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Abstract Predicting the discharge coefficient of the

hydraulic structures is one of the main subjects related to

the hydro-system management. Weirs are the common

hydraulic structure widely used in the water engineering

projects. Side weir is the common type of hydraulic

structure used in water engineering projects. Principal

component analysis of the affective parameters on the side

weir discharge coefficient leads to develop optimal struc-

ture for the empirical formulas and artificial intelligent

models. In this paper, the principal component analysis

(PCA) technique was used to define the most important

affective parameters on the discharge coefficient of side

weir (Cdsw). The result of the PCA showed that the Froude

number and ratio of the weir height to the upstream flow

depth (P/h1) are the most influential parameters affecting

the Cdsw. Developing the adaptive neuro-fuzzy inference

system (ANFIS) based on the PCA result showed that the

optimal ANFIS structure is related to consider the five and

four Gaussian membership function for the Froude number

and P/h1 parameters, respectively. The correlation coeffi-

cient of the ANFIS model during the training and testing

stage was found to be 0.96 and 0.86 correspondingly.

Keywords Principal component analysis � Optimal

model structure � ANFIS � Side weir � Discharge coefficient

Introduction

Study on the hydraulic phenomena is based on the defini-

tion affective parameters. To this purpose, influence

parameters such as fluid properties, hydraulic and geo-

metric variables are collected together and using the

dimensional analysis such as Buckingham p theorem the

dimensionless parameters are derived (Dehdar-behbahani

and Parsaie 2016; Chen 2015). Usually using the design of

experiment (DOE) techniques, the influence of the inde-

pendent parameters on the dependent parameter is defined.

In this approach for defining the impact of the independent

parameter on the dependent parameter during the experi-

ments, other parameter remains constant (Antony 2014).

Today by advancing the data mining approaches such as

neural network models in almost all areas of water engi-

neering fields especially in the water engineering studies

(Azamathulla et al. 2016; Parsaie 2016a, b), researchers

have attempted to use these techniques for predicting and

modeling the hydraulic or hydrologic phenomena (Tayfur

2014). As clear from the name of the data mining

approaches, developing these models are based on the data

set; therefore, investigators for developing the types of the

data mining models have tried to collect the related data set

from the various reliable sources such as peer-reviewed

article and handbooks and books, etc. (Araghinejad 2013).

During the data collection process defining the most

affective independent parameters sometimes becomes dif-

ficult therefore to this purpose several mathematical

approached such as principal component analysis as mul-

tivariable analysis techniques, etc., have been proposed.

Using these approaches leads to define the most affective

parameter on the desired phenomenon (Remesan and

Mathew 2014). Since the focus of this research is on the

side weir discharge coefficient, so the most follow
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illustration is on this subject. Side weir is a type of weir

which is set up on the side wall channel and most of the

time installed parallel to the flow direction (Haghiabi 2012;

Heidarpour et al. 2008). Side weir is used for removing the

excess flow from the hydro-systems such as irrigation and

drainage network, sewage, etc. (Bagheri et al. 2014; Had-

dadi and Rahimpour 2012; Parsaie et al. 2015a). Several

studies such as experimental, analytical and artificial

intelligent techniques have been used for calculating and

predicting the sider weir discharge coefficient (Vatankhah

2013a, b; Parsaie and Haghiabi 2014). In the experimental

studies researchers have tried to improve the performance

of the sider weir, to this purpose various shapes have been

proposed for the crest of side weirs which most of these

categorized as nonlinear crest. In the field of numerical

modeling using the computational fluid dynamic and arti-

ficial intelligent techniques can be stated (Aydin and

Emiroglu 2013). In the computational hydraulic field, the

water surface profile and flow properties were studied

(Parsaie and Haghiabi 2015a, b). Side weir discharge

coefficient was predicted and modeled by most types of

neural network techniques such as multilayer perceptron

(MLP) neural network, adaptive neuro-fuzzy inference

system (ANFIS), and group method of data handling

(GMDH) (Ebtehaj et al. 2015a; Emiroglu et al. 2011b; Kisi

et al. 2012). Based on the reports the accuracy of these

models are much more than the empirical formulas. Using

the AI model together with numerical methods leads to

increase the accuracy of the numerical simulation (Parsaie

et al. 2015b; Parsaie and Haghiabi 2015a, c). Although the

AI techniques have the ability to model complex systems,

optimal structure of these models is an important subject

which is discussed in the model development process.

Several mathematical approaches such as gamma test,

Monte Carlo simulation and principal component analysis

such as multivariable analysis have been proposed to this

purpose (Martinez et al. 2010). In this paper using the PCA

as the most important parameter on the side weir, discharge

coefficient is derived and in the following by considering

the PCA results, an evaluation is conducted on the per-

formance of the empirical formulas which have been pro-

posed for Cdsw. At the end, the ANFIS model is developed

based on the PCA results.

Method and materials

Discharge coefficient of side weir is proportional to the

hydraulic and geometric parameters. Figure 1 shows a

schematic shape of the side weir and the most important

parameters in the subcritical flow condition.

As seen in Fig. 1, the most important parameters are the

flow velocity (V1), side weir length (L), diversion angle of

the flow (w), weir height (P) and the longitudinal slope of

the channel (s0). Equation (1) collected the mentioned

parameters.

Cdsw ¼ f v1; L; b; h1;P;w; s0ð Þ ð1Þ

Using the Buckingham theorem leads to derive dimen-

sionless parameters which are basic parameters for devel-

oping the empirical formulas and AI models. The result of

the Buckingham theory is given in the Eq. (2) (Emiroglu

et al. 2011a).

Cdsw ¼ f2 Fr1;
L

b
;
L

h1
;
P

h1

� �
ð2Þ

For calculating the Cdsw some of the most famous

empirical formulas were collected and given in Table 1.

As mentioned in the past section, developing the AI

models is based on the data set; therefore, about 477 data set-

Fig. 1 Sketch of side weir at

subcritical flow condition
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related parameters of Eq. (2) were collected from reliable

peer-reviewed journals and their ranges are given in Table 2.

To calculate the discharge coefficient of side weir using the

empirical formulas with regard to Table 2, the values of

related parameters used in each of the empirical formulas are

derived and then taken into the empirical formula and then

the discharge coefficient will be calculated.

Principal component analysis (PCA)

The principal component analysis (PCA) is an advanced

category in the factor analysis approaches and usually used

for data reduction in the field of engineering. The main

application of the PCA is in the compression and classifi-

cation of data; the other main use of this approach is to

reduce the dimensionality of a data set (sample) by finding

a new set of variables, smaller than the original set of

variables that nonetheless retains most of the sample’s

information (Camacho et al. 2015, Martinez et al. 2010).

Adaptive neuro-fuzzy inference systems (ANFIS)

Adaptive neuro-fuzzy inference systems (ANFIS) is a

powerful tool for modeling of complex system based on

Table 1 Some empirical formulas to calculate the side weir discharge coefficient

Row Author Equation

1 Nandesamoorthy and Thomson

(1972) Cd ¼ 0:432
2�Fr21

1�2Fr21

� �0:5

2 Subramanya and Awasthy (1972)
Cd ¼ 0:432

1�Fr21

2þFr21

� �0:5

3 Yu-Tech (1972) Cd ¼ 0:623� 0:222Fr1

4 Ranga Raju et al. (1979) Cd ¼ 0:81� 0:6Fr1

5 Hager (1987)
Cd ¼ 0:485

2�Fr21

2þ3Fr21

� �0:5

6 Cheong (1991) Cd ¼ 0:45� 0:221Fr1

7 Singh et al. (1994) Cd ¼ 0:33� 0:18Fr1 þ 0:49 P
h1

� �

8 Jalili and Borghei (1996) Cd ¼ 0:71� 0:41Fr1 þ 0:22 P
h1

� �

9 Borghei et al. (1999) Cd ¼ 0:7� 0:48Fr1 þ 0:3 P
h1

� �
þ 0:06 L

h1

� �

10 Emiroglu et al. (2011a, b) Cd

¼ 0:836þ �0:035þ 0:39 P
h1

� �12:69

þ 0:158 L
b

� �0:59þ 0:049 L
h1

� �0:42

þ 0:244Fr2:1251

� �3:018
" #5:36

Table 2 Range of collected data related to the side weir discharge

coefficient

Data range Fr1 P/h1 L/b L/h1 Cdsw

Min 0.09 0.03 0.21 0.19 0.09

Max 0.84 2.28 3.00 10.71 1.75

AVG 0.43 0.76 1.13 3.87 0.50

STDEV 0.18 0.43 0.85 3.06 0.17

Fig. 2 ANFIS model structure
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Fig. 3 Performance of the empirical formulas to calculate the Cdsw

260 Sustain. Water Resour. Manag. (2016) 2:257–264

123



input and output data. ANFIS are realized by an appropriate

combination of neural and fuzzy systems. This combination

enables to use both the numeric power of intelligent systems.

In fuzzy systems, different fuzzification and defuzzification

strategies with different rules were considered for input

parameters. For determining the effect of fuzzy logic on the

input data, three stages should be considered. One-selecting

the membership function for each input variable. In this

stage, a Gaussian function for each of input variable maybe

considered. Figure 2 shows a fuzzy reasoning process. For

simplicity, illustrating a fuzzy system with two input vari-

ables and one output was considered. Suppose that the rule

base containing two fuzzy if–then rules:

Rule1 : if x isA1 and y isB1 then f1 ¼ p1xþ q1yþ r1

Rule2 : if x isA2 and y isB2 then f2 ¼ p2xþ q2yþ r2;

where A1; A2 and B1; B2 are the MFs for inputs x and y;

respectively; p1; q1; r1 and p2; q2; r2 are the parameters of

the output function. ANFIS architecture is presented in

Fig. 2 as follows: in the first layer, all the input variables

gave the grade membership with membership function; in

layer 2, all the membership grades will be multiplies

together; in layer 3, all the grades of member will be

normalized; in layer 4, the contribution of all the rules will

be computed; and in the last layer, output variable will be

computed as weighted average of grade membership (Ri-

ahi-Madvar et al. 2009).

Results and discussion

Empirical formula results

The performance of empirical formulas was evaluated by

conducting a comparison with measured data. The results

of the each empirical formula were plotted versus the

measured data and are shown in Fig. 3. The standard error

indices such as correlation coefficient (R2) and root mean

square of error (RMSE) were calculated for assessing the

performance of the empirical formulas. The results of the

error indices are given in Table 3. As clear from Fig. 3 and

Table 3, the Emiroglu formula with correlation coefficient

0.64 and root mean square error 0.03 is accurate among the

empirical approaches.

PCA result

To define the most affective parameters on the Cdsw, the

PCA technique was carried out on the collected data set,

the ranges of which are given in Table 2. The results of the

PCA are given in Fig. 4 and Table 4. As shown in Fig. 4,

the Froude number and ratio of the weir height to the flow

depth (P/h1) are the most important parameters for pre-

dicting the Cdsw. By paying attention to the PCA results

and results of the empirical formulas obtained in Fig. 2, it

Table 3 The performance of empirical formulas

Author R2 RSME

Nandesamoorthy and Thomson (1972) 0.01 0.00

Subramanya and Awasthy (1972) 0.01 0.00

Yu-Tech (1972) 0.01 0.00

Ranga Raju et al. (1979) 0.01 0.00

Hager (1987) 0.01 0.01

Cheong (1991) 0.01 0.01

Singh et al. (1994) 0.07 0.01

Jalili and Borghei (1996) 0.06 0.01

Borghei et al. (1999) 0.11 0.02

Emiroglu et al. (2011a, b) 0.64 0.03

Fig. 4 The screw graph resulted from the PCA technique

Table 4 The table of

component variance resulted

from PCA technique

Component Initial eigenvalue Extraction sums of squared loadings

Total % of variance Cumulative % Total % of variance Cumulative %

1 2.053 41.059 41.059 2.053 41.059 41.059

2 1.418 28.350 69.409 1.418 28.350 69.409

3 0.893 17.857 87.267

4 0.426 8.518 95.785

5 0.211 4.215 100.000

Sustain. Water Resour. Manag. (2016) 2:257–264 261

123



could be found that the empirical formulas which consid-

ered more weight for the parameters such as Fr1 and

especially P=h1; such as Emiroglu formula are more

accurate when compared to other empirical formulas.

ANFIS models development

Developing ANFIS models similar to other neural network

models is based on the data set. To this purpose, the data set

ranges of these given in Table 2 were used and divided into

two groups as training and testing. Choosing training and

testing data sets was based on the randomized approach.

Designing the structure of the ANFIS included the definition

number of the membership function, hidden layer(s), acti-

vation function and learning algorithm. Choosing the

number of the hidden layers and other model structures

almost is based on trial and error, but the experience of the

designer and recommendations of the other investigators

who conducted similar studies are useful. Another approach

for developing an optimal structure for ANFIS model is

using the mathematical approach such as PCA. Result of the

PCA shows that the Fr1 and P/h1 are the most important

parameters in the Cdsw prediction. Developing the ANFIS

model structure based on the PCA requires consideringmore

number of neurons to the Fr1 andP/h1. TheANFISmodel has

amain advantagewhen compared to otherANNmodels such

as multilayer perceptron neural network (MLP) model in the

utility of structure designing stage. This utility is related to

specifying the number of the membership function to the

input variables based on these influences on the output
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Fig. 5 The performance of ANFIS model during the training stage
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Fig. 6 The performance of ANFIS model during the testing stage
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parameter. PCA results can be applied for developing the

structure of ANFIS model, so the utility of ANFIS model

leads to develop a model that is more optimal and has more

reliability because each parameterwhich ismore affective on

the outputs can getmoremembership function. The results of

the ANFIS model to predict the Cdsw are shown in Figs. 5

and 6. As mentioned in the past, the data set is randomly

divided in two groups as training and testing data set.

Training data set is about 80 % of the total collected data and

the remaining data set (20 %) was used for testing. The

structural of the ANFIS which has best performance is given

in Table 5; as shown in Table 5, the Gaussian function

(guassmf) was considered for the membership function and

weight average (wtaver) approach was considered for

defuzzification method. As shown in Figs. 5 and 6, the his-

togram and distribution of the errors are also plotted for

assessing the performance of the ANFIS model in stage of

the training and testing. As clear from Table 5, the Fr and P/

h1 have more neurons when compared to the other parame-

ters. Overall, as shown in Figs. 5 and 6, the ANFIS model’s

ability is suitable for predicting the values of the Cdsw in the

training and testing stages and also this model has suit-

able performance to predict themaximumvalues of theCdsw.

The results of this study uphold the results of Ebtehaj et al.

(2015a) and Ebtehaj et al. (2015b). Ebtehaj et al. (2015a)

stated that for prediction of discharge coefficient of side weir

using the GMDH, Fr and P/h1 are the most important

parameters also reviewing the studies which were conducted

by Ebtehaj et al. (2015b) and Emiroglu et al. (2011a, b)

showed that they considered more weight for the both

parameters during the model development.

Conclusion

In predicting the discharge coefficient of the weirs spa-

tially, side weirs play a key role in the hydro-system

management. Recently by advancing the neural network

techniques in the water engineering studies, modeling of

hydraulic phenomena is carried out more accurately.

Although the ANN models have high ability for predicting

the discharge coefficients of the hydraulic structures,

especially side weirs, optimal designing of these structure

is an important factor which leads to increase the reliability

of the ANN model. Using the mathematical techniques

such as principal component analysis (PCA) helps to define

the most important parameters which have influence on the

desired phenomena. In this paper, using the PCA it was

found that the Froude number and ratio of the weir height

to the upstream flow depth (P/h1) are the most influential

parameters on the Cdsw. Therefore, during the ANFIS

model development more number of membership function

was considered to these parameters. Overall, using the PCA

results leads to preparing an optimal structure the ANFIS

model.
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