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Abstract A mixed-integer nonlinear programming water

distribution problem that incorporates water rationing is

presented. The city of Bulawayo water distribution prob-

lem is implemented and solved using max–min ant system,

genetic, tabu search, and simulated annealing algorithms

with 100 runs performed for each algorithm. The results

show that the city of Bulawayo can save $3158 a day. The

max–min ant system produced the best optimal costs

compared with the other algorithms. The least run time is

obtained by implementing the tabu search algorithm. Water

lost through hoarding during water-rationing periods con-

tributes significantly to the total operational costs. Statis-

tical analysis of the results obtained by different algorithms

shows that the optimal costs obtained by tabu search, and

simulated annealing algorithms are insignificantly differ-

ent. Future research may be directed toward incorporating

priority among water users and formulating a hybrid

algorithm that uses both the max–min ant system and tabu

search algorithms to solve such problems.

Keywords Mixed-integer nonlinear programming � Water

rationing � Optimisation

Introduction

Water is a scarce resource and must be managed properly

to avoid conflicts. Many water authorities, especially in

developing countries, are engaging in water rationing as a

management tool to easy the pressure on the scarce

resource. During droughts, municipal water restrictions

focus on residential users rather than letting prices reflect

scarcity of the resource during excess demand. Price-based

policy would result in allocatable consequences. Rationing

is a system that is being used everywhere in the world

where there is water shortages. Outdoor watering restric-

tions were implemented during 1987–1992 drought in

California (Dixon et al. 1996). In Australia, 75% of the

population live in mandatory water restriction communities

(Grafton and Ward 2008). Charging high volumetric prices

of water during shortages can put a burden to the poor and

larger households (Grafton and Ward 2008). According to

the World Health Organisation (WHO), the basic amount

of water required per day per person is 50 l (Madden and

Carmichael 2007).

According to the study carried out by Mansur and

Olmstead (2007), indoor consumption appears to be

affected only by income and family size and outdoor use is

price elastic during the wet season and price inelastic in the

dry season. Substantial gains were available on price-based

approach rather than outdoor water rationing. Another

study carried by Hensher et al. (2006) on willingness to

pay to avoid drought-induced water restrictions concluded

that water consumers are unwilling to pay to avoid low-

level restrictions at all and higher level of restrictions that

are not in place everyday.

On the other hand, water consumers are willing to tol-

erate high-level restrictions on limited periods in a year as

compared with higher water bills. Domestic water
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consumers tend to keep more water than required in con-

tainers if a water-rationing schedule is out. The excess

water will be replaced by fresh water if allocation is

resumed, and this leads to higher water consumption levels

than before rationing. This study seeks to optimise water

distribution costs during water-rationing periods, so as to

avoid or minimise extra water costs that are induced

through water hoarding which results in higher water

consumption.

The remainder of the paper is arranged as follows. A

review of leading metaheuristic algorithms that are used in

this study is carried out in ‘‘Review of metaheuristics’’. In

‘‘Model formulation’’, formulation of a mixed-integer

nonlinear programming (MINLP) problem is presented.

Section ‘‘The numerical example’’ presents implementa-

tion and application of the four leading algorithms to the

MINLP, and in ‘‘Conclusions’’, conclusions are drawn.

Review of metaheuristics

Metaheuristics have been used to solve water distribution

networks. Metaheuristics were first applied to solve a water

distribution system by Dougherty and Marryott (1991).

Metaheuristics mimic natural processes and have proved to

be relevant in water distribution systems optimisation

(Walski 2003; Winston 2004). Brief explanations of the

Max–Min Ant System (MMAS), Genetic Algorithm (GA),

Tabu Search (TS) and Simulated Annealing (SA) algo-

rithms are presented.

The MMAS algorithm

The algorithm was introduced by Stutzle and Hoos (2000)

as an extension of the Ant Colony Optimisation Dorigo

(1992) which is an adaptation of the AS algorithm. The

algorithm provides dynamically evolving bounds on the

pheromone trail intensities. The probability that edge (i, j)

will be selected at decision i is given by

pzijðtÞ ¼
saijðtÞ � kbijðtÞ

P
k2Nz

i
saikðtÞ � kbikðtÞ

; j 2 Nz
i ; ð1Þ

where Nz
i is the feasible neighbourhood of the ant z and (ik)

are edges from i. Equation (2) represents pheromone

updating.

sijðt þ 1Þ ¼ q� sijðtÞ þ DsijðtÞ; ð2Þ

where pijðtÞ is the probability of choosing edge (i, j) at time

t, sijðtÞ is the concentration of pheromone related to edge

(i, j) at period time t, and kij is the preference of edge (i, j).

The parameters a and b control the relative importance of

pheromone intensity and preference for every ant’s

decision, respectively. The parameter q represents pher-

omone persistence. The quantity DsijðtÞ represents the

pheromone addition for edge (i, j) and it is a function of

solutions found at iteration t. Equation (3) is the pher-

omone addition on edge (i, j) at time t.

DsijðtÞ ¼
Xm

l¼1

DslijðtÞ; ð3Þ

where DslijðtÞ is the pheromone addition laid by the lth ant

on the edge (i, j) at the end of iteration, t, and m is the

number of ants. Successful application of MMAS algo-

rithm to water distribution system has been witnessed

(Chagwiza et al. 2014; Zecchin et al. 2003; Afshar 2009b).

The GA algorithm

The genetic algorithm is an algorithm that mimics natural

processes selection and belong to evolutionary algorithms.

It uses processes, such as mutation, inheritance, selection,

and crossover. Genetic algorithm refers to the model that

was introduced by Holland (1975). The genetic algorithm

is usually applied to nonlinear problems, and modifications

of the genetic algorithm called BASIC were also intro-

duced (Shopova and Vaklieva-Bancheva 2006). Genetic

algorithm has been previously applied to water distribution

systems in studies, such as that of Afshar (2009a), Wu

et al. (2001), and Tolson et al. (2004).

The TS algorithm

The TS algorithm was first introduced by Glover (1989).

The metaheuristic is believed to be the one that guides

subordinated heuristics to produce solutions beyond those

that are produced by search of local optima (Fanni et al.

2000). The algorithm has been long back applied to non-

linear problems (Glover 1977). It uses local search

(neighbourhood) that potential solutions, x, to the problem

are directed to an improved solution, x0. The algorithm uses

three types of memory, that is, short, intermediate, and long

term, and they form the tabu list (Glover 1990b). The tabu

list contains solutions that can be changed by the process

that is involved when moving from one solution to the

other. Full explanation of the TS algorithm can be found in

Glover and Laguna (1997) and Glover (1990a, 1993,

1994). The TS algorithm has previously been applied to

solve water distribution systems problems (Fanni et al.

2000; Cunha and Riberio 2003; Sung et al. 2007).

The SA algorithm

Simulated annealing was introduced by Kirkpatrick et al.

(1983). It uses a set of controlled cooling operations. The
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algorithm has four basic components, that is, configurations

which are the possible problem solutions, move set which

is a set of allowable moves to reach the feasible configu-

rations, cost function that measures how good each con-

figuration is, and the cooling schedule. The algorithm has

been applied to solve water distribution problems

(Dougherty and Marryott 1991; Marryott et al. 1993;

Cunha 1999; Tospornsampan et al. 2005, 2007).

Model formulation

A MINLP problem of a water distribution system that

includes water rationing during shortage period is devel-

oped in this section. Definitions of variables (var) and

parameters (par) are shown in Table 1. Equations (4)–(8)

are a sub-problem that is used to find the optimal cost, Cj;i,

of implementation measure j during shortage event i. The

objective (Eq. (4)) is to minimise costs that are related to

implementing a measure to water resource allocation dur-

ing the times of shortages. Equation (5) ensures that the

quantity conserved during shortage should balance with

quantities conserved by implementation both short- and

long-term measures. Implementation constraints (lower

and upper implementation) of each measure, that is, either

short or long term are presented by Eqs. (6), (7) and (8) is

the sign restriction constraint. The result from this model is

implemented in the main model [Eqs. (9)–(15)]

Min Cj;i ¼
X

ĵ2j;i2M
Cĵ;iðUĵ;i þ Lĵ;iÞYĵ;i þ

X

~j2j;i2M
C~j;iðU~j;i þ L~j;iÞY~j;i

ð4Þ

subject to

Yj;i � Yĵ;i þ Y~j;i; 8ĵ 2 j; 8~j 2 j
ð5Þ

Uj;i �Uĵ;i þ U~j;i; 8ĵ 2 j; 8~j 2 j ð6Þ

Table 1 Definitions of model

variables
Name Definition Type

Bi;t Operational and maintenance costs incurred in shortage event i at time period t Par

Cj;i Cost of implementing conservation measure j in shortage event i Par

Cĵ;i Cost of implementing long-term conservation measure j in shortage event i Par

C~j;i Cost of implementing short-term conservation measure j in shortage event i Par

Di;t Full-service demand in shortage event i at time t Par

Ei;t Retail price of water for each shortage event i Par

Fi;t Quantity of water available in shortage event i at time t Var

Hi;t Penalty for failing to meet demand Par

i Index identifying shortage event –

j Index identifying conservation measure type available j –

ĵ Index identifying long-term measure –

~j Index identifying short-term measure –

Lj;i Lower limit of measure j in event i Var

Lĵ;i Lower limit of long-term measure j in event i Var

L~j;i Lower limit of short-term measure j in event i Var

M Number of shortage events i Par

N Number of measure type j Par

Pi Probability of shortage event i occurring Par

Qi;t Quantity of water lost in shortage event i and period t Var

Ri;t Ration amount for shortage event i at time t Par

t Index identifying period (time), t 2 T –

Uj;i Upper limit of measure j in event i Var

Uĵ;i Upper limit of long-term measure j in event i Var

U~j;i Upper limit of long-term measure j in event i Var

Xj;i Implementation level of measure j in shortage event i Var

Yj;i Quantity of water conserved in shortage event i by measure j Var

Yĵ;i Quantity of water conserved in shortage event i by long-term measure Var

Y~j;i Quantity of water conserved in shortage event i by short-term measure Var

Z Objective function Par
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Lj;i � Lĵ;i þ L~j;i; 8ĵ 2 j; 8~j 2 j ð7Þ

Yj;i � 0; Yĵ;i � 0; Y~j;i � 0: ð8Þ

The model is an MINLP problem and the objective is to

minimise water distribution costs that are incurred during

water-rationing periods. The costs include penalties asso-

ciated with failure to meet demand, Hi;t, operational and

maintenance, Bi;t, and costs. Equation (11) shows that the

full-service demand minus quantity of water available

during shortage should be greater than zero, so as to ensure

that there is, indeed, a shortage that requires water ration-

ing. Quantity balance constraint is represented by Eq. (12).

Ration amount of water is less than the available quantity

of water. Equation (13) represents the implementation of a

measure j to the water allocation problem and it is binary: 0

when there is no measure implemented and 1 if a measure

is implemented. Equation (15) restricts full-service

demand, and available quantity and quantity lost due to

water hoarding to be positive

Min Z ¼ Pi

X

i2M;t2T
Ei;tðQi;t þ Fi;tÞ þ

X

i2M;t2T
Hi;tðDi;t � Fi;tÞ

þ
X

j2N;i2M
Cj;iXj;iYj;i þ

X

i2N;t2T
Bi;tFi;t

ð9Þ

subject to

Yj;i � Yĵ;i þ Y~j;i; 8ĵ 2 j; 8~j 2 j
ð10Þ

Di;t � Fi;t � 0; 8i 2 M; 8t 2 T ð11Þ

Fi;t �Ri;t; 8i 2 M; 8t 2 T ð12Þ

Xj;i � 0; 8j 2 N; 8i 2 M ð13Þ

Xj;i 2 ½0; 1� ð14Þ

Di;t � 0; Fi;t � 0; Qi;t � 0 ð15Þ

The numerical example

The city of Bulawayo in Zimbabwe is the second largest in

the country and has been affected by water shortages for a

long time. The city is supplied by three dams, has seven

distribution reservoirs with a capacity of 407,750 m3, and a

daily demand of 178,000 m3. The city is hit by successive

droughts and characterised by massive water-rationing

periods that can lasts up to 4 days in a week in some areas

without receiving water supplies. Even if the water catch-

ment areas receive good or adequate rains, there is less to

talk about in terms of improvements in uninterrupted water

supplies to the water consumers. The city publishes a

water-rationing schedule to the residents, but in most cases,

it does not stick to it. Residents of the city use large plastic

and metal containers to hoard water during water-rationing

periods. Water consumers experience massive water

rationing during the dry period and the early days into the

rainy season (May–November). Computations were exe-

cuted in the MATLAB environment on a PC with AMD

E-300 APU with RadeonTM @1.30 GHz and 4.00 GB

RAM using the city of Bulawayo water data summarised in

Table 2.

The water allocation problem has a total of 9 variables

and 27 constraints. A total of 100 runs are performed for

each optimisation algorithm. Parameters that are used in

the problem are adjusted to direct the solution after every

ten instances. The average values of each parameter that

produced optimal solution are summarised in Table 3. The

results show that the city of Bulawayo can incur costs

amounting to $1842 per day if the model is implemented.

This is against the cost of $5000 per day, the city is

incurring at the time of this study. The city can save a total

of $3158 per day if the model is implemented. The costs

the city incurs, at the time of the study, are largely due to

water that is lost through water hoarding. Water users tend

to hoard water when they know that they will have longer

water-rationing periods. In most cases, water users tend to

replace ‘stale’ water with fresh water when it is available.

The city does not follow the published water-rationing

schedule and sometimes supply water earlier than the

scheduled water-rationing period, and residents replace

stored water with fresh water anticipating longer water-

rationing periods.

Analysis of the performance of optimisation

algorithms

To produce better results of the water supply problem, a

total of four leading optimisation heuristics in literature are

used and these are the MMAS, GA, TS, and SA algorithms.

The heuristic parameters that produced best results are

shown in Table 3. The minimum and maximum optimal

costs and corresponding run times are also shown in

Table 3. The results show that the MMAS algorithm pro-

duced the best average optimal cost of $1842 at an average

run time of 3.86 min compared with $2273, $2378, and

$2052.4 achieved by GA, TS, and SA, respectively. The

minimum optimal cost obtained by the MMAS algorithm is

$1792 after 3.61 min of run time, $2198 for GA after 3.05

min, $2303 for TS after 1.39 min, and $1992.4 for SA after

2.03 min. The MMAS algorithm performed better, maybe

because of better exploration property of the algorithm as

compared with GA, TS, and SA which are inflexible. The

TS algorithm produced the worst solution result at 2.69 min

of run time. Although the TS algorithm produced worst
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results, the least run time is achieved by implementing this

algorithm. Shorter run time achieved by the TS algorithm

might be as a result of simplicity of the algorithm, that is,

the use of fewer parameters, whereas MMAS, GA, and SA

use many parameters which may contribute to more exe-

cution time required to implement each parameter into the

algorithm.

To have a clear picture of the performance comparison

of the algorithms, statistical tests are carried out. Table 4

shows the results of the analysis of variance performed on

optimal costs and run times that are obtained for each run

performed. The independent variable is taken as the algo-

rithm and the dependent variables are the optimal costs and

run times. In general, it is shown that there is a significant

(p ¼ 0:000) difference between both optimal costs and run

times obtained by the different algorithms. A comparison

to test the statistical difference within the algorithms is

done. Tables 5 and 6 show the results of comparisons of

optimal costs and run times within the algorithms,

respectively. The average mean optimal costs ($2136.35)

and run time (3.24 min) are used to find the mean differ-

ences. The results in Table 5 show that there is a significant

difference on optimal costs obtained by each algorithm as

compared with the other algorithms. The run times are

significantly different for all the algorithms except those

required by SA and TS (p ¼ 0:86).

Table 3 Summary of parameter

values and results of various

optimisation algorithms

Algorithm Parameter information Optimal solution $ Run time (min)

Symbol Definition Value [min, max] [min, max]

MMAS a Pheromone intensity control 0.7

b Preference control 0.5

q Persistence control 0.98 1842 [1792, 1892] 3.86 [3.61, 4.11]

GA pm Mutation 0.05

r Mutation step 0.1

pc Crossover rate 0.7

l Population size 120

k Offspring size 75 2273 [2198, 2346] 3.65 [3.05, 4.22]

TS s Tabu tenure 1000

G Termination criteria 1000 2378 [2303, 2450] 2.69 [1.39, 3.94]

SA t0 Initial temperature 120

T Stopping temperature 75 2052.4 [1992.4, 2115] 2.78 [2.03, 3.03]

Mean 2136.35 [1792, 2450] 3.24 [1.39, 4.22]

Table 2 Summary of the city of

Bulawayo water data
Description Value

Retail price ($/m3) 1.12

Operational and maintenance costs ($/m3/day) 0.05

Quantity of water available (m3/day) 100,000

Estimated quantity of water lost through hoarding (m3/day) 20,000

Estimated penalty for failure to meet demand ($/day) 0.2

Full-service demand (m3/day) 178,000

Water ration amount (m3/day) 110,000

Number of long-term measures 1

Number of short-term measures 1

Cost of implementing short-term measure ($/day) 0.5

Cost of implementing long-term measure ($/day) 0.4

Lower limit of long-term measure (m3/day) 30,000

Upper limit of long-term measure (m3/day) 50,000

Lower limit of short-term measure (m3/day) 1000

Upper limit of short-term measure (m3/day) 19,000

Quantity of water conserved by long-term measure (m3/day) 2000

Quantity of water conserved by short-term measure (m3/day) 5000
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Conclusions

A water distribution problem that incorporates water

rationing has been presented as a mixed-integer nonlin-

ear programming problem. The objective of the model is

to minimise water distribution costs while incorporating

water-rationing-related costs. Four main leading opti-

misation algorithms, that is, MMAS, GA, SA, and TS,

were implemented to solve the problem. The results

show that the city of Bulawayo, which is used as an

example in this research, can save a significant amount

of money if the model is implemented. On the other

hand, the MMAS algorithm produced the least optimal

cost as compared with the other algorithms. The least run

time is achieved by implementing the TS algorithm. It is,

therefore, recommended that a hybrid algorithm to solve

water distribution problems of the same nature as the one

presented in this research be formulated to get best

optimal solution.
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