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Abstract A building energy management (BEM) system
is a core hardware/software platform that enables demand
response applications for building operators in the smart grid
environment. This paper presents the BEM algorithm that is
designed to be robust against communication failures and
data errors. It has been implemented in the smart building
located at Yildiz Technical University in Istanbul, Turkey,
and results are reported herein. Appliance usage profiles and
customer preferences used in the BEM demonstration were
derived from a survey of Turkish customers. Both summer
andwinter usage profiles were used to validate the efficacy of
the proposed algorithm in a real-world smart building envi-
ronment. The paper also discusses lessons learned from field
implementation.
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Introduction

In the US and many other countries around the world, the
daily peak load experienced is frequently much higher than
the daily average load. This low load factor causes ineffi-
cient operation of generation, transmission and distribution
resources. To avoid systemstress conditions due to increasing
demand [1] and to use power system resources more effi-
ciently, demand response (DR) can serve as an effective tool
to reduce peak demand through demand-side load curtail-
ment [2]. A fully automated DR program [3] is one that can
provide load management to meet electric utility needs with-
out direct customer intervention. With an increasing interest
in DR programs for residential customers in recent years,
various automated DR approaches have been developed [4–
15,17–23,25].

To enable DR implementation, different communication
technologies for load control have been implemented, i.e.,
ZigBee [9], power line carrier (PLC) [10], ZigBee and PLC
[11], infrared-based remote controls with ZigBee commu-
nication [12], and BACnet [13]. Different methodologies
have been applied. For example, authors in [14] implemented
a dynamic priority based scheduling scheme; authors in
[15] employ a convex programming based solution, whereas
authors in [17,25] employed dynamic programming based
approaches. Authors in [18] proposed implementation for
a green home with built-in PV and motorized blinders.
Most work in the literature relies on real-time/dynamic
pricing-based scheduling schemes [19,20]. In spite of being
less common than priced-based DR programs, tremendous
untapped DR potentials lie in incentive-based DR programs
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that can provide up to 80 % peak load reduction potential
in US according to FERC [21]. In existing literature, most
works provide simulation results for proposed algorithms
[19,20,22], with very few papers focusing on real experi-
ments in smart house [23].

We have developed an intelligent Energy Management
algorithm [24], which is an automated incentive-based DR
algorithm for residential customers. The initial hardware
demonstration of the algorithm was conducted in a labo-
ratory environment at the Advanced Research Institute of
Virginia Tech (VT-ARI). Communication failures and data
errors were observed during the laboratory experiment. This
led the system to read erroneous power consumption data
from appliances causing flawed DR decisions. The build-
ing energy management (BEM) algorithm presented in this
paper ismore robust against communication failures and data
errors, which surfaced during previous laboratory experi-
ments. This algorithm can be applied to homes, offices and
industrial buildings. This paper focuses on the validation of
this improved algorithm in field implementation, by design-
ing realistic case study scenarios in the smart house located
at Yildiz Technical University (YTU)—Davutpasa campus
in Istanbul, Turkey. The paper reports the methodology of
designing the case scenario, modification of the algorithm to
suit the deployment environment, and experimental results
from the deployment to show the usefulness and pragmatism
of the designed algorithm. The contribution also includes
identifying lessons learned from the field demonstration.

The rest of the paper is structured as follows: “The
Building Energy Management (BEM) Algorithm” section
discusses the BEM algorithm, especially focusing on the
improvements made based on learnings from previous lab-
oratory experiments. Then, “YTU Smart House and Its
Integration with the BEM Algorithm with Further Modifi-
cation” section describes the deployment environment: the
YTU smart house and modification of the BEM algorithm
to integrate it with the smart house. After that, “Design
of Realistic Case Scenarios” section discusses the design
methodology of the case scenarios for implementation. Later,
“Discussions of Case Studies” section presents the case
studies, discussion of the results from smart house implemen-
tation, and the lessons learned. Finally, “Conclusion” section
concludes the paper.

The Building Energy Management (BEM)
Algorithm

This section briefly describes the improved energy manage-
ment algorithm to add robustness against communication
failures and data errors faced during laboratory experiments.

During laboratory experiments with our previously devel-
oped algorithm, we faced issues of communication failures

and data errors. We had used ZigBee based communication
between a central energy management unit and the load con-
trollers to collect sensor data and transmit DR decisions. The
reasons underlying the occurrence of communication fail-
ures/data errorswere found tobe either communication errors
from failure to communicate between the central unit and
load controllers due to package drop or corrupted frames; or
data errors due to microcontroller read errors. The laboratory
experiment indicated that the communication failure/data
error rates of these load controllers are in the range of 0.5–
3.8 %.

To avoid errors in operation, the VT’s energy manage-
ment algorithm was improved to incorporate robustness
against communication failures and data errors by incor-
porating a popular method used in communication net-
works: automatic repeat request (ARQ) [26,27]. Although
another popular method named forward error correction
(FEC) is very effective in fixing bit errors by adding
redundancy bits and error correction codes, it cannot be
implemented in our case, as it compromises throughput
due to limited resources in the smart plugs. On the other
hand, ARQ methods [28] are simple to implement in sen-
sor networks with low resources, and achieve reasonable
throughput. We implemented a combination of the stop-
and-wait (SW) and selective repeat (SR) ARQ schemes
[26,27] with some modifications of our own. In SW, sender
waits for acknowledgement after transmitting packets, and
in case of negative acknowledgement or no response time-
out, re-sends the packet. In the basic SW scheme, this
re-transmission continues until a positive acknowledgement
is received. But for our case, we cannot indefinitely continue
retransmission as that will stop the BEM from making deci-
sions.

Therefore, in our modified algorithm, the BEM sends
data request to each smart plug, and stops and waits for its
response for a time-out of 5 s. If no/erroneous response is
detected, the BEM uses the last recorded correct data for
that smart plug and goes forward to send data request to the
next one. At each cycle, the BEM keeps a counter of failed
communications for each smart plug, and in case of three con-
secutive failures with a particular smart plug, it announces
a warning signal indicating communication lost with that
smart plug. The improved algorithm is shown in Fig. 1. This
improvement, in spite of its simplicity, successfully prevents
BEM from using incorrect appliance data for calculations,
thereby making it more resilient to handle communication
failures/data errors. This discussion of modification is pre-
sented here to report the update fromour last algorithmbefore
going into the discussion of field demonstration.

The algorithm in Fig. 1 is the BEM algorithm for res-
idential applications. It focuses on power-intensive loads
commonly available at households:water heater (WH), space
cooling/heating unit (AC), clothes dryer (CD) and electric
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Fig. 1 Improved BEM
algorithm to handle
communication failures/data
errors

vehicle (EV). The demand response is implemented through
DR events designed by utilities. A DR event is defined as a
period of time duringwhich the total power consumption of a
household is to be limited within a demand limit specified by
the utility. This is similar to ‘scenario power’ in [29,30], but
in the Virginia Techmodel, the demand limit is imposed only
during theDR event to ensure peak load curtailment. Another
variation of this implementation is possible where the utility
specifies the amount of power (kW) to curtail instead of the
demand limit. The customer can be motivated to participate
inDRevents throughmonthly or annualmonetary incentives,
besides savings due to less consumption during peak-pricing
period. To implement this, the utility sends a signal to the
customer with demand limit and DR event duration prior to
the DR event. Also, the customer selects the priorities and
comfort level settings for the power-intensive loads. These
settings can also be factory-preset considering load types, as
in [29]. The BEM algorithm starts by collecting customer
inputs of load priority and comfort level settings and utility
inputs of demand limit and DR event duration. Then it starts
collecting data from the sensors and the smart plugs/smart
appliances. While collecting data, it employs the improve-
ment just discussed. Once data from all appliances have been
collected, the algorithm checks if the current ON/OFF sta-
tus of appliances violates any comfort level settings or the
demand limit. If no demand limit has been imposed, the algo-
rithm turns ON/OFF the appliances to maintain the comfort
level settings with efficient energy usage. On the other hand,
during DR event, the algorithm restricts the total power con-
sumption within the specified demand limit. In this case, it
uses the preset/customer-defined priority settings with the
comfort level settings to decide which loads to interrupt in
case of demand limit violation. This is discussed in more

details in [24]. The decisions are then conveyed to the smart
appliances/smart plugs to implement changes in load sta-
tus.

Although the algorithm shown in Fig. 1 is for residen-
tial customers, this can be applied to commercial/industrial
buildings as well. For example, for commercial buildings,
Heating, Ventilation and Air Conditioning (HVAC) loads,
lighting loads, office plug-loads andElectricVehicle chargers
can be considered for full/partial load curtailment using this
BEM algorithm. Similarly, different sets of power-intensive
loads can be chosen in industrial buildings for DR.

The following sections present the validation of the BEM
algorithm for residential applications through field imple-
mentation in a smart house environment.

YTUSmartHouse and Its Integrationwith theBEM
Algorithm with Further Modification

The test-bed was a pilot smart house project at Yildiz Techni-
cal University (YTU) Davutpasa Campus, Istanbul, Turkey,
which is financially supported by Istanbul Development
Agency (ISTKA) [31].

Loads in the YTU Smart House

The 35 square meter smart house prototype was built
inside a research laboratory building at the YTU Davut-
pasa campus. The prototype consists of a living room with
a kitchen, a study room and a bathroom. It is equipped
with typical household appliances. An electric vehicle
(EV) charging station is also a part of the smart house.
Note that both solar and wind electricity available from
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Fig. 2 General concept of the YTU smart home project

the building roof-top can be integrated into the smart
house, together with a power conditioning system and
a battery bank. The smart house network is shown in
Fig. 2.

4-Noks® Smart Plugs for Load Monitoring and Control

In the smart house, 4-noks® smart plugs are used as load
control devices [32]. Each appliance is connected to an
addressable 4-noks® smart plug that uses ZigBee wireless
communication to allow its monitoring and control from
the central computer. While power-intensive loads are to
be controlled by the smart plug, all critical loads are only
monitored. In addition to smart plugs, smart temperature
sensors are also installed in the smart house, which pro-
vide room temperature data to the central computer. The
EV charging station can also be turned ON/OFF from
the main computer using a 4-noks® ZR-HMETER.D-M
[33].

Integration of the BEM to the YTU Smart House

To allow our BEM algorithm to control appliances in the
smart house, the improved BEMalgorithm discussed in “The
Building Energy Management (BEM) Algorithm” section is

embedded in the main computer that communicates with all
other devices. The central computer collects electrical con-
sumption data from all appliances and implements control
decisions by communicating with selected smart plugs that
provide necessary interface between appliances and electri-
cal outlets.

In order to enable the implementation of BEM algorithm
in a smart house, some other modifications in the algorithm
were necessary to control the smart house loads and smart
plugs, as discussed below.

Modification of the BEM Algorithm Taking into Account
Deferrable, Non-Interruptible Loads

Some selected loads in a smart house environment do
not fall into the categories discussed in “The Building
Energy Management (BEM) Algorithm” section. These are
deferrable/non-interruptible loads, which include a washing
machine and a dishwasher. These loads are not suitable for
interruption by the BEM during a DR event. This is because,
for some washing machine and dishwasher models, if their
operation is interrupted, the whole washing cycle must be
restarted. Hence, the BEM algorithm has been modified to
defer the start time of load cycle in this category until the end
of a DR event.
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Modification of BEM Algorithm Taking into Account Data
Collection of 4-noks® Smart Plugs

In our laboratory experiments, each load controller was
sent data requests once every minute, hence if there was
a communication failure during a single communication
request/response, it resulted in missed data for that particu-
lar minute only. On the other hand, in the YTU smart house,
data was collected from the 4-noks® smart plugs several
times during 1 min intervals. Hence, even one successful
communication with a smart plug during a minute was suf-
ficient for BEM to make decisions. Due to this fact, the
BEM algorithm was further modified to ignore communi-
cation failures with a smart plug during a given minute, if
there was at least one successful communication with that
smart plug during that minute. The field implementation is
reported in “Design of Realistic Case Scenarios” section
below.

Design of Realistic Case Scenarios

In this section, assumptions and data used in the forma-
tion of case studies are discussed, including surveys of
appliance usage, customer preferences and load priorities,
assumptions for a DR event and load profiles of different
appliances.

Survey of Appliance Usage in Turkish Households

In order to design valid case studies, the consumption
profile of typical Turkish customer building is required.
A survey was conducted among 10 Turkish customers to
build such a profile. Customers were asked to provide the
time and duration of usage of each appliance, including
water usage, on a regular work day. All participants had
working hours from 09:00 to 17:00 regardless of the sea-
son. Based on the cumulative survey results, average usage
profiles of all smart house appliances were generated to
represent typical appliance usage profiles of Turkish cus-
tomers. Figure 3 depicts typical usage times and durations
of selected appliances on a regular weekday in summer and
winter.

Notice a minimal appliance usage during customers’
absence from home (08:00–18:00 including travel time to
and from work), and sleeping hours (midnight to 06:00)
where partial lighting, i.e. porch/corridor lighting, is ON.
Most appliances are used either in the morning from 06:00
to 08:00, or in the evening from 18:00 to midnight. The hot
water usage profile from the survey was used to determine
the operation of an electric water heater during both summer
and winter seasons. Lighting was used for shorter duration
during summer due to extended daytime.

Fig. 3 Appliance usage time for an average Turkish household, deter-
mined from the survey, for summer and winter

Survey of Customer Preference and Load Priorities

A separate survey was conducted on the same group of
customers to determine typical load priority and prefer-
ence settings for the four power-intensive loads to be con-
trolled by the BEM. For priority settings, most customers
responded with the following priority sequence: WH >

AC > CD > EV. The average preference setting for a
water heater (WH) from the survey was to maintain the hot
water temperature within 43–46 ◦C (∼110–115 ◦F) range.
And the room temperature set point was preferred to be
23 ◦C (∼74 ◦F) during winter and 24 ◦C (∼76 ◦F) dur-
ing summer. The customer preference was for the clothes
dryer (CD) to finish its job by midnight. Also, both its
maximum OFF time and minimum ON time was speci-
fied to be 30 min. An electric vehicle (EV) was preferred
to finish its job by 08:00 in the morning with a mini-
mum charging time of 30 min before any interruption could
occur.

Assumptions for DR Events

To design the demand limit and duration of a DR event for
the case studies, the total household consumption without
DR event was generated using the appliance usage profiles
from the above surveys. Figure 4 shows the total household
consumption during morning and evening hours for summer
and winter when customers are at home.

The morning peak demand was observed between 06:00
and 08:00 both in the summer and winter, with the sum-
mer peak being 3.6 kW and winter peak being 3.8 kW.
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Fig. 4 Total household
consumption profiles without
DR for summer and winter

The evening peak demand was observed between 18:00
and 21:00, with a summer peak of 10.8 kW and winter
peak of 10.2 kW. Morning peak loads are much lower
than evening peak loads, hence a morning peak period
is not a candidate for a DR event. Since typical evening
peaks occur between 18:00 and 21:00, this study consid-
ers that a local utility imposes a demand reduction target to
limit the peak demand of residential customers from 18:00–
21:00.

Both in winter and summer, a demand limit of 6.7 kW
(or, approx. 33 % load reduction) is imposed during a DR
event. This value of demand limit is selected for the case
studies based on our simulation results to avoid the rebound
of peak demand (i.e., demand restrike) during an off-peak
period after a DR event ends.

Load Profiles

Water Heater

Aspace heaterwith the same power rating as a typical electric
water heater inTurkeywas used to represent the electricwater
heater in the smart house. The measured load profile of this
space heater is shown in Fig. 5a. It was placed outside the
smart house during the experiment so that the additional heat
generated did not affect the room temperature inside smart
house. It is considered the highest priority load.

Space Cooling/Heating Unit

The space cooling/heating unit was operated in the heating
mode for winter case studies with the room temperature set
point of 23 ◦C (∼74 ◦F) and a dead-band of 1 ◦F. For summer
case studies, it was operated in the cooling mode with the set
point of 76 ◦F (∼24 ◦C). From the measured load profiles in
Fig. 5b, c, it can be seen that the unit consumed 1.14 kW in
its heating mode and 0.7 kW in its cooling mode. The space
cooling/heating unit is considered the second highest priority
load for the case study demonstration.

Clothes Dryer

As a clothes dryer is unavailable in the YTU smart house
environment, it was represented by a hair dryer to conduct our
case studies. The hair dryer has a similar load profile (Fig. 5d)
as a clothes dryer, but has lower power consumption. Hence,
a scale factor of 2.0 was used to scale-up the consumption
of the hair dryer to represent the consumption of a clothes
dryer. The unit is set with a load priority just below the space
cooling/heating unit.

Electric Vehicle

Due to the limited availability of EV for our experiments,
a one-time measurement was conducted to determine the
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Fig. 5 Measured load profiles
of selected appliances

Table 1 Load representations, scale factors, priority and preference settings

Load Actual load used in smart
home demonstration

Actual load power
consumption (kW)

Scale factor
used

Load
priority

Preference settings

Water heater Space heater 2.1 1 1 Hot water temperature: 110–115 ◦F
Space cooling/
heating unit

Space cooling/
cooling unit

1.14 (Heating);
0.7 (Cooling)

1 2 Room temperature: summer: 76 ◦F
(±1 ◦F); winter: 74 ◦F (±1 ◦F)

Clothes dryer Hair dryer 1.45 2 3 Finish job by midnight; Max
OFF/Min ON Time: 30 min

EV charger Recorded profile 3.3 1 4 Finish job by 8 AM; Min charging
time: 30 min

power consumption of an EV at the YTU smart house. The
EV was charged from 45 to 85 % state-of-charge and it had
an almost constant consumption throughout the experiment.
The recorded EV consumption profile (Fig. 5e) was used
for case studies instead of its real-time operation. The EV is
considered the lowest priority load in the house.

Deferrable, Non-Interruptible Loads

These loads, for example a washing machine, are not
interrupted during their operation, but will be deferred if
a homeowner starts their operation during a DR event.
Figure 5f shows the measured power consumption profile
of a washing machine.

Table 1 summarizes the power-intensive load representa-
tions, their power consumption (kW), scale factors, and their

priority and preference settings used during our case study
demonstration.

Discussions of Case Studies

This section presents the description of case studies, basis
for temperature adjustments in the smart house, results and
discussions, as well as lessons learned from the field experi-
ment.

Case Study Description

To observe the impact of the proposed BEM algorithm in
a real-world smart house environment, four different case
studies were conducted:
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Fig. 6 Demand response demonstration results: a winter case without DR event; and b winter case with a DR event between 18:00 and 21:00

a) Summer season with no DR event;
b) Summer season with a DR event from 18:00–21:00;
c) Winter season with no DR event; and
d) Winter season with a DR event from 18:00–21:00.

For all these cases, the BEM program was run for 4 h to
observe the impact of DR on total household loads during
the 3 h DR event and the impact of load restrike for one hour
after the DR event ends.

Basis for Temperature Adjustments in the Smart House

As the smart house is built inside the YTU Electrical
Engineering building and all experiments (including both
winter and summer case studies) were conducted in win-
ter, the temperature profile outside the smart house had to
be manipulated to represent typical temperature profiles for
winter/summer cases of a real house.

For winter cases, building zone heaters were turned OFF,
and windows were left open so that the environment outside
the smart house (but inside the building) represents ambient
conditions during the winter in Turkey.

For summer cases, building zone heaters were kept ON,
keeping the building temperature at around 24 ◦C (∼76 ◦F),
and an additional space heating unit was used outside the
smart house to increase the ambient temperature, represent-
ing a hot summer day in Turkey. The additional space heating

was kept constantly ON during the whole duration of the
summer case.

Results and Discussions

Results of the four different case studies are discussed as
follows:

Case 1: Winter Case—No DR Event

This case was run in the afternoon on Jan 11, 2013. This
is the base case for winter season without any DR event in
effect. Figure 6a shows the power consumption of differ-
ent appliances. Temperature profiles for this case are also
shown. Critical loads include uninterruptible loads, such as
lighting, TV, refrigerator, PC, etc. Deferrable/uninterruptible
loads include a washing machine and a dishwasher. As there
is no DR event, all appliances are turned ON and OFF based
only on their preset comfort settings as specified earlier. The
space cooling/heating unit functioned in the heating mode to
maintain the room temperature within ±1 ◦F around the set
point of 74 ◦F. As can be seen from the power consumption
profile, the operation cycle of the space cooling/heating unit
is different between 18:00–20:00 and 20:00–22:00. This is
attributable to the fact that there were more people present in
the smart house between 18:00–20:00. This caused the dura-
tion of both the heating and cooling functions to be longer
than those during 20:00–22:00. The other loads were oper-

123



Intell Ind Syst (2015) 1:163–174 171

Fig. 7 Demand response demonstration results: a summer case without DR event; and b summer case with a DR event between 18:00 and 21:00

ated according to schedule derived from the Turkish survey.
The peak consumption of almost 10.4 kW occurred from
20:16 to 20:21 when all the appliances were ON simul-
taneously. The critical load profile is also shown at the
bottom-most subplot of Fig. 6a, together with the total house-
hold power consumption.

Case 2: Winter Case—with DR Event

This case was run in the evening on Jan 11, 2013. As can be
seen in Fig. 6b—the bottom-most subplot, a demand limit of
6.7 kW was imposed between 18:00 and 21:00. During the
DR event, the BEM algorithm continuously tried to main-
tain the total consumption below the demand limit. In order
to do so, it shed lower priority loads if the total consump-
tion exceeded the demand limit. For example, from 18:15 to
18:45, the EV was turned OFF a number of times to allow
critical loads to run. It was also turned OFF from 20:16 to
21:00 in order to keep the clothes dryer ON,which has higher
priority than theEV. In short, theBEMalgorithmensured that
the demand limit was not surpassed at any time during the
DR event. The deferrable loads: washing machine and dish-
washer were deferred until after 21:00 when the DR event
was over. Due to load curtailments and deferrals during the
DR event, load restrike was observed for almost 15 min after
the DR event ended, where peak consumption reached the
value of almost 10.4 kW. A comparison between Fig. 6a, b
clearly demonstrates the efficacy of the BEM algorithm to
control total household consumption during a DR event.

Case 3: Summer Case—No DR Event

The base case for summer season is the case without any
DR event. See Fig. 7a. This case was run in the afternoon on
Jan 15, 2013. The space cooling/heating unit operated in the
cooling mode, with a set point temperature of 76 ◦F. As men-
tioned earlier, an additional space heater was turned ON to
increase the temperature inside the smart house, representing
summer season. Usage schedules of appliances were modi-
fied according to the result of the survey conducted. When
comparing Figs. 6 and 7, it can be seen that the water heater
was operated for shorter periods in summer cases than those
in winter cases. Without a DR event, the BEM algorithm
operated appliances inside the smart house to maintain pre-
set customer comfort level. The total household consumption
reached a peak value of 10.5 kW between 20:16 to 20:20.

Case 4: Summer Case—with DR Event

A demand limit of 6.7 kW was applied for this case for 3 h
from 18:00 to 21:00, as shown in Fig. 7b. The case was run in
the late evening on Jan 15, 2013. To keep the total consump-
tion below demand limit, the BEMalgorithm turnedOFF and
ON the EV a number of times from 18:00 to 18:45 to allow
critical loads to operate. The EVwas also turned OFF during
the clothes dryer operation from 20:15 to 21:00. An irreg-
ularity in the operation cycle of the space cooling/heating
unit was observed around 19:00. This is because the door
of the smart house was open during that time, causing the
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additional space heater (used for representing summer case)
to take longer than usual to warm up the room. Overall, the
demonstration shows that the BEM algorithm keeps the total
household consumption below the demand limit of 6.7 kW
between 18:00 and 21:00. Thewashingmachine and the dish-
washer were deferred until the end of DR event. This resulted
in 15min load restrike after theDRevent ended at 21:00,with
a peak consumption of about 10.2 kW.

Summary of Results

Tosummarize the results from the four cases discussed above,
the BEM algorithm was able to successfully control the
household consumption below demand limit while maintain-
ing customer priority and comfort settings, for both winter
and summer cases. Although, winter and summer cases do
not offer significant differences in terms of implementation
results, both are presented here for sake of completeness
of the study and proof of year-round effectiveness. Another
point to note from the results is: in both cases, the rebound
peak after DR event was almost equal to the original peak
without DR. This shows that the imposed demand limit (i.e.,
6.7 kW) is the marginal value for this specific smart house
and a lower value of demand limit would have resulted in a
higher restrike peak than original peak. Thismarginal value is
important to consider for a utility before choosing a demand
limit for a particular household.

Lessons Learned from Field Implementation

From the field implementation of BEM in a smart house
environment, the following issues and associated mitigation
approaches are worth mentioning: issues of different data
collection rates of 4-noks® and handling of communication
failures and data errors.

Data Collection of 4-noks®

The 4-noks® smart plugs used in the smart house commu-
nicate with the centralized PC in a request-response type
protocol. That is, these smart plugs provide sampled data
in response to a request from the PC. If the communication
channel was busy for any reason, a 10 s delaywill be imposed
before a new request is issued. Due to this reason, the num-
ber and timing of data collected by a particular smart plug
within a particular minute varied highly from data within
another minute and also from data collected by other smart
plugs. As we use data in one-minute intervals for our analy-
sis, this issue is resolved by averaging all data collected by a
smart plug within a 60 s time window, and using the average
as the representative data for that minute. There is at least
one data collected during each minute by each smart plug,

therefore the solution is deemed sufficient to resolve the data
collection rate variation issue.

Handling of Communication Failures and Data Errors

As can be expected, communication failures and data errors
with smart plugs existed during the case studies. The failure
rates for smart plugs connected to loads ranged from a mini-
mum of 0% tomaximum 2.11%. The experiment shows that
given the smart plug failures, our revised algorithm is able
to make correct decisions based on the sampled data. This
proves the robustness of the algorithm and its suitability for
application in regular households that may have variety of
appliances to monitor/control.

Conclusion

This paper presents the validation of the improved Build-
ing Energy Management (BEM) algorithm in a smart house
environment. As the smart house environment used in this
study is in Istanbul, Turkey, load profiles of typical Turkish
customers have been developed from a conducted survey and
have been used in the case study demonstrations. Load prior-
ity and preference settings are also derived from the outcome
of the survey. Also, the experimental set-up consists of using
either real loads or representative loads with profiles similar
to real loads and temperature adjustments to represent sea-
sonal profiles. Hence, the study closely resembles real-life
scenarios in a real smart building environment. The paper
focuses onfield implementation issues and discusses solution
approaches. Results demonstrate how the BEM algorithm
can be useful for residential automated load management
with an incentive-based demand response program.Thework
is expected to serve as a guide for widespread use of auto-
mated demand response applications in smart buildings using
a building energy management system.
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