to

satisfy the stronger condition (5) instead of (4). We extend the definition of the trace to
polynomials f (X) ∈ Fpr [X],

Tr(f (X)) =
r−1∑

j=0
f (X)p

j
.

For each α ∈ Fq we have

Tr(δ((X + α)d − αd)) =
d−1∑


=0

(
d



)
Tr(δα
Xd−
),
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since the trace is Fp-linear, and thus it lies in the Fp-linear space generated by the poly-
nomials Tr(βiXd−
) with nonzero

(d



)
modulo p, i = 1, . . . , r, 
 = 1, . . . , d, of dimension

at most Dr, where {β1, . . . ,βr} is a basis of Fq over Fp. Now let s > Dr, then for any
α = (α1, . . . αs) ∈ F s

q consider the set of polynomials
{
Tr(δ((X + αi)d − αd

i )) : i = 1, . . . , s
}
.

Since s > Dr there is a nontrivial Fp-linear combination
s∑

i=1
aiTr(δ((X + αi)d − αd

i )) = 0

of the zero polynomial. Now consider the linear subspace of solutions (c1, . . . , cs) ∈ F s
p of

the equation a1c1+· · ·+ascs = 0 which is of dimension s−1. Let c ∈ F s
p be a point which

does not lie in this linear subspace, then c is not attained as c = (Tr(δ((ξ +αi)d −αd
i )))

s
i=1

for any ξ ∈ Fq .

5 Rational functions f−d(X ) = X−d

Let fq−d−1(X) = Xq−1−d be amonomial of degree q−d−1, where 1 ≤ d < q−1.With the
convention 0−1 = 0 we can identify fq−d−1(X) with the rational function f−d(X) = X−d .
Let gcd(d, q) = pj . Since

(X + α)−pj = (Xpj + αpj )−1

and ξ �→ ξp
j permutes Fq we have

∣∣∣T (c,α, f−dpj )
∣∣∣ =

∣∣∣T (c,αpj , f−d)
∣∣∣

and may restrict ourselves to the case gcd(d, q) = 1, that is,

d = d0 + t1p, where 1 ≤ d0 < p.

We first show that there is no nonzero s-tuple

(a1, . . . , as) ∈ F s
p \ {(0, . . . , 0)}

such that

Fa1 ,...,as (X) =
s∑

i=1
ai(X + αi)−d = H (X)p − H (X)

for any rational function H (X) ∈ Fp(X). We have

Fa1 ,...,as (X) = f (X)
g(X)

,

where

f (X) = δ

s∑

j=1
aj

∏

i �=j
(X + αi)d

and

g(X) =
s∏

i=1
(X + αi)d.

Suppose to the contrary that there exists a rational function

H (X) = u(X)
v(X)

∈ Fp(X) with gcd(u, v) = 1 and v(X) is monic
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satisfying

Fa1 ,...,as (X) = H (X)p − H (X).

Therefore, we have

f (X)
g(X)

= u(X)p

v(X)p
− u(X)

v(X)
. (19)

Clearing denominators we obtain

f (X)v(X)p = (u(X)p − u(X)v(X)p−1)g(X)

and thus v(X)p divides g(X), hence

v(X) =
s∏

i=1
(X + αi)ei for some 0 ≤ ei ≤ t1, i = 1, . . . , s.

Now by taking derivatives of both sides of (19) and clearing denominators we get

(f ′(X)g(X) − f (X)g ′(X))v(X)2 = (u(X)v′(X) − u′(X)v(X))g(X)2. (20)

Without loss of generality we may assume a1 �= 0, thus

f (−α1) = δa1
s∏

i=2
(αi − α1)d �= 0

and

X + α1 does not divide f (X).

Moreover, (X + α1)d−1 and (X + α1)d are the largest powers dividing g ′(X) and g(X),
respectively, that is,

(X + α1)d−1+2e1

is the largest power of (X + α1) dividing the left hand side of (20). Observing that g(X)2

and thus the right hand side of (20) is divisible by

(X + α1)2d

we get

d − 1 + 2e1 ≥ 2d

and thus

e1 ≥ d + 1
2

>
t1p
2

≥ t1,

which is a contradiction.
We showed that the conditions of Lemma 2 are satisfied and Theorem 2 follows from

(8) and Lemma 2 since
∣∣∣∣∣∣

∑

ξ∈Fq

ψ(Fa1 ,...,as (ξ ))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣

∑

ξ∈Fq\−α

ψ(Fa1 ,...,as (ξ ))

∣∣∣∣∣∣
+ s,

where −α = {−α1, . . . ,−αs}.
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6 Arbitrary polynomials
In this section we prove Theorem 3.
Let

f (X) =
d∑

j=0
γjXj ∈ Fq[X], γd �= 0,

be a polynomial of degree

d = d0 + t1p, 1 ≤ d0 < p, 0 ≤ t1 < q/p.

Proof of the first part: we have to show that (6) is applicable, that is, the polynomial
Fa1 ,...,as (X) definedby (9) is not of the form g(X)p−g(X)+c for any (a1, . . . , as) �= (0, . . . , 0).
Suppose the contrary that there exists an s-tuple

(a1, . . . , as) ∈ F s
p \ {(0, . . . , 0)}

such that the polynomial

Fa1 ,...,as (X) = δ

d∑


=0

⎛

⎝
d∑

j=


s∑

i=1
aiγj

(
j



)
α
j−


i

⎞

⎠X


can be written as

g(X)p − g(X) + c for some g(X) ∈ Fq[X] and c ∈ Fq.

We have either

Fa1 ,...,as (X) = 0

or

deg(Fa1 ,...,as ) ≡ 0 mod p.

Hence,

deg(Fa1 ,...,as ) ≤ d − d0,

where we used the convention deg(0) = −1. We conclude that the coefficients δR
 of
Fa1 ,...,as (X) at X
 vanish for 
 = d − d0 + 1, . . . , d. Since δ �= 0 we have

R
 =
d∑

j=


s∑

i=1
aiγj

(
j



)
α
j−


i = 0, 
 = (d − d0) + 1, . . . , d. (21)

Note that by Lucas’ congruence, Lemma 3,
(
d
r

)
≡

(
d0
r

)
�≡ 0 mod p, r = 0, . . . , d0. (22)

Define T
, 
 = 0, . . . d0 − 1, recursively by

T0 = Rd

and

T
 = Rd−
 − γ −1
d


−1∑

r=0
γd−
+r

(
r + d − 


d − 


)(
d
r

)−1
Tr, (23)

for 
 = 1, . . . , d0 − 1. Next we show that

T
 = γd

(
d



) s∑

i=1
aiα


i = 0, 
 = 0, . . . , d0 − 1. (24)
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For 
 = 0 the formula follows from (21) and for 
 = 1, . . . , d0 − 1 from (23) we get by
induction

T
 = Rd−
 −

−1∑

r=0
γd−
+r

(
r + d − 


d − 


) s∑

i=1
aiαr

i

and from (21)

T
 = γd

(
d



) s∑

i=1
aiα


i .

Moreover, we get

T
 = 0, 
 = 0, . . . , d0 − 1,

from (21), (23) again by induction.
By (24) and (22) we get since γd �= 0,

s∑

i=1
aiα


i = 0, 
 = 0, . . . , d0 − 1.

Thus for s ≤ d0, the (s × s)-coefficient matrix
(
α

i

)

i=1,...,s,
=0,1,...,s−1

of the system of the first s equations is a regular Vandermonde matrix and we get
(a1, . . . , as) = (0, . . . , 0), which is a contradiction.
For the second part of Theorem 3 we assume f (X) ∈ Fp[X] and notice that for any

α ∈ Fq the element f (X +α)− f (α) is in the vector space generated by the monomials Xi,
i = 1, . . . , d, of dimension d.
If d < s ≤ p, we can choose any α ∈ F s

p. Then

f (X + αi) − f (αi), i = 1, . . . , s,

are linearly dependent over Fp as well as

Tr(δ(f (X + αi) − f (αi))), i = 1, . . . , s,

that is,
s∑

i=1
aiTr(δ(f (X + αi) − f (αi))) = 0

for some (a1, . . . , as) ∈ F s
p \{(0, . . . , 0)} and the result follows since not all (c1, . . . , cs) ∈ F s

p
satisfy a1c1 + · · · + ascs = 0.
If d < p and s > p, we can choose (a1, . . . , ap) ∈ Fp

p \ {(0, . . . , 0)} as in the case s = p
and extend it to (a1, . . . , ap, ap+1, . . . , as) ∈ F s

p \ {(0, . . . , 0)} with ap+1 = · · · = as = 0.
Proof of the third part of Theorem 3: recall that {β1, . . . ,βr} is a basis of Fq over Fp.

Each δ(f (X + α) − f (α)) lies in the Fp-vector space generated by

δβjXi, j = 1, . . . , r, i = 1, . . . , d,

of dimension dr. The dimension of the vector space generated by

Tr(δβjXi) j = 1, . . . , r, i = 1, . . . , d,

is at most dr. If q ≥ s > dr, there is a nontrivial linear combination
s∑

i=1
aiTr(δ(f (X + αi) − f (αi))) = 0

for any α ∈ F s
q and the result follows.
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7 Final remarks
7.1 Examples for gcd(d, p) > 1 and T (c,α, f ) = ∅
Now we provide an example that if we drop the condition on s in part 1 of Theorem 3,
the restriction gcd(d, q) = 1, that is d0 ≥ 1, is needed.
Choose any f (X) of the form

f (X) = δ−1(g(X)p − g(X) + c) for some g(X) ∈ Fq[X] and c ∈ Fq.

Then we obtain

T (f (ξ + α1)) = Tr(δf (ξ + α1))

= Tr(g(ξ + α1)p − g(ξ + α1) + c) = Tr(c)

for all ξ ∈ Fq , that is, any vector (c1, . . . , cr) ∈ F r
p with c1 �= Tr(c) is not attained as

(T (f (ξ + αi)))si=1.
We conclude that for polynomials of degree d with gcd(d, p) > 1, the bound of The-

orem 3 may not hold for all s. However, by Theorem 1, for monomials the restriction
gcd(d, p) = 1 is not needed.

7.2 Missing digits and subsets

For subsetsD of Fp, the closely related problem of estimating the number of ξ ∈ Fq with

f (ξ ) ∈ {d1β1 + · · · + drβr : d1, . . . , dr ∈ D}
was studied in [10–12], that is, f (ξ ) ’misses’ the digits in Fp \ D. It is straightforward to
extend these results combining our approach with certain bounds on character sums to
estimate the number of ξ ∈ Fq with

f (ξ + αi) ∈ {d1β1 + · · · + drβr : d1, . . . , dr ∈ D}, i = 1, . . . , s.

For example, forD = {0, . . . , t − 1} we can use the bound on exponential sums of [13].
Instead of restricting the set of digits we may restrict the set of ξ . That is, for a subset S

of Fq we are interested in the number of solutions ξ ∈ S of

(T (f (ξ + α1)), . . . , T (f (ξ + αs))) = c

for any fixed c ∈ F s
p. Typical choices of S are ‘boxes’ [13,14] and ’consecutive’ elements

[15].

7.3 Optimality and prescribed digits

Swaenepoel [16] improved the bound (1) of [2] in the case when the polynomial f (X) has
degree 2 or is a monomial. In particular, for s = 1 and d = 2 the improved bound of [16]
is optimal. She also generalized (1) to several polynomials with Fp-linearly independent
leading coefficients [16, Theorem 1.5].
Moreover, in [17] Swaenepoel studied the number of solutions ξ ∈ Fq for which some

of the digits of f (ξ ) are prescribed, that is, for given I ⊂ {1, . . . , r} and given ci ∈ Fp, i ∈ I ,
the number of ξ ∈ Fq with

Tr(δif (ξ )) = ci, i ∈ I .

7.4 Related work on pseudorandom number generators

Some of the ideas of the proofs in this paper are based on earlier work on nonlinear, in
particular, inversive pseudorandom number generators, see [18–20].
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More precisely, in [20] the q-periodic sequence (ηn) over Fq defined by

ηn1+n2p+···+nrpr−1 = f (n1β1 + · · · + nrβr), 0 ≤ n1, . . . , nr < p,

passes the s-dimensional lattice test if s polynomials of the form

f (X + αj) − f (αj), j = 1, . . . , s,

are Fq-linearly independent. However, in the proofs of this paper we need that they are
linearly independent (resp. dependent) over Fp.
To prove Theorem 2 for d < p, the method of [19] can be easily adjusted using [19,

Lemma 2]. However, for d ≥ p we had to use a different approach since [19, Lemma 2] is
not applicable in this case.
Finally, in the proof of [18, Theorem 4] we showed that polynomials of the form

Fa1 ,...,as (X) can only be identical 0 if a1 = · · · = as = 0. However, in the proof of
Theorem 3 we had to show that Fa1 ,...,as (X) is not of the form g(X)p − g(X) + c and we
had to modify the idea of [18].

7.5 Rudin–Shapiro function

The Rudin–Shapiro sequence (rn) is defined by

rn =
∞∑

i=0
nini+1, n = 0, 1, . . .

if

n =
∞∑

i=0
ni2i, n0, n1, . . . ∈ {0, 1}.

Müllner showed that the Rudin–Shapiro sequence along squares (rn2 ) is normal [21].
The Rudin–Shapiro function R(ξ ) for the finite field Fq with respect to the ordered basis

(β1, . . . ,βr ) is defined as

R(ξ ) =
r−1∑

i=1
xixi+1, ξ = x1β1 + x2β2 + · · · + xrβr , x1, . . . , xr ∈ Fp.

For f (X) ∈ Fq[X] and c ∈ Fp let

R(c, f ) = {
ξ ∈ Fq : R(f (ξ )) = c

}
.

It seems to be not possible to use character sums to estimate the size ofR(c, f ). However,
in [22] the Hooley–Katz Theorem, see [23, Theorem 7.1.14] or [24] was used to show that
if d = deg(f ) ≥ 1,

∣∣R(c, f ) − pr−1∣∣ ≤ Cr,dp
3r+1
4 ,

where Cr,d is a constant depending only on r and d. In particular, we have for fixed d and
r ≥ 6,

lim
p→∞

|R(c, f )|
pr−1 = 1,

that is, R(f ) is p-normal for s = 1 and r ≥ 6.
However, we are not aware of a result on the r-normality of R(f ).
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