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Abstract This work deals with the prediction of glass
breakage. A theoretical method based on linear elastic
fracture mechanics (LEFM) merged with approaches
from stochastic geometry is used to predict the 2D-
macro-scale fragmentation of glass. In order to pre-
dict the fragmentation of glass the 2D Voronoi tes-
selation of distributed points based on spatial point
processes is used. However, for the distribution of the
points influence parameters of the fracture structure are
determined. The approach is based on two influenc-
ing parameters of fragment size δ and fracture inten-
sity λ, which are described in this paper. The Frag-
ment Size Parameter describes the minimum distance
between the points and thus the size of a fragment. It
is derived from the range of influence of the remain-
ing elastic strain energy in a single fragment taking
into account the LEFM based on the energy criterion
of Griffith. It considers the extent of the initial elastic
strain energy U0 before fragmentation obtained from
the residual stress as well as a ratio of the released
energy η due to fragmentation. The Fracture Intensity
Parameter describes the intensity of the fragment dis-
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tribution, and thus the empirical reality of a fracture
pattern. It can be obtained by statistical evaluation of
the fracture pattern. In this work, the fracture intensity
is determined from the experimental data of fracture
tests. The intensity of a fracture is the quotient of the
number of fragments in an observation field and its
area and is assumed to be constant in the observation
filed. The fracture intensity and the correlation between
a constant intensity and the Fragment Size Parameter
was determined. The presented methodology can also
generally be used for the prediction of fracture patterns
in brittle materials using aVoronoi tesselation over ran-
dom fields.

Keywords Fragmentation · Tempered glass ·
Fragment size · Fracture intensity · Elastic strain
energy · Spatial point process · Voronoi tessellation ·
Fracture pattern

List of symbols

σi j Stress tensor
εi j Strain tensor
r, θ Cylinder coordinates (radius and polar angle)
τ Shear stress
σ(z) Stress function along the z-axis of the plate
σs Surface stress
σm Mid-plane stress
t Glass plate thickness
ν Poisson’s ratio
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E Young’s modulus
P Set of points pi , i = 1 . . . n in the domain K
K The 2D domain of the glass fracture pattern
θ Point process parameters
P Probability of obtaining n points pi , i = 1 . . . n

in the domain K
n, N Random variable and obtained realization for

the number of points pi , i = 1 . . . n in the
domain K

HC Hardcore Process
MHC Matérn Hardcore Process
SR Strauss process
fn(P) Probability density of a point pattern P
ci Normalizing constants of a probability density
s(P) Number of point pairs to be penalized in HC
δHC Minimum Euclidean distance of points in HC
β Intensity of the original SR
γSR Inhibition parameter of SR
δ Fragment Size Parameter
λ Fragment/point process intensity parameter
Γ Fracture surface energy
γ Specific fracture surface energy
A f r Fracture surface of a fragment
ρ∗ Correction factor of the fracture surface
Gc Critical energy release rate
KIc Critical stress intensity factor
η Energy relaxation factor
Aη Energy relaxation zone of a fragment
Uη Elastic strain energy in the relaxation zone Aη

U0 Initial strain energy
U1 Remaining strain energy
UR Relative remaining strain energy
ND Fragment density in the observation field with

the length of D

1 Introduction

Glass is one of the most popular building materials
today. However, the tensile strength is governed by
small flaws in the surface which reduce the actual engi-
neering strength of annealed float glass to 30–100MPa
(Schneider et al. 2016). Due to the residual stress state
thermally tempered glass shows a greater resistance to
external loads and in case of failure it is quite safe
in terms of cutting and stitching due to the small,
blurred fragments. Therefore, thermally tempered glass
is also known as tempered safety glass. The residual
stress state is obtained by the tempering process and

is approximately parabolic distributed along the thick-
ness with the compressive stress on both surfaces and
an internal tensile stress in the mid-plane. By imposing
a compressive residual stress at the surface, the sur-
face flaws will be in a permanent state of compression
which has to be exceeded by externally imposed stress
before failure can occur (Schneider 2001; Nielsen et al.
2010; Pourmoghaddam et al. 2016; Pourmoghaddam
and Schneider 2018a). The amount of the residual sur-
face compressive stress largely depends on the cool-
ing rate and therefore on the heat transfer coefficient
between the glass and the cooling medium (Gardon
1965; Aronen and Karvinen 2017).

However, thermally tempered glass will fragmen-
tize completely into many pieces, if the equilibrated
residual stress state within the glass plate is disturbed
sufficiently and if the elastic strain energy in the glass
is large enough, Fig. 1. The so-called Rupert’s drop
with bulbous head and thin tail can withstand high
impact or pressure applied to the head, but explodes
immediately into small particles when the tail is bro-
ken (Silverman et al. 2012). The fragmentation is the
direct consequence of the elastic strain energy that is
stored inside thematerial due to the residual stress state.
The fragment size depends on the amount of the stored
energy. Small fragments are caused by a high stored
strain energy due to the high residual stress state orig-
inating from the extremely rapid cooling. And lower
residual stress states result in larger fragments due to
lower stored strain energy (see Fig. 2). Thus, not only
the stress but also the thickness of the glass plate plays
a role in determining the strain energy.

Thus, for the same residual stress distribution a
higher stored energy is determined in the thicker plates.
This has been investigated and proved experimentally
by several authors (Akeyoshi and Kanai 1965; Barsom
1968;Gulati 1997; Lee et al. 2012;Mognato et al. 2017;
Pourmoghaddam and Schneider 2018b).

The fragmentation pattern, i.e. the fracture structure,
the fragment size and thus the fragment density are the
direct consequence of the amount of the initial strain
energy U0 which is available before the fragmentation
sets in and can be written as:

U0 = UResidual stress +UExternal loading (1)

where it should be noted that in this study, it is assumed
that the glass is only subjected to residual stress from
the thermal tempering U0 = UResidual stress .
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Fig. 1 Fragmented
tempered glass
(fragmentation initiated by
drill)

Fig. 2 Fragmentation of
glass plates with the same
thickness of 12mm for a
low stored strain energy
(U = 78.1 J/m2), b high
stored strain energy
(U = 354.7 J/m2)

When the glass is fragmentized the internal energy
converts into a number of forms of energies (Reich
et al. 2013; Nielsen 2017), e.g. for creating new frac-
ture surfaces (cracking and crack branching), kinetics
and sound energy. Hence, the remaining strain energy
in a fragment U1 after the fragmentation sets in must
be expressed as:

U1 = U0 − (Ucrack +Ukinetic +Usound +Uother ) (2)

whereUother represents other energy consumingeffects
such as heat. In this study, only the relative remaining
strain energy UR as the ratio between the remaining
strain energy and the initial energy is considered. The
relative remaining strain energy can be written as:

UR,Rem = U1

U0
(3)

The other forms of energy are not included here.
The remaining stress state and the resulting remaining
elastic strain energy in a single fragment has been cal-
culated numerically by Nielsen (2017). Further exper-
imental and numerical investigations of fragment’s
deformation and strain energy were carried out by

Nielsen and Bjarrum (2017). The change in strain was
determined by comparing the surface shape of a frag-
ment before and after fracture.

Several models for relating the fragment size to the
residual stress state have been suggested in the lit-
erature, e.g. Acloque (1956), Barsom (1968), Gulati
(1997), Shutov et al. (1998), Warren (2001) and Tan-
don and Glass (2005). Some of these works have pro-
posedmodels for the fragments size based on an energy
approach. Most of the works try to establish an analyti-
cal model for the fragment size considering the release
of the so-called tensile strain energy defined as the part
of the strain energy resulting from the mid-plane ten-
sile stress alone.A theoreticalmethod based on fracture
mechanics was developed by e.g. Warren (2001), Mol-
nár et al. (2016). The Voronoi tesselation of randomly
distributed points in the glass plane leading to a cell
structure similar to glass breakage was mentioned in
Molnár et al. (2016). However, the statistical distribu-
tionmethod of the points in the plane itself is significant
when it comes to the prediction of the fracture pattern.
With regard to the parameters of the fracture structure,
the comparison of different spatial point processes is
therefore important in order to find the best method of
point distribution.
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Fig. 3 Stress distribution in
the far field area of a
tempered glass plate and a
sketch showing a contour
line at zero stress (dotted
line)

The motivation is that Voronoi tessellation of points
distributed in the plane results in a fracture struc-
ture based on both fracture mechanical and stochastic
parameters. Hence, the main objective is to determine
the significant influence parameters of the glass frac-
ture in order to develop a method for the prediction of
2D macro-scale fragmentation of glass. In this work,
two influence parameters of the fracture structure, the
Fragment Size Parameter δ and the Fracture Intensity
Parameter λ are described and determined. Using these
two parameters the spatial point process can be influ-
enced and calibrated by the energy density and empir-
ical reality of a fracture pattern.

In order to determine the Fragment Size Parameter
δ a method was developed with which the minimum
distance between two points in a point cloud can be
determined by selecting the energetic criterion (Griffith
1920) from the linear fracture mechanics with respect
to the strain energy state before and after the fragmen-
tation. In other words; the present work aims at deter-
mining the minimum distance between randomly dis-
tributed points in a plane representing fragments based
on the strain energy state which is stored in the glass
plate due to the thermal tempering. Subsequently, the
fragment density is estimated using Hexagonal Close
Packed (HCP) and a uniformly distributed point group.

The Fracture Intensity Parameter λ describes the
degree of intensity of the fracture in a limited observa-
tion field and is a value for the fragment number within
the observation field. This parameter was determined
from the experimental data of fracture tests.

2 Energy conditions

When external forces or residual stresses deform an
elastic body, these stresses performwork as their points
of application are displaced. This work is stored in the

body as elastic strain energy. The total strain energy
U stored in a deformed linear elastic, isotropic body
is obtained by integrating the energy per unit volume
over the volume of the body:

U = 1

2

∫
V

σi jεi j dV (4)

where σi j is the stress tensor and εi j is the strain ten-
sor. The residual stress in thermally tempered glass
is distributed parabolically along the glass thick-
ness t (Fig. 3). This parabolic stress distribution
σ(z) can be written in terms of the surface stress
σs as:

σ(z) = 1

2
σs(1 − 3ζ 2), ζ = 2z

t
(5)

using symbols defined in Fig. 3. The parabolic stress
distribution is in equilibrium and symmetric about
the mid-plane. The magnitude of the surface stress is
approximately twice the tensile stress (2σm = −σs).
The zero stress level is at a depth of approximately 20%
of the thickness t .

The stress state σ is assumed to be planar. Using
cylinder coordinates r for the radius and θ for the polar
angle the constitutive relationship for plane stress is
defined by:

⎡
⎣ σr

σθ

τrθ

⎤
⎦ = E

1 − ν2

⎡
⎣1 ν 0

ν 1 0
0 0 1−ν

2

⎤
⎦

⎡
⎣ εr

εθ

γrθ

⎤
⎦ (6)

with the Young’s modulus E and the Poisson’s ratio
ν. The equilibrated stress state is also assumed to be
hydrostatic for field stresses.Aplanar hydrostatic stress
state means that no shear stresses occur (τrθ = 0) and
the normal stresses are always principal stresses, which
are equal in the plate plane (σr = σθ = σ(z)) and zero

123



Relationship between strain energy and fracture pattern morphology 261

in the direction of the thickness (σz = 0). Hence, the
total initial elastic strain energy U0 can be written as:

U0 = 1

2

∫
V
(σrεr + σθεθ ) dV = 1 − ν

E

∫
V

σ 2(z) dV

(7)

with

εr = εθ = 1 − ν

E
σ(z) (8)

Inserting the residual stress field from Eq. (5) and
integrating over the cylinder we find:

U0 = 1 − ν

E

z=0.5t∫

z=−0.5t

r=R∫

r=0

θ=2π∫

θ=0

σ 2(z) rdθ dr dz

= πR2 (1 − ν)

5E
tσ 2

s

(9)

which is the initially stored strain energy in a cylindri-
cal body of the radius R, thickness t and the residual
surface stress of σs .

The Eq. (9) can be written in terms of the strain
energy per unit surface area of any given base shape
of a body by dividing with the base area for the cylin-
der (Barsom 1968; Gulati 1997; Warren 2001; Nielsen
2017):

U0 = (1 − ν)

5E
tσ 2

s (10)

The energy can also be written in terms of the energy
density UD:

UD = 1

5

(1 − ν)

E
σ 2
s = 4

5

(1 − ν)

E
σ 2
m (11)

which is the amount of elastic strain energy stored in
the system per unit volume and thus only depends on
the residual stress and the material properties.

3 Voronoi tesselation over spatial point processes

This section provides a brief introduction to the two
mathematical tools that play a central role in the latter
algorithm: Spatial point processes and Voronoi Dia-
grams. Further details and exhaustive presentations of

these topics are covered in Baddeley et al. (2016), Wie-
gand and Moloney (2014), Schmidt (2015), Møller
(1994), Okabe et al. (1992) and Ohser and Schladitz
(2009).

3.1 Spatial point processes

A point process describes random configurations of
points P = {p1, . . . ,pn} in a continuous bounded set
K (which is in the case of this paper the 2D domain
of the glass fracture pattern with area content |K |).
The number of points n is itself a random variable N
that typically follows a discrete Poisson distribution.
The least complex point patterns exhibit complete spa-
tial randomness (CSR), i.e. the point locations pi occur
independently and uniformly (equal likelihood) over
the domain K . The probability density of a point pat-
tern P with point process parameters θ and distribution
of the point locations f θ

n (p1, . . . ,pn) is given by

fP (P|θ) = P[N (K ) = n|θ ]n! f θ
n (p1, . . . ,pn)

= λn(p) exp((1 − λ)|K |) (12)

Here,P is one of the possible point patterns and f (P)

can be interpreted as ‘the relative chance of obtaining
the point pattern P’ (Baddeley et al. 2016). Note, that
in Eq. (12), the probability density of a CSR does not
depend on the locations of the points pi , i.e. all pos-
sible patterns of n points are equally likely, the differ-
ent points are furthermore independent and each point
is uniformly distributed over the domain K . Further
point processes can be defined by probability densi-
ties fP (P|θ) which differ in their mathematical form
from Eq. (12) (i.e. a CSR process), this will serve as
the basis for two more point processes presented later
in this section.

The behavior of spatial point processes can be char-
acterized in terms of first-order and second-order prop-
erties. Thefirst-order property is described by the inten-
sity λ(p) (mean number of events per unit area at the
point p) and the second-order property reflects the spa-
tial dependence in the process (clustering or repul-
sion). More complex spatial point processes are able
to enforce either clustering or repulsion of the points,
which is observable in the second-order statistics of
these processes. Figure 4 shows examples of point pat-
terns which exhibit CSR and two examples violating
CSR due to regularity (repulsion) and clustering.
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Fig. 4 Spatial point
processes with same
intensity λ: a homogeneous
Poisson point process
(CSR), b regular point
process (MHC) and c
cluster point process (CPP)

Basedon inspection of typical fracture patterns, such
as shown in Figs. 1 and 2 a repulsion behaviour of
the underlying spatial point process can be concluded.
Repulsion processes possess a repulsion domain,which
is located around each seed point to avoid points being
too close to each other. When dim K = 2, this domain
is a disk with radius δHC , which is a model parame-
ter of the underlying spatial point process. This kind
of pairwise interaction of the points can be modelled
via repulsion/inhibition processes. In the context of
this paperMatérn Hardcore Processes (MHC) (Matérn
1960) as well as Strauss (repulsion) processes (SR)
(Strauss 1975) are investigated, which belong to the
family of the Gibbs processes (Baddeley et al. 2016).

In contrast to the CSR process with one parameter
(intensityλ), theHCprocess possesses two parameters,
the intensity λHC and the (minimal) hardcore distance
δHC , thus it is a two-parametric model with probability
density (Baddeley et al. 2016):

f θ
n (p1, . . . ,pn) =

{
cHCλ

n(p)

HC if n(p) ≥ δHC

0 if else
(13)

where cHC is the normalization constant. Matérn
(1960) proposed three schemes, called Matérn type-
I, type-II, and type-III hardcore point processes, for
constructing repulsive point processes. A type-I pro-
cess is gathered by sampling a primary process from
a homogeneous Poisson process with intensity λ, and
then deleting all pointswith distance less than δHC . The
Matérn type-II process assigning each point an ‘age’,
which defines, in case of point-distances less than δHC ,
that the older point is kept while the younger point
is deleted in the sampling process. A Matérn type-III
process lets a newer event be thinned only if it falls
within radius δHC of an older event thatwas not thinned
before. According to Baddeley et al. (2016), the hard

core process is a CSR conditional on the event, that it
satisfies the hard core constraint. For the modelling of
the fracture pattern, thismeans, that the intensityλHC is
equivalent to the intensity of a CSR λ while only keep-
ing points, that are not closer than δHC . In the latter of
this paper it is highlighted, that the hardcore constraint
introduces significant differences in the second-order
statistics of a point process and it is further shown, that
fracture patterns from experiments are in favour of a
hardcore constraint.

Acc. to Illian et al. (2008), the intensity of a HC λHC

can be estimated from the intensity of a CSR λ via

λHC = (1 − exp(−λ · V ))/V (14)

where V = π · δ2HC . Analogously to the derivation of
Eq. (29), combination of Eqs. (27) and (14).

In general, the hard core process is an appropri-
ate model given, that it is physically impossible for
two points to lie closer than a distance δHC . If close
pairs of points are not impossible but unlikely to occur,
the Strauss (repuslion) process (SR) ‘penalises’ rather
than ‘forbids’ close pairs of points. In the context of
this paper Strauss (repulsion) processes SR (Strauss
1975) are investigated, which belong to the family of
the Gibbs processes. Without going in detail here, c.f.
(Stoyan et al. 1995), the density of a Strauss point pro-
cess reads

f θ
n (p1, . . . ,pn) = cSRβn

SRγ
s(p)

SR (15)

where cSR is a constant, βSR > 0 is the ‘fertility’
parameter, 0 ≤ γSR ≤ 1 is the interaction parame-
ter, and s(p) is the number of point pairs, of which
the Euclidean distance is less than δHC . The Matérn
Hardcore Process is a special case of the Strauss pro-
cess with γSR ≡ 0, where γSR can be interpreted
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as the inhibition parameter. The considerations before
lead to a total of two respectively three parameters,
which are necessary to characterise either the Hard-
core Process θHC = {λHC ; δHC } or the Strauss Pro-
cess: θSR = {βSR; δHC ; γSR}. However, in Sect. 4 it
is derived, that the parameters θHC as well as θSR are
motivated from and are connected to distinct parame-
ters from Linear Elastic Fracture Mechanics (LEFM)
considerations.

According to Baddeley et al. (2016), β is not the
‘intensity’ of the HC or SR model, instead β should be
seen as the spatially varying ‘fertility’which is counter-
balanced by the ‘competitive’ effect of the hard core to
give the final intensity, thus the ‘intensity’ is the prod-
uct of fertility and competition. β is referred to as the
(first-order) trend which is of more interest than the
resulting ‘intensity’ of a point process.

The observed number of seeds in the inspectionwin-
dow n can be interpreted as a further parameter of the
processes, however conditionally on n, the processes
possess the number of parameters as stated before. The
sampling of a point process is in general not a sim-
ple task (as e.g. the normalizing constant Z may be
unknown as in the Strauss process case), thus usually
Monte Carlo methods have to be applied as they do not
require normalized probabilities for sampling (Badde-
ley et al. 2016; Møller et al. 1999).

3.2 Voronoi tesselation

For a given configuration of points P in K , called the
seeds, the Voronoi cell associated to the seed pi ∈ P,
denoted as V (pi), corresponds to the region in which
the points are closer to pi than to any other seed in P:

V (pi) = {
x ∈ K/||x − pi||q ≤ ||x − pj||q , ∀pj ∈ P, i �= j

}
(16)

The Voronoi diagram generated by P is the set of
the Voronoi cells {V (p1), . . . , V (pn)}. In Fig. 5, the
Voronoi tessellation of randomly distributed points is
shown. Voronoi diagrams entirely partition the domain
K without region overlap. By using the Euclidean dis-
tance (q = 2) in Eq. (16), Voronoi cells are guaranteed
to be convex polygons. Refer to Okabe et al. (1992) for
a thorough treatment of Voronoi tessellations and their
properties.

Matérn Hardcore and Strauss repulsion processes
in the context of this paper are used to generate the

Fig. 5 Example of a Voronoi diagram

seeds of Voronoi diagrams. From already conducted
experiments of breaking glass panes with distinct ther-
mal residual stresses images of the associated fracture
patterns have been taken and used as samples for the
identification of the intensity and theHardcore distance
of the underlying spatial point processes. In this work
is also proposed an analytical method for determining
the Hardcore distances.

4 Methodology of Fracture Structure Parameter
determination

4.1 Basic idea

The basic idea for the theoretical prediction and simula-
tion of the fracture pattern is to distribute points with a
certain distance δ to each other based on the locally act-
ing stress respectively the stored elastic strain energy,
and with a fracture intensity of λ obtained by evalua-
tion of fracture patterns in the plane. The final fracture
pattern is created by Voronoi tessellation of the result-
ing point cloud. Points can be distributed using dif-
ferent distribution methods (see Sect. 3). Taking into
account the size and intensity parameter, the follow-
ing point distribution dependency results as the esti-
mation parameters for the theoretical prediction of the
2D macro-scale fracture structure:

θ = {δ, λ} (17)

This work focus on the elastic strain energy resulting
from the residual stress state from the thermal temper-
ing process. In order to predict the fragmentation and
for the recognition and the generation of the fracture
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Fig. 6 a Hexagonal close packing distribution of points with an “energy circle” of radius r0 as the area of influence of each point; the
point distance is δ, b Delaunay triangulation of HCP, c honeycomb as the result of the Voronoi tesselation of the HCP

pattern, the Fragment Size Parameter δ and the Fracture
Intensity Parameter λ are determined.

The Fragment Size Parameter δ is equal to the hard-
core distance of the hardcore and Strauss spatial point
process and thus can be understood as a local minimum
point distance. For the determination of the Fragment
Size Parameter δ not only in dependence of the residual
stress based on the thermal tempering, but on any kind
of stress (e.g. stress resulting from an external load),
the linear elastic fracture mechanics (LEFM) based on
the energy criterion introduced by Griffith (1920) is
used. Part of the energy is released by new surfaces
generating from cracking and branching of progressive
cracks. The fracture pattern can be estimated with the
help of the energy concept in fracture mechanics, tak-
ing into account stochastic fracture pattern analyses.
This method is compared with the results of the finite
element simulations in Nielsen (2017).

In high-speed images (Nielsen et al. 2009), it was
observed that so-called “whirl-fragments” were gen-
erated by a whirl-like crack propagation. It was also
observed that progressing cracks branched at an angle
of 60 and formed a hexagonal fracture. A hexagonal
fracture structure is assumed to be the “perfect” frac-
ture pattern or “perfectly” broken glass plate. Predict-
ing such a “perfect” fracture structure is easy, provided
δ is known. All points in the plane have the same dis-
tance to each other and can be distributed by Hexag-
onal close packing (HCP) of points (see Fig. 6a). The
Voronoi tessellation takes place via the Delaunay tri-
angulation of the HCP-distributed points (Fig. 6b) and
results in the cell structure of a honeycomb (Fig. 6c).
Thus the number of fragments in an observation field
can be predicted well.

However, since the fracture pattern will not be per-
fect in reality (see Fig. 7), due to stochastic material
properties and stress distribution from the production
process, another parameter λ, which can be obtained
from experimental data and describes the intensity of
the fragment distribution, and thus the empirical reality
of a fracture pattern, must be added to the method.

The Fracture Intensity Parameter λ, which is a char-
acteristic value for the number of fragments in an obser-
vation field, was determined using the experimental
data of the fracture tests in carried out in Pourmoghad-
dam and Schneider (2018b). In Fig. 7, three samples of
fracture patterns are shown for the same glass thickness
but different residual stresses respectively elastic strain
energy densityUD . Fracture intensity is determined by
placing 50mm×50mm observation fields on the frac-
ture patterns and determining the average number of
fragments in correlation to the energy density for each
sample (Pourmoghaddam and Schneider 2018b).

4.2 Fragment Size Parameter δ

The determination of the Fragment Size Parameter δ is
based on the energy conditions described in Sect. 2. As
it is shown in Fig. 6a, the Fragment Size Parameter δ =
2r0 is the distance between two neighboured points.
For the development of the approach a HCP distributed
point cloud is assumed.This is necessary becausewedo
not want to go into the intensity of the fracture pattern
at first and want to describe the point distance purely
physically. There are three assumptions which were
necessary for the determination of the Fragment Size
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Fig. 7 Fracture patterns of
glass specimens of size
1100mm × 360mm and the
thickness of t = 12mm for
different residual stresses: a
σm = 26.9MPa
(UD = 6367.8 J/m3), b
σm = 30.0MPa
(UD = 7920.0 J/m3) and c
σm = 38.1MPa
(UD = 12774.2 J/m3)

Parameter respectively for the minimum distance of
two distributed points.

Assumption 1 The first assumption is that the glass
plate will break into cylindrical fragments. It was
assumed that the sphere of influence for the stored elas-
tic strain energy U of each point representing a frag-
ment is a circle, which is here called “Energy circle”
respectively a cylinder in 3D with a radius r0 before
fragmentation. As can be seen in Fig. 6a, the energy cir-
cles touch but do not overlap. Consequently, all energy
in the observed field is distributed in these energy cir-
cles. Thus, each radius r0 depends on the elastic strain
energy in the influence area of the respective point. The
free gaps between the energy circles are zero energy
areas and have no influence on the further calculation.

This is legitimate, as we are distributing the total strain
energy in the observed field through the energy circles.

Assumption 2 In the case of fracture the stored elastic
strain energy will release and there will be a relaxation
of energy in the fragment. However, we assume that
in the case of fracture the elastic strain energy is not
relaxed completely but just by a relaxation factor η:

η = r0 − r1
r0

= 1 − r1
r0

(18)

This means, that there will be a remaining strain
energyU1 in the fragment after the fragmentation. This
was shown numerically in Nielsen (2017) by FE simu-
lations on a fragment before and after the fracture sets
in. For the energy sphere described under Assump-
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Fig. 8 Energy circle before fragmentation with radius r0 and
after fragmentationwith radius r1; Aη is the surface of the energy
relaxation zone

tion 1, this means that the energy circle shrinks to a
smaller circle with a radius r1 after fragmentation (see
Fig. 8). The area in which the energy relaxes is called
the Energy relaxation zone. The area of the Energy
relaxation zone Aη can be easily calculated as follows:

Aη = πr0
2η(2 − η) (19)

In addition, the elastic strain energyUη in the relaxation
zone can be calculated as follows:

Uη = σ̂ (1 − ν)

E
t Aη (20)

wherein σ̂ describes the stress state as a factor of the
integrated stress function through the thickness. σ̂ can
be determined as σ̂m = 4

5σ
2
m by calculating with the

residual tensile mid-plane stress and σ̂s = 1
5σ

2
s for

the residual compressive surface stress for a parabolic
stress distribution from tempering. Uη is therefore the
elastic strain energy released during fragmentation.

Assumption 3 It is assumed that in the event of a frac-
ture, the elastic strain energy is released through the
generation of new fracture surfaces. Other forms of
energy such as acoustic or heat are neglected. There-
fore, we assume that all released elastic strain energy
Uη is converted to the fracture surface energy Γ :

Uη = Γ = 2γ A f r (21)

where A f r = 2πr1tρ∗ is the fracture surface by assum-
ing a cylindrical fragment. ρ∗ is a correction factor of

the fracture surface, since the fracture surface is not flat
in reality but irregularly shaped (Quinn 2016).

ρ∗ = A f r,act

A f r,cyl
(22)

Here A f r,act is the actual fracture surface and A f r,cyl

is the lateral surface of a cylinder. Therefore, for an
assumption of a cylindrical fragment ρ∗ = 1. γ is the
specific fracture surface energy and can be described
in terms of the critical energy release rate:

Gc = 2γ (23)

Depending on the stress state, we obtain:

γ = Gc

2
=

⎧⎪⎪⎨
⎪⎪⎩

K 2
I c

2E , Plane stress

K 2
I c(1−ν2)

2E , Plane strain

(24)

where in KIc is the critical stress intensity factor. Insert-
ing the Eq. (20) in Eq. (21) and resolving it to r0, we
obtain:

r0 = 4Eγρ∗

σ̂ (1 − ν)

(1 − η)

η(2 − η)
(25)

Furthermore, the relative remaining elastic strain energy
UR,Rem can be described as:

UR,Rem = U1

U0
= r21

r20
= (1 − η)2 (26)

According to the first assumption, the glass plate will
break into cylindrical fragments. In Fig. 9 the relative
remaining elastic strain energy UR,Rem in correlation
with the area of the base shape of the fragment A f r,base

normalized by t2 is shown in comparison with the FE
results in Nielsen (2017). As can be observed in Fig. 9,
the analytical results of the fragment size from a value
of approximately A f r,base/t2 ≥ 1.5 corresponds to the
FE results. The difference in the case of very small frac-
ture surfaces is due to the fact that the FE simulation
was carried out on a fragment volume and therefore
a multi-axial stress state was present. In the FE simu-
lations stresses in the thickness direction occurred in
the fracture state, whereas the analytical solution was
based on a continuous plane stress state.
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Fig. 9 Relative remaining elastic strain energy UR,Rem (–) ver-
sus fragment size given by A f r,base (mm2) for fractured soda-
lime-silica glass, analytical result (black line) in comparison to
the FE results (dashed line) (Nielsen 2017)

Now we have described the distance between the
distributed points δ = 2r0, which directly affects the
fragment size and so the fragmentation density N , in
dependence on the residual stress respectively the elas-
tic strain energy U . The method significantly depends
on the relaxation factor η (see Fig. 10), which can have
values from 0 to 1. The relaxation factor of η = 0
would mean that there is no fracture and η = 1 that the
energy is relaxed completely. Thus the fragment size or
the minimum distance between two points for a hard-
core spatial point process is mainly dependent on the
energy relaxed in the fracture state.

As described before and shown in Fig. 10, the frag-
ment density is affected by the relaxation factor η. The
greater η, the higher the percentage of the stored elas-
tic strain energy that is released during the fragmen-
tation. A larger energy produces more crack surfaces
and thus also a finer fracture pattern or in other words
a larger fragment number within an observation field.
For example for a residual surface compressive stress
of 100MPa we calculate in an observation field of size
50mm× 50mm a fragment density of N50 = 14 for a
relaxation factor of η = 0.05 and N50 = 132543 for a
relaxation factor of η = 0.9.

The Fragment Size Parameter δ was determined
using the experimental data of fracture tests. In Pour-
moghaddam and Schneider (2018b) specimens with
different thicknesses were thermally tempered with

Fig. 10 Fragment density N50 in an observation field of size
50mm × 50mm versus residual surface compressive stress for
different relaxation factors η = 0.05 to η = 0.9

different degree of tempering so that specimens with
different residual stresses were obtained for the frac-
ture tests. After the fracture tests the average frag-
ment weight was determined from more than 130 frag-
ments per specimen. Knowing the density of glass
(2500 kg/m3) and the glass thickness t the area of the
base shape of the fragment (fragment volume divided
by thickness) can be recalculated from the weight.
Using the energy density UD for the determination of
the correlation, the curves of base area and thus the
Fragment Size Parameter δ for the different thicknesses
coincide to one line. In Fig. 11, the elastic strain energy
density calculated from the different residual stresses
of the specimens is applied over the Fragment Size
Parameter δ. Each of the black triangles represents the
average of more than 130 fragments per specimen. For
the calculation of δ from the experimental data a frag-
ment with the number of edges n → ∞ (cylindrical
fragment) is assumed which contains other edge num-
bers and the Fragment Size Parameter δ is determined
over the radius of the fragment. The red line repre-
sents the fragment size calculated analytically using
Eq. (25). For the analytical calculations the measured
residual stress values of the specimens used in Pour-
moghaddam and Schneider (2018b), a Young’s modu-
lus of E = 70000MPa, a correction factor of ρ∗ = 1
and the plane stress state have been taken into account.

As it can be observed in Fig. 11 the analytical curve
fits for a relaxation factor of η = 0.123. A relaxation
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Fig. 11 Elastic strain energy density UD (J/m3) versus Frag-
ment Size Parameter δ (mm), black triangles with the black trend
line show the average of more than 130 fragments per specimen
(Pourmoghaddam and Schneider 2018b); the red line represents
the calculated fragment size for η = 0.123

factor of η = 0.123 means that the relative remain-
ing elastic strain energy UR,Rem = 0.77 and thus
approximately 77% of the initial elastic strain energy
U0 remains in the fragment and correspondingly 23%
of the initial energy releases during the fracture pro-
cess. In Fig. 12 the correlation between the elastic strain
energy density and the fragment density for the initial
energy density UD,0, remaining energy density UD,1

and the released energy density UD,η. Thus a direct
correlation between the energy in pre-fracture, fracture
and post-fracture state is shown.

4.3 Fracture Intensity Parameter λ

4.3.1 Deterministic fragmentation process

The fracture intensity is another important parameter
for the theoretical prediction of the fragmentation of
glass. The fracture intensity is a characteristic value
for the fragmentation behavior contains information
about the fragment density (Number of fragments in a
given area) of the fracture structure. From a determinis-
tic Fracture Mechanics point of view, the material can
be expected to be homogeneous and thus the spatial
location of fragment centers does not depend on the
actual location within an object under investigation.

Fig. 12 Elastic strain energydensityUD (J/m3)versusFragment
density N50 for the initial, remaining and released energy density,
η = 0.123

As a starting point for an estimation of the locations
of the centers of the glass fragments this assumption
serves well and is called ‘deterministic fragmentation
process’.

For the computation of the fragment density ND in
an observation field a hexagonal fracture structure with
a fragment side length a = 2r0/

√
3 is now assumed

(Fig. 6c). In a square observation field with the side
length D the fragment density ND can be described as:

ND = D2

2r20
√
3

(27)

Under the assumption homogeneity of the point pro-
cess the intensity λ is constant over K which further
implies, that the expected number of points falling in
an observation region with the side length D is propor-
tional to its area:

ND = λ · D2 (28)

In order to obtain hexagonal Voronoi cell structure
(honey comb), points can be distributed by Hexagonal
Close Packing (HCP). Combining Eqs. (27) with (28),
an approximation for the expected fracture intensity
λHCP of a honey comb, motivated from deterministic
fracture mechanics, can be expressed in terms of the
Fragment Size Parameter δ = 2r0 as:
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Fig. 13 Fracture intensity λ̃HCP (1/mm2) of a honey comb versus a Fragment Size Parameter δ (mm) b energy relaxation factor η (–)

Fig. 14 Fragmentation in an observation field of size 50mm ×
50mm versus relaxation factor η with regard to the Voronoi
tesselation of HCP distributed points with the distance δ, the
residual mid-plane tensile stress σm = 50MPa, a η = 0.04;

δ = 17.89mm; N50 = 9; λ̃HCP = 0.0036 1/mm2 b η =
0.1; δ = 6.92 hboxmm; N50 = 60; λ̃HCP = 0.0240 1/mm2

c η = 0.2; δ = 3.25mm; N50 = 274; λ̃HC = 0.1096 1/mm2

λ̃HCP = 2√
3

· 1

δ2
(29)

In Fig. 13a, a double logarithmic interrelation between
fracture intensity of the honey comb and fragment
size is shown. The fracture intensity decreases with a
coarser fracture structure. λ̂HCP can further be rewrit-
ten in terms of the energy relaxation factor η as:

λ̃HCP = 1

2
√
3r̂2

· η2(2 − η)2

(1 − η)2
(30)

with

r̂ = 4Eρ∗

σ̂ (1 − ν)
γ (31)

In Fig. 13b, a double logarithmic interrelation between
fracture intensity of a honey comb and the energy relax-
ation factor is shown. The fracture intensity increases
with higher energy relaxation.

In Fig. 14a–c the Voronoi tesselation of HCP dis-
tributed points with the point distance δ is shown for
a plate with the residual mid-plane tensile stress of
50MPa. The respective fragmentation density is shown
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Fig. 15 Fragmentation in an observation field of size 50mm ×
50mm versus relaxation factor η with regard to the Voronoi tes-
selation of uniform distributed points with theminimum distance
δmin , the residual mid-plane tensile stress σm = 50MPa, a η =

0.04; δmin = 17.89mm; N50 = 7; λ̃HC = 0.0028 1/mm2 (b)
η = 0.1; δmin = 6.92mm; N50 = 44; λ̃HC = 0.0176 1/mm2 c
η = 0.2; δmin = 3.25mm; N50 = 183; λ̃HC = 0.0732 1/mm2

in an observation field of size 50mm × 50mm. The
relaxation factor η increases from η = 0.04 in Fig. 14a
to η = 0.2 in Fig. 14c. It is shown that for the same
residual stress of 50MPa the point distance decreases
with higher values for η.

The assumption of a hexagonal fracture structure is
eased to the assumption of a polygonal fracture struc-
ture induced by the Voronoi Tesselation over a Hard-
core Process (HC). The fragment density ND is now
connected to the spatial point process intensity. Analo-
gously to Eq. (29), using Eq. (14) and combining it with
Eq. (28), an improved estimation of the expected Frac-
ture Intensity Parameter λ̌HC can be derived in terms
of the Fragment Size Parameter δ = 2r0 as:

λ̌HC = −
4 ln

(
1 −

√
3π

6·δ2
)

δ2π
(32)

However, despiteEq. (32) takes into account themagni-
fication of the observed intensity from the simulations
to estimate the underlying HC process intensity, the
connection to the HCP is still basis of the derivation of
the estimator.

4.3.2 Stochastic fragmentation process

If fracture tests are conducted, it can be observed, that
the center locations of fragments do vary stochastically
within an object under investigation due to different
reasons such as inhomogeneous thermal pre-stressing
of a glass pane, inhomogeneous load application etc.
Analogously to Sect. 4.3.1, the same investigation was

carried out but this time using random point locations
in an observation field of size 50mm × 50mm with
a uniform distribution for the point locations instead
of HCP. This kind of randomly distribution led to a
varying distance between points. However, the distance
determined on the basis of the relaxation factor η was
given as the minimum distance for the point process.
In Fig. 15a–c the Voronoi tesselation of uniformly dis-
tributed points with the minimum point distance δmin

is shown for a plate with the residual mid-plane tensile
stress of 50MPa. In comparison to the fragment density
for the case of HCP distributed points, the number of
fragments is underestimated for uniformly distributed
points. Until η = 0.04 the difference is not signifi-
cant yet. However, the difference is more pronounced
for the higher relaxation factor of η = 0.2. This is
because on the one hand, Eqs. (29)–(31) are derived
as approximations for the underlying stochastic point
process as prior expectations motivated from the deter-
ministic fracture process and on the other hand, in the
deduction ofEqs. (29)–(31) aminimumenergy require-
ment was not introduced for the randomly distributed
points.

4.3.3 Experimental determination of the Fracture
Intensity Parameter λ

The Fracture Intensity Parameter λ has been deter-
mined experimentally from fracture tests on thermally
tempered glass specimens. In Pourmoghaddam and
Schneider (2018b), 72 glass plates of size 1100mm ×
360mm and three different thicknesses of 4mm, 8mm
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Fig. 16 Square observation fields with the side length of D =
50mm and the definition of the boundary for the fragmentation
analysis

Fig. 17 Elastic strain energy densityUD (J/m3) versus Fracture
Intensity Parameter λ (1/mm2) determined from fracture tests
(Pourmoghaddam and Schneider 2018b)

and 12mmwere thermally temperedwith different heat
treatment (Pourmoghaddam and Schneider 2018c) for
achieving different residual stresses and then fractured
according to EN 12150-1. Subsequently, the average
fragment density ND of eight square observation fields
with a side length D = 50mm taking a boundary
of fragmentation analysis into account, as shown in
Fig. 16, was determined by counting the fragments of
each observation field. The fragmentation was influ-
enced by the impact in an area under the impact position
(impact influence zone). Therefore, only the fragments
in the areas under an assumed angle of 45◦ left and
right from the impact point were considered for the
investigations.

Now assuming a constant intensity in each obser-
vation field the average Fracture Intensity Parameter λ

can be calculated for each specimen using Eq. (28).

Using the energy density UD for the determination
of the correlation, the curves of the fragment density
N50 and thus the fracture intensity λ for the different
thicknesses coincide to one line. In Fig. 17, the cor-
relation between the elastic strain energy density UD ,
calculated from the measured residual stresses of each
specimen, and the Fracture Intensity Parameter λ is
presented. It can be observed that the accuracy of the
experimental results of the fracture intensity decreases
with lower energy density respectively for larger frag-
ments.

5 Summary, conclusion, outlook and future
research

5.1 Conclusion

Based on fracture tests on glass plates with different
heat treatment for achieving different residual stress
levels (Pourmoghaddam and Schneider 2018c) this
paper deals with the determination of Fracture Struc-
ture Parameters for the prediction of the 2D macro-
scale fragmentation of glass. The Voronoi tesselation
of distributed points using calibrated spatial point pro-
cesses can be used in order to simulate the glass frac-
ture structure. The probability density function of the
Hardcore Process, e.g., possesses two parameters, the
intensity of the points in an observation region and the
(minimal) hardcore distance between point pairs, thus
it is a two-parametric model. In this work, due to com-
prehensive investigations of fracture patterns and ana-
lytical considerations based on the LEFM the parame-
ters characteristic for the fracture intensity called Frac-
ture Intensity Parameter λ and the hardcore distance
between point pairs called Fragment Size Parameter
δ have been determined. These two parameters are
applied over the elastic strain energy UD in Fig. 18.

The fracture mechanical parameters were laid and
the connections to the parameters of the spatial point
processes were highlighted. Under assumption of a
cylindrical fragment with the radius r0 of the base area,
a Fragment Size Parameter δ was generated as a func-
tion of the elastic strain energy remaining in the frag-
ment after the fragmentation considering the relaxed
energy. In this work, the energy relaxation factor η

was fitted to the results of the fracture tests. The mini-
mum distance between two points (Hardcore distance
δ = 2r0) can be determined on the basis of the LEFM.
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Fig. 18 Elastic strain energy densityUD (J/m3) versus Fracture
Intensity Parameter λ (1/mm2) (experimental: black triangles)
and Fragment Size Parameter δ (mm) (experimental: black dia-
monds); red line represents the Fragment Size Parameter deter-
mined analytically

The number of fragments or the number of points
representing fragments is taken into account in an
observation field K as a function of the temper stresses.
The Fracture Intensity Parameter λ to consider the
intensity of the fracture structure was also discussed.
A correlation between the elastic strain energy density
and the intensity of the fracture pattern was established
based on the experimental data of fracture tests. An
estimator for the constant Fracture Intensity Parameter
was derived for two cases: the deterministic Hexago-
nal Close Packed (HCP) setting as well as a Hardcore
stochastic point process, both acting on an observation
field K . The generation of fracture patterns under the
assumption of HCP leads on the one hand to a visu-
ally observable poorer depiction of the glass fracture
pattern and on the other side a poorer estimate of the
fracture intensity compared to the Voronoi tesselation
of the observation domain over spatial randomly dis-
tributed point locations p. Thus, further research will
head in the direction of assuming point locations for
the Voronoi tiling as random variables. The underly-
ing probability distribution has to be estimated from
fracture experiments.

5.2 Outlook and future research

In order to predict the 2D macro-scale fragmen-
tation of glass considerations from Linear Elastic

Fracture Mechanics (LEFM) with approaches from
stochastic geometry in terms of spatial point patterns
have to be merged. This method is called “Bayesian
Reconstruction and Prediction of Glass Fracture Pat-
terns (BREAK)”. In Pourmoghaddam et al. (2018a, b),
numerical studies on the probability distributions of for
different geometrical properties of tesselation over the
CSR, MHC and SP with different parameter settings
were conducted and evaluated. As no analytical expres-
sions for the posterior distribution of e.g. the number of
edges, the area content or the circumference of a typi-
cal Voronoi cell of a MHC or SP exist and these quan-
tities are of interest in a fracture mechanical setting,
numerically intensiveMonteCarlo simulations of these
processes were used to numerically infer the respec-
tive distributions to allow further fracture mechanical
processing of these information. Besides the fracture
mechanical relevance a generalmathematical value can
be addressed to the obtained results, as the posterior dis-
tributions for the geometrical properties can be used in
other applications without loss of generality.

An example for the estimation of the spatial point
process intensity and thus fragment density is depicted
in Fig. 19 (note, that in this computation no edge correc-
tion was applied as the choice of a correction method
itself is non-trivial, c.f. Baddeley et al. (2016); Møller
(1994). In Fig. 19 the estimation of the intensity λHC

of the underlying point process as well as the induced
Voronoi Tesselation for the fracture pattern of one of
the tested glass panes is shown as 3D view and a top
view. The process calibration as well as simulation of
further fracture patterns will be highlighted in part two
of this paper in depth. In order to determine the statis-
tical values of the fracture structure such as fragment
edge number, the fragment perimeter, fragment base
area, etc. first the fracture image has to be recorded and
morphologically processed. Then a spatial point pro-
cess model fed with the informations from the fracture
mechanics (fragment size respectively the hardcore dis-
tance between point pairs) and the experimental data of
fracture tests (fracture intensity) has to be matched to
the fracture image and calibrated to evaluate a candidate
model. Subsequently, the fracture pattern can be simu-
lated. The overall methodology with the incorporated
theories is depicted in Fig. 20. The results presented in
this paper, the incorporated theories as well as further
experimental investigations of the fracture structure
will flow into future research in the field of 2D macro-
scale fracture structure prediction. An upcoming pub-
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Fig. 19 Estimated fracture intensity λ̃HC over the Voronoi tesselation of a Matérn Hardcore Process without edge-correction: a 3d
view b top view

Fig. 20 Framework of the method “BREAK”

lication deals with the further deduction, implementa-
tion and calibration of themethod “BREAK” in order to
simulate fracture patterns which conserve different sta-
tistical properties of the underlying glass fracture pat-
terns such as the distribution of interpoint-distances or
the distribution of remaining fracture particle area. The
assessment of different spatial point processes as well
as the properties of the induced Voronoi tesselations
have to be studied and compared against the empiri-
cal statistics obtained from the images of the fracture
tests on glass plates. The formalisation of the findings

in terms of parameter tables as basis for the simula-
tion of the spatial point processes with their Voronoi
tesselation will be provided in the second part of this
paper.
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