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Abstract
Inspired by previous work of Bruinier-Ono and Mertens-Rolen, we study class
polynomials for non-holomorphic modular functions arising from modular forms of
negative weight.
In particular, we give general conditions for the irreducibility of class polynomials and
obtain a general theorem to check when functions constructed in a special way are
class invariants.

1 Introduction and statement of themain results
Let us consider Klein’s j-invariant, j(τ ), which is defined by

j(τ ) :=
(
1 + 240

∑∞
n=1

∑
d|n d3qn

)3
q

∏∞
n=1(1 − qn)24

= q−1 + 744 + 196884q + · · · ,

where q := e2π iτ and τ := u + iv ∈ H := {x + iy ∈ C : y > 0} with u, v ∈ R. The function
j(τ ) is a modular function and its values at CM points (quadratic imaginary points in H)
are called singular moduli. These distinguished numbers play a central role in explicit
class field theory and the classical theory of complex multiplication. In particular, they
are algebraic, and they generate Hilbert class fields of imaginary quadratic fields. For a
general survey of this theory, see e.g. [2].
Throughout, letD ≡ 0, 1 (mod 4) be a negative integer and letQD be the set of SL2(Z)-

reduced positive definite integral binary quadratic forms, i.e., those forms

Q(x, y) = ax2 + bxy + cy2,

with−a < b ≤ a < c or 0 ≤ b ≤ a = c and discriminantD := b2−4ac. Each positive def-
inite quadratic form of discriminant D is uniquely SL2(Z)-equivalent to exactly one form
in QD. The associated complex point τQ of a given quadratic form Q is the unique point
in the upper half plane which satisfies the equation Q(τQ, 1) = 0. We call the associated
value j(τQ) the singular modulus corresponding to τQ.
Now we introduce the following polynomial:

HD,P(x) :=
∏

Q∈QD

(x − P(τ )),

for any (possibly non-holomorphic) modular function P(τ ).

© 2015 Braun et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1007/s40993-015-0022-6-x&domain=pdf
http://orcid.org/0000-0003-4106-496X
mailto: johannes.girsch@live.de
http://creativecommons.org/licenses/by/4.0/


Braun et al. Research in Number Theory  (2015) 1:21 Page 2 of 13

For P(τ ) = j(τ ), HD,P(x) is called the Hilbert class polynomial. Celebrated results give
that it is irreducible and generates the Hilbert class field of Q(

√
D) for D fundamental.

For more general discriminants, it generates ring class fields (see [2]).
Analogously, we set

ĤD,P(x) :=
∏

Q∈PD

(x − P(τQ)),

where PD denotes the set of quadratic forms in QD with gcd(a, b, c) = 1. The quadratic
forms in PD are called primitive.
One can easily see as in Lemma 3.7 of [6] the following relation betweenHD,P and ĤD,P :

HD,P(x) =
∏
a>0
a2|D

ε(a)h
(

D
a2

)
Ĥ D

a2
,P(ε(a)x)

where h(d) is the class number of discriminant d, ε(a) = 1 if f ≡ ±1 (mod 12) and
ε(a) = −1 otherwise.
In pathbreaking work, Bruinier and Ono connected these polynomials to partitions,

when P was an explicit non-holomorphic form of level 6, yielding a formula for the num-
ber of partitions as a finite sum of algebraic numbers. They, together with Sutherland,
conjectured that the associated polynomials always generate ring class fields and are irre-
ducible ([7], p. 20), which was shown by Mertens and Rolen in [17]. Many others have
studied properties of these non-holomorphic singular moduli (see [1, 6, 12–14]). Here,
we consider the general problem of constructing class invariants (i.e., modular forms
whose CM-values generate Hilbert class fields) from non-holomorphic modular forms of
a special type.
In particular, we show the following, where B is defined in (8) and,
in the setting of Theorem 1.1, is a sum which depends on m and k, where PF is an iter-

ated non-holomorphic derivative of F of weight 0, defined in 1, and where the polynomial
ĤD,F(x) is defined in 3. To prove Theorem 1.1, we proceed as in [17].

Theorem 1.1. Suppose k ∈ N \ {0} and F is a weakly holomorphic modular form of
weight −2k on SL2(Z) with principal part

m∑
n=1

anq−n

and rational Fourier coefficients. If D is a fundamental discriminant satisfying

√−D >
2
π
log

⎛⎝ B
∑m

n=1 |an|
|am|| ∑k

r=0
(k
r
) (−2k+r)k−rmr

(2
√−Dπ)k−r |

e−
√−Dπ(m−1/2)

⎞⎠,

then the polynomial ĤD,F(x) is irreducible over Q.

Remark. The bounds used in this paper can be easily adapted for higher levels. There-
fore, once one explicitly knows the higher level Heegner points, a similar analysis could be
done to generate class invariants. For example, in level 6 for quadratic forms of discrimi-
nant −24n+1 the Heegner points have been determined by Dewar andMurty, see [9]. In
particular, Dewar andMurty’s results were used in the paper of Mertens and Rolen ([17]).



Braun et al. Research in Number Theory  (2015) 1:21 Page 3 of 13

Note that it is easy to show that the singular moduli in Theorem 1.1 lie in the
appropriate Hilbert class field (see Lemma 4.4 in [7]). In particular, we have the following.

Corollary 1.2. If D � 0 is fundamental, then ĤD,F(x) is irreducible and the splitting
field of this polynomial is isomorphic to the Hilbert class field of Q(

√
D).

These bounds can also be simplified to give the following.

Corollary 1.3. Assume the hypothesis in Theorem 1.1. If there is a constant c > 1 such
that

√−D > max

⎛⎜⎜⎝ k

mπ

(
k
√

2c−1
c − 1

) ,
2
π
log

(
615cm1+k

(
m + k√

3π

)k ∑m
n=1 |an|
|am|

)⎞⎟⎟⎠ ,

then ĤD,F(x) is irreducible. In particular, for all fundamental discriminants D′ with |D′| ≥
|D| the polynomials ĤD′,F(x) are irreducible.

The paper is organized as following. In Section 2 we review relevant background
information including Masser’s formula and a convenient form of Shimura reciprocity
due to Schertz and we recall the Maass-Poincaré series. The proof of Theorem 1.1 and
Corollary 1.3 is subject of Section 3. In Section 4 we apply Corollary 1.3 in the specific
example of F = E10/�.

2 Preliminaries
2.1 Differential operators

Let F be a weakly holomorphic form of weight −2k. We apply the Maass raising operator,
defined for l ∈ N and τ = u + iv by

Rl := 1
2π i

∂

∂τ
− l

4πv
,

k times to F to get a non-holomorphic modular function of weight 0

PF(τ ) := R−2 ◦ · · · ◦ R−2k+2 ◦ R−2k(F)(τ ). (1)

The Maass raising operator maps a (not necessarily holomorphic) modular form of
weight k to a (possibly) non-holomorphic modular form of weight k + 2. It is an easy way
to raise a modular form of negative weight to a non-holomorphic modular function (see
Bump [8], note there is used another definition).
As in [23], one may easily check that

R−2 ◦ · · · ◦ R−2k+2 ◦ R−2k(F)(τ ) =
k∑

r=0

(
k
r

)
(k + r)k−r
(4πv)k−r Dr(F)(τ ) (2)

where (a)m := a(a + 1) · · · (a + m − 1) is the Pochhammer symbol andD := q d
dq .

We then set

ĤD,F(x) :=
∏

Q∈PD

(x − PF(τQ)), (3)

where τQ is the CM-point of the quadratic form Q. As noted in [7] on page 2 and [6] on
page 3, ĤD,F(x) ∈ Q[ x].
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2.2 Masser’s formula

If one applies the Maass raising operator k times to a weakly holomorphic modular form
of weight −2k, one gets a non-holomorphic modular function.
We would like to find a holomorphic modular function which has the same values at

CM-points of certain quadratic forms as our non-holomorphic modular function to be
able to apply Schertz’s theorem (which is a special case of the general theory of Shimura
reciprocity). The non-holomorphic modular function PF we obtain is an almost holo-
morphic modular form. The ring of almost holomorphic modular forms is the ring of
functions which transform as a modular form but instead of being holomorphic they are
polynomials in 1/v with coefficients which are holomorphic. It is well-known that this
ring is generated by E2(τ ) − 3/πv,E4(τ ),E6(τ ) where E2, E4 and E6 are the normalized
Eisenstein series of weight 2, 4 and 6. The modular form E2(τ ) − 3/πv is also known as
E∗
2(τ ). For a survey of almost holomorphic modular functions, see e.g. Zagier [23].
Hence, we can express the almost holomorphic modular function PF as a polynomial in

these three generators. Because E4 and E6 are holomorphic, the only function we have to
consider is E∗

2.
Masser states a useful formula to find a (meromorphic) modular form which has the

same values as E∗
2 at quadratic imaginary points in H, see Appendix I in Masser [16]. For

this purpose, let V be a system of representatives of SL2(Z)\�−D for a discriminantD < 0
with associated positive definite integral binary quadratic formQ and corresponding CM
point τQ and let �−D be the set of all primitive integral 2×2-matrices of determinant −D.
Then we introduce themodular polynomial by

�−D(j(τ ), y) :=
∏
M∈V

(y − j(Mτ)).

By expanding this polynomial, we can define the numbers βμ,ν(τQ) by

�−D(x, y) =
∑
μ,ν

βμ,ν(τQ)(x − j(τQ))μ(y − j(τQ))ν .

Now we can state the relation which Masser gives.

Proposition 2.1 ([16]). If Q is a positive definite integral binary quadratic form of
discriminant D < 0 and τQ is the associated CM point, then

E∗
2(τQ) =

(
4
E6
E4

+ 3
E24
E6

+ 6jγ
E6
E4

)
(τQ),

where γ = β4,0−β3,1−β1,3−β0,4
β0,1

if D is special and γ = β2,0−β1,1−β0,2
β0,1

otherwise. D is called
special if it is of the form D = −3d2.

Thus we get the following.

Lemma 2.2. For every discriminant D < 0, there exists a (meromorphic) modular
function MD,F such that

PF(τQ) = MD,F(τQ)

for all positive definite integral binary quadratic forms Q of discriminant D.
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This lemma reduces us to studying classical modular functions, where work of Schertz
applies.

2.3 Maass-Poincaré series

In the proof of Theorem 1.1 we will have need of careful estimates for the coefficients
of weakly holomorphic modular forms. This is conveniently provided by the theory of
Maass-Poincaré series due to Niebur [18] and Fay [10], as further developed by many
others (see e.g. [3, 4]).
For v > 0, k ∈ Z and s ∈ C we define

Ms,k(v) := v− k
2M− k

2 ,s−
1
2
(v)

where Mν,μ denotes the usual M-Whittaker function (see e.g. [11], p. 1014). Using this,
we construct the following Poincaré series for �0(N):

Pm,s,k,N (τ ) := 1
2�(2s)

∑
γ∈�∞\�0(N)

(
Ms,k(4πmv)e−2π imu)|kγ .

Herem ∈ N, τ = u + iv ∈ H, �(s) > 1, k ∈ −N, and �∞ :=
{

±
(
1 n
0 1

) ∣∣∣ n ∈ Z

}
.

In the special case when k < 0 and s = 1 − k
2 , the Poincaré series Pm,k,N := Pm,s,k,N

defines a harmonic Maass form of weight k for �0(N) whose principal part at the cusp ∞
is given by q−m, and at all other cusps the principal part is 0 (which is not of importance
for our purposes because we are only interested in level N = 1). For more background on
Poincaré series and harmonic Maass forms see [5, 19].
In this situation, we can give explicit Fourier expansions. In order to do so we agree

on the following notation. By Is and Js we denote the usual I- and J-Bessel functions, and
K(m, l, c) is the usual Kloosterman sum

K(m, l, c) :=
∑

d (mod c)∗
exp

(
2π i

(
md + ld

c

))
,

where d runs through the residue classes modulo c which are coprime to c and d denotes
the multiplicative inverse of d modulo c.

Proposition 2.3 ([19], Theorem 8.4). For m,N ∈ N, k ∈ −N and τ ∈ H we have

(1 − k)! Pm,k,N (τ ) = (k − 1)(�(1 − k, 4πmv) − �(1 − k))q−m +
∑
l∈Z

bm,k,N (l, v)ql,

where the incomplete gamma function �(α, x) is defined as

�(α, x) :=
∫ ∞

x
e−ttα−1dt

and the coefficients bm,k,N (l, v) are as follows.

1. If l < 0, then

bm,k,N (l, v) = 2π i2−k(k − 1)�(1 − k,−4π lv)
(

− l
m

) k−1
2

×
∞∑
c=1

K(−m, l, cN)

cN
J1−k

(
4π

√−ml
cN

)
.
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2. If l > 0, then

bm,k,N (l, v) = −2π i2−k(1 − k)! l
k−1
2 m

1−k
2

∞∑
c=1

K(−m, l, cN)

cN
I1−k

(
4π

√
ml

cN

)
.

3. If l = 0, then

bm,k,N (l, v) = −(2π i)2−km1−k
∞∑
c=1

K(−m, 0, cN)

(cN)2−k .

2.4 Work of Schertz

In this subsection we review work of Schertz which gives a convenient description of the
singular moduli of modular functions.

Definition 2.4. Let N ∈ N and D = t2d < 0 be a discriminant with t ∈ N and d a
fundamental discriminant. Moreover, let {Q1, . . . ,Qh} be a system of representatives of
primitive quadratic forms modulo SL2(Z). We call the set {Q1, . . . ,Qh} an N-system mod
t if for each Qi(x, y) = aix2 + bixy + ciy2 the conditions

gcd(cj,N) = 1 and bj ≡ bl (mod 2N), 1 ≤ j, l ≤ h

are satisfied.

Theorem 2.5 (Schertz, [20]). Let g be a modular function for �0(N) for some N ∈ N

whose Fourier coefficients at all cusps lie in the Nth cyclotomic field. Suppose furthermore
that g(τ ) and g

(− 1
τ

)
have rational Fourier coefficients, and let Q(x, y) = ax2 + bxy +

cy2 be a quadratic form with discriminant D = t2d, d a fundamental discriminant, with
gcd(d,N) = 1 and N |a. Then, unless g has a pole at τQ, we have that g(τQ) ∈ t , where t
is the ring class field of the order of conductor t inQ(

√
d). Moreover if {Q = Q1,Q2, . . . ,Qh}

is an N-system mod t, then

{g(τQ1), . . . , g(τQh)} = {σ(g(τQ1)) : σ ∈ GalD}
where GalD is the Galois group of t/Q(

√
D).

Remark. Schertz also proves constructively that an N-system mod t always exists.

3 Proof of Theorem 1.1
Now we have all the needed preliminaries and begin the proof. We proceed as in [17].

Lemma 3.1. Suppose we have a weakly modular form F of weight −2k with principal
part

m∑
n=1

anq−n.

Then

R−2 ◦ . . . ◦ R−2k(F)(τ ) = R−2 ◦ . . . ◦ R−2k

( m∑
n=1

anq−n
)

(τ ) + EF(τ )

where |EF(τ )| is uniformly bounded by the constant in (4).
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Proof. As the space of cusp forms of weight zero for the full modular group is zero, we
can write F as a sum of Poincaré series, namely as

F =
m∑

n=1

an
(1 + 2k)!

Pn,−2k,1.

Hence,

|EF | ≤
m∑

n=1

∣∣∣∣ an
(1 + 2k)!

EPn,−2k,1

∣∣∣∣ .
We can estimate the Fourier coefficients of a given Poincaré series by using that for

v > −1/2 and 0 ≤ x ≤ 1 we have the well-known bounds (see e.g., eq. (6.25) in [15] and
eq. (8.451.5) in [11])

Iv(x) ≤ 2
�(v + 1)

(x
2

)v
and for x ≥ 1

Iv(x) ≤ ex√
2πx

.

Using this we find for c ≥ 4π
√
nl that

I1+2k

(
4π

√
nl

c

)
≤ 2

�(2 + 2k)

(
4π

√
nl

2c

)1+2k

= 22+2kπ1+2k(nl)1/2+k

c1+2k(1 + 2k)!

and for c < 4π
√
nl that

I1+2k

(
4π

√
nl

c

)
≤

√
ce

4π
√
nl

c

2π
√
2 4√nl

.

Using the trivial bound |K(−n, l, c)| ≤ c one obtains

|bn,−2k,1(l, v)| = 2π(1 + 2k)! l
−2k−1

2 n
1+2k
2

∣∣∣∣∣
∞∑
c=1

K(−n, l, c)
c

I1+2k

(
4π

√
nl

c

)∣∣∣∣∣
≤ 2π(1 + 2k)! l−1/2−kn1/2+k

∞∑
c=1

∣∣∣∣∣I1+2k

(
4π

√
nl

c

)∣∣∣∣∣ .

Applying the estimates for the Bessel functions stated above we get
∞∑
c=1

∣∣∣∣∣I1+2k

(
4π

√
nl

c

)∣∣∣∣∣
=

∑
c<4π

√
nl

∣∣∣∣∣I1+2k

(
4π

√
nl

c

)∣∣∣∣∣ +
∑

c≥4π
√
nl

∣∣∣∣∣I1+2k

(
4π

√
nl

c

)∣∣∣∣∣
≤22+2kπ1+2k(nl)1/2+k

(1 + 2k)!
ζ(1 + 2k) + 2

√
2πnle4π

√
nl.

Finally, one obtains

|bn,−2k,1(l, v)| ≤ 4
√
2π3/2(1 + 2k)! l−kn1+ke4π

√
nl + 23+2kπ2+2kn1+2kζ(1 + 2k).
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For the constant term of the Fourier-expansion we get

|bn,−2k,1(0, v)| =
∣∣∣∣∣(2π)2+2kn1+2k

∞∑
c=1

K(−n, 0, c)
c2+2k

∣∣∣∣∣
≤ (2π)2+2kn1+2kζ(1 + 2k).

Continuing, by (2) we obtain∣∣∣∣ EPn,−2k,1

(1 + 2k)!

∣∣∣∣ =
∣∣∣∣∣R−2 ◦ . . . ◦ R−2k

( ∞∑
l=0

bn,−2k,1(l)
(1 + 2k)!

ql
)∣∣∣∣∣

=
∣∣∣∣∣∣

k∑
r=0

(−1)k−r
(
k
r

)
(−2k + r)k−r

(4πv)k−r Dr
( ∞∑

l=0

bn,−2k,1(l)
(1 + 2k)!

ql
)∣∣∣∣∣∣

≤
k∑

r=0

(
k
r

)
(2k)k−r

(|4πv|)k−r

∞∑
l=0

lr
∣∣∣∣bn,−2k,1(l)
(1 + 2k)!

ql
∣∣∣∣ .

Since τ lies in the closure of the usual fundamental domain of the full modular group,
i.e. τ ∈ {

z ∈ H | |z| > 1, |�(z)| < 1
2
}
and hence v ≥ √

3/2, we can estimate∣∣∣∣ EPn,−2k,1

(1 + 2k)!

∣∣∣∣ ≤ (2π)2+2kn1+2kζ(1 + 2k)
(1 + 2k)!

+
∣∣∣∣∣∣

k∑
r=0

∞∑
l=1

(
k
r

)
(k)k−r

(
√
3π)k−r

lr
bn,−2k,1(l)
(1 + 2k)!

ql
∣∣∣∣∣∣

≤ (2π)2+2kn1+2kζ(1 + 2k)
(1 + 2k)!

+
∞∑
l=1

∣∣∣∣bn,−2k,1(l)
(1 + 2k)!

ql
∣∣∣∣ k∑
r=0

(
k
r

)
(k)k−rlr

(
√
3π)k−r

= (2π)2+2kn1+2kζ(1 + 2k)
(1 + 2k)!

+
∞∑
l=1

∣∣∣∣bn,−2k,1(l)
(1 + 2k)!

∣∣∣∣ |q|l (l + k√
3π

)k
.

Now we use the estimates for the coefficients of Poincaré series which were established
above and get∣∣∣∣ EPn,−2k,1

(1 + 2k)!

∣∣∣∣ ≤ (2π)2+2kn1+2kζ(1 + 2k)
(1 + 2k)!

+ A1 + A2,

where

A1 := 4π
√
2πn1+k

∞∑
l=1

(
1 + k√

3π l

)k
e4π

√
nl−√

3π l

and

A2 := 23+2kπ2+2kn1+2kζ(1 + 2k)
(2k + 1)!

∞∑
l=1

(
l + k√

3π

)k
e−

√
3π l.

Now we estimate the first sum by

A1 ≤ 4π
√
2πn1+k

∞∑
l=1

(
1 + k√

3π

)k
e4π

√
nl−√

3π l.

Since for any real-valued function f satisfying f ′(x) > 0 we have the inequality
N∑

k=M
f (k)≤

∫ N

M
f (x)dx + f (N)
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and a similar result also holds if f ′(x) < 0 this last sum can be estimated against an integral
∞∑
l=1

e4π
√
nl−√

3π l ≤
∫ ∞

1
e4π

√nμ−√
3πμdμ + e

4πn√
3 .

The integral can be evaluated explicitly, which easily yields the following bound∫ ∞

1
e4π

√nμ−√
3πμdμ ≤ 4

√
ne

4πn√
3

33/4
+ e4π

√
n−√

3π
√
3π

.

Using these estimates, one obtains

A1 ≤ 4π
√
2πn1+k

(
1 + k√

3π

)k
⎛⎝4

√
ne

4πn√
3

33/4
+ e4π

√
n−√

3π
√
3π

+ e
4πn√

3

⎞⎠
≤ 12π

√
2πn3/2+k

(
1 + k√

3π

)k
e
4πn√

3 .

For the second sum we first note that for x ≥ 0 we have the inequality(
x + k√

3π

)k
e−

√
3πx/2 ≤

(
2k√
3π

)k
e−k/2.

We can therefore estimate

A2 ≤ 23+2kπ2+2kn1+2kζ(1 + 2k)
(2k + 1)!

(
2k√
3π

)k
e−k/2 e−

√
3π/2

1 − e−
√
3π/2

.

Thus,

|EF | ≤
m∑

n=1

∣∣∣∣an EPn,−2k,1

(1 + 2k)!

∣∣∣∣ ≤
∣∣∣∣ EPm,−2k,1

(1 + 2k)!

∣∣∣∣ m∑
n=1

|an| ≤
m∑

n=1
|an| (B0 + B1 + B2) , (4)

where

B0 := 23+2kπ2+2km1+2kζ(1 + 2k)
(1 + 2k)!

≤ 1064m1+2k , (5)

B1 := 24π
√
2πm3/2+k

(
1 + k√

3π

)k
e
4πm√

3 ≤ 189m3/2+k
(
1 + k√

3π

)k
e
4πm√

3 (6)

and

B2 := 24+2kπ2+2km1+2kζ(1 + 2k)
(2k + 1)!

(
2k√
3π

)k
e−k/2 e−

√
3π/2

1 − e−
√
3π/2

≤ 245m1+2k
(

k√
3π

)k
,

(7)

which completes the proof.

We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1. By Theorem 2.5 and Lemma 2.2, we immediateley see that the
Galois group of t/Q(

√
D) acts transitively on the roots and therefore the polynomial

must be a power of an irreducible polynomial. We now prove that for large enough D
there cannot be multiple roots. In [23] it is stated that every SL2(Z)-equivalence class of
quadratic forms with discriminantD has a unique representative inQD. It is easy to prove
that in this set there is exactly one representative [ a, b, c], where a = 1. Suppose that
P(τQ1) = P(τQ2) where τQ1 is the CM-point of the quadratic form with a = 1. We will see
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that for large enough discriminant −D, the value at this point will be larger than the rest,
so we cannot have multiple roots. We set e2π iτQj =: qj for j = 1, 2. One then obtains that

|q1| = eπ
√−D and |q2| ≤ eπ

√−D/2.

Using Lemma 3.1 we have∣∣∣∣∣R−2 ◦ . . . ◦ R−2k

( m∑
n=1

anq−n
)

(τQ1)−R−2 ◦ . . . ◦ R−2k

( m∑
n=1

anq−n
)

(τQ2)

∣∣∣∣∣≤2
m∑

n=1
|an|En.

Hence one obtains∣∣R−2 ◦ . . . ◦ R−2k
(
amq−m)

(τQ1)
∣∣ ≤ 2

m∑
n=1

|an|En

+
∣∣∣∣∣∣

k∑
r=0

(−1)k−r
(
k
r

)
(−2k + r)k−r

(4πy)k−r Dr
(m−1∑

n=1
anq−n

)
(τQ1)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
k∑

r=0
(−1)k−r

(
k
r

)
(−2k + r)k−r

(4πy)k−r Dr
( m∑
n=1

anq−n
)

(τQ2)

∣∣∣∣∣∣ .
Using some estimates in the spirit of Lemma 3.1 we get that∣∣∣∣∣∣
k∑

r=0
(−1)k−r

(
k
r

)
(−2k + r)k−r

(4πv)k−r

m−1∑
n=1

(−n)ranq−n
1

∣∣∣∣∣∣ ≤
(
m + k√

3π

)k
e
√−Dπ(m−1)

m∑
n=1

|an|

and analogously∣∣∣∣∣∣
k∑

r=0
(−1)k−r

(
k
r

)
(−2k + r)k−r

(4πv)k−r

m∑
n=1

(−n)ranq−n
2

∣∣∣∣∣∣ ≤
(
m + k√

3π

)k
e
√−Dπm/2

m∑
n=1

|an|.

We also have that

|R−2 ◦ . . . ◦ R−2k
(
amq−m)

(τQ1)| = |am|e−
√−Dπm

∣∣∣∣∣∣
k∑

r=0
(−1)k−r

(
k
r

)
(−2k + r)k−r(−m)r

(2
√−Dπ)k−r

∣∣∣∣∣∣ .
Hence, if the polynomial is reducible we must have that

e
√−Dπm|am|

∣∣∣∣∣∣
k∑

r=0

(
k
r

)
(−2k + r)k−r(m)r

(2
√−Dπ)k−r

∣∣∣∣∣∣ <

m∑
n=1

B|an|,

where B0, B1 and B2 are defined in (5), (6), (7) and

B3 :=
(
m + k√

3π

)k
e
√−Dπ(m−1),

B4 :=
(
m + k√

3π

)k
e
√−Dπm/2

and

B := B0 + B1 + B2 + B3 + B4. (8)

Equivalently, we have

√−D <
2
π
log

⎛⎝ B
∑m

n=1 |an|
|am|

∣∣∣∑k
r=0

(k
r
) (−2k+r)k−r(m)r

(2
√−Dπ)k−r

∣∣∣e−
√−Dπ(m−1/2)

⎞⎠.
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Note that as a function of −D the right hand side of the last inequality stays bounded so
for large enough −D this inequality cannot be satisfied and hence the polynomials must
be irreducible.

Proof of Corollary 1.3. Since all negative fundamental discriminants D with |D| < 15
have class number one, these polynomials are automatically irreducible. Therefore we
assume that −D ≥ 15. We have∣∣∣∣∣∣

k∑
r=0

(
k
r

)
(−2k + r)k−r(m)r

(2
√−Dπ)k−r

∣∣∣∣∣∣ > mk −
k−1∑
r=0

(
k
r

)
kk−r(m)r

(
√−Dπ)k−r = 2mk −

(
m + k√−Dπ

)k
.

A simple calculation gives that for c > 1 and

√−D >
k

mπ

(
k
√

2c−1
c − 1

)
the following inequality holds:

2mk −
(
m + k√−Dπ

)k
>

mk

c
.

Since for −D ≥ 15

m → e
4πm√

3
−√−Dπ(m−1/2)

is a decreasing function we can estimate

B1e−
√−Dπ(m−1/2) ≤ 610m1+2k

(
m + k√

3π

)k
.

Similarly we obtain

B0e−
√−Dπ(m−1/2) ≤ 2.5m1+2k

(
m + k√

3π

)k
,

B2e−
√−Dπ(m−1/2) ≤ 0.6m1+2k

(
m + k√

3π

)k
,

B3e−
√−Dπ(m−1/2) ≤ 0.0023m1+2k

(
m + k√

3π

)k

and

B4e−
√−Dπ(m−1/2) ≤ m1+2k

(
m + k√

3π

)k
.

Therefore the polynomial is irreducible if

√−D >
k

mπ

(
k
√

2c−1
c − 1

)
and

√−D >
2
π
log

(
615cm1+k

(
m + k√

3π

)k ∑m
n=1 |an|
|am|

)
.
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4 Example
We consider F := E10/�, a weakly holomorphic modular form of weight −2. Zagier
previously considered this example in his foundational paper on singular moduli [22].
Since E10 does not vanish at infinity and � is a cusp form with a simple root at infinity, F
has a simple pole at infinity. Thus we have

F = q−1 + O(1).

Hence, in the setting of Corollary 1.3 we have m = k = b1 = 1. Therefore, the two
inequalities reduce to

√−D > max
(

c
π(c − 1)

,
2
π
log

(
615c

(
1 + 1√

3π

)))
.

For c = 1.5 we get
√−D > 4.45366,

which proves that ĤD,F(x) is irreducible for D being a fundamental discriminant
D ≤ −20. The fundamental discriminants 0 > D > −20 except D = −15 have class
number h(D) = 1, so ĤD,F(x) is of degree 1 and therefore also irreducible. We cannot
solve the D = −15 case with Corollary 1.3 since

2
π
log

(
615c

(
1 + 1√

3π

))
>

√
15

for all c > 1. However, for D = −15 we numerically compute in SAGE (see [21])

ĤD,F(x) = x2 + 176625x + 9890505,

which is easily seen to be irreducible (in fact, its roots generate the field Q(
√
5)).
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